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��������� In this paper consider the Dirichlet problem of the Navier-Stokes equation

in the half space. We show the existence and the uniqueness of the mild solution when

the initial data can be represented as u0 = Λα,jv0 with a function v0 coupled with the

pseudo-differential operator Λα,j = ∂j(−∆′)−α/2, where ∆′ denotes the Laplace operator

in the tangential space �n−1.

§1 Introduction

We consider the initial-boundary problem of the Navier-Stokes equation in the half
space R

n
+ = {x = (x1 , · · · , xn) ∈ R

n : xn > 0} (n ≥ 2):

ut − ∆u+ u · ∇u+ ∇p = 0, divu = 0 in R
n
+ × (0,∞),

u = 0 on ∂R
n
+ × (0,∞),

u = u0 at t = 0.

(1.1)

Here u = (u1, . . . , un) is the unknown velocity field and p is the unknown pressure field.
The initial data u0 is assumed to satisfy the compatibility condition : divu0 = 0 in R

n
+

and the normal component of u0 equals zero on ∂R
n
+ = {xn = 0}.

To solve the equation, we consider the following integral equation equivalent to (1.1);

(1.2) u(t, x) = [e−tAu0](x) −
∫ t

0

e−(t−s)AP∇(u⊗ u)(s, x)ds,

where u ⊗ u = (uiuj)1≤i,j≤n is a tensor matrix, P is the projection operator from
Lp(Rn

+) onto Lp
σ(Rn

+) = {u ∈ Lp(Rn
+); divu = 0 in R

n
+, u

n|∂R
n
+

= 0}, and A is the
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Stokes operator that generates the semigroup e−tA, i.e., v(t) = e−tAu0 solves the non-
stationary Stokes problem

vt − ∆v +∇q = 0, divu = 0 in R
n
+ × (0,∞),

v = 0 on ∂R
n
+ × (0,∞),

v = u0 at t = 0.

(1.3)

The purpose of this paper is to show existence of local smooth solutions with non-
decaying initial data at infinity. To this goal, we need estimates of each term in (1.2)
in L∞. First, we establish the estimate of spacial structure e−tAP∂j related to the
non-linear term. Shimizu [15] showed that the first derivatives of the solution of (1.3)
decays in L∞ like t−1/2, that is,

(1.4) ‖∇v(t)‖L∞(Rn
+) ≤ Ct−1/2‖u0‖L∞(Rn

+) for t > 0.

Later on, Shimizu [16] proved that the L∞-norm in right-hand side of (1.4) can be
replaced by the BMO-norm. However in our problem, we need L∞-estimates of the
solution of (1.3) with u0 = P∂jv0 because (1.2) has the structure e−(t−s)AP∇(u ⊗ u)
of the non-linear term. In this paper, we show L∞ − BMO estimate of the solution of
(1.3) with u0 = Qjv0, where Qj = ((Qj ·)′, (Qj ·)n) is the combination of the Helmholtz
projection with the first-order derivative in space, which can be expressed as

(Qju)′ =




∂j ũ′+ R′(R′ · ∂j ũ′) +R′(Rn∂j ūn)
for 1 ≤ j ≤ n− 1,

∂nū′+ R′(R′ · ∂nū′) +R′(Rn∂nũn)
for j = n,

(Qju)n =




∂j ũn+ Rn(R′ · ∂j ū′) +R2
n∂j ũn

for 1 ≤ j ≤ n− 1,
∂nūn+ Rn(R′ · ∂nũ′) +R2

n∂nūn

for j = n.

Here Rj = ∂j(−∆)−1/2 is the Riesz transform, R′ = (R1, . . . , Rn−1), and ũ (resp. ū)
denotes the odd (resp. even) extension of u for xn < 0;

ũ(x) =
{
u(x) for xn > 0,
−u(x′,−xn) for xn < 0,

ū(x) =
{
u(x) for xn > 0,
u(x′,−xn) for xn < 0.

Roughly speaking, we see that Qj is an extension of P∂j to the whole space R
n (c.f.

Proposition 2.2).
Our first result now reads as follows.
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Theorem 1.1. Let 1 ≤ j ≤ n. Assume that v0 = (v1
0 , . . . , v

n
0 ) is in BMO(Rn

+)n. Then
there exists a function Uj = Uj(t, x) such that Uj(t) ∈ L∞(Rn) for all t > 0 and Uj |Rn

+

gives the solution of the Stokes equation (1.3) in R
n
+ with the initial data u0 = Qjv0.

Moreover, Uj fulfills the estimate

(1.5)
∣∣∣
∫

Rn

Uj(t, x) · φ(x)dx
∣∣∣ ≤ Ct−1/2[v0]BMO‖φ‖L1(Rn), t > 0

for all φ in C∞
0 (Rn), where C is a constant independent of φ and v0.

Here [·]BMO denotes the semi-norm of BMO-space in R
n
+.

Next, we consider the estimate of the linear term in (1.2). Ukai [18] showed that for
any p and q with 1 < q ≤ p <∞,

‖e−tAu0‖Lp(Rn
+) ≤ Cp,qt

−n(q−1−p−1)/2‖u0‖Lq(Rn
+)(1.6a)

‖∇e−tAu0‖Lp(Rn
+) ≤ Cp,qt

−n(q−1−p−1)/2−1/2‖u0‖Lq(Rn
+)(1.6b)

holds for all u0 ∈ Lq(Rn
+) and for all t > 0. Ukai [18] established a representation formula

to the solution of (1.3) in terms of the Riesz transform. Applying Lp-boundedness of
the Riesz transform, he obtained (1.6). We have difficulty to show (1.6) for p = q = ∞,
because the Riesz transform is not bounded in L∞. However, Shimizu [15] showed
(1.6b) for p = q = ∞, which is equivalent to (1.4). For such a case, the first-order
derivatives make the spacial decay of solution more rapidly at infinity and lead the
boundedness of the integral kernels in the Hardy space H1. So we can expect that when
0 < α < 1, the α-th order derivatives of solution of (1.3) will decay in L∞ like t−α/2u0.
In this paper, we show the L∞−BMO estimate of the solution when the initial data can
be represented as u0 = Λα,jv0 with a function v0 coupled with the pseudo-differential
operator Λα,j = ∂j(−∆′)−α/2, where ∆′ denotes the Laplace operator in the tangential
space R

n−1.
Indeed, we have the following result.

Theorem 1.2. Let 1 ≤ j ≤ n−1. Assume that v0 = (v1
0 , . . . , v

n
0 ) is in BMO(Rn

+)n and
satisfies divv0 = 0. Then there exists a function Vα,j = Vα,j(t, x) such that Vα,j(t) ∈
L∞(Rn) for all t > 0 and Vα,j |Rn

+
gives to the solution of the Stokes equation (1.3) in

R
n
+ with the initial data u0 = Λα,jv0. Moreover, Vα,j satisfies the estimate

(1.7)
∣∣∣
∫

Rn

Vα,j(t, x) · φ(x)dx
∣∣∣ ≤ Ct−(1−α)/2[v0]BMO‖φ‖L1(Rn), t > 0

for all φ in C∞
0 (Rn), where C is a constant independent of φ and v0.

As an application of Theorem 1.1 and 1.2, we can solve the original non-liniar equation
(1.1). To this end, we consider the following integral equation which is equivalent to
(1.2):

(1.8) u(t, x) = [e−tAu0](x) −
n∑

i=1

∫ t

0

e−(t−s)AQi(uiu)(s, x)ds.
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This formulation was first proposed by Shimizu [15] and we shall explain more precisely
in Proposition 2.2. To solve (1.8), we define a function space BCq,T , 0 < q <∞ by

BCq,T

={f ∈ C((0, T );L∞(Rn
+));‖f‖BCq,T := sup

0<t<T
tq‖f‖L∞(Rn

+) <∞}.

Based on the estimates (1.5) and (1.7), we have the following existence theorem of the
time-local smooth solution for (1.8) in BC(1−α)/2,T :

Theorem 1.3. Assume that v0 is in BMO(Rn
+). Let u0 = Λα,jv0, j = 1, . . . , n − 1,

for 0 < α < 1. Then there exist T > 0 and a unique solution u ∈ BC(1−α)/2,T of (1.8).
The existence time interval can be written as T = C/[v0]

2/α
BMO with C depending only on

α.

