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Abstract

Let G be a homotopically trivial and effective compact Lie group action
on a compact manifold N of nonpositive curvature. Under certain as-
sumptions on N we prove that if G has dimension equal to rank of Center
π1(N), then G must be connected. Furthermore, if on N there exists a
point having negative definite Ricci tensor, then we show that G is the
trivial group.

1 Introduction

A closed manifold N is aspherical if its universal covering Ñ is contractible. A
lot of information has been obtained by Conner-Raymond [2]-[4] regarding group
actions on such manifolds. One of their main results is that a connected com-
pact Lie group acting effectively on a compact aspherical manifold is a torus of
dimension not greater than rank of Center π1(N). On the other hand a classical
theorem of Bieberbach states that any finite group can act freely on some torus,
which is a simple example of aspherical manifold. A group action on N is homo-
topically trivial if any element of this group, which defines a homeomorphism of
N , is homotopic to the identity. Gottlieb-Lee-Özaydin [9] showed that a compact
Lie group acting effectively and homotopically trivially on a compact aspherical
manifold is Abelian.

A celebrated theorem due to Hadamard and E. Cartan says that any simply
connected complete Riemannian manifold of nonpositive sectional curvature is

2000 Mathematics Subject Classification. Primary 57S15 ; Secondary 53C43
Key Words and Phrases. Compact Lie group action, compact manifold of nonpositive cur-

vature, harmonic mapping
Supported in part by the Japanese Government Scholarship.

1



diffeomorphic to the Euclidean space. Compact manifolds of nonpositive sectional
curvature become a special class of aspherical manifolds, on which we shall refine
the result of Gottlieb-Lee-Özaydin in two ways as follows. The first way by which
we shall do the refinement is to consider the compact Lie group actions on the
nonpositive curved manifolds which have ”negative” curvatures in the sense of
the following

Definition 1.1 We call a Riemannian manifold quasi-negatively curved if and
only if it is of nonpositive sectional curvature which is strictly negative at some
point. We call a Riemannian manifold Ricci-negatively curved if and only if
it is of nonpositive sectional curvature and has negative definite Ricci tensor.
We call a Riemannian manifold quasi-Ricci-negatively curved if and only if it is
of nonpositive sectional curvature and has a point at which the Ricci tensor is
negative definite.

If a compact Riemannian manifold has negative semi-definite Ricci tensor and
has a point at which the Ricci tensor is negative definite, then Bochner [1] showed
its isometry group is finite. In [14] Sampson used his rigidity theorem (cf Theo-
rem 4 in section [14]) of harmonic mappings to a compact quasi-negatively curved
manifold to show that its isometry group is finite, and no two of its elements are
homotopic. Due to Frankel [8], the same result as Sampson’s also holds for a
compact Ricci-negatively curved manifold. These two results of Samspon and
Frankel have intersection with Gottlieb-Lee-Özaydin’s that any homotopically
trivial element in the isometry groups of the above two classes of Riemannian
manifolds must be the identity. In section 2 we shall establish a rigidity theorem
(cf Theorem 2.1) of harmonic mappings to a quasi-Ricci-negatively curved man-
ifold, from which we generalize the results by Sampson and Frankel, and refine
the one by Gottlieb-Lee-Özaydin in the following

Theorem 1.1 Let (N, g0) be a compact, connected and quasi-Ricci-negatively
curved Riemannian manifold and G a compact Lie group acting effectively and
smoothly on it. Then G is finite and no two elements of it are homotopic.

In [12] Lawson and Yau showed that the isometry group I(N) of a com-
pact manifold N of nonpositive sectional curvature has dimension equal to rank
of Center π1(N), and that the identity component I0(N) is a torus which is
generated by the parallel vector fields on N . By Conner-Raymond’s result, we
know that the isometry group I(N) attains the maximal dimension among the
compact group actions on N . A simple but nontrivial example of Gottlieb-Lee-
Özaydin’s result, is the group 〈exp(2π√−1/m)〉 ∼= Z/mZ acting on the circle
S1 = {exp(√−1θ) : θ ∈ [0, 2π)} by multiplication. We are suggested by Lawson-
Yau’s result to let G attain the maxiaml dimension equal to rank of Center π1(N),
by which we refine the result of Gottlieb-Lee-Özaydin as the following
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Theorem 1.2 Let (N, g1) be a real analytic Riemannian compact connected man-
ifold of nonpositive sectional curvature and G a compact Lie group acting effec-
tively, real analytically and homotopically trivially on N . Suppose that either N
is orientable or N has dimension 2 and that the dimension of G is equal to rank
of Center π1(N). Then G must be connected.

Remark 1.1 It might be unnecessary in Theorem 1.2 that we assume the re-
strictions on N as following:
• the Riemannian metric g1 is real analytic,
• N is orientable when dim N > 2.
They are originated from the tools (Theorem SY in section 2 and Lemma 3.1) of
proving this theorem.

This paper is organized as follows. In Section 2 we cite the rigidity theorem of
Schoen-Yau [15] and prove a rigidity theorem (cf Theorem 2.1) of the harmonic
mappings to compact quasi-Ricci-negatively curved manifolds. The first one of
them will be used to prove Theorem 1.2, and the other to Theorem 1.1. In
Section 3, we prepare two lemmata for Theorem 1.1. The last section of this
paper consists of the proof to Theorem 1.1 and Theorem 1.2 and a generalization
of Theorem 1.1 (cf Theorem 4.1).

Acknowledgements: The author would like to express his deep gratitude to
Professors Hitoshi ARAI and Takushiro OCHIAI for constant encouragement
and valuable advice to his study.

2 Rigidity theorems of harmonic mappings

Theorem SY (cf Theorem 4 in Schoen-Yau [15]) Suppose M, N are compact
connected real analytic Riemannian manifolds and N has nonpositive sectional
curvatures. Suppose h : M → N is a surjective harmonic map and its induced
map h∗ : π1(M) → π1(N) is also surjective. Then the space of surjective harmonic
maps homotopic to h is represented by {β ◦ h|β ∈ I0(N)}.

Theorem 2.1 Let h0 : M → N be a harmonic mappings, where M is compact
and N of of nonpositive sectional curvature . Suppose that there exists a point p
in M such that the followings hold:
(a) at h0(p) the Ricci tensor of N is negative definite,
(b) the differential map dh0(p) of h0 at p is surjective.
Then h0 is the only harmonic mapping in its homotopy class.

Before the proