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Abstract: In this paper, we establish the Littlewood-Paley-Stein inequality on an
infinite dimensional setting. We show this inequality under a weaker condition than the
lower boundedness of Bakry-Emery’s I'y. We also discuss a relationship of Sobolev norms.
As an example, we handle certain infinite dimensional diffusion processes associated with
stochastic partial differential equations(=SPDEs, in abbreviation).

1 Framework and the Results

In this paper, we give a remark on the Littlewood-Paley-Stein inequality. After the
Meyer’s celebrated work [6], many authors studied this inequality by a probabilistic ap-
proach. Especially, Shigekawa-Yoshida [8] studied to symmetric diffusion processes on a
general state space. In [8], they assumed that Bakry-Emery’s 'y is bounded from below.
To define T'y, they also assumed the existence of a suitable core A which is stable under
the operation of the semigroup and the infinitesimal generator. However their assumption
is serious when we face to several infinite dimensional diffusion processes. Because it is
difficult to check the existence of such a core A.
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In this paper, we show that the Littlewood-Paley-Stein inequality also holds under
the gradient estimate condition (G) even if we do not assume that A is stable under
the operations of the semigroup and the infinitesimal generator. Our condition seems
somewhat weaker than the lower boundedness of I'y. So we can handle certain infinite
dimensional diffusion processes represented by the solution of SPDEs. We describe the
details in Section 4.

We introduce the framework that we work in this paper. Let X be a Souslin space,
that is, the continuous image of a separable complete metric space. Suppose we are given
a Borel probability measure ;2 on X and a local py-symmetric quasi-regular Dirichlet form
£ in L*(X; ) with the domain D(€). Then there exists a y-symmetric Hunt diffusion pro-
cess M := (X, { P, }zex) associated with (£, D(£)). We denote the infinitesimal generator
and the transition semigroup by L and {P,};>¢, respectively. Since {P;} is pu-symmetric,
it can be extended to the semi-group on LP(X; u). We shall also denote it by {P;}. We
also denote this generator in LP(X; p) by L, and the domain by Dom(L,), respectively
if we have to specify the acting space. We assume that 1 € Dom(L,) and L1 = 0 where
1 denotes the function that is identically equal to 1. Hence the diffusion process M is
conservative.

Throughout this paper, we impose the following condition.

(A): There exists a subspace A of Dom(Ls), dense in D(£), such that f? € Dom(L,)
holds for any f € A.

Under this condition, the form £ admits a carré du champ, namely there exists a unique
positive symmetric and continuous bilinear form T' from D(€) x D(£) into L'(X; i) such
that
50%@+£@hﬁ—£@ﬁm=2/hﬂﬁmmt
X
holds for any f,g,h € D(E) N L>®(X;u). In particular,

L(f,9) = %{[q(fg) — (La2f)g — f(LZQ)}

holds for f, g € Dom(Ly). For further information, see section 1.4 of Bouleau-Hirsch [3].
In the sequel, we also use the notation I'(f) := I'(f, f) for the simplicity.
The following condition is crucial in this paper.

(G): For f € D(E), there exists a constant R € R such that the following inequality holds
for any ¢ € [0, 00):
D(Pf)'? < e™P{T(f)'/?}. (1.1)

Here we give a remark on this condition. If we can see A is stable under the operations
of {P;} and L,

[ao(f) = —RI(f), feA (1.2)
implies (1.1). Especially, (1.2) means that the Ricci curvature is bounded by —R from
below in the case where X is a finite dimensional Riemannian manifold. See Proposition
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2.3 in Bakry [2] for the detail. Hence it seems that our condition (G) is slight weaker than
(1.1).

Let us introduce the Littlewood-Paley G-functions. To do this, we recall the subordi-
nation of a semigroup. For ¢t > 0, we define a probability measure \; on [0, 00) by

t 2
Ae(ds) = Qﬁe_t /4557312,

In terms of the Laplace transform, this measure is characterized as

/ e N(ds) =e VT 4> 0.
0

Then for a > 0, the subordination {Q\*} of {P,} is defined by
Q= [P, fE LX),
0

Then {an)} is a strongly continuous contraction semigroup on LP(X; x). The infinitesi-
mal generator of {Q\™} in L*(X; ) is —v/a — L. In the case of LP(X; 1), this operator
will be clearly denoted by —y/a — L, when the dependence of p is significant.