This result may be regarded as treatment of the maginal case of Cannone [4] to the
half space. In [4], he showed local existence of smooth solutions in the homogeneous
Besov space Ḃ

−1+n/p,∞
p (Rn). In fact, the above theorem deals with the case when

p = ∞.
The idea of this paper is to apply the modified version of Ukai’s formula to Qjv0 or

Λα,jv0 obtained by Shimizu [15]. By the duality arguement, it is sufficient to estimate
the test function coupled with the adjoint operator of solution in the Hardy space
H1. In [15], the integral kernel involving the square root of the tangential Laplacian
Λ := (−∑−n

i=1 ∂
2/∂x2

i )
1/2 does not contain the characteristic function χ+ := χ{xn>0},

which causes singularities on {xn = 0}. However in our case, we have to deal with the
term which contain χ+ with the pseudo-differential operator Λα,j. By investigating the
integral kernels of (−∆′)−α/2 and (−∆)−1 precisely, we are able to contlol the singluler
behavior of the kernel functions in H1.

The proofs of our theorems are divided to five sections. In Section 2, we introduce
our main tools and represent the solution formula by Shimizu [15] which is a refined
version of Ukai[18]’s. We can eliminate some of these singularities from Ukai’s formula
by extending solutions u to {xn < 0} as the odd function, so that the integral kernels
involving Λ have no singularities on xn = 0. We also show a similar property to the
adjoint operator of the solution. In Section 3, we define the Hardy space and the BMO
space in R

n
+. We also recall the duality relation between H1 and BMO. In Section

4, we prove Theorem 1.1 and give the estimates related to the non-linear part. The
difficulty appears when we estimate the kernel functions which contain χ+. Since χ+

and ∂n do not commute, we cannot apply the well-known identity
∑n

j=1R
2
j = −I for

the Riesz transforms. However, if we divide the domain of integration into two parts
according to the distance from the singularity of the integral kernel of (−∆)−1, then we
can handle each integration in H1. This procedure then provides an H1-boundedness
for integral kernels which are necessary for the L∞-BMO estimate of the non-linear
part. In section 5, we prove Theorem 1.2 and give the estimates of linear part. By
duality arguement, it is sufficient to show the H1-estimate of the integral kernels in the
representation formula. The difficulty of our problem is that the kernel functions which
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have singularities on {xn = 0} contain both (−∆)−1 and Λα,j , which are represented as
the integral operators. However, if we divide the domain of integration into two parts
according to the distance from the singularity of the integral kernel of (−∆)−1 and Λ−α,
then we can handle each integration in H1. This procedure then provide H1-estimates
for integral kernels which are necessary for the L∞-BMO estimate of the linear part.
Finally in section 6, as an application of our main theorems, we will show the time-local
existence of solution to the Navier-Stokes equation in the half space.

§2 Solution formula

In this section, we recall a solution formula of (1.2) by Shimizu [15].
First, we fix some notations. For an n-dimensional vector a, we denote the tangential

component (a1 , . . . , an−1) by a′ ∈ R
n−1, so that a = (a′, an). We set ∂j = ∂/∂xj and

let ∇′ = (∂1, · · · , ∂n−1). Hereafter, C denotes a positive constant which may differ from
one occasion to another.

Let F be the Fourier transform in R
n

Ff(ξ) =
∫

Rn

e−ix·ξf(x)dx.

The Riesz operators Rj (j = 1, . . . , n), the operator Λ and Λα,j are defined by

F(Rjf)(ξ) =
iξj
|ξ| Ff(ξ),

F(Λf)(ξ) = |ξ′|Ff(ξ),

F(Λα,jf)(ξ) = iξj |ξ′|−αFf(ξ),

We set R′ = (R1, . . . , Rn−1) and R = (R1, · · · , Rn).
We also define the operator E(t) and H(t) by

[Etf ](x) =
∫

R
n
+

{Gt(x− y) −Gt(x′ − y′, xn + yn)} f(y)dy,

[Htf ](x) =
∫

Rn

Gt(x− y)f(y)dy,

where Gt is the Gauss kernel Gt(x) = (4πt)−n/2e−|x|2/4t. Furthermore, we define the
operator Et+ by

[Et+f ](x) =
{

[Etf ](x) for xn > 0,
[Etf ](x′ ,−xn) for xn < 0.

Note that z = Etf solves the heat equation in R
n
+ with zero-Dirichlet boundary condi-

tion;

zt − ∆z = 0 in R
n
+ × (0, T ),

z|t=0 = f,

z|xn=0 ≡ 0. (resp. ∂nz|xn=0 = 0.)
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Moreover note that the functions [Etf ](x) can be defined for all x in R
n.

Let f(x) be a function defined in R
n
+. Then we denote the odd (resp. even) extension

of f by f̃ (resp. f̄), i.e.

f̃(x) =
{
f(x) for xn > 0,
−f(x′,−xn) for xn < 0,

f̄(x) =
{
f(x) for xn > 0,
f(x′,−xn) for xn < 0.

We define the Helmholtz-type operators P̃ , P̄ and P as

(P̄ u)′ = ū′ +R′(R′ · ū′) +R′(Rnũn),(2.1a)

(P̄ u)n = ūn +Rn(R′ · ũ′) +R2
nū

n,(2.1b)

(P̃ u)′ = ũ′ +R′(R′ · ũ′) +R′(Rnūn),(2.1c)

(P̃ u)n = ũn +Rn(R′ · ū′) +R2
nũ

n,(2.1d)

Pu = ((P̃ u)′, (P̃ u)n).(2.1e)

Moreover, we define the operators Qj by

(Qju)′ =




∂j ũ′+ R′(R′ · ∂j ũ′) +R′(Rn∂j ūn)
for 1 ≤ j ≤ n− 1,

∂nū′+ R′(R′ · ∂nū′) +R′(Rn∂nũn)
for j = n,

(2.2a)

(Qju)n =




∂j ũn+ Rn(R′ · ∂j ū′) +R2
n∂j ũn

for 1 ≤ j ≤ n− 1,
∂nūn+ Rn(R′ · ∂nũ′) +R2

n∂nūn

for j = n,

(2.2b)

Qju = ((Qju)′, (Qju)n).(2.2c)

We note that Qj is the combination of P defined in (2.1) with the first-order derivative
toward xj-axis. Finally, we denote the characteristic function of {xn > 0} (resp. {xn <
0}) by χ+ (resp. χ−), i.e.

χ+(xn) =
{

1 for xn > 0,
0 for xn < 0,

χ−(xn) = 1 − χ+(xn).

To show our main theorem, we apply the modified Ukai’s formula obtained by Shimizu
[15]:
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Proposition 2.1(Shimizu [15]). Assume that u0 is in Lp(Rn
+), 1 ≤ p ≤ ∞. Let

Un(t) = −Λ(−∆)−1∇′ · Etu
′
0 + ∂n(−∆)−1∇′ ·Et+u

′
0

(2.3a)

− (−∆)−1∆′Et+u
n
0 − ∂n(−∆)−1ΛEtu

n
0 ,

U ′(t) =Etu
′
0 + Λ−1∇′Etu

n
0

(2.3b)

+∇′(−∆)−1(∇′ · Et+u
′
0) − ∂n(−∆)−1Λ−1∇′(∇′ · Etu

′
0)

−∇′(−∆)−1ΛEtu
n
0 + ∂n(−∆)−1∇′Et+u

n
0 .

Then U is a function defined in R
n and U |Rn

+
satisfies (1.3) with an initial data u0.

Before applying Proposition 2.1 to our problem, we recall the properties of the oper-
ator P :

Proposition 2.2.
(1) If u = (u1, . . . , un) ∈ (L2(Rn

+))n satisfies divu = 0 in R
n
+ and un(x′, 0) = 0 on

R
n−1, then Pu = u holds in R

n
+.

(2) If p ∈ L2
+(Rn) satisfies p(x′, 0) = 0 on R

n−1, then P∇p = 0 and holds in R
n
+.

(3)

divPu =∇′ · (ũ′ − ū′) + ∂n(ũn − ūn)

+ (R′ ·R′)∇ · (ũ′ − ū′) +R2
n∂n(ũn − ūn)

holds for u ∈ (L2(Rn))n.

Proposition 2.2 shows that P is an orthogonal projection operator from (L2(Rn
+))n

onto (L2
σ(Rn

+))n := {u ∈ (L2(Rn
+))n : divu = 0 in R

n
+, u(x′, 0) = 0} and the operator Qj

is well-defined.
Now We set u0 = Qjv0. Computing the initial data, we have the following corollary:

Corollary 2.3. Let 1 ≤ j ≤ n and assume that v0 is in Lp(Rn
+) (1 ≤ p ≤ ∞). Let

Un
j (t) = − Λ(−∆)−1∇′ · Et(Qjv0)′ + ∂n(−∆)−1∇′ · Et+(Qjv0)′

(2.4a)

− (−∆)−1∆′Et+(Qjv0)n − ∂n(−∆)−1ΛEt(Qjv0)n,

U ′
j(t) =Et(Qjv0)′ + Λ−1∇′Et(Qjv0)n

(2.4b)

+ ∇′(−∆)−1{∇′ · Et+(Qjv0)′}
− ∂n(−∆)−1Λ−1∇′{∇′ · Et(Qjv0)′}
− ∇′(−∆)−1{ΛEt(Qjv0)n} + ∂n(−∆)−1∇′Et+{(Qjv0)n}.

