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§1 Introduction

We consider the Stokes equation in the half space
R

n
+ = {x = (x1, · · · , xn) ∈ R

n : xn > 0} (n ≥ 2):

ut − ∆u+ ∇p = 0, divu = 0 in R
n
+ × (0,∞),

u = u0 at t = 0,

u = 0 on ∂R
n
+ × (0,∞).

(1.1)

Here u = (u1, . . . , un) is the unknown velocity field and p is the unknown
pressure field. The initial data u0 is assumed to satisfy a compatibility
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condition : divu0 = 0 in R
n
+ and the normal component of u0 equals zero

on ∂R
n
+ = {xn = 0}.

This system is a typical parabolic-like equation and it has several prop-
erties resembling the heat equation. It is known that the Stokes equation
in the whole space R

n can be reduced to the heat equation with initial
data u0 and we have the regularity-decay estimate

(1.2) ‖∇u(t)‖Lp(Rn) ≤ Ct−1/2‖u0‖Lp(Rn) for t > 0,

for all 1 ≤ p ≤ ∞ with C independent of t and u0, where ∇ denotes the
gradient in space variables.

In [13], we have proved the L∞-estimate of first-derivatives of Stokes
flow with zero boundary condition in a half space:

(1.3) ‖∇u(t)‖L∞(Rn
+) ≤ Ct−1/2‖u0‖L∞(Rn

+) for t > 0,

where u0 is the initial data. In this paper, we improve (1.3) by replacing
the right hand side by the norm of bounded mean oscillation space BMO.

Theorem 1.1. There exists a function U = U (t, x) such that U (t) ∈
L∞(Rn) for all t > 0, U |Rn

+
equals to the solution of the Stokes equation

in R
n
+ with initial data u0 ∈ BMO(Rn

+) and such that

(1.4)
n∑

j=1

∣∣∣
∫

Rn

∂jU (t, x) · φ(x)dx
∣∣∣ ≤ Ct−1/2[u0]BMO‖φ‖L1(Rn),

for all t > 0, where φ is in C∞
0 (Rn) and C is a constant independent of

φ andu0.

The estimate (1.4) means that the first derivatives of solution of the
Stokes equation is well-defined in sense of distribution when u0 is in BMO.

Before explaining our problem, we recall the known results for the half
space. First, Ukai [15] showed ‖∇u(t)‖Lp(Rn) ≤ Ct−1/2‖u0‖Lp(Rn) for
the case 1 < p < ∞ by estimating the representation of solutions in Lp.
In the case p = 1 or p = ∞, the estimates do not follow from Ukai’s
method because the solution involves singular integral operators such as
Riesz transforms which are not bounded in L1 or L∞. Instead of L1, by
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using the formula in the Hardy space H1 of Fefferman and Stein (1.4) for
p = 1 was established by Giga-Matsui-Shimizu [8]. Moreover, Shimizu
[13] showed (1.4) for p = ∞ by applying the modified version of Ukai’s
formula.

We have two motivations for the estimate (1.2). First, we want to
apply the estimate to the integral equation which is formally equivalent
to the Navier-Stokes equations

(1.5) u(t, x) = (e−tAu0)(x) −
∫ t

0

(e(s−t)AP∇ · u(s) ⊗ u(s))(x)ds,

where e−tA is a solution operator of the Stokes equation in the half space
and P is a projection associated with the Helmholtz decomposition in
the half space. P is constructed from some Riesz transforms which are
not bounded in L∞. However, Riesz transforms are bounded in BMO, so
(1.4) may be useful to solve the problem (1.5).

Second motivation comes from the duality arguement. In fact in [8],
we have proved (1.2) for p = 1 by more strong estimate

(1.6) ‖∇u(t)‖H1 ≤ Ct−1/2‖u0‖p for t > 0.

Since the dual space of H1 is BMO, (1.4) can be regarded as the dual
estimate of (1.6) although (1.4) does not follow from (1.6) directly.