For f € L*(X;u) N LP(X; ), we define Littlewood-Paley’s G-functions as follows:

00 1/2
90 ) (), G7 () = < /0 tg}?(:c,t)th> |

2 @ p@
0 1/2
) (w.1) = (1@ )} (@), 6je) = ([ tajtonrar)

g5 (z,t) :=

orlet) =l )+ e 0r, Gl = ( [Trarteotar) "

Then we can obtain the following theorem. In below, the notation ||ul|zr(x,y) S
0] e (x5 stands for [[u]| e (xsu) < Cpllv]|Le(xsn), Where Cp is a positive constant depending
only on p.

Theorem 1.1 (Littlewood-Paley-Stein Inequality) For any 1 < p < oo and o > R,
the following inequalities holds for f € L*(X;u) N LP(X; p):

||Gf||LP(X;M) 5 ||f||LP(X;u)a (13)
e S NGE rxi- (1.4)

Although it is weaker than the celebrated Meyer equivalence of norms, we can establish
the following relationship as a by-product of Theorem 1.1.

Theorem 1.2 For any p > 2, ¢ > 1 and o > R, the following inequality holds for

feLP(X;p):
IT{(Va = L) “FH2) o S Il

This means the following inclusion holds:

Dom((/1—Ly)?) C W(X;p) :={f € L (X; ) N D(E) | I(f)'/* € LP(X; ) }.



2 Proof of Theorem 1.1

We first prove Theorem 1.1 by a probabilistic method. The original idea is due to Meyer
[6]. The reader is referred to see also Bakry [1], Shigekawa-Yoshida [8], and Yoshida [9].
Although many parts are merely repetition of them with slight modification, we give the
proof for the completeness.

In the case p = 2, (1.3) is proved as equality by using spectral resolution of L. See
Proposition 3.1 in Shigekawa-Yoshida [8] for the proof.

Using the standard duality argument, (1.4) is derived from (1.3). See Theorem 4.4 in
Shigekawa-Yoshida [8] for the detail. Therefore we only need to show (1.3).

For the case p < 2 and p > 2, we need some preparation. We recall the diffusion
process M = (Xy, { P, }zcx) associated to the Dirichlet form (£, D(€)). From now on, we
write P! in place of P,. Let (B, P,”) be one-dimensional Brownian motion starting at

a

a € R with the generator 33—;. We shall denote the hitting time at 0 of {B;} by 7, namely
r:=inf{t >0 | B, =0}.

Set Y; := (X, By), t > 0 and Py, ) := Pl ® P,;>. Then M := (Y}, {P;)}) is a diffusion
process on X x R with the (formal) generator L + g—jz. Put Pugs, = [ Plaap(de).

We shall denote the integration with respect to P}, P,*, P, oy and Ppgs, by EL E." Eg; 0
and [z, , respectively.

The following relation is fundamental. See [6] for the proof.

Lemma 2.1 Let n: E x [0,00) — [0,00) be a measurable function. Then

Eﬂ®5a[/0T77(Xt,Bt)dt] :/Xu(dx) /Ooo(a/\t)n(x,t) dt (2.1)

and

Buoa. [ [ a6 Btlx, =o] = [ o) [“@rn@ato@ e @2

For f € A and a > 0, we consider u(z,a) := Q,ga)f(x). Then the following identity
holds:
82
(wnLL—a) u(z,a) = 0.
Next we set

tAT
MM = w(Xynr, Binr) — u(Xo, Bo) — a/ w(X,, By) ds.
0

Then we have the following proposition.

Proposition 2.2 {Mt[u]}tzg is a martingale under P,g5, whose quadratic variation is
given by

tAT
(MM, = 2/ 97 (X, By)? ds.
0



Proof. In this proof, we denote one-dimensional Lebesgue measure by m. We consider
the semigroup on L?(X x R; ;1 ® m) associated to the diffusion process {Y;} by {P,} and
its generator by f,p.

For n € N we choose a cut-off function y,, € C*°(R) such that is 0 on (—o0,1/(2n))
and 1 on (1/n,4+00). We set v,(x,a) := u(z,a)xn,(a). Then we have the following lemma.

Lemma 2.3 (1) v, € Dom(L,) and it satisfies
Lov, = au on {(x,a) € X xR |a>1/n}.
(2) v2 € Dom(Ly) and it satisfies
. ou\ 2
Li(v3) = 2{ <a_u> + I'(u) —|—au2} on {(x,a) € X xR |a>1/n}.
a

Proof. We only give a proof of the assertion (1). Due to the condition (A), the assertion
(2) can be proved in the same way.

By Theorem 2.1.3 of Pazy [7], it is sufficient to prove
ou
Ja
since the right hand side of (2.3) is equal to au on {(x,a) € X xR | a > 1/n}.

Let ¢ € L?(X x R;pp ® m) and set (s, z,a) := El[p(X,,a)]. For fixed ¢ > 0, we
consider the function ® : R X (g, +00) — R defined by

O(ry,19) 1= /X{vn(x,rl) — vp(x, a) }tp(ry, x, a) p(de).

Since we easily see ® € CZ(R X (g,+00)), we can apply Itd’s formula to ®(B;,t). Then
we obtain

/X (a2, By) — vnl, )} (t, 2, a)pu(d) — /X {0a(, B.) — vn(2, )} (e, 7, ) u(d)

%ir% ;(f’tvn —Uy) = Qup + 2X,— + Xou weakly in L?(X x R; . ® m), (2.3)
-

t
= martingale + / /{vn(x, By) —vp(z,a)} L (s, x, a)p(dx)ds
e JX

du

t
+/ / {av,(z, Bs) — xu(Bs)Lu(z, By) + 2X;L(Bs)aa (z, Bs) + X0 (Bs)u(z, Bs)}
e JX
X (s, x,a)u(dx)ds.
By taking the expectation with respect to (B, P,”), we obtain

J B oo B) = o e, i) = [ B o, Be) = o, e, ()

X

:/:/XE: [Un (2, Bs) — vp(z,a)|Lp(s, x,a) u(dz)ds

t
0
+/ /]Ea_> [avn(x, By) — xn(Bs)Lu(x, By) + QX;L(Bs)a—Z(a:, By) + xn(Bs)u(x, By)
e JX

X (s, x,a)u(dx)ds.
(2.4)



Since {X;} is p-symmetric and {X;} and {B;} are independent, the left hand side of (2.4)
is equal to

/X{ptvn(x, a) — Bl [u,(X, a)]}o(x, o) p(dz)
_ /X{pgvn(x,a) — E [un(X., @)]}o(z, a)pu(dz),

and the first term of the right hand side of (2.4) is

//X{Llf’svn(x,a) — LEIr[Un(XSaa)]}@(ﬂU,a)/L(dx)ds,

Therefore, by integrating with respect to m(da) and letting ¢ — 0 in (2.4), we obtain
| [Pt 0) = Bl (Yl o))t
— / / / (LB, (2, a) — LEL [o,(X., a)]} (2, a) p(dir) m(da) ds

///Eﬁ avn (7, Bs) = Xn(Bs) Lu(z, B)+2Xn(B)g u(z, By)
+ X! (By)u(z, B) | x (s, z,a) p(dx) m(da) ds.
(2.5)

On the other hand, since v,(-,a) € Dom(L,) for any fixed a € R, we have

/ / (B! [0,(X,, a)] — va(x, a) o, @) pu(der) m(da)

///X" LLu(X, a)]e(x, a) p(dz) m(da) ds.

Therefore by adding (2.5) and (2.6), dividing by ¢ and letting ¢ — 0, we have shown
(2.3). W
Continuation of the proof of Proposition 2.2. Let 7, be the hitting time of {B;}
at 1/n, namely 7, := inf{t > 0 | B, = 1/n}. Then by Proposition 2.3, we can show in the
same way as the proof of the first half of Fukushima-Ohshima-Takeda [4] that

(2.6)

tATh
M™ .= w(Xirr,, Bins,) — u(Xo, By) — a/ w(X,, By) ds (2.7)
0
and
N™ :=u(Xyrr,, Binr,)? — u(Xo, Bo)?

