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In this paper, we discuss the uniqueness and stability in determining a coefficient in an
acoustic equation from data of the solution on a subboundary over a time interval. We will
formulate our problem as follows: In a bounded domain 2 C R”, n < 3, with sufficiently
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Abstract

We study the global stability in determination of a coeflicient in an acoustic
equation from data of the solution in a subboundary over a time interval. Providing
regular initial data, without any assumption on an observation subboundary, we
prove the logarithmic stability estimate in the inverse problem with a single mea-
surement. Moreover the exponent in the stability estimate depends on the regularity
of initial data.

Introduction

smooth boundary I' = 92, we consider an acoustic equation

O?u(z,t) — div(a(x)Vu(z,t)) =0 in Q=Qx[-T,T]
u(x,0) = §o(x), du(x,0) =Py (x) in Q

dyu(x,t) =0 on X =1 x[-T,T].



Here v = v(x) denotes the unit outward normal vector and we set d,u = Vu-v. We
denote the solution to (1.1) by u,. The unknown coefficient a € C%(€2) is assumed to be
a positive function a(z) > 0 for all z € Q.

Let I'y C I' be given arbitrarily. A question of our inverse problem is whether or not we

can conclude a(x) = b(x), « € Q, by
ug(,t) = up(x, t); (x,t)e =11 x| =T,T1. (1.2)

Throughout this paper, we assume that unknown @ and b coincide near the boundary I'.

From the physical viewpoint, our inverse problem is the determination of the bulk
modulus () in acoustic equation (1.1) which is considered in a nonhomogeneous medium.

In [12], Imanuvilov and Yamamoto consider an inverse problem concerning the de-
termination of the coefficient a(z), v € Q from data w|,,xjo,7], Where wy C § is a sub-
domain. More precisely, in the case where wy satisfies the geometric condition: dwg D
{x €T; (v —x0) - v > 0} with some zo ¢ Q, an L?-estimate of Hélder type was proved,
provided that a, b satisfy a priori uniform boundedness condition, compatible conditions
and some positivity condition. The key is a Carleman estimate for a hyperbolic operator
in an H~1-space.

As a result of this geometric condition, wy C ! cannot be an arbitrary subdomain. For
example, in the case of ) = {x;|z| < R}, the geometric condition requires that wg should
be a neighbourhood of a subboundary which is larger than the half of I'. The geometric
condition is also a sufficient condition for an observability inequality by observations in

wox]0, T (see [2]).

Our inverse problem is formulated with a single measurement. The main methodology
is based on an L%*-weighted inequality called a Carleman estimate, and was introduced
by Bukhgeim and Klibanov [5]. Furthermore, as for applications of Carleman estimates
to inverse problems, we can refer to Bellassoued [3], Bukhgeim [4], Bukhgeim, Cheng,
[sakov and Yamamoto [6], Imanuvilov and Yamamoto [9] - [12], Isakov [13] - [15], [sakov
and Yamamoto [16], Khaidarov [18], [19], Klibanov [20], [21], Klibanov and Timonov [22],
Kubo [23], Puel and Yamamoto [29], Yamamoto [35]. Most of those papers treat the
determination of the coefficient p(x) in the zeroth order term of a hyperbolic equation
D?u(t,z) — Au(t,z) + p(x)u(t,z) = 0. As for observability inequalities, by means of
a Carleman estimate and a similar type of estimates, see Kazemi and Klibanov [17],
Lasiecka, Triggiani and Yao [24].

Except for the one-dimensional spatial case and [12], the argument in the above papers
requires us to suitably change initial values (n + 1)-times because an unknown coefficient
a appears in the divergence form, and a, d;a, 1 < i < n, are regarded as independent
unknown functions. For such an inverse hyperbolic problem of determining multiple
functions by the corresponding number of measurements, we refer to [13], [19]. Note that
the machinery used in [13] and [19], cannot take advantage of the dependence of (n + 1)
unknown functions a, dya,...,0,a, so that they are treated as (n+1) independent unknowns.
As a consequence, such an approach requires several measurements. On the other hand,
in the case of n = 1, a change v = ad,u of variables reduces (1.1) to a hyperbolic equation



of the form d?v — ad?v = 0, so that the existing results imply stability in the inverse
hyperbolic problem with a single measurement.

Our main result is the stability in the inverse problem, and the main achievements of
this paper are

e a single measurement in determining a single coefficient of the principal term
e arbitrariness of the observation subboundary I’
e the improvement of the exponent in the stability estimates for our inverse problem.

Our key idea is a combination of the Carleman estimate proved in [3] and the Fourier-
Bros-lagolnitzer (FBI) transformation introduced by Robbiano [30], [31]. We use the idea
of [30], [31] to apply the Fourier-Bros-lagolnitzer transformation and change the problem
near the boundary where we can apply an elliptic Carleman estimate.

1.1 Notations and preliminary definition

To formulate our results, we need to introduce some notations. First of all, without loss
of generality, we may assume that 0 ¢ (0.
Let
D = sup |z|. (1.3)
T€Q
Let w C 2 be a given arbitrary neighbourhood of the boundary I and n = n(x) a smooth
function in w.

Throughout this paper, let us consider the admissible set A = A(M, k,w,n,60,61) of
unknown coefficients a, b:

— k+2 (). _ o |Va(x)| 6o _
A= {a € " (Q); lallgrre@y < M5 a=nin w, a(z) > b, o <gopr &€ Q
(1.4)

where k € NU {0}, the constants M > 0, 0 < 6y < 1 and 6; > 0 are given.

Let us take the product space H*¥(Q2) = H**3(Q) & H*1(Q) as the state space of our
system. The norm in H*(£2) is chosen as follows:

(@0, @)1y = @0l Fsngy + 191y forany  (@0,®1) € H(Q).  (15)

Furthermore we assume that the observation data are measured by the norm:

3
(1) = >0 (e = w)| s, (1.6)
7=2



Definition 1 For (®g, ®1), we define ¢, (p =2,3,...) inductively by
¢,(x) = div(a(x)VP,_o(z)). (1.7)

Then we say that the data (®o, ®y1) satisfy the k-th order compatibility conditions with
respect to a if

(@0, ®1) € HF(Q) (1.8)
and

0,0, =0 m ', p=0,.. k. (1.9)

We remark that if @ € A and (P, ®1) satisfies the k-th order compatibilty conditions
with respect to a, then (®¢, ®;) satisfies also the k-th order compatibilty conditions with

respect to all b € A, because we have a(x) = b(x) near the boundary I' by the definition
of A.

Finally let the Sobolev spaces W™?() be defined for p > 1 and an integer m > 0 by
Wme(Q) = {u; u € LP(Q), 0%u € LP(N),for |o| < m}. (1.10)

1.2 Statement of Main Results

Before stating the main results, we recall the following lemma on the unique existence of
a strong solution to problem (1.1), which we shall use repeatedly in the sequel. The proof
is based on [28], for example. We can also refer to [8].

Lemma 1.1 Let (®o, Py) satisfy the k-th order compatibility conditions and let a € A.
Then there exists a unique solution uw = u, to (1.1) whithin the following class:

k42
w € [ CM2 (=T, T H(Q)). (1.11)
7=0
Moreover there exists a positive constant C(M) such that

B2
N Mttall s oy < COM) (@0, 1)l (g (1.12)
=0

The main results of this paper can be stated as follows:

Theorem 1 (H'-stability) Let T > 0 be sufficiently large for ), w, , T and the constants
M, 00,6, in definition (1.4) of A and let k € N satisfy k > 5. Moreover let (®g, ®1) satisty
the k-th order compatibility conditions and

Voo(z)-x#0, forall x€Q. (1.13)
Then there exist constants Cj, > 0 and p €]0, 1] such that the following estimate holds:
) O —u(k—2)
Va0l < O flog (24 0)] (1.1
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for all a,b € A.
Here we note that e(X4) is given by (1.6), and the constants Cy and p €10, 1] are dependent
onk, Q, w, T, M, and independent of a,b € A.

Theorem 2 (L*-stability) Let T > 0 be sufficiently large for Q, w, n, T, and the con-
stants in (1.4), and let k > 4. Moreover let (®g, ®;) satisty the k-th order compatibility
conditions and (1.13). Then there exist constants Cy > 0 and p €]0,1] such that the
following estimate holds:

) O —u(k—2)
o= ey < e Jlog (24 -2) | (1.15)
for all a,b € A.

By Theorem 2, we can readily derive the uniqueness in the inverse problem:

Corollary 1.1 (Uniqueness) Under the assumptions in Theorem 2, for all a,b € A, we
have the uniqueness:

Ug(x,t) = up(a,t), (a,t) € ¥ dmply a(x) =0b(x) for all x € Q. (1.16)

1.3 Comments on the existing papers

1. Thanks to the extra information ¢ = b in a neighbourhood w of 9, the sharp
unique continuation by Robbiano [30], Robbiano and Zuily [32], Tataru [33], implies
U, = up and Vu, = Vu, on d(Q\ @) x (=T,T), provided that T > 0 is sufficiently
large. Therefore the method in Imanuvilov and Yamamoto [12] directly yields the
uniqueness in our inverse problem. However our main result is concerned with the
stability in the inverse problem, and the direct combination of the existing results
in [12] and [30], [33] does not work. For our purpose, we will use the Fourier-Bros-
lagolnitzer transformation according to Robbiano [31], rather than [33].

2. The techniques developed in this paper may be applied, with appropriate modifica-
tions, to more complex inverse hyperbolic problems (e.g., identification of multiple
coefficients of terms of higher order in a hyperbolic equation).

3. In [23], Kubo gives some Carleman estimates including boundary values, so that he
shows the unique continuation across a lateral boundary for hyperbolic equations
and the uniqueness in hyperbolic inverse problems by the above unique continuation.
It is remarked in [23] that the uniqueness can be proved for observation on a more
general subboundary part I'y C I" and the characterization for such a subboundary
I'y is related to the uniform Lapatinskii condition.

4. Here we do not need to discuss the uniform Lopatinskii condition (see [34]) and to
study Carleman estimates with a reduced number of boundary traces, because in
the formulation of our inverse problem, we have extra information near the whole
boundary, that is, a(x) = b(x) near I



5. Since Bukhgeim and Klibanov [5], the uniqueness in the inverse problems has been

studied by the Carleman estimate (e.g., [4], [6], [13] - [15], [18], [20], [23]). As
the existing papers concerning the stability, see [9] - [12], [16], [19], [29], [35]. In
particular, Imanuvilov and Yamamoto [11] proved a global and both-sided Lipschitz
stability estimate in the determination of the coefficient p(x) of the zeroth order term
of a hyperbolic equation (9?2 — A + p)u = 0 with the lateral Neumann data d,u =0
and initial data ug > 0 on Q.

This paper employs a new Carleman estimate. A technical advantage of the new
Carleman estimate is that it holds in the whole cylindrical domain @ (note that
the classical one holds in level sets bounded by the weight function). As for general
treatments of Carleman estimates, see Hormander [7], Isakov [14], Tataru [34]. In
Lavrent’ev, Romanov and Shishat-skii[25], Carleman estimates were derived by a
direct pointwise manner.

. We further have to assume |(V®q(z) - 2)| > 0 in a subset of  where one wants

to determine a(x). We do not know the uniqueness, in general, even in the case
where {2 € Q\w; (V®q(z)-2) =0} is a set of zero Lebesgue measure. This non-
degeneracy condition is very restrictive in many cases, but the relaxation of the
non-degeneracy condition of ®¢ is an open problem.

The remainder of the paper is organized as follows. In Section 2, we give some estimates
which are used for the proof of the main results. In Section 3, we prove Theorems 1 and
2 on the basis of the weak observation estimate. Section 4 is devoted to the proof of the
weak observation estimate.

2

Preliminary Estimates

In this section we first derive several preliminary estimates. We shall use the following

notations. We choose g, 01, 02 > 0 such that

w(8o) = {x € O, dist(z,I') < 8o} C w, (2.1)
and
w(o1,02) = {z € Q, o1 < dist(z,I") < p2} Cw; 01 < 02 < 8p. (2.2)
We set
wr(e) =w(e) x [=T,T7, (2.3)
wr(e1, 02) = w(o1, 02) x [T, T]. (2.4)

For a such that 0 < o < T', we set

Qo=0x[-T+a,T—alCQ
(2.5)

Qal0) = Qo) x [-TH+a, T —a]; Qo) = Nw(o)

We shall begin with the first step in our analysis.
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2.1 Carleman Estimate

Here we show the Carleman estimate which is the starting point of the proof of the
Theorem 1. In order to prove a Carleman estimate, we have to assume a condition
called the pseudoconvexity (e.g., [7], [14]) where the coefficient of the principal term is
involved. Since such a coefficient is unknown in our inverse problem, we need to establish
a Carleman estimate with one possible explicit characterization (1.4) of coefficients for
the pseudoconvexity, and we will argue similarly to Bellassoued [3]. Moreover for our
stability estimates, unlike [7], [14], we require a Carleman estimate for functions which
have not compact supports.

For formulating our Carleman estimate, we introduce the function ¢ : @ x R — R
of class C'! by setting

Wz, t) =z = |t] forallz eQ, —T<t<T, (2.6)
where T' > 0 and 0 < vy < 1 are selected as follows. We fix 6 > 0 and vy > 0 such that

T? > max|z]? +6, 0<~ < (1—0p)0;. (2.7)
refd

Therefore, by (2.6) and (2.7), we have the following properties:
b(x,0) = |z|* >0, (x,—T)=1p(x,T) < =5 for all x € Q. (2.8)
We next introduce a function ¢ : @ x R — R by setting
o, t) =D 350 (2.9)

where 5 > 1 is a large parameter.
By (2.8), there exist a €]0, Z[ and d €]0, 1] such that

o(x,t) < d, forall (z,1) € Q\Qza- (2.10)
Now we will consider the following second-order hyperbolic operator
P(z, D) = 0} — div(a(x)V). (2.11)

Finally we introduce the following notation V, ;v (¢, x) = <aa—v, v aa—v, %) = (Vu,0w).
1 Ty

The following Carleman estimate holds:

maxmeﬁ|1’|
(1—-60)61
property: For any B > B, we can choose 1. = 7.(B) > 0 such that there exists a constant

C =C(B) >0, independent of T, such that for all T > 7., we have

Proposition 2.1 Let T > Then we can choose B, > 0 satisfying the following

7'/ e (|Vauvl* + 77 [v]*) dadt < C/ ™7 |P(x, D)o|” dudt
Qa(3e) @
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—I—CT/ Cahd <|va|2 + 72 |v|2> dxdt
wr(e.3¢)

+7 e*T¢ <|va|2 + 72 |v|2> dxdt. (2.12)
Q\Qa

whenever v € H'Y(Q) and the right hand side is finite.

Proof . Inequality (2.12) can be deduced from a more general Theorem 2 in [3] as
follows. The Hessian of ¥(x) = |z|* with respect to the metric g = a(x)~'dx is given by

D29 (2)(X, X) = 2(X - z) <M> +2|X)? (1 — M) . X = g&a%‘

a(x) 2a(x)
(2.13)
Since a € A, we have
D29 (z)(X,X) > 2|X|*(1- o) _y | X|? Na(@)] =]
2 2a(x)
> 2(1 = 00) |X[* > 2(1 — 0)01 | X2 (2.14)
Therefore we can apply the following Carleman estimate from [3]:
7'/ e (Voo + 72 v)?) dedt < C/ ¢ |P(x, D)v|* dzdt
o Q
—I—CT/ Cahd <|va|2 + 72 |v|2> dxdt
b
+7 e*T¢ <|va|2 + 72 |v|2> dxdt. (2.15)
Q\Qa
We introduce a cut-off function x satisfying 0 < y <1, y € C5°(R") and
_J 0 zew(o)
W= reae 210
We apply (2.15) to © = yv and obtain
7'/ e*T¢ <|Vx7t17|2 + 72 |ﬁ|2> drdt < C/ ¢ |P(x, D)o|* dxdt
o Q
—I-T/ Cahd <|Vmﬁ|2 + 72 |ﬁ|2> dxdt. (2.17)
Q\Qa

FPurthermore

P(x, D)o = xP(x, D)o+ [P, x]v,

where [A, B] stands for the commutator of operators A and B. Since [P, x] is a first order
differential operator and is supported in w(p,3p), we see (2.12). o



Next we will show the following Carleman estimate for a first order partial differential
operator. The function ¢(x,t) can be written as:

ol 1) = U0 =2 p()o(t),
where p(x) > 1 and o(t) < 1 are defined by

plz) = > 1, VaeQ o(t)=e " <1, Vie[-T,T).

We consider a first order partial differential equation

J}DU—Z% )Ov 4+ yo(x)v, 2 €Q (2.18)
where B B
% € CQ), 7= (,e7) € [CHQ)] (2.19)
and B
¥(z) - 2| > co>0, on 9, (2.20)

with a constant ¢g > 0. Then

Lemma 2.1 In addition to (2.20), we assume that ||yolcg) < M and ||yillcr g < M,
1 <o <mn. Then for sufficiently large 5 > 0, there exist constants 7. > 0 and C > 0 such

that
1/| (2)F 270 MSC/M@DH)F“
Q

Jor all v e Hy(Q) and all 7 > 7..

Proof . We multiply the both sides of (2.18) by v(x)e?™*(®) and using the divergence
theorem, we obtain

lf@DM@' %p“_/V“ QW)U%MW+LM@MMWx
- /(MMUW%@%MM+/%@m@ngm

Q Q
= [lopeme mv()ﬂx—%/W<>vav<w%wa
Q
/ 7ol d:)c—l—/ )|? e . (2.21)
20), we obtain

IVp(x).y(2)] > 2¢o, on 0,
Vo(z) - vy(z) = A(z, D)v — yo(x)v(x)

and so in terms of (2 21) and the Cauchy-Schwarz inequality, we have

/I )P e dy < C/Q|A(:1:,D)v(:1;)- o(z)] 20 dx+c/| 2 crote

< 0 [ 1A D@ e 1.0 [ o)

Then for large 7, we can complete the proof of Lemma 2.1. .



2.2 Weak observation estimate

The following proposition shows the stability in the continuation of solutions in class
(1.11) of a hyperbolic equation from lateral boundary data on an arbitrarily small part
I'y of 09, and gives the corresponding stability in the continuation where the uniqueness

was proved by Robbiano [30], Tataru [33].

Proposition 2.2 Let (®g, 1) satisfy the k-th order compatibility conditions with k > 5.
There exist sufficiently large T' > 0 and C(k) > such that the following estimate holds.

g 107 (e = 1) |11 sy < C(F) [bg (2 + jg?))] Y (2.22)

for all a,b € A. Moreover for k > 4, we have

g 107 (. — ub)\\;(w(m)) < O(k) {bg <2 n 66(*(;1)) )} —<k—z>7 -

for all a,b € A. Here the constant C(k) is dependent on Q, w, T, M and independent of
a,be A

As a related result, see Robbiano [31]. To prove Proposition 2.2, we use the idea of
Robbiano [30], [31] to apply the Fourier-Bros-lagolnitzer transformation and the proof is
given in Section 4.

3 Proof of the main result

This section is devoted to the proof of Theorems 1 and 2. The key is the combination of
Proposition 2.2 and the existing method (e.g., [10] - [12]).

3.1 Linearized inverse problem
First of all, we consider the difference w = u, — u;. Then
0?w(z,t) — div(a(z)Vw(z,t)) = F(z,t) in Qx[-T,T]
w(x,0) = dyw(x,0) =0 in Q (3.1)
dyw(x,t) =0 on I' x [-T,T]
where the function F'is given by
Pla,) = div(f(@)Vu(e,0)), fla) = a(e) = b(e), (e,0)€Q.  (32)

Let & > 4 and let us recall regularity (1.12) for u, and . In this subsection, we discuss
a linearized inverse problem of determining f from wyr, «jo,7] in a series of Lemmata 3.1 -
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3.4.

Let us set v = dyw. Then we have

Otv(a,t) — div(a(z)Vo(z,t)) = Fi(z,t) inQ=Q x[-T,T]
v(x,0) =0, OJw(x,0)=div(f(x)Vdy) inQ (3.3)

dv(z, 1) =0 onY =T x[0,7]
where F} is given by
Fy(z,1) = 8, F (z,t) = div(f(2)0Vuy(z,1)). (3.4)
Now we introduce the following notations:
zi(a,t) = dlv(x,t), Fi(z,t) = F(x,t), (x,0)eQ, j=1,2 (3.5)
Then we will prove

Lemma 3.1 Let HQHO'Z(E) < M. Then there exists B, > 0 such that for all > B, there
exist 7, > 0 and a constant C' > 0 such that

7'/ <|V$7tzj(:1;,t)|2 + 72 |Z]‘($,t)|2> ¥ ¢drdt < C{/ |Fyp(z, ) e %dadt + Cpr3ed
Qa(30) Q

+eT "Zj"zl(wT(g,Sg)) (3.6)
foralrt>71,5=12.
Proof . The function z;, 5 = 1,2, solves the following hyperbolic equation:
0 z;(x,t) — div(a(x)Vzi(z, 1) = Fig(z,t), (2,t)€Q. (3.7)

We apply Proposition 2.1 to obtain

Qa(30) @
—I—CT/ €77 (|Vauz; | + 70 |2]") dadt
wr(e:3e)
4y ¥ (|V iz + 72 |2) dadt (3.8)
QN\Qa

provided that 7 > 0 is large enough.
We now estimate the last term in (3.8). It follows from (2.10) that we can choose a > 0
sufficiently small such that

7'/ e (|Vpzil” + 7% |25°) dedt < O3 H%‘Hip(@) (3:9)
N\Qa

11



where d < 1. Henceforth in Section 3, C' > 0 denotes generic constants.

Next, since (g, P ) satisfies the k-th compatibility conditions with respect to a, it satisfies
also the k-th compatibility conditions with respect to b by a = b near I'. Hence by (1.12),
there exists a constant C; > 0 such that for j = 1,2 we have

2 2
sup {"Zj('vt)HHl(Q) + Hatzj('vt)HL2(Q)
te[-T,T]

_ g+, 2 2 2 }
= 108 0, ) s gy + 10700 )]y | < (3.10)
Substituting (3.10) into (3.9), we have

7'/ e <|Vx7tzj|2 + 72 |Z]‘|2> dedt < Cpr3e?™. (3.11)
QN\Qa
Applying inequality (3.11) to inequality (3.8), we complete the proof of (3.6). o

Lemma 3.2 Let ¢(x) = div(f(2)V®o(x)). Then there exists a constant C' > 0 such that
the following estimate hold:

/Q (IVo(2)]? + |6(2)?) 2@ dz < €

2
S 4 e
]‘:1 Qa(?)Q)

(3.12)
provided that T is large.