Then Uj is a function defined in R
n and Uj |Rn

+
satisfies (1.3) with an initial data u0 =

Pjv0.

By duality arguement, we have the following corollary:
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Corollary 2.4. Let Uj (1 ≤ j ≤ n) be the function in Corollary 2.3 and let φ be in
C∞

0 (Rn)n.
(1) If 1 ≤ j ≤ n− 1, then

∫
Rn

Uj(t, x) · φ(x)dx(2.5a)

= −
∫

Rn

{
(P̃ v0)′(x) ·R′RjΛ[Htφ

n](x)

+(P̃ v0)′(x) · [∂jHt(χ+∇′∂n(−∆)−1φn)](x)

−(P̃ v0)′(x) · [∂jHt(χ−∇′∂n(−∆)−1φn)](x)

+(P̃ v0)n(x)[∂jHt(χ+∆′(−∆)−1φn)](x)

−(P̃ v0)n(x)[∂jHt(χ−∆′(−∆)−1φn)](x)

−(P̃ v0)n(x)ΛRjRn[Htφ
n](x)

−(P̃ v0)′(x)∂j [Htφ
′](x) + (P̃ v0)n(x)∇′ · ∂jΛ−1[Htφ

′](x)

+(P̃ v0)′(x) · [∂jHt{χ+∇′(−∆)−1(∇′ · φ′)}](x)
−(P̃ v0)′(x) · [∂jHt{χ−∇′(−∆)−1(∇′ · φ′)}](x)
+(P̃ v0)′(x) · ∇′(RjRnΛ−1∇′ · [Htφ

′](x)

+(P̃ v0)n(x)ΛRjR
′ · [Htφ

′](x)

+(P̃ v0)n(x)[∂jHt{χ+∇′ · (∇′ · (−∆)−1∂nφ
′)}](x)

−(P̃ v0)n(x)[∂jHt{χ−∇′ · (∇′ · (−∆)−1∂nφ
′)}](x)

}
dx.

(2) If j = n, then
∫

Rn

Uj(t, x) · φ(x)dx(2.5b)

= −
∫

Rn

{
(P̄ v0)′(x) ·R′RnΛ[Htφ

n](x)

+(P̄ v0)′(x) · [∂nHt(χ+∇′∂n(−∆)−1φn)](x)

−(P̄ v0)′(x) · [∂nHt(χ−∇′∂n(−∆)−1φn)](x)

+(P̄ v0)n(x)[∂nHt(χ+∆′(−∆)−1φn)](x)

−(P̄ v0)n(x)[∂nHt(χ−∆′(−∆)−1φn)](x)

−(P̄ v0)n(x)ΛR2
n[Htφ

n](x)

−(P̄ v0)′(x)∂n [Htφ
′](x) − (P̃ v0)′(x) · ∇′(∇′ · Λ−1[Htφ

′](x)

+(P̄ v0)′(x) · [∂nHt{χ+∇′(−∆)−1(∇′ · φ′)}](x)
−(P̄ v0)′(x) · [∂nHt{χ−∇′(−∆)−1(∇′ · φ′)}](x)



EXISTENCE OF NAVIER-STOKES FLOW IN A HALF SPACE 9

+(P̄ v0)′(x) · ∇′(R2
nΛ−1∇′ · [Htφ

′](x)

+(P̄ v0)n(x)ΛRnR
′ · [Htφ

′](x)

+(P̄ v0)n(x)[∂nHt{χ+∇′ · (∇′ · (−∆)−1∂nφ
′)}](x)

−(P̄ v0)n(x)[∂nHt{χ−∇′ · (∇′ · (−∆)−1∂nφ
′)}](x)

}
dx.

Next we set u0 = Λα,jv0. Computing the initial data carefully, we have the following
corollary:

Corollary 2.5. Let 1 ≤ j ≤ n− 1 and assume that v0 is in Lp(Rn
+), 1 ≤ p ≤ ∞. Let

V n
α,j(t) = −Λ1−αRjR

′ · Etv
′
0 + ∂n(−∆)−1∇′ ·Et+Λα,jv

′
0

(2.6a)

− (−∆)−1∆′Et+Λα,jv
n
0 −Λ1−αRjRnEtv

n
0 ,

V ′
α,j(t) =Λα,jEtv

′
0 + Λα+1,j∇′Etv

n
0

(2.6b)

+∇′(−∆)−1(∇′ · Et+Λα,jv
′
0) −RnRjΛ−α−1∇′(∇′ · Etv

′
0)

−R′RjΛ−α+1Etv
n
0 + ∂n(−∆)−1∇′Et+Λα,jv

n
0 .

Then Vα,j is a function defined in R
n and V−α,j |Rn

+
satisfies (1.3) with an initial data

u0 = Λ−α,jv0.

By duality arguement, we have the following corollary:

Corollary 2.6. Let Vα,j (1 ≤ j ≤ n− 1) be the function in Corollary 2.6 and let φ be
in C∞

0 (Rn)n. Then ∫
Rn

Vα,j(t, x) · φ(x)dx(2.7)

= −
∫

Rn

{
ṽ′0(x) ·R′RjΛ1−α[Htφ

n](x)

+ṽ′0(x) · [Λα,jHt(χ+∇′∂n(−∆)−1φn)](x)

−ṽ′0(x) · [Λα,jHt(χ−∇′∂n(−∆)−1φn)](x)

+ṽn
0 (x)[Λα,jHt(χ+∆′(−∆)−1φn)](x)

−ṽn
0 (x)[Λα,jHt(χ−∆′(−∆)−1φn)](x)

−ṽn
0 (x)Λ1−αRjRn[Htφ

n](x)

−ṽ′0(x)Λα,j [Htφ
′](x) + ṽn

0 (x)∇′ · Λα+1,j [Htφ
′](x)

+ṽ′0(x) · [Λα,jHt{χ+∇′(−∆)−1(∇′ · φ′)}](x)
−ṽ′0(x) · [Λα,jHt{χ−∇′(−∆)−1(∇′ · φ′)}](x)
+ṽ′0(x) · ∇′(RjRnΛ−α∇′ · [Htφ

′](x)
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+ṽn
0 (x)Λ1−αRjR

′ · [Htφ
′](x)

+ṽn
0 (x)[Λα,jHt{χ+∇′ · (∇′ · (−∆)−1∂nφ

′)}](x)
−ṽn

0 (x)[Λα,jHt{χ−∇′ · (∇′ · (−∆)−1∂nφ
′)}](x)

}
dx.

§3 Study of bouded mean oscillation spaces

In this section, we introduce two function spaces that appear in our theorem and
proof. First, we introduce the Hardy space H1 that is a subspace of L1.

Definition 3.1. A function f ∈ L1(Rn) belongs to the Hardy space H1 = H1(Rn) if

(3.1) f+(x) = sup
s>0

|Gs ∗ f(x)| ∈ L1(Rn),

where the symbol ∗ denotes the convolution with respect to the space variable x. The
norm of f ∈ H1(Rn) is defined by

(3.2) ‖f‖H1 := ‖f+‖L1(Rn)

Next, we define the space of “Bounded Mean Oscillation” BMO.

Definition 3.2. A function g belongs to the space of bounded mean oscillation BMO
if g ∈ L1

loc(R
n) and

(3.3) [g]BMO = sup
Q: cube

1
|Q|

∫
Q

|g(x) − gQ|dx <∞,

where |Q| means the lebesgue measure of Q and where gQ means the mean of g on Q
such that

(3.4) gQ =
1
|Q|

∫
Q

g(x)dx.

Note that [·]BMO is semi-norm because [C ]BMO = 0 for any constant function C . So
we usually consider the quotient space BMO/R.

The definition of BMO seems to be complicated to apply. However, we do not have
to use that definition directly because we have the duality characterization that is easy
to apply for our problem.

Proposition 3.3(Fefferman-Stein[8]). Assume that f ∈ H1 and g ∈ BMO. Then

(3.5)
∣∣∣
∫

Rn

f(x)g(x)dx
∣∣∣ ≤ C‖f‖H1 [g]BMO.
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Corollary 3.4. Assume that f ∈ H1 and g ∈ BMO. Then the convolution function
f ∗ g is in L∞ and

(3.6) ‖f ∗ g‖L∞ ≤ C‖f‖H1 [g]BMO.

Moreover, we note an estimate introduced by Giga-Matsui-Shimizu[9].

Lemma 3.5(Giga-Matsui-Shimizu[9]). Let K be an integral operator of form

(3.7) Kf(x) =
∫

Rn

k(x, y)f(y)dy for x ∈ R
n.