_Q/Otm{(aU(XS,B))2+r(u)(xs,35)MU(XS,BS)Z}C[S (2.8)

0
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are martingales. Note that (2.8) gives a semi-martingale decomposition of u(X;a,, , Bir, )2
On the other hand, (2.7) and It6’s formula lead us that

tATh tATh
u(Xinr, » Binr,)? = u(XO,BU)2+2/ u(Xs,Bs)dM§">+2a/ u(X,, B,)2ds—+ (M™),.
0 0

Therefore, by the uniqueness of semi-martingale decomposition of u(Xrr, , Biar, )%, We
have

(M), = 2 /OW”{ (%(XS, Bs)>2 4D (u)(X,, Bs)} ds

tATh
= 2/ gf(Xs,Bs)2 ds.
0

Here we put 7 = (gf)? in (2.1). Then we have
tAT o0
E, s, [2/ g7 (Xs, By)? ds] :/ u(dx)/ (s Na)gs(x,s)*ds
0 X 0

< [ utas) [“sosto.sy as

= ||Gf||%2(X,u) = ||f||%2(X,u) < 400,

where we use (1.3) in the case of p = 2 for the last line. Therefore {}M™} converges to a
martingale as n — oo.

Finally, we note that 7,, converges to 7 as n — oo almost surely. Then {Mt(n)}
converges to {M;} as n — oco. Thus we obtain the conclusion. §

We return to the proof of Theorem 1.1. Firstly, we work in the case p < 2. We put
U := uw(Xinr, Biar). Then by Proposition 2.2, we have

AU, = dM["™ + aU,dt.
We apply It6’s formula to U2. Then we have
d(U?) = 2U,dM[" + 2aU2dt + d(M™),
= U, dM™ +2(g;(X;, B))? + U?) dt.
Let £ > 0. By applying Ito’s formula to (U? 4 £)P/? again, we also have
d(U2 + )" = p(U2 + )" Uyd ]

+p(U2 + )" (95X, B)? + aUP)dt

p(p—2)
2

> p(U2 + )" U dM™ + plp — 1) (U2 + )" (X3, Byt

1 (U2 + )" U2a vy,
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where we use p < 2 for the last line.
Hence by taking the expectation, we have

E, 54, [p(p - 1)/ (UtZ + 5)p/2719f(Xt, B,)? dt]
0

< Byes, |(U2 46 — (UF + )]

< Byos, | (U2 +2)"]

= Byes, |(u(Xr, B)? +2)"]

= Buon [(F0X+2)"] = [(F@F + 27" ulda), (29)

Here, by recalling (2.1), the left hand side of (2.9) is equal to

po=1) [ utde) [t a) a4 <P gyttt

Therefore, by letting € — 0 and a — oo, we have

po=1) [ utda) [ tlute, 0ot de < [ 5@ n(as).

0

Now we recall the maximal inequality ||u*||zr(xy)y S || fllLr(xi), Where u*(z) =
sup,q | Ps f(7)|. Therefore

1G 1oy = /X u(dm){ /0 °°t|u(x,t)|2_p|u(x,t)|p_29f(x’t)th}p/z
: /X“ () { /Ooot|u*(x)|2_p|“(xat)|p_29f(x,t)2dt}p/2
< { /X ju* () ? M(dx)}?’ { /X /Ooot|u(x,t)|p29f(:c,t)2dtu(da:)}p/2
S {/X|f(x>|m(dx)}“"7” {/X|f(x)|pu(dx)}p/2: s

This completes the proof of (1.3) in the case p < 2.

In the case p > 2, we need additional functions, namely H-functions defined by

H (2) = { GRS dt}m,
i) = { [0 )07 dt}m,
o) = { [0t 7)) dt}w.

Then we have the following proposition.



Proposition 2.4 Forp > 2 and o > R, there exists a constant c,, depending only on p,
such that the following inequality holds for any f € LP(X; u);
IH Ml ey S NNl ee -

Due to (2.2) and Proposition 2.2, this proposition can be proved in the same way as the
proof of Proposition 4.2 in Shigekawa-Yoshida [8], replacing A; by afotm u(Xy, By)? ds.
So we shall omit the proof.