Proof . We introduce a cut-off function y; € C5°(R) satisfying 0 < y; < 1 and

1, for | <T -2«
wo={ g o isriy 313

By direct computations, we have

O d
[ xioosoferow = [ 4 (/ ()2 [0 d) !
2(32) _p di 2(30)
:/ / 2X1(t)z(@Zg)(aizl)ezwdxdt—|—/ / 2X1(t)xll(t)|aizl|2 2T dxdt
—T J(30) -T JQ(3p)

0
-I-/ / 2x1(t)* 70 |8¢21|2 2T edxdt, 1 <i<n. (3.14)
=T JQ(30)

Therefore, because
X1(0)d;z1(x, 0) = didiv(f(2)V®o(x)) = dig(x),

and x(t) is supported in [=T, =T + 2a] U [T — 2a, T, by the Cauchy-Schwarz inequality,
we obtain

/ 0:(2)]? ¥ PPz < CT/ <|V22(:1;,t)|2 + |VZ1(:1;,t)|2> X dxdt
2(3¢) Qa(30)
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—I—/ |V 2y (z, )| e %dadt. (3.15)
Q\Q2a
Similarly we have

[ et e e < or [ (el + e 0F) rdsa
Q(30) Qa(30)

+ |21 (2, 1) 7 ¥ ddL. (3.16)
Q\Q2a
It follows from (2.10) and (3.10) that we can choose a > 0 sufficiently small, so that
/Q\Q e*T¢ <|V21(:1;,t)|2 + |21(:1;,t)|2> drdt < Ce* HZIHJZW(Q) < Cpe, (3.17)

Combining (3.15) - (3.17), we obtain

/ <|V¢(:1:)|2 + |qb(:1;)|2) 2P @)y <
Q(3¢)

2
j=1 Qa(?’Q)
Using that ¢(x) = 0 in Q\Q(30), by f =0 in Q\Q(3p), we obtain (3.12). o

Lemma 3.3 There exists a constant C' > 0 such that

u /Q (IVf(@) +[f(2)]*) Pde < C /Q (IVo()l* + |o(2)[*) 77 da
for all large T > 0.
Proof . We have

div(; f(2)V®o(x)) = did(z) — div(f;VDy(x)) for all i =1,...,n.
Therefore

[ i@ V@) 4 i 700 e

g/ﬁ(mﬂ% ER) esz(x)d:I:—l—C/Q<|f|2—|- IVfP) e de, 1<i<n. (3.18)

Since f = 0 near the boundary I' and V® - « # 0, we can apply Lemma 2.1 respectively
with the choice v = f and v = d;f and obtain

r [ Q05@F 411 e <€ [ (iv(@)T00) + div(V o) e

(3.19)
Inserting (3.19) into the left hand side of (3.18) and choosing 7 > 0 large, we obtain

/ (VA + 1 @) e¥7vde < © / (IVe(0)f + |é(x)[) > de.

The proof is complete. .
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Lemma 3.4 There exists a constant C' > 0 such that

¥ NFi(z, )| dadt < 7P z)|? 2)|?) d
S [, et ded <€ [ 0 (01 + 1160

for all 7 > 0.

Proof . Since
Fj-l-l(xvt) = az-l—lF(xvt) = div(f(:z;)@f“Vub(:z;,t)), .] =1,2, (l’,t) S Qv

we have

2 3
> / T Fypa (@, ) dadt < CY / 7 (VTP 4 P |0 us, ) o )
j=1"@ j=2"9Q

(3.20)
By the Sobolev embedding theorem (e.g., Adams [1]), we have
HHQ) = W22(Q), n <3, k>5.
Using (1.12), we obtain
3 3
Z [ sup ‘8]ub HW2 o Z sup ‘8]ub HHk 1(9) < C. (3.21)
Substituting (3.21) in (3.20), we see that
2
S [ et dedt < C [ 0 (VP 415 do
j=1 Q Q
The proof of Lemma 3.4 is complete. .
3.2 Proof of main results
3.2.1 Proof of Theorem 1
In terms of Lemmata 3.1 - 3.4, we will now complete the proof of Theorem 1.
By Lemmata 3.2 and 3.3, we obtain
P [ (T SR de < C [ (VS + fole)) e
Q Q
< CTZ/ <|Vz:j|2 + |Z]‘|2> T dxdt + Cpr?ed, (3.22)
; o)

14



On the other hand, combining Lemma 3.1 and (3.22), we obtain

r[;ZW (19 £ + 1)) de
< CZ/ | Fjq1(x t)|2 e dzdt + O3 + CGCTHZ]HHl (wr(2:30))" (3.23)

Combining (3.23) and Lemma 3.4, we obtain

r[;W’OVﬂ>|+uuW>s C&AQW (V@) + [F(0)]) de + Cyr®e

3
+ eCT z; Hag(ua B ub)Hj'Jl(wT(g,Sg)) ’ (324)
j=

Then the first term of the right hand side of (3.24) can be absorbed into the left hand
side if we take large 7 > 0.
Since p(x) > 1, we obtain

Aﬂvﬂ@F+U(ﬂﬁw<CT€”2 02§3W S0

3
<GP |0 (u (3.25)

2
Ub) HHl(UJT(Q73Q)) '

At the last inequality, we used: By 0 < d < 1, we can choose D; > 0 such that 722427 <
e~P17 for sufficiently large 7 > 0. Then we apply Proposition 2.2, so that

_ Clk)\\ *?
_ 22 < DlT D2'T .
V0= Dl < Coe?7 4 e (105 (24 700

ot (( ) )

Dy
Di+Dy-"

Setting

we obtain desired estimate (1.14) with p =

3.3 Proof of Theorem 2
By the Sobolev imbedding theorem, noting that the spatial dimension < 3, we have

HA P2 (Q) — W2(Q), k> 4.