An idea of this paper is to apply the modified version of Ukai’s formula
for ∇u obtained by Shimizu [13]. We can extend the formula in [13] in
such a way that the terms involving the square root of the tangential
Laplacian Λ := −∑n

i=1 ∂
2/∂x2

i have no singularities on {xn = 0}. By the
duality arguement, it is sufficient to estimate the corresponding integral
kernels in H1 and we have established to estimate the terms involving
Λ. There remain the terms without Λ which contain singularities on
{xn = 0}. In [13], we treated the corresponding integral kernels in L1.
However, by deeper analysis, we are able to estimate these terms by
investigating their integral kernels in H1.

The proof of our theorem is divided in three sections. In section 2, we
refine the solution formula obtained by Ukai [15]. We can eliminate some
of these singularities in Ukai’s formula by extending solutions u to {xn <
0} as the odd function, so that the terms involving Λ have no singularities
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on xn = 0. In section 3, we define the Hardy space and the BMO-space in
R

n
+. We also recall the duality between H1 and BMO. It shall be noted

that we do not use the definition of BMO directly in our proof. Finally,
in section 4 we prove our thorem. By duality arguement, it is sufficient to
estimate the corresponding integral kernels in the representation formula
in H1. The H1-estimates of the kernels involving Λ are obtainded by
Shimizu [13]. It remains to estimate the kernels without Λ. These kernels
have singularities on xn = 0. Moreover, the tangential parts of these
kernels consist of the boundary integral on R

n−1. However, we can handle
these parts in H1 by a careful investigation. These estimates then provide
H1-estimates for integral kernels which are needed in estimating the terms
in L∞.

§2 Solution formula

In this section, we recall a new solution formula of (1.1) by Shimizu
[13] and construct the functional in (1.2).

First, we fix some notation. For an n-dimensional vector a, we de-
note the tangential component (a1, . . . , an−1) by a′ ∈ R

n−1, so that
a = (a′, an). We set ∂j = ∂/∂xj and let ∇′ = (∂1, · · · , ∂n−1). Here-
after, C denotes a positive constant which may differ from one occasion
to another.

Let F be the Fourier transform in R
n:

Ff(ξ) =
∫

Rn

e−ix·ξf(x)dx.

The Riesz operators Rj (j = 1, . . . , n), and the operator Λ are defined
by

F(Rjf)(ξ) =
iξj
|ξ| Ff(ξ),

F(Λf)(ξ) = |ξ′|Ff(ξ).

We set R′ = (R1, . . . , Rn−1).
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We also define the operator E(t), F (t), and H(t) by

[Etf ](x) =
∫

Rn
+

{Gt(x− y) −Gt(x′ − y′, xn + yn)} f(y)dy,

[Ftf ](x) =
∫

Rn
+

{Gt(x− y) +Gt(x′ − y′, xn + yn)} f(y)dy,

[Htf ](x) =
∫

Rn

Gt(x− y)f(y)dy,

where Gt is the Gauss kernel Gt(x) = (4πt)−n/2e−|x|2/4t. Furthermore,
we define the operator Et+ by

[Et+f ](x) =
{

[Etf ](x) for xn > 0,
[Etf ](x′,−xn) for xn < 0.

Note that z = Etf (resp. Ftf) solves the heat equation in R
n
+ with

zero-Dirichlet (resp. zero-Neumann) boundary condition;

zt − ∆z = 0 in R
n
+ × (0, T ),

z|t=0 = f,

z|xn=0 ≡ 0. (resp. ∂nz|xn=0 = 0.)

Moreover note that the functions [Etf ](x) and [Ftf ](x) can be defined
for all x in R

n.
Let f(x) be a function defined in R

n
+. Then we denote the odd (resp.

even) extension of f by f̃ (resp. f̄), i.e.

f̃(x) =
{
f(x) for xn > 0,
−f(x′,−xn) for xn < 0,

f̄(x) =
{
f(x) for xn > 0,
f(x′,−xn) for xn < 0.

Finally, we denote the characteristic function of {xn > 0} (resp. {xn <
0}) by χ+ (resp. χ−), i.e.

χ+(xn) =
{

1 for xn > 0,
0 for xn < 0,

χ−(xn) = 1 − χ+(xn).
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Now we are ready to show the modified Ukai’s formula obtained by
Shimizu [13]. In this paper, we recall the formula for the space derivatives
of solutions.

Theorem 2.1. Assume that u0 is in Lp(Rn
+), 1 ≤ p ≤ ∞ and satisfies

divu0 = 0. Let

Un(t) = − Λ(−∆)−1∇′ · E(t)u′0 − ∂n(−∆)−1∇′ · E+(t)u′0

(2.1a)

+ (−∆)−1∆′E+(t)un
0 − ∂n(−∆)−1ΛE(t)un

0 ,

U ′(t) =E(t)u′0 + Λ−1∇′E(t)un
0

(2.1b)

+ ∇′(−∆)−1{∇′ · E+(t)u′0} − ∂n(−∆)−1Λ−1∇′{∇′ · E(t)u′0}
− ∇′(−∆)−1{ΛE(t)un

0 } + ∂n(−∆)−1∇′E+(t)un
0 .

Then U is a function defined in R
n and U |Rn

+
satisfies (1.1) in Ω = R

n
+.

Theorem 2.2. Let U be a function in Theorem 2.1. Then

∂jU
n = −RjR

′ · ΛE(t)u′0 +RjRn∇′ · E+(t)u′0

(2.1a)

−RjR
′ · ∇′E+(t)un

0 −RjRnΛE(t)un
0 ,

∂jU
′ =∂jE(t)u′0 + wj

(2.1b)

+RjR
′{∇′ · E+(t)u′0} −RjRnΛ−1∇′{∇′ · E(t)u′0}

−RjR
′{ΛE(t)un

0 } +RjRn∇′E+(t)un
0 ,

where

(2.1c) wj =
{

Λ−1∂j∇′E(t)un
0 for j < n,

Λ−1∇′{∇′ · F (t)u′0} for j = n.

Note that the terms containing Λ do not contain E+ (which has sin-
gularities at xn = 0).

By duality arguement, we have the following theorem:
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Theorem 2.3. Let U be the function in Theorem 2.1 and let φ be in
C∞

0 (Rn). Then

n∑
j=1

∫
Rn

∂jU (t, x) · φ(x)dx

= −
n∑

j=1

∫
Rn

{
ũ′0(x) ·R′RjΛ[Htφ

n](x)

+ũ′0(x) · [Ht(χ+∇′RjRnφ
n)](x)

−ũ′0(x) · [Ht(χ−∇′RjRnφ
n)](x)

+ũn
0 (x) · [Ht(χ+∇′ ·R′Rjφ

n)](x)

−ũn
0 (x) · [Ht(χ−∇′ ·R′Rjφ

n)](x)

+ũn
0 (x)ΛRjRn[Htφ

n](x)
}
dx

−
n∑

j=1

∫
Rn

ũ′0(x)∂j [Htφ
′](x)dx

+
n−1∑
j=1

∫
Rn

ũ′0(x) · ∇′∂jΛ−1[Htφ
n](x)dx

+
∫

Rn

ū′0(x) · ∇′(∇′ · Λ−1[Htφ
′])(x)dx

−
n∑

j=1

∫
Rn

{
ũ′0(x) · [Ht{χ+∇′(RjR

′ · φ′)}](x)

−ũ′0(x) · [Ht{χ−∇′(RjR
′ · φ′)}](x)

+ũ′0(x) · ∇′(RjRnΛ−1∇′ · [Htφ
′](x)

+ũn
0 (x)ΛRjR

′ · [Htφ
′](x)

+ũn
0 (x)[Ht{χ+∇′ · (RjRnφ

′)}](x)
−ũn

0 (x)[Ht{χ−∇′ · (RjRnφ
′)}](x)

}
dx.
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§3 Study of bouded mean oscillation spaces

In this section, we introduce two function space that appear in our
theorem and proof. First, we introduce the Hardy space H1 that is a
subspace of L1.

Definition 3.1. A function f ∈ L1(Rn) belongs to the Hardy space
H1 = H1(Rn) if

(3.1) f+(x) = sup
s>0

|Gs ∗ f(x)| ∈ L1(Rn),

where the symbol ∗ denotes the convolution with respect to the space
variable x. The norm of f ∈ H1(Rn) is defined by

(3.2) ‖f‖H1 := ‖f+‖L1(Rn)

Next, we define the space of ”Bounded Mean Oscillation” BMO.

Definition 3.2. A function g belongs to the space of bounded mean
oscillation BMO if g ∈ L1

loc(R
n) and

(3.3) [g]BMO = sup
Q: cube

1
|Q|

∫
Q

|g(x)− gQ|dx < ∞,

where |Q| means the lebesgue measure of Q and where gQ means the
mean of g on Q such that

(3.4) gQ =
1
|Q|

∫
Q

g(x)dx.

Note that [·]BMO is semi-norm because [C]BMO = 0 for any constant
function C. So we usually consider the quotient space BMO/R.

The definition of BMO seems to be complicated to apply. We do not
use this definition but the duality characterization.

Proposition 3.3(Fefferman-Stein[6]. Assume that f ∈ H1 and g ∈
BMO. Then

(3.5)
∣∣∣
∫

Rn

f(x)g(x)dx
∣∣∣ ≤ C‖f‖H1 [g]BMO.
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Corollary 3.4. Assume that f ∈ H1 and g ∈ BMO. Then the convolu-
tion function f ∗ g is in L∞ and

(3.6) ‖f ∗ g‖L∞ ≤ C‖f‖H1 [g]BMO.

Proof. By the definition of convolution,

f ∗ g(x) =
∫

Rn

f(x− y)g(y)dy.

Let fx(y) = f(x− y). Then

Gs ∗ fx(y) =
∫

Rn

Gs(y − z)fx(z)dz

=
∫

Rn

Gs(y − z)f(x− z)dz

=
∫

Rn

Gs(x+ y − w)f(w)dw

= Gs ∗ f(x + y).

So we have f+
x (y) = f+(x+ y) and ‖fx‖H1 = ‖f‖H1 . Applying Proposi-

tion 3.3, we obtain (3.6). �
We note that the Riesz operators Rj are bounded in H1 and BMO,

i.e.

‖Rjf‖H1 ≤ C1‖f‖H1 ,

[Rjg]BMO ≤ C2[g]BMO.

Remark. We remark the BMO space in the half space. Assume that g
is a function defined in the half space. A function g belongs to BMO if
there exists an extension function over the whole space which is equal to
g in the half space and belongs to BMO. The norm of g is defined as

[g]BMO(Rn
+) := inf

G:extension
[G]BMO.
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§4 Proof of theorem

Now we are ready to prove our theorem. By Proposition 3.3, it is
sufficient to show that the integral kernels in Theorem 2.3 are in H1.

First we estimate the kernels without χ±. Note that the estimates of
Gauss kernel in Hardy space has been obtained by Giga-Matsui-Shimizu
[8].

Lemma 4.1. Let Gt be the Gauss kernel. Then

‖∂iGt‖H1 ≤ Ct−1/2 for 1 ≤ i ≤ n,(4.1a)

‖ΛGt‖H1 ≤ Ct−1/2,(4.1b)

‖∂j∂kΛ−1Gt‖H1 ≤ Ct−1/2 for 1 ≤ j, k ≤ n− 1.(4.1c)

By Lemma 4.1 and Corollary 3.4, we have

‖∂jHtφ‖H1 ≤ ‖φ‖L1(Rn)‖∂jGt‖H1(4.2a)

≤ Ct−1/2‖φ‖L1(Rn),

‖∂j∂kΛ−1E(t)φ‖H1 ≤ Ct−1/2‖φ‖L1(Rn),(4.2b)

‖∂j∂kΛ−1f(t)φ‖H1 ≤ Ct−1/2‖φ‖L1(Rn).(4.2c)

By the boundedness of the Riesz operators in the Hardy space, we have

‖RjRkΛHtu0‖L∞ ≤ ‖φ‖L1(Rn)‖RjRkΛGt‖H1(4.3)

≤ C‖φ‖L1(Rn)‖ΛGt‖H1

≤ Ct−1/2‖φ‖L1(Rn).

Next, we estimate the terms containing χ±, i.e. [Ht(χ±∂iRjRkφ)](x),
where 1 ≤ i ≤ n − 1 and 1 ≤ j, k ≤ n. We may assume j 
= n, because
if j = k = n, then we can reduce to j 
= n by using the property of the
Riesz kernels, i.e.

n∑
α=1

R2
α = −I.
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Since RjRk equals to ∂j∂k(−∆)−1 and the integral kernel of (−∆)−1 is
cn|x|−n+2, we have

[Ht(χ+∂iRjRkφ)](x)
(4.4)

= − δkn

∫
Rn

φ(z)
∫

Rn−1

Cn−2

|(z′ − y′, zn)|n−2
(∂i∂jGt)(x′ − y′, xn)dy′dz

−
∫

Rn

φ(z)
∫

Rn
+

Cn−2

|z − y|n−2
(∂i∂j∂kGt)(x− y)dydz

= − δkn

∫
Rn

φ(z)I1,t(x, z)dz −
∫

Rn

φ(z)I2,t(x, z)dz

where δkn is Kronecker’s delta.
The term I2 is essentially same as the recent case, so we can estimate

the second term such as Lemma 4.1.
Now we show the estimate of the first term.

Lemma 4.2. Assume that a real parameter α and β satisfies 0 ≤ α ≤ n
and β ≥ 0. Then there exists a constant C = Cn,α,β independent of
x ∈ R

n and t ≥ 0 such that

(4.5) |I1,t(x, z)| ≤ Ct(α+β−n−1)/2|x′ − z′|−α|xn|−β

Proof. By the parameter arguement, it suffices to show (4.5) for t = 1.
Let ψ1 be a smooth function with suppψ1 ⊂ B(0, 1), 0 ≤ ψ1 ≤ 1 and

ψ1|B(0,1/2) = 1. Let ψ2 be ψ2 = 1 − ψ1. Then we have

I1,1 =
2∑

l=1

∫
Rn−1

Cψl(z′ − y′, zn)
|(z′ − y′, zn)|n−2

(∂yi
∂yj

G1)(x′ − y′, xn)dy′

(4.6)

= J1 + J2.

First we estimate the term J1. We have

|J1|
(4.7)

≤
∫
|(z′−y′,zn)|≤1

C

|(z′ − y′, zn)|n−2

(1
2

+
1
4
|x′ − y′|2

)
e−|x′−y′|2/4e−x2

n/4dy′.
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Since |z′ − y′| ≤ |(z′ − y′, zn)| ≤ 1, we have |x′ − y′| ≤ |x′ − z′| + 1 and
|x′ − y′|2 ≥ (|x′ − z′|2 − 2)/2. Therefore we have

|J1|(4.8)

≤
∫
|(z′−y′,zn)|≤1

C

|(z′ − y′, zn)|n−2

{1
2

+
1
4
(|x′ − z′|2 + 1)

}

e−|x′−z′|2/8+1/4e−x2
n/4dy′

≤C|x′ − z′|−α|xn|−β

for α ≥ 0 and β ≥ 0.
Now we show the estimate of the term J2. Integrating partially, we

have

J2(4.9)

= C

∫
Rn−1

∂wi
∂wj

ψ2(z′ − x′ + w′, zn)|(z′ − x′ +w′, zn)|−n+2

G1(w′, xn)dw′

+C
∫

Rn−1

{
∂wi

ψ2(z′ − x′ + w′, zn)∂wj
|(z′ − x′ + w′, zn)|−n+2

+∂wj
ψ2(z′ − x′ + w′, zn)∂wi

|(z′ − x′ +w′, zn)|−n+2
}

G1(w′, xn)dw′

+C
∫

Rn−1
ψ2(z′ − x′ + w′, zn)

{
∂wi

∂wj
|(z′ − x′ + w′, zn)|−n+2

}
G1(w′, xn)dw′

=J21 + J22 + J23.

Since the support of ∇ψ2 is compact, We can obtain the estimate of J21

and J22 by the same method on J1. So we have

(4.10) |J2l| ≤ C|x′ − z′|−α|xn|−β

for l = 1, 2, α ≥ 0 and β ≥ 0. Finally, we estimate the term J23. We
have

(4.11) |J23| ≤ C

∫
|(z′−x′+w′,zn)|≥1/2

|(z′ − x′ + w′, zn)|−nG1(w′, xn)dw′.
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Since |x′−z′|α ≤ C(|x′−z′−w′|α+|w′|α) ≤ C(|(z′−x′+w′, zn)|α+|w′|α)
for α ≥ 0, we have

|J23|(4.12)

≤ C|x′ − z′|−α

∫
|(z′−x′+w′,zn)|≥1/2

(|(z′ − x′ + w′, zn)|−n+α

+ |(z′ − x′ + w′, zn)|−n|w′|α)G1(w′, xn)dw′

≤ C|x′ − z′|−α

∫
|(z′−x′+w′,zn)|≥1/2

(1 + |w′|α)G1(w′, xn)dw′

≤ C|x′ − z′|−αe−|xn|2/4

≤ C|x′ − z′|−α|xn|−β

for 0 ≤ α ≤ n and β ≥ 0.
Combining the estimate J21, J22, J23, and J1, we finally obtain

(4.13) |I1,1| ≤ C|x′ − z′|−α|xn|−β

for 0 ≤ α ≤ n and β ≥ 0. �
Finally we show the key lemma for the main theorem.

Lemma 4.3. There exists a constant C depending only on n such that

(4.14) ‖I1,t(·, z)‖H1 ≤ Ct−1/2.

Proof. By Lemma 4.2, we have

|Gs ∗ I1,t(x, z)| =|I1,s+t(x, z)|
(4.15)

≤C(s+ t)(α+β−n−1)/2|x′ − z′|−α|xn|−β

≤Ct(α+β−n−1)/2|x′ − z′|−α|xn|−β,

where α and β satisfies the assumption in Lemma 4.2. Therefore we
obtain

‖I1,t(·, z)‖H1(4.16)

≤
4∑

k=1

Cn,lt
(α+β−n−1)/2

∫
Ωk

|x′ − z′|−α|xn|−βdx,
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where

Ω1 = {|x′ − z′| ≤ t1/2, |xn| ≤ t1/2},
Ω2 = {|x′ − z′| > t1/2, |xn| ≤ t1/2},
Ω1 = {|x′ − z′| ≤ t1/2, |xn| > t1/2},
Ω2 = {|x′ − z′| > t1/2, |xn| > t1/2}.

We estimate the integrals on the right-hand side of (4.16), taking α = 0
and β = 0 for k = 1, α = n and β = 0 for k = 2, α = 0 and β = n for
k = 3, and α = n− 1/2 and β = 3/2 for k = 4, to find that the integrals
of (4.16) are all bounded above by a constant multiple of t−1/2. This
proves (4.14). �

By Lemma 4.4 and Corollary 3.4, we obtain

(4.17) ‖[Ht(χ+∂iRjRkφ)]‖H1 ≤ Ct−1/2‖φ‖L1(Rn).

Combining the estimates in (4.2), (4.3), and (4.17), we finally obtain the
desired estimate

n∑
j=1

∣∣∣
∫

Rn

∂jU (t, x) · φ(x)dx
∣∣∣ ≤ Ct−1/2[u0]BMO‖φ‖L1(Rn).
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