Next we study the relationship between G-functions and H-functions. In the proof of
this proposition, the condition (G) plays a key role.

Proposition 2.5 (1) For any f € A, the following inequality holds;
0 t
G; <2H;.
(2) For any f € A and a > R, the following inequality holds;
Gy <2H; .
Proof. We shall only give a proof of the assertion (1). The assertion (2) can be proved
in the same way.

Taking the condition (G) into account, we have the following estimate for any a@ > R
and f € A:

o0

NNV < / e T(P,f)"? A (ds)

0

< /Uooe—aS{eRtPs(r(f)l/Q)}At(ds) (2.10)
_ Qia—R) (F(f)l/z).

Combining (2.10) and Schwarz’s inequality, we have
g}(x,2t) = T(Q3 £) (2)
=1{Q" @)} @)
< QT @ N}a)
= Q" (g}, ().

(2.11)

From this estimate, we have

(Gl(2))? = 4 / “tgl(r, 20 dt

<4 / 10 (g1, 1)) (2) dt
— 4(H ()

where we change the variable ¢ to 2t in the first line, and use (2.11) in the second line.
This completes the proof. I

It is clear that Proposition 2.4 and Proposition 2.5 concludes (1.3) in the case p > 2.
This completes of the proof of Theorem 1.1.
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3 Proof of Theorem 1.2

Before giving the proof of Theorem 1.2, we make a preparation parallel to Yoshida [9].
Let v be a finite signed measure on [0, 00). We denote by # and ||v|| := [;°|v|(ds) the
Laplace transform and the total variation of v, respectively. For a > 0, we define a
bounded operator 7(« — L) on LP(X;u), 1 < p < oo by

viae—L)f ::/[0 )e_o‘sPsf v(ds).

Thus we easily have

10(e = L) flle e < VI [ ey fre LP(XG p). (3.1)

Here we give a remark in the case of p = 2. In this case, this operator is represented by
via—1L):= / v(a+ N)dE),
[0,00)

where {E)}\> is the spectral decomposition of —L in L?(X; p1).
By Lemma 2.3 in [1], there exist finite signed measures v; and v, such that the Laplace

transform are given by ;(\) = I—VJFI\J;’% and 5(\) = %‘Tfj\\, respectively. For e > 0, we denote

()

by v;”/, i = 1,2 the image measure of v; under the mapping A — A/e. Then we have
NG, Ve+A (©)
vy (A) = —= [l < el (3.2)
VE+VA
(= VE+VA .
5N = == 7 < el (3.3)

Ve+ A ’

(3.1), (3.2) and (3.3) imply the resulting operators fiﬁg and \\?ij an‘:LL) on LP(X; p)

have the operator norms not more than ||v;|| and |||, respectively. We also have
Vet (a—L)\/vVe+vVa—L Ve+Va—L e+ (a—1L)
( It )=( (e vat) =
Ve+vVa—L/\\/e+ (a— L) e+ (a—L)/ \\e+Va—-L
Then we obtain the following relation for ¢ > 1:

)

_ (\/ngm)q(\/ng— \/O‘_L>q. (3.4)

e+ (a— L)

Now we are in a position to give the proof of Theorem 1.2.
Proof of Theorem 1.2. Firstly, we fix § € R and € > 0 such that « =  + ¢ and
B> R. Let f € L*(X;u) N LP(X;pu) and put
g = <\/5+ \/5—L>Qf
' e+ (B-1))

10



By (3.4), we have

P{(a= D)5} = T{(VE+ Vi) )
1 ooq—le—ﬁt (8) \1/2 i
{H@At ”@g)d*'

Using Theorem 1.1, we have the following estimate by recalling ¢ > 1.

HF{‘/Q_L)_qf}l/QHLp(du) < H/ =L e=VED(QW) g) 2t

LP(X5p)

= F—Q)H/ t2q73675tdt)1/2( / t(Q)° )g)dt> Lo(Xom)
0 0 |
['(2g —2)\1/2

= g (Carr ) 15

5 ||g||LP(X;u)

S ||V1||q'||f||LP(X;u),

This completes proof. 1

4 Example: Diffusion Process associated with SPDE

In this section, we give an example. This is studied in Kawabi [5]. We consider the
solution of an infinite dimensional stochastic differential equation which is called the time
dependent Ginzburg-Landau type SPDE

dX,(z) = {A. X, (z) — VU(X,(2)) }dt + V2dW,(z), ©€R, t >0, (4.1)

where U(2) : R? = R, A, = d?/dz?, V = (0/0z;)%_, and (W;);>0 is a white noise process.
This dynamics is called the P(¢);-time evolution which has its origin in Parisi and Wu’s
stochastic quantization model.

At the beginning, we introduce a triplet (F, H,p). (In this section, we denote the
state space by E instead of X.) For fixed A > 0, we introduce a Hilbert space E :=
LR, e=2X@dg) X > 0, where y € C®°(R,R) is a positive symmetric convex function
satisfying x(x) = |z| for || > 1. E has an inner product defined by

(X,Y); ::/R(X(:v),Y(a:))Rde”‘X dr, X,Y € E.

We also define a suitable subspace of C'(R, R?). For functions of C'(R, R?), we define
IIX |, := sup | X (x)[e™X®) for A > 0.
z€R
Let
Ci= (N {X(@) € CRR) | IX]l, < o0}

A>0

11



With the system of norms || - |||,, C becomes a Fréchet space. We easily see that the
densely inclusion C C £ N C(R,R%) holds with respect to the topology of E. We regard
these spaces as the state spaces of our dynamics.

Let u be a (U-)Gibbs measure. This means that the regular conditional probability
satisfies the following DLR-equation for every r € N and p-a.e. £ € C:

(0l5)() = Zt v (— [ Uw()de) Wela),

-r

where B} is the o-field generated by C|i_,,jc, Wi is the path measure of the Brownian
bridge on [—r, 7] with a boundary condition W, (w(r) = £(r), w(—r) = £(-r)) = 1 and
Zy¢ is the normalization constant.

Next we impose the conditions on the potential function U as follows:
(Ul) U € C?*(RY,R) and there exists a constant K; € R such that V2U(z) > —K;
holds for any z € R?.
(U2) There exist Ky > 0 and p > 0 such that |VU(z)| < Ks(1 4 |2|?) holds for any
z € R?.
(U3) limy, |00 U(2) = 0.
Typical example of U satisfying above conditions is a double-well potential. That is,
U(z) = a(|z]* = |2[*), a > 0.

The conditions (Ul) and (U2) imply that the SPDE (4.1) has the unique solution
X € C(]0,00),C) for an initial data w € C. Moreover if we add the condition (U3), a
Gibbs measure y is a reversible measure of this dynamics.

Now we introduce the relationship between this dynamics and a certain Dirichlet form.
We denote H := L?(R,R?) and

:Fcl())o = {f(w) = f(<w7¢)1>7 e 7<w7¢)n>) ne Na {¢>k}13°:1 C CSO(R)a
F=Flon, e o) € GERY), (,00) = [ (wla),dula))uuds }.
For f € FC,°, we define the Fréchet derivative Df : E — H by
n 8~
Diw)@) =3 2L ((w, ), (w, 6))0(2), 7 ER (42)

N oo
k=1 k

We consider a symmetric bilinear form £ which is given by
&) = [ IDf@)nldw), £ € FCF
E

We also define &, (f) = E(f) + ||f||%2(x;u) and D(E) by the completion of FC;° with

respect to 511/2—n0rm. For f € D(£), we also denote Df by the closed extension of (4.2).
By virtue of the C§°(R, R?)-quasi-invariance and the strictly positive property of the
Gibbs measure p, (£,D(€)) is a Dirichlet form on L?(E;pu), i.e., (£,D(£)) is a closed

12



Markovian symmetric bilinear form. Hence the condition (A) holds. Moreover our dy-
namics is associated with this Dirichlet form (£, D(€)). See Proposition 2.3 in [5] for the
detail. We note that T'(f) = |Df|% in this case.
Then the following gradient estimate of the transition semigroup {P;} holds for any
fe€DE):
ID(P) )l < eUP(|Df|i) (w) for jrae. w € .

See Proposition 2.4 in [5] for the detail. Therefore Theorem 1.1 and Theorem 1.2 hold for
a > Kj.
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