Let (_CI)O, ®,) satisfy the k-th order compatibility conditions such that V&g - 2 # 0 for all
r € Q. Then there exists a constant Cy > 0 such that

sup Hua(‘at)wao(Q) < C sup Hua('vt)HHk+2(Q) < Ck.
te[-T.T] te[-T,T]
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By Theorem 1 in Imanuvilov and Yamamoto [12], we obtain

3 K
w—w;@sc(Xlwwfwwm%mmg . (3.26)
7=2

Applying (2.23) in (3.26), we obtain (1.15) as is desired.

4 Proof of the weak observation

We will now prove Proposition 2.2. This will be done in terms of the Fourier-Bros-
lagolnitzer (FBI) transformation. Let v be a given solution to

020 — div(a(z)Vo) = R(z,1) inQ =Q x [~T,T] (4.1)
with the Neumann boundary condition
Ou(z,t)=0 on¥ =T x[-T,T]. (4.2)
Here and henceforth we assume that

R(z,t) =0, (x,1)€wx[-T,T). (4.3)

4.1 Preliminaries and elliptic estimation

Denote for r > 0

L, =Tx]—r,r[, Ty,=Tix]—rr[ (4.4)
We fix m € N such that
1 1
and for z € C we define |
K(z) = o /R e e (4.6)

Then the even function K(z) is holomorphic and there exist positive constants A, ¢, ¢1, ¢z
such that for a = -2 = L we have ([27])

2m—1 7

K (2)] + |K'(2)| < Aelml* | vz e C,

(4.7)
|K(2)] < Ae=alel” if [Imz| <ey|Rezl.
For A > 1 and z € C, we set
1 1 Y¥y2m
m@zﬂKwa=—/”%W”cw (4.8)
21 Jp
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Then by (4.7) we have
K\ (2)] + |K (2)] < ANPe for [Imz| <1, (4.9)

and, by the second inequality of (4.7), we see that there exists a constant C5 > 0 such
that for sufficiently large T' > 0, we have

T
|K\(2)] € Aem@* for allz € C  such that [Imz| < 1, |Rez| > 3 (4.10)
We define a cut-off function 6 € C5°(R) defined by
_ )1 =(T=2),
o(t) = { 0 [t >(T—1) (4.11)

Henceforth C;, C denote generic constants which are independent of A, T', v, r, 7. We
introduce the Fourier-Bros-lagolnitzer (FBI) transformation Th. It is defined for u €
S(R"™1), the space of rapidly decreasing functions, by

urt(x,s) =Thu(z,z) = /RKA(Z —y)0(y)u(z,y)dy, z=1-+1s. (4.12)

In the sequel we assume that 7' is sufficiently large, s € [—3r,3r] and ¢ € [—%, %] We
introduce a cut-off function yq satisfying 0 < y3 <1, yv2 € C5°(R™) and

Xa(w) = { (1) 2; i E g((%))" (4.13)

Let v(x,t) be a solution to (4.1). We set u(x,t) = x2(x)v(x,t), and we have

Otu —div(a(z)Vu) = —div(a(z)v(z,t)Vyxa(z)) — a(x)Vo(z,t)-Vya in Q =Q x[-T,T]

(4.14)
and
du(z,t)=0 on L =1 x[-T,T], (4.15)
where we have used yq(z)R(x,t) = 0 by (4.3).
In connection with the operator 97 — div(a(z)V), we define an elliptic operator by
Q= 652 + div(a(z)V). (4.16)

Since
2 /R Ky(is + 1 = y)0(y)u(x,y)dy = i/RKA(iS +t=y)y [0(y)u(z, y)ldy,  (4.17)

by (4.11) and integration by parts, we have

Qu/\,t(xv S) = F/\,t(xv S) + G/\,t(x7 8)7 (l’, S) € Q-?)T’
(4.18)
Oyuy4(x,s) =0, (x,s) € Xs,

17



where

Pulens) == [ Kz =) P @outen) + O ue)dy (@1)

and

Gros) = [ Bz =90l divta(o)o (e, )Vxa(o) + o) Tole,)- Vnale) by (4:20)

Here we have used also (4.14). Since 6" and 6" are supported in |y| > (T — 2), by (4.10)
we obtain

_ T T

HF/\thL2(Qgr) < C146 oAt HuHHl(Q) ) Vi e |:_§7 §:| . (421)

Moreover, in terms of (4.9), there exists Cs > 0, independent of T', such that

T T
CsA
iy € o lullnqy Vo€ |55 (1.22)
By (4.20) and (4.13), we easily obtain

Gz, s) =0, Ve w(bp). (4.23)

Let K be a compact in Qs and ;Z(:L', s) be a C''-function satisfying |Vx75$| # 0on K. Let
Pz, s) = e Pl (4.24)

where 3 > 0 is sufficiently large. Then the following Carleman estimate holds true (see
for example, [7], [27]): There exists 79 > 0 such that

2

T® T® 2 5, |2 T 2
Cr[[em?u] HL (@) S e wQuHm(Qw) + 7 [l ul Hi(Ce) T 7 e anuHm(rST) (4.25)
whenever u € C§°(K') and 7 > 7.
Here and henceforth we set
[l frs sy = IV swtulliziqn,) +7° lellz2 s (4.26)
and
2 2 2
b,y = Nl e,y + 77 lullzeq,) - (4.27)

We further introduce a cut-off function ys satisfying 0 < y5 < 1, y3 € C5°(R), and

0 ifn<s, n>8
xs(n) = (4.28)
1 ian[%,?].

Now we proceed to the estimation near I';.
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4.2 Estimation near the boundary part I';

We shall begin to estimate uy; in a ball By = B(zM,r) = {z € R |z — M| < r} over
a small interval | — r,r[ by the velocity trace (in the normal direction) in the given part

F173r = Fl X [—37“7 3T] C F3r .