If the kernel k(x, y) satisfies that

sup
y∈Rn

‖k(·, y)‖H1 = k0 <∞,

then K is a bounded operator from L1(Rn) to H1(Rn) i.e.

(3.8) ‖Kf‖H1 ≤ k0‖f‖L1(Rn).

We note that the Riesz operators Rj are bounded in H1 and BMO, i.e.

‖Rjf‖H1 ≤ C1‖f‖H1 ,

[Rjg]BMO ≤ C2[g]BMO.

Remark. We remark the BMO space in the half space. Assume that g is a function
defined in the half space. A function g belongs to BMO if there exists an extension
function over the whole space which is equal to g in the half space and belongs to BMO.
The norm of g is defined as

[g]BMO(Rn
+) := inf

G:extension
[G]BMO.

§4 Proof of Theorem 1.1

Now we are ready to prove our theorem. In this section, we show Theorem 1.1, the
estimates of non-linear part of Navier-Stokes equation. By (3.8), we have that the terms
with v0 in (2.5) are bounded with [u]BMO. Now there remains H1-estimates of the terms
with φ.

First we estimate the kernels without χ±. Note that the estimates of Gauss kernel
in Hardy space has been obtained by Giga-Matsui-Shimizu [10].

Lemma 4.1. Let Gt be the Gauss kernel. Then

‖∂iGt‖H1 ≤ Ct−1/2 for 1 ≤ i ≤ n,(4.1a)

‖ΛGt‖H1 ≤ Ct−1/2,(4.1b)

‖∂j∂kΛ−1Gt‖H1 ≤ Ct−1/2 for 1 ≤ j, k ≤ n− 1.(4.1c)
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By Lemma 4.1 and Corollary 3.4, we have

‖∂jHtφ‖H1 ≤ ‖φ‖L1(Rn)‖∂jGt‖H1(4.2a)

≤ Ct−1/2‖φ‖L1(Rn),

‖∂j∂kΛ−1E(t)φ‖H1 ≤ Ct−1/2‖φ‖L1(Rn),(4.2b)

‖∂j∂kΛ−1f(t)φ‖H1 ≤ Ct−1/2‖φ‖L1(Rn).(4.2c)

By the boundedness of the Riesz operators in the Hardy space, we have

‖RjRkΛHtu0‖H1 ≤ ‖φ‖L1(Rn)‖RjRkΛGt‖H1(4.3)

≤ C‖φ‖L1(Rn)‖ΛGt‖H1

≤ Ct−1/2‖φ‖L1(Rn).

Next, we estimate the terms containing χ±, i.e.

∂j [Ht(χ±(−∆)−1∂i∂kφ)](x),

where 1 ≤ i ≤ n− 1 and 1 ≤ j, k ≤ n.

Remark. Shimizu [15] showed the H-L1 estimate of [Ht(χ±∂iRjRkφ)](x) with 1 ≤ i ≤
n− 1 and 1 ≤ j, k ≤ n. In this case, we may assume that j 
= n, because if j = k = n,
then we can reduce to j 
= n by using the property of the Riesz kernels, i.e.

(4.4)
n∑

α=1

R2
α = −I.

However in our problem, we cannot apply (4.4) when j = k = n, because χ± cause the
singularities on xn = 0.

When j 
= n, we can reduce our problems to Shimizu[15]’s. Hereafter, we assume
that j = n. Since the integral kernel of (−∆)−1 is cn|x|−n+2, we have

∂n[Ht(χ+(−∆)−1∂i∂kφ)](x)(4.5)

= − cn

∫
Rn

∂yn{Gt(x− y)}χ+(yn)∂yi∂yk

∫
Rn

1
|y − z|n−2

φ(z)dzdy

= − cn

∫
Rn

∂yn{Gt(x− y)}χ+(yn)∂yi∂yk

∫
Rn

ψ1(y − z)
|y − z|n−2

φ(z)dzdy

− cn

∫
Rn

∂yn{Gt(x− y)}χ+(yn)∂yi∂yk

∫
Rn

ψ2(y − z)
|y − z|n−2

φ(z)dzdy

= − cn(I1(t, x) + I2(t, x)),

where ψ1 is a smooth function with suppψ1 ⊂ B(0, 1), 0 ≤ ψ1 ≤ 1 and ψ1|B(0,1/2) = 1,
and where ψ2 = 1 − ψ1.
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By partial integral, we have

I1(t, x)(4.6)

=δkn

∫
Rn

φ(z)
∫

Rn−1

ψ1(y′ − z′,−z)
|(y′ − z′,−zn)|n−2

(∂i∂kGt)(x′ − y′, xn)dy′dz

−
∫

Rn

φ(z)
∫

R
n
+

ψ1(y − z)
|y − z|n−2

∂yi∂yk∂yn [Gt(x− y)]dydz

=δkn

∫
Rn

φ(z)I1,1(t, x, z)dz −
∫

Rn

φ(z)I1,2(t, x, z)dz,

I2(t, x)(4.7)

=
∫

Rn

φ(z)
∫

Rn−1
∂i∂k

[ ψ2(y − z)
|y − z|n−2

]
yn=0

Gt(x′ − y′, xn)dy′dz

−
∫

Rn

φ(z)
∫

R
n
+

∂yi∂yk∂yn

[ ψ2(y − z)
|y − z|n−2

]
Gt(x− y)dydz

=
∫

Rn

φ(z)I2,1(t, x, z)dz −
∫

Rn

φ(z)I2,2(t, x, z)dz,

where δkn is Kronecker’s delta. By Lemma 3.5, it is sufficient to estimate the integral
kernels in H1 for x. First, we show the pointwise estimates of integral kernels.

Lemma 4.2.
(1) Let h = 1, 2. Assume that real parameters α and β satisfy 0 ≤ α ≤ n and β ≥ 0.

Then there exists a constant C = Cn,α,β independent of x ∈ R
n and t ≥ 0 such

that

(4.8a) |Ih,1(t, x, z)| ≤ Ct(α+β−n−1)/2|x′ − z′|−α|xn|−β

(2) Let h = 1, 2. Assume that a real parameter γ satisfies 0 ≤ γ ≤ n. Then there
exists a constant C = Cn,γ independent of x ∈ R

n and t ≥ 0 such that

(4.8b) |Ih,2(t, x, z)| ≤ Ct(γ−n−1)/2|x− z|−γ

Proof. By the parameter arguement, it suffices to show (4.8) for t = 1.
Computing derivatives, we have

|I1,1(1, x, z)|(4.9a)

≤C
∫
|y′−z′,−zn|<1

1
|(y′ − z′,−zn)|n−2

(1 + |xi − yi||xk − δknyk|)G1(x′ − y′, xn)dy′,

|I1,2(1, x, z)|(4.9b)

≤C
∫

R
n
+∩{|y−z|<1}

1
|y − z|n−2

(|x− y| + |x − y|3)Gt(x− y)dy,
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|I2,1(1, x, z)|(4.9c)

≤C
∫

1/2<|y′−z′,−zn|<1

[|y′ − z′,−zn|−n+2 + |y′ − z′,−zn|−n+1]

Gt(x′ − y′, xn)dy′

+ C

∫
1/2<|y′−z′,−zn|

|y′ − z′,−zn|−nGt(x′ − y′, xn)dy′,

|I2,2(1, x, z)|(4.9d)

≤C
∫

R
n
+∩{1/2<|y−z|<1}

[|y − z|−n+2 + |y − z|−n+1 + |y − z|−n]

Gt(x− y)dy

+ C

∫
R

n
+∩{1/2<|y−z|}

|y − z|−n−2Gt(x− y)dy.

To estimate (4.9a,b), we apply the following inequalities:

|x− y| ≤ |x − z| + 1,(4.10a)

|x′ − y′| ≤ |x′ − z′| + 1,(4.10b)

|x − y|2 ≥ (|x− z|2 − 2)/2,(4.10c)

|x′ − y′|2 ≥ (|x′ − z′|2 − 2)/2.(4.10d)

So we have

|I1,1(1, x, z)|(4.11a)

≤C
∫
|y′−z′ ,−zn|<1

1
|(y′ − z′,−zn)|n−2

(1 + |xi − zi||xk − δknzk|)

e−|x′−z′|2/8+1/4e−x2
n/4dy′

≤C |x′ − z′|−α|xn|−β ,

|I1,2(1, x, z)|
(4.11b)

≤C
∫

R
n
+∩{|y−z|<1}

1
|y − z|n−2

(1 + |x − z| + |x− z|3)

e−|x−z|2/8+1/4dy

≤C |x− z|−γ .

Next we estimate (4.9c,d). For their first terms, we apply the same method on
(4.9a,b). For second terms, we apply the following inequalities:

|x′ − z′|α ≤ Cα(|x′ − y′|α + |y′ − z′|α),(4.12a)

|x − z|γ ≤ Cγ(|x− y|γ + |y − z|γ)(4.12b)
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For α ≥ 0 and γ ≥ 0. Assuming that 0 ≤ α ≤ n and 0 ≤ γ ≤ n+ 1, we have

|I2,1(1, x, z)|
(4.13a)

≤C |x′ − z′|−α|xn|−β

+ C |x′ − z′|−α

∫
1/2<|y′−z′,−zn|

(|y′ − z′|−n+α + |y′ − z′|−n|x′ − y′|α)

Gt(x′ − y′, xn)dy′

≤C |x′ − z′|−α|xn|−β ,

|I2,2(1, x, z)|
(4.13b)

≤C |x− z|−γ

+ C |x− z|−γ

∫
R

n
+∩{1/2<|y−z|}

(|y − z|−n+γ + |y − z|−n|x − y|γ)

Gt(x− y, xn)dy

≤C |x− z|−γ

and complete the proof. �
By Lemma 4.2, we have that there exists a function K = K(t, x, z) such that

∂n[Ht(χ+(−∆)−1∂i∂kφ)](x)(4.14)

=
∫

Rn

φ(x)K(t, x, z)dz

and satisfiessatisfies

|K(t, x, z)|(4.15)

≤C0t
(α+β−n−1)/2|x′ − z′|−α|xn|−β + C1t

(γ−n−1)/2|x − z|−γ

for 0 ≤ α ≤ n, β ≥ 0, and 0 ≤ γ ≤ n+ 1.
Finally, we show the following lemma.

Lemma 4.3. There exists a constant C depending only on n such that

(4.16) ‖K(t, ·, z)‖H1 ≤ Ct−1/2.

Proof. By Lemma 4.2, we have

|Gs ∗K(t, x, z)| =|K(s+ t, x, z)|(4.17)

≤C0(s+ t)(α+β−n−1)/2|x′ − z′|−α|xn|−β

+ C1t
(γ−n−1)/2|x− z|−γ

≤Ct(α+β−n−1)/2|x′ − z′|−α|xn|−β

+ C1t
(γ−n−1)/2|x− z|−γ .



16 YASUYUKI SHIMIZU

Note that α+ β − n− 1 and γ − n− 1 are non-positive. Therefore we obtain

‖K(t, ·, z)‖H1(4.18)

≤
4∑

k=1

C0t
(α+β−n−1)/2

∫
Ωk

|x′ − z′|−α|xn|−βdx,

+
6∑

k=5

C1t
(γ−n−1)/2

∫
Ωk

|x− z|−γdx,

where

Ω1 = {|x′ − z′| ≤ t1/2, |xn| ≤ t1/2},
Ω2 = {|x′ − z′| > t1/2, |xn| ≤ t1/2},
Ω3 = {|x′ − z′| ≤ t1/2, |xn| > t1/2},
Ω4 = {|x′ − z′| > t1/2, |xn| > t1/2}
Ω5 = {|x− z| ≤ t1/2},
Ω6 = {|x− z| > t1/2}.

We compute the integrals on the right-hand side of (4.18), taking

α = β = 0 for k = 1,
α = n, β = 0 for k = 2,
α = 0, β = 0 for k = 3,

α = n− 1/2, β = 3/2 for k = 4,
γ = 0 for k = 5,

γ = n+ 1 for k = 6,

to find that the integrals of (4.18) are all bounded above by a constant multiple of t−1/2.
This proves (4.16). �

By Lemma 3.5 and Lemma 4.3, we obtain

(4.19) ‖∂n[Ht(χ+(−∆)−1∂i∂kφ)]‖H1 ≤ Ct−1/2‖φ‖L1(Rn).

Combining the estimates in (4.2), (4.3), and (4.19), we finally obtain the desired esti-
mate.

§5 Proof of Theorem 1.2

In this section, we show Theorem 1.2, the estimates of linear-part. By Proposition
3.3, it is sufficient to show that the terms with φ in (2.7) are in H1.

First we show the pointwise estimates of terms with χ±, that is,

(5.1) Iα,i,j,k(t, x) = Λα,jHt(χ±∂i∂k(−∆)−1φ)(x),

where φ is in C∞(Rn).
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Lemma 5.1. Let 0 < α < 1, 1 ≤ i, j ≤ n − 1, and 1 ≤ k ≤ n. Assume that
0 ≤ λ ≤ n− α+ 1, 0 ≤ µ ≤ n− α, and λ ≥ 0. Then

|Iα,i,j,k(t, x)|(5.2)

≤C
∫

Rn

|φ(w)|(t(λ−n+α−1)/2|x− w|−λ

+ t(µ+ν−n+α−1)/2|x′ − w′|−µ|xn − wn|ν)dw

holds for any (t, x) ∈ (0,∞) × R
n
+, where C is independ of φ.

Before starting the proof of lemma, we define some functions. Let ψl, l = 1, 2 be a
smooth function defined in section 4. And for l = 1, 2, define ψ′

l(x
′) = ψl(x′, 0).

Proof. By scaling arguement, we may fix t = 1. Applying the integral presentation of
operators, we have

I(x) := Iα,i,j,k(1, x)(5.3)

=∂xj

∫
Rn−1

1
|z′ − x′|n−1−α{∫

R
n
+

G1(z′ − y′, xn − yn)

(
∂yi∂yk

∫
Rn

1
|w − y|n−2

φ(w)d̄w
)
dy

}
d̄z′

=
2∑

l,m=1

∂xj

∫
Rn−1

ψ′
l(z

′ − x′)
|z′ − x′|n−1−α

{∫
R

n
+

G1(z′ − y′, xn − yn)

(
∂yi∂yk

∫
Rn

ψm(w − y)
|w − y|n−2

φ(w)d̄w
)
dy

}
d̄z′,

=
2∑

l,m=1

I l,m(x)

where d̄w denotes the integral with a constant of operator (−∆)−1.
First, we show the estimate of I1,1. Repeating partial integrals, we have

I1,1(x)(5.4)

=−
∫

Rn

φ(w)
{∫

Rn−1

ψ′
1(z

′ − x′)
|z′ − x′|n−1−α

(∫
R

n
+

∂yi∂zj (G1(z′ − y′, xn − yn))∂yk

( ψ1(w − y)
|w − y|n−2

)
dy

)
d̄z′

}
d̄w.
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So we have

|I1,1(x)|(5.5)

≤C
∫

Rn

|φ(w)|
{∫

|z′−x′|≤1

1
|z′ − x′|n−1−α

(∫
{|w−y|≤1}+

(1 + |z′ − y′|2)G1(z′ − y′, xn − yn)

( 1
|w − y|n−2

+
1

|w − y|n−1

)
dy

)
d̄z′

}
d̄w,

where {|w − y| < 1}+ denotes {|w − y| < 1} ∩ R
n
+. Since |z′ − x′| ≤ 1 and |w − y| ≤ 1,

the following inequalities holds:

|z′ − y′| ≤ |x − w|+ 2,(5.6a)

|(z′ − y′, xn − yn)|2 ≥ 1
4
|x −w|2 − 3

2
.(5.6b)

Applying (5.6) to (5.5), we have

|I1,1(x)|(5.7)

≤C
∫

Rn

|φ(w)|
{∫

|z′−x′|≤1

1
|z′ − x′|n−1−α

(∫
{|w−y|≤1}+

(3 + |x −w|2)e−|x−w|2/16e3/8

( 1
|w − y|n−2

+
1

|w − y|n−1

)
dy

)
d̄z′

}
d̄w

≤C
∫

Rn

|φ(w)||x− w|−λd̄w

for λ ≥ 0.
Next, we show the estimate of I1,2. We have

I1,2(x)(5.8)

=
∫

Rn

φ(w)
{∫

Rn−1

ψ′
1(z′ − x′)

|z′ − x′|n−1−α

(∫
R

n
+

G1(z′ − y′, xn − yn)

∂yi∂yj∂yk

( ψ2(w − y)
|w − y|n−2

)
dy

)
d̄z′

}
d̄w
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and

|I1,2(x)|(5.9)

≤C1

∫
Rn

|φ(w)|
{∫

|z′−x′|≤1

1
|z′ − x′|n−1−α

(∫
{1/2≤|w−y|≤1}+

G1(z′ − y′, xn − yn)

( 1
|w − y|n−2

+
1

|w − y|n−1

)
dy

)
d̄z′

}
d̄w

+ C2

∫
Rn

|φ(w)|
{∫

|z′−x′|≤1

1
|z′ − x′|n−1−α

(∫
{|w−y|≥1/2}+

G1(z′ − y′, xn − yn)
1

|w − y|n+1
dy

)
d̄z′

}
d̄w

=:C1I
1,2,1 + C2I

1,2,2.

Since the integral domains are bounded, we can estimate I1,2,1 same as I1,1, so we have

|I1,2,1(x)|(5.10)

≤C
∫

Rn

|φ(w)||x− w|−λd̄w

for λ ≥ 0. To estimate I1,2,2, we apply that

|x− w|λ ≤ Cλ(|z′ − x′|λ + |w − y|λ + |(z′ − y′, xn − yn)|λ)

holds for λ ≥ 0. Now we assume that 0 ≤ λ ≤ n+ 1. Then we have

|I1,2,2(x)|(5.11)

≤
∫

Rn

|φ(w)| Cλ

|x− w|λ
{∫

|z′−x′|≤1

1
|z′ − x′|n−1−α

(∫
{|w−y|≥1/2}+

G1(z′ − y′, xn − yn)

|z′ − x′|λ + |w − y|λ + |(z′ − y′, xn − yn)|λ
|w− y|n+1

dy
)
d̄z′

}
d̄w

≤C
∫

Rn

|φ(w)||x−w|−λ
{∫

|z′−x′|≤1

1
|z′ − x′|n−1−α

(∫
{|w−y|≥1/2}+

G1(z′ − y′, xn − yn)

(2n+1|z′ − x′|λ + 2n+1−λ|w − y|λ

+ 2n+1|(z′ − y′, xn − yn)|λ)dy
)
d̄z′

}
d̄w
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≤C
∫

Rn

|φ(w)||x−w|−λ
(∫

|z′−x′|≤1

1 + |z′ − x′|λ
|z′ − x′|n−1−α

d̄z′
)
d̄w

≤C
∫

Rn

|φ(w)||x−w|−λd̄w

for 0 ≤ λ ≤ n+ 1.
Next, we show the estimate of I2,1. We have

I2,1(x)(5.12)

= −
∫

Rn

φ(w)
{∫

R
n
+

∂yk

ψ1(w − y)
|w − y|n−2

(∫
Rn−1

G1(z′ − y′, xn − yn)∂zi∂xj

( ψ′
2(z

′ − x′)
|z′ − x′|n−1−α

)
d̄z′

)
dy

}
d̄w

and

|I2,1(x)|(5.13)

≤C1

∫
Rn

|φ(w)|
{∫

{|w−y|≤1}+

( 1
|w − y|n−2

+
1

|w − y|n−2

)
(∫

1/2≤|z′−x′|≤1

G1(z′ − y′, xn − yn)

( 1
|z′ − x′|n−1−α

+
1

|z′ − x′|n−α

)
d̄z′

)
dy

}
d̄w

+ C2

∫
Rn

|φ(w)|
{∫

{|w−y|≤1}+

( 1
|w − y|n−2

+
1

|w − y|n−2

)
(∫

1/2≤|z′−x′|≤1

G1(z′ − y′, xn − yn)
1

|z′ − x′|n+1−α
d̄z′

)
dy

}
d̄w

=:C1I
2,1,1 +C2I

2,1,2.

By similar arguement on I1,1, we have

|I2,1,1(x)|(5.14)

≤C
∫

Rn

|φ(w)||x− w|−λd̄w

for λ ≥ 0. To estimate I2,1,2, we apply that

|x′ − w′|µ ≤ Cµ(|x′ − z′|µ + |z′ − y′|µ + |w − y|µ)
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holds for µ ≥ 0. Now we assume 0 ≤ µ ≤ n− α+ 1. Then we have

|I2,1,2(x)|(5.15)

≤
∫

Rn

|φ(w)| Cµ

|x′ −w′|µ{∫
{|w−y|≤1}+

( 1
|w − y|n−2

+
1

|w− y|n−2

)
(∫

1/2≤|z′−x′|≤1

G1(z′ − y′, xn − yn)

|z′ − x′|µ + |z′ − y′|µ + |w − y|µ
|z′ − x′|n+1−α

d̄z′
)
dy

}
d̄w

≤C
∫

Rn

|φ(w)||x′ − w′|−µ

{∫
{|w−y|≤1}+

e−|xn−yn|2/4
( 1
|w − y|n−2

+
1

|w − y|n−2

)
(∫

1/2≤|z′−x′|≤1

e−|z′−y′|2/4

(2n−α+1−µ + 2n−α+1|z′ − y′|µ + 2n−α+1|w− y|µ)d̄z′
)
dy

}
d̄w

≤C
∫

Rn

|φ(w)||x′ − w′|−µ

{∫
{|w−y|≤1}+

e−|xn−yn|2/4
( 1
|w − y|n−2

+
1

|w − y|n−2

)

(1 + |w − y|µ)dy
}
d̄w.

Since |wn − yn| ≤ |w − y| ≤ 1, we have

(5.16) |xn − yn| ≥ 1
2
|xn − wn|2 − 1.

Applying (5.16) to (5.15), we have

|I2,1,2(x)|(5.17)

≤C
∫

Rn

|φ(w)||x′ −w′|−µ

{∫
{|w−y|≤1}+

e−|xn−wn|2/8+1/4

( 1
|w − y|n−2

+
1

|w − y|n−2

)
(1 + |w − y|µ)dy

}
d̄w

≤C
∫

Rn

|φ(w)||x′ −w′|−µ|xn −wn|−ν d̄w
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for 0 ≤ µ ≤ n− α+ 1 and ν ≥ 0.
Finally we show the estimate of I2,2. We have

I2,2(x)(5.18)

=
∫

Rn

φ(w)
{∫

Rn−1
∂xj

ψ′
1(z′ − x′)

|z′ − x′|n−1−α

(∫
R

n
+

G1(z′ − y′, xn − yn)∂yi∂yk

( ψ2(w − y)
|w − y|n−2

)
dy

)
d̄z′

}
d̄w.

Now let z′ − y′ = ξ′ and xn − yn = ξn. Then we have
∫

Rn−1
∂xj

ψ′
1(z

′ − x′)
|z′ − x′|n−1−α

(5.19)

(∫
R

n
+

G1(z′ − y′, xn − yn)∂yi∂yk

( ψ2(w − y)
|w − y|n−2

)
dy

)
d̄z′

=
∫

R
n
+

G1(ξ)
(∫

Rn−1
∂xj

ψ′
1(z′ − x′)

|z′ − x′|n−1−α

∂ξi∂ξk

( ψ2(w′ − z′ + ξ′, wn − xn + ξn)
|(w′ − z′ + ξ′, wn − xn + ξn)|n−2

)
d̄z′

)
dξ.

Applying (5.19), we have

|I2,2(x)|
(5.20)

≤C1

∫
Rn

|φ(w)|
{∫

1/2≤|z′−x′|≤1

1
|z′ − x′|n−1−α

(∫
{1/2≤|w−y|≤1}+

G1(z′ − y′, xn − yn)

( 1
|w − y|n−2

+
1

|w− y|n−1

)
dy

)
d̄z′

}
d̄w

+ C2

∫
Rn

|φ(w)|
{∫

R
n
+

G1(ξ)

(∫
D2(x,w,ξ)

1
|z′ − x′|n−1−α

1
|(w′ − z′ + ξ′, wn − xn + ξn)|n d̄z

′
)
dy

}
d̄w

+ C3

∫
Rn

|φ(w)|
{∫

{1/2≤|w−y|≤1}+

( 1
|w − y|n−2

+
1

|w − y|n−1

)
(∫

|z′−x′|≥1/2

G1(z′ − y′, xn − yn)
1

|z′ − x′|n−α
dy

)
d̄z′

}
d̄w
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+ C4

∫
Rn

|φ(w)|
{∫

R
n
+

G1(ξ)

(∫
D4(x,w,ξ)

1
|z′ − x′|n−α

1
|(w′ − z′ + ξ′, wn − xn + ξn)|n d̄z

′
)
dy

}
d̄w

=:
4∑

h=1

ChI
2,2,h,

where

D2(x,w, ξ) ={1/2 ≤ |z′ − x′| ≤ 1}
∩ {|(w′ − z′ + ξ′, wn − xn + ξn)| ≥ 1/2},

D4(x,w, ξ) ={|z′ − x′| ≥ 1/2}
∩ {|(w′ − z′ + ξ′, wn − xn + ξn)| ≥ 1/2}.

By similar arguement on I1,1, we have

|I2,2,1(x)|(5.21)

≤C
∫

Rn

|φ(w)||x− w|−λd̄w

for λ ≥ 0, and by similar arguement on I2,1,2, we have

|I2,2,3(x)|(5.22)

≤C
∫

Rn

|φ(w)||x′ − w′|−µ|xn − wn|−ν d̄w

for 0 ≤ µ ≤ n− α+ 1 and ν ≥ 0. To estimate I2,2,2 and I2,2,4, we apply that

|x− w|λ ≤ Cλ(|z′ − x′|λ + |(w′ − z′ + ξ′, wn − xn + ξ)|λ + |ξ|λ)

holds for λ ≥ 0. Now we assume that 0 ≤ λ ≤ n− α + 1. Moreover, we denote that

D2,1 = D2 ∩ {|z′ − x′| ≤ |(w′ − z′ + ξ′, wn − xn + ξn)|},
D2,2 = D2 ∩ {|z′ − x′| ≥ |(w′ − z′ + ξ′, wn − xn + ξn)|},
D4,1 = D4 ∩ {|z′ − x′| ≤ |(w′ − z′ + ξ′, wn − xn + ξn)|},
D4,2 = D4 ∩ {|z′ − x′| ≥ |(w′ − z′ + ξ′, wn − xn + ξn)|}.

Now we have

|I2,2,2|
(5.23)

≤
∫

Rn

|φ(w)| Cλ

|x− w|−λ

{∫
R

n
+

G1(ξ)

(∫
D2(x,w,ξ)

1
|z′ − x′|n−1−α−λ

1
|(w′ − z′ + ξ′, wn − xn + ξn)|n d̄z

′
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+
∫

D2,1(x,w,ξ)

1
|z′ − x′|n−1−α

1
|(w′ − z′ + ξ′, wn − xn + ξn)|n−λ

d̄z′

+
∫

D2,2(x,w,ξ)

1
|z′ − x′|n−1−α

1
|(w′ − z′ + ξ′, wn − xn + ξn)|n−λ

)
d̄z′

+ |ξ|λ
∫

D2(x,w,ξ)

1
|z′ − x′|n−1−α

1
|(w′ − z′ + ξ′, wn − xn + ξn)|n

)
d̄z′

)
dy

}
d̄w

=:
∫

Rn

|φ(w)| Cλ

|x− w|−λ

{∫
R

n
+

G1(ξ)(J1 + J2 + J3 + |ξ|J4)dy
}
d̄w.

Since |z′−x′|−n−1−α−λ is integrable for any λ ∈ R and |(w′−z′+ξ′, wn−xn+ξn)|n ≥ 2n,
we have

J1(5.24)

≤
∫

D2

2n

|z′ − x′|n−1−α−λ
d̄z′

≤C <∞

for 0 ≤ λ ≤ n− α+ 1. By the properties of the domains D2,1 and D2,2, we have

J2(5.25)

≤
∫

D2,1

1
|z′ − x′|n−1−α+n−λ

d̄z′

≤C <∞,

J3(5.26)

≤
∫

D2,2

|z′ − x′|
|(w′ − z′ + ξ′, wn − xn + ξn)|n−α−λ+n

d̄z′

≤
∫

D2,2

1
|(w′ − z′ + ξ′, wn − xn + ξn)|n−α−λ+n

d̄z′

≤C <∞

for 0 ≤ λ ≤ n− α+ 1. Since n− 1 − α > 0 and n > 0, we have

J4(5.27)

≤
∫

D2

2n−1−α2nd̄z′

≤C <∞
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for 0 ≤ λ ≤ n− α+ 1. Combining (5.24-27), we have

|I2,2,2|(5.28)

≤C
∫

Rn

|φ(w)| Cλ

|x− w|−λ

{∫
R

n
+

G1(ξ)(1 + |ξ|)dy
}
d̄w

≤C
∫

Rn

|φ(w)||x− w|−λd̄w

for 0 ≤ λ ≤ n− α+ 1. The estimate of I2,2,4 is similar to I2,2,2. We have

|I2,2,4|(5.29)

≤
∫

Rn

|φ(w)| Cλ

|x− w|−λ

{∫
R

n
+

G1(ξ)

(∫
D4,1(x,w,ξ)

1
|z′ − x′|n−α−λ

1
|(w′ − z′ + ξ′, wn − xn + ξn)|n d̄z

′

+
∫

D4,2(x,w,ξ)

1
|z′ − x′|n−α−λ

1
|(w′ − z′ + ξ′, wn − xn + ξn)|n d̄z

′

+
∫

D4,1(x,w,ξ)

1
|z′ − x′|n−α

1
|(w′ − z′ + ξ′, wn − xn + ξn)|n−λ

d̄z′

+
∫

D4,2(x,w,ξ)

1
|z′ − x′|n−α

1
|(w′ − z′ + ξ′, wn − xn + ξn)|n−λ

)
d̄z′

+ |ξ|λ
∫

D4,1(x,w,ξ)

1
|z′ − x′|n−α

1
|(w′ − z′ + ξ′, wn − xn + ξn)|n

)
d̄z′

)
dy

}
d̄w

+ |ξ|λ
∫

D4,2(x,w,ξ)

1
|z′ − x′|n−α

1
|(w′ − z′ + ξ′, wn − xn + ξn)|n

)
d̄z′

)
dy

}
d̄w

=:
∫

Rn

|φ(w)| Cλ

|x− w|−λ

{∫
R

n
+

G1(ξ)

(
K1 +K2 +K3 +K4 + |ξ|K5 + |ξ|K6)

)
dy

}
d̄w.

By similar arguement on J2 and J3, we have

K1(5.30)

≤
∫

D4,1

1
|z′ − x′|n−α−λ+n

d̄z′

≤C <∞,
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K2(5.31)

≤
∫

D4,2

1
|(w′ − z′ + ξ′, wn − xn + ξn)|n−α−λ+n

d̄z′

≤C <∞,

K3(5.32)

≤
∫

D4,1

1
|z′ − x′|n−α−λ+n

d̄z′

≤C <∞,

K4(5.33)

≤
∫

D4,2

1
|(w′ − z′ + ξ′, wn − xn + ξn)|n−α−λ+n

d̄z′

≤C <∞,

K5(5.34)

≤
∫

D4,1

1
|z′ − x′|n−α+n

d̄z′

≤C <∞,

K6(5.35)

≤
∫

D4,2

1
|(w′ − z′ + ξ′, wn − xn + ξn)|n−α+n

d̄z′

≤C <∞

for 0 ≤ λ ≤ n− α+ 1. Combining (4.30-35), we have

|I2,2,4|(5.36)

≤C
∫

Rn

|φ(w)| Cλ

|x− w|−λ

{∫
R

n
+

G1(ξ)(1 + |ξ|)dy
}
d̄w

≤C
∫

Rn

|φ(w)||x− w|−λd̄w

for 0 ≤ λ ≤ n− α+ 1. Finally, we combine the estimates of I l,m. Then we have

I(x)(5.37)

≤C
∫

Rn

|φ(w)|(|x− w|−λ

+ |x′ − w′|−µ|xn − wn|ν)dw

for 0 ≤ λ ≤ n− α+ 1, 0 ≤ µ ≤ n− α, and λ ≥ 0, which is our desired estimate. �
Using Lemma 5.1, we can obtain H1-estimate of Iα,i,j,k.
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Lemma 5.2. There exists a constant C depending only on n such that

(5.38) ‖Iα,i,j,k‖H1 ≤ Ct(α−1)/2‖φ‖L1(Rn).

Proof. The proof of this lemma is similar to Lemma 4.3. By Lemma 5.1, we have

|Gs ∗ Iα,i,j,k(t, x)| =|Iα,i,j,k(s+ t, x)|
(5.39)

≤C
∫

Rn

|φ(w)|((s+ t)(λ−n+α−1)/2|x − w|−λ

+ (s+ t)(µ+ν−n+α−1)/2|x′ − w′|−µ|xn − wn|ν)dw

≤C
∫

Rn

|φ(w)|(t(λ−n+α−1)/2|x − w|−λ

+ (t(µ+ν−n+α−1)/2|x′ − w′|−µ|xn − wn|ν)dw

Note that λ− n+ α− 1 and µ+ ν − n+ α− 1 is non-positive. Therefore we have

‖Iα,i,j,k‖H1

(5.40)

≤
2∑

k=1

C1t
(λ−n−1)/2

∫
Rn

|φ(w)|
∫

Ωk

|x− w|−λdxdw

+
6∑

k=3

C0t
(µ+ν−n+α−1)/2

∫
Rn

|φ(w)|
∫

Ωk

|x′ − w′|−µ|xn − wn|−νdxdw

where

Ω1 = {|x− w| ≤ t1/2},
Ω2 = {|x− w| > t1/2,

Ω3 = {|x′ − w′| ≤ t1/2, |xn − wn| ≤ t1/2},
Ω4 = {|x′ − w′| > t1/2, |xn − wn| ≤ t1/2},
Ω5 = {|x′ − w′| ≤ t1/2, |xn − wn| > t1/2},
Ω6 = {|x′ − w′| > t1/2, |xn − wn| > t1/2}.