Lemma 4.1 Lel uy; be a solution to (4.18). Then there exists By = By(z™M,r)x[—r,r] C
Q, and vy €]0, 1] such that the following estimate holds:

11/0
lsillimsn < € (IPsillizay + londln,) - T, (4:29)

for some positive constant C'.

Proof . Let us choose § >0 and 2(®) € R™\Q such that
§ < % Bz®.85)n0 =0, B®20n0#£0, B®45nTcTly.  (4.30)

That is, z(*) is an outer point of Q and is near I';. We define the functions (2, s) and
wolx,s) by ,
Yo(,5) =[x — x(o)f +5%, pol,s) = el (4.31)

Denote

wi(z,s) = (?g) w4z, ). (4.32)

Taking into account d,uy; = 0 on ' and applying Carleman estimate (4.25), we obtain

Yo
e’ X3 ﬁ Ut
for 7 > 7. Therefore by (4.18), (4.32), (4.23) and (4.28), we have

Quy(z,s) = (?S) Quy (. s) + {Q,XS (%)} wr (T, 5)

(5t G« [0 (2] s

I (%) Fra(a,s) + [Q - (‘Z’ )} wni(, ). (4.34)

Since [Q X3 (w—2>] is supported in

2

CT H@Twow/\ tHHl < "eTwOQw/\ tHL2 (Qar) + T (433)

H'(Ts,)

‘:1; — :1;(0)‘2 +s2 <25 787 < ‘:1; — :1;(0)‘2 + 5% < 862, (4.35)

w | e

taking (4.30) into account, we see that |z — 2] > for all w € @ and QN {a; |z — 2] <
262} # 0, so that we obtain

2 2 -8 2
Cre?™ Hu/\775HH;((52§¢0§452)ﬁQ) < e HUA,tHHl(lpogsﬁ)"’e%e HFMHB(Qgr)
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e sl (Tron) - (4.36)
We can select r > 0 and (V) € Q such that
dist(:z;(l),F) >A4r, Bf = B(:z:(l),r) X [=r,r] C {52 < o, s) < 452}. (4.37)

This is possible because the second condition in (4.30) implies the existence of (1) € Q
such that |z() — 2] < 2§. Therefore, for sufficiently small » > 0, condition (4.37) is
satisfied. Then for 7 > 79 we have

lerlln gy < Coe™™ [P il + Nuneliingey ] + €O Turdling,, - (438)

Now minimize the right hand side with respect to 7, with

s 1 08 Hu/\,tsztll(Qgr) (4 39)
CY6 —I_ 07 HF/\,L‘H22(Q3T) —I_ Hu/\JinIl(Fl,gr)
and we obtain
2 2 2 "o 2 1=
lenaligany < (1Esilio@o + loniling, ) (loading,,) (440
where vy = %, provided that the right hand side of (4.39) > 7. If the right hand side
< 79, then
2 2 2
HUAJHHl(QST) S 08 |:HFA,75HL2(QST) —I_ "uAvt"Hl(F173r):| .
Therefore
el sy < el
9 12 2 1-1g
= (lonilinan)” (lasdlina,)
< o (1FP 2 v 2 e
= 5o Ll /\J‘HL?(QM) + Hu/\ﬂfHHl(FLST) Hu/\ﬂfHHl(Qgr)
This completes the proof of the lemma. .

4.3 Estimation in w,(o,30)

In this subsection we extend the estimation from B; to w,(g,4e). To accomplish this, we
use the techniques developed in [31]. This will be done by continuing estimates (4.29).
Let B(z,r), 2 < j < N, be a finite covering of w(p,4p). We can assume that z(?)
satisfies dist (x(), ') > 4r. In the sequel, we assume without loss of generality that

B(zU*Y r)y C Bz, 2r), (4.41)

and we set

Y

B; = B(zW ryx] —r,r[, 2<j<N.
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Lemma 4.2 Let uy; be a solution to (4.18). Then there exist a constant v €]0,1[ and
C' > 0 such that the following estimate holds:

HUA,th(B;H) <C <HF/\¢HL2(Q3T) + Hu/\ﬂfHHl(BZ)) Hu/\ﬂfHJILI_llEQSTW k>1. (4.42)

Proof . In order to prove (4.42), we define the functions ¢y (x, s) and @iz, s) by
¢k(x7 5) = ‘l‘ B x(k)‘z + 527 S‘Qk(xv S) = e_r%wk(wﬁ)' (443)

Moreover we set

wa(x,$) = X3 (%) wy i, s).

By applying Carleman estimate (4.25) in the interior domain, we obtain
Cor [le™ wxall < €™ Qusllze - (4.44)

In the same way as (4.34), we have

Quy(x,8) = 3 (%) Fri(z,s)+ |:Q,X3 (%)] uy(x, ). (4.45)
Since [Q,Xg (f—é“)] is supported in

7“2

2
we combine (4.44) and (4.45), so that

<lz—zol +s2 <1, Tt < o —wolt + 5* < 82, (4.46)

—58 2 —5/2 2 =75 2
C1107—627—6 Hu/\JfHH;(r2§¢k§5r2) < 6276 Hu/\thHl(wkSﬂ)—l_ezTe Hu/\’tHHl(QST)
—_5/2
_|_€27-e B HF/\Jin?(QST) 7 (447)
and hence
—58 2 —B/2 2 =76 2
Crue™ Nl esey < €77 Nunallzgg, <oy + €77 lluaslliq,,)

+e R e - (4.48)

Thus we obtain

2 T 2 2 — T 2
Hu/\thHl(wk§5r2) < e {HuhtHHl(lpkg?) + HF/\JfHL?(QST) +e Hu/\ﬂfHHl(QST)' (4.49)

Now minimizing the right hand side with respect to 7, for some p €]0, 1], we obtain

loilin s < € (B + londingen) (lodlng,,) - (450
Since

By C{tn(s,2) <br*},  {w(z,s) <r’} C By, (4.51)

we obtain (4.42). This completes the proof of the lemma. o
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Lemma 4.3 Let uy; be a solution to (4.18). Then there exists a constant C' > 0 such
that

v 1—v™

lonillingsyy < € (1Psillizan + lovdingy) (loding,,) -+ 7210 (452)
Here v €]0, 1] is the constant given in Lemma 4.2.
Proof . Put
ar =iy s A= 1Falpg, . B=C7 luding,, - (453)

By (4.42) we have
a1 < B (ap + A)”. (4.54)

Applying Lemma 4 in [26], we obtain for all i €]0, "]
a, <277 B F(ay 4+ A, (4.55)

This completes the proof of the lemma. .