We compute the integrals on the right-hand side of (4.18), taking

λ = 0 for k = 1,
λ = n+ 1 − α for k = 2,
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µ = ν = 0 for k = 3,
µ = n+ 1 − α, β = 0 for k = 4,
µ = 0, β = n+ 1 − α for k = 5,

α = n− (1 − α)/2, β = (3 − α)/2 for k = 6,

to find that the integrals of (5.40) are all bounded above by a constant multiple of
t(α−1)/2. This proves (5.38). �

Next we show the estimate of terms without χ±. By similar arguement in Theorem
5.1, we have the following lemma:

Lemma 5.3. Let 0 < α < 1, 1 ≤ i, j ≤ n − 1, and 1 ≤ k ≤ n. Assume that
0 ≤ λ ≤ n− α+ 1, 0 ≤ µ ≤ n− α, and λ ≥ 0. Then

|Λα,jGt(x)|(5.41a)

≤Ct(µ+ν−n+α−1)/2|x|−µ|xn|ν ,
|∇′Λα−1,jGt(x)|(5.41b)

≤Ct(µ+ν−n+α−1)/2|x|−µ|xn|ν ,
|Λ1−αGt(x)|(5.41c)

≤Ct(µ+ν−n+α−1)/2|x|−µ|xn|ν

holds for any (t, x) ∈ (0,∞) × R
n
+, where C is independ of φ.

Applying Lemma 5.3 and Lemma 3.5, we obtain the H1-estimates of terms without
χ±, that is,

‖Λα,j[Htφ]‖H1(5.42a)

≤ Ct(α−1)/2‖φ‖L1(Rn),

‖∇Λα+1,j[Htφ]‖H1(5.42b)

≤ Ct(α−1)/2‖φ‖L1(Rn),

‖RiRjΛ1−α[Htφ]‖H1(5.42c)

≤ Ct(α−1)/2‖φ‖L1(Rn).

Combining the estimates in (5.38) and (5.42), we finally obtain our desired estimate
and conclusion of Theorem 1.2.

§6 Application: Local-solution of Navier-Stokes equation

In this section, we show Theorem 1.3, the existence of local solution of Navier-Stokes
equation in a half space, by applying Theorem 1.1 and Theorem 1.2. We recall the
integral equation provided by Navier-Stokes equation:

u(t, x) = [e−tAu0](x) −
n∑

i=1

∫ t

0

e−(t−s)AQi(uiu)(s, x)ds,
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where e−tA is the solution operator defined in Theorem 2.1 and Pi is the combination
of the projection operator and space derivative defined in (2.2).

Before begining to prove theorem, we recall a function space BCq,T , 0 < q <∞;

BCq,T

={f ∈ C((0, T );L∞(Rn
+));‖f‖BCq,T = sup

0<t<T
tq‖f‖L∞(Rn

+) <∞}.

Now we begin to prove our theorem.

Proof of Theorem 1.3. We define the sequence {uk}∞k=1 by

u1(t) = e−tAΛα,jv0,(6.1a)

uk+1(t) = [e−tAΛα,jv0](x) −
n∑

i=1

∫ t

0

e−(t−s)AQi(ui
kuk)(s)ds(6.1b)

for k ≥ 1.

First we show that {uk} is bounded in BC(1−α)/2,T . By Theorem 1.1 and Theorem 1.2,
we have

‖u1(t)‖L∞ ≤ C0t
−(1−α)/2[v0]BMO,(6.2a)

‖uk+1(t)‖L∞ ≤ C0t
−(1−α)/2[v0]BMO(6.2b)

+ C1

n∑
i=1

∫ t

0

(t − s)−1/2[ui
kuk(s)]BMOds

≤ C0t
−(1−α)/2[v0]BMO

+ C1

∫ t

0

(t− s)−1/2‖uk(s)‖2
L∞ds

for k ≥ 1.

Here we set Xk = ‖uk‖BC(1−α)/2,T
. Then

X1 ≤ C0[v0]BMO,(6.3a)

t(1−α)/2‖uk+1(t)‖L∞ ≤ C0[v0]BMO(6.3b)

+C1t
(1−α)/2X2

k

∫ t

0

(t − s)−1/2s−(1−α)ds

≤ C0[v0]BMO + C2t
α/2X2

k

for k ≥ 1.

Taking supremum for 0 < t < T in (6.3b), we have

(6.4) Xk+1 ≤ C0[v0]BMO + C2T
α/2X2

k
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for k ≥ 1. Now we assume that D = 1 − 4C0C2T
α/2[v0]BMO satisfies 0 < D < 1. Then

we have

(6.5) Xk ≤ 1−D1/2

2C2Tα/2
= X∞

for k ≥ 1. (6.5) shows that {uk} is bounded in C(1−α)/2,T .
Next, we show that {uk} is a Cauchy sequence in BC(1−α)/2,T . By (6.1), we have

(u2 − u1)(t) = −
n∑

i=1

∫ t

0

e−(t−s)AQi(ui
1u1)(s)ds,(6.6a)

(uk+1 − uk)(t) = −
n∑

i=1

∫ t

0

e−(t−s)AQi(ui
kuk − ui

k−1uk−1)(s)ds(6.6b)

for k ≥ 2.

By same arguement for boundedness, we have

‖(u2 − u1)(t)‖L∞ ≤ C1

∫ t

0

(t− s)−1/2‖u1(s)‖2
L∞ds,(6.7a)

‖(uk+1 − uk)(t)‖L∞ ≤ C1

∫ t

0

(t− s)−1/2‖(uk − uk−1)(s)‖L∞

(6.7b)

(‖uk(s)‖L∞ + ‖uk−1(s)‖L∞ )ds
for k ≥ 2.

Here we set Yk = ‖uk+1 − uk‖BC(1−α)/2,T
. Then we have

t(1−α)/2‖(u2 − u1)(t)‖L∞ ≤ C1t
(1−α)/2X2

1

∫ t

0

(t− s)−1/2s(1−α)ds(6.8a)

≤ C1t
α/2X2

∞

t(1−α)/2‖(uk+1 − uk)(t)‖L∞ ≤ C1t
(1−α)/2Yk−1(Xk +Xk−1)

(6.8b)

∫ t

0

(t − s)−1/2s1−αds

≤ 2C1t
α/2X∞Yk−1

for k ≥ 2.

Taking supremum for 0 < t < T in (6.8), we have

Y1 ≤ C2T
α/2X2

∞(6.9a)
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Yk ≤ C1t
(1−α)/2Yk−1(Xk +Xk−1)

∫ t

0

(t− s)−1/2s1−αds(6.9b)

≤ 2C2T
α/2X∞Yk−1

≤ (1 −D1/2)Yk−1 for k ≥ 2.

It is easy to see Y1 is bounded. By the assumption of D, there exists a constant λ such
that 0 < λ < 1 and satisfies

Yk ≤ λYk−1(6.10)

≤ λk−1Y1 for k ≥ 1.

(6.10) shows that {uk} is the Cauchy sequence in BC(1−α)/2,T . By the completeness
of the space of continuous functions, we finally obtain the existence of the solution for
(1.8).

Finally, we show the uniqueness of the solution for (1.8). Assume that the function
v also satisfies (1.8). Let w = u− v. Then w satisfies

(6.11) w(t) = −
n∑

i=1

∫ t

0

e−(t−s)AQi(uiw + wiv)(s)ds.

Now we show that ‖w‖BC0,T = 0. By Theorem 1.1, we have

(6.12) ‖w(t)‖L∞ ≤ C1

∫ t

0

(t− s)−1/2‖w(s)‖L∞ (‖u(s)‖L∞ + ‖v(s)‖L∞ )ds.

By (6.5) and the assumption of {vk}, we have

‖u‖BC(1−α)/2,T
= ‖v‖BC(1−α)/2,T

< X∞.

Now we take a non-negative number t∗ in (0, T ) and set W = ‖w‖BC0,t∗ . Then we have

‖w(t)‖L∞ ≤ 2C1

∫ t

0

(t− s)−1/2Ws−(1−α)/2X∞ds(6.13)

≤ 2C1B
′tα/2X∞W.

Taking supremum for 0 < t < t∗ in (6.13), we have

(6.14) W ≤ 2C1B
′tα/2
∗ X∞W.

Now we assume that t∗ < (2C1B
′X∞)−2/α. Then we have W = 0 and w(t, x) = 0 for

almost every (t, x) ∈ (0, t∗)×R
n
+. Since X∞ depends only on T and [v0]BMO, we can ex-

tend the function w(s) from BC0,t∗ onto BC0,T , by repeating the procedure (6.11-6.14)
for T/t∗ times. So we finally obtain ‖w‖BC0,T = 0 and complete the proof. �
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