Lemma 4.4 Let uy; be a solution to (4.18). Then there exist C > 0 and oy > 0 such
that for all n € N, there exist C'(n) >0 and T'(n) > 0 such that

Cllendllzp sy < € ullzn gy + € lullzs, ) (4.56)
for all t € [—%, %] where T > T'(n).

Proof . By Lemma 4.3 and the Young inequality, we easily obtain

[uxill gy < O llunillgrqn,y + CF |18l 2,y + lunillzse | (4.57)
for all € > 0. Here
1 o1 §
p=——, p =—, and pu=1r". (4.58)
L —p I
Using estimates (4.21) and (4.22), we have for all ¢ € [—%, %]
[urill g gy < CE Jull gy + Cc {G_OSTA [l gy + llunillgnggey| - (4:59)
Selecting in (4.59)
_2C5
€ — € r 5
we obtain
—(OgT—2C5p/ 2C5p

—Cs A A
Hu/\ﬂfHHl(B;;) < Ce CAH“H}N(Q)"‘CG ) HuHHl(Q)"‘Ce i Hu/\ﬂfHHl(Bf) (4.60)
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for all t € [—%, %] and A > 0. Take T sufficiently large such that

205}?/

CgT — > 05 (461)
and we obtain from (4.60)
il ey < Ce™ M [l gy + Ce™+? [l g sy (4.62)
where we set —
Oy = =22 (4.63)
P

Similarly to (4.59), we obtain from Lemma 4.1 and the Young inequality

Hu/\ﬂfHHl(Bf) < Cemet? HuHHl(Q) + e em I HuHHl(Q) + HUAJHHl(Fl,ST) (4.64)

where

1 1

= o= —. 4.65
Po 1 — V07 Po o ( )

B 2c5+cl4> ) .
Selecting e = e ( ro , we obtain for some positive constant Cys:

Ii
(2C5+C1a)pg

—(Us 14 —(CaT— A 15
Hu/\ﬂfHHl(Bf) < Cem(@HCu)d HuHHl(Q)"‘Ce ( ro ) HuHHl(Q)"‘eO g Hu/\thHl(Fl,Sr)‘
(4.66)
Take T' large such that
2 /
ey — BCH G oo (4.67)
Po
Then, by (4.66), we obtain
il < OO full g + O s,y (469)
and, applying (4.68) in (4.62), we have
lxell i ggy < Ce™ M Ml gy + € lunilln e, o, (4.69)
for some positive constant C'(n). This completes the proof of (4.56). o
We fix T' > maxi<,<n T'(n). Addition of inequalities (4.69) for n € {1,..., N} yields for
all t € [-£, %]

Hu/\thHl(oJr(g,?)g)) < Ce HuHHl(Q) +Ce™ HuHHl(FLT) (4.70)

for some positive constants o and C.

23



4.4 End of the proof of Proposition 2.2

We shall complete the proof of Proposition 2.2 in this subsection.

Lemma 4.5 Let u be a solution to (4.14). Let Ty = T/2 —r. Then there exist C > 0
and Cig > 0 such that

el o < € (A2 s gy + € el s, (4.71)

and

eell72 o, o0y < € (AT D Ml gz gy + € lullzngs,y ) - (4.72)
(v, (e50) (@) (1)

Proof . We set uy(x,t) = uy(x,0) for s = 0. Then we have

ur(x,t) = /RI(A(t—y)@(y)u(x,y)dy

= (K *0u)(x,1), (4.73)
where |
K\(t) = — / e~ ET" g (4.74)
27 B
Then we have . o
Ou(z,7) —ur(z,7) = (1 — K\)0u(x, 7). (4.75)

Furthermore we can immediately verify that

so that we obtain for Ty =1/2 —r

= sl o ey < O lulZmag (4.77)
Similarly we have
[u — uAHifl(UJTl(g,gg)) < O HuHiIk—l(Q) : (4.78)
Hence
0l oo < € [l = 0l oy sy + 13 00
e Pl R S N AT B (4.79)

On the other hand, by the Cauchy formula (Lemma 4 in [31]) and (4.70), by an argument
similar to [31], we obtain

sl o, (3o < C™ M Ml gy + Ce™ ulligs,) - (4.80)

This completes the proof of (4.71). The proof of (4.72) is similar. o
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We now turn to the proof of Proposition 2.2. By (4.71) and u = x2v, we obtain
1ol ey < CX 0 llpm gy + Ce ollngs,) - (4.81)

If we take v = 97(u, — up), then we obtain

102 (wa —ws)|| 1 on (o < COINTE2 4 O |97 (u, — ] . (4.82)
where we have used
k+2 [ 2
s [; ‘ o e —w) (1)< O (4.83)
Similarly, if we take v = 9?(u, — up), then we obtain
[02(ua — ) |[7s ons (o) S CIRATED) 4 O |07 (u, ] . (4.84)
In terms of (4.84) and (4.82), we obtain
5
D0 Gt =)y, gy S COINED 4 CePe(y). (4.85)
=
Selecting
A= %log (2 + jg?)) : (4.86)

we obtain (2.22), our conclusion. The proof of (2.23) is similar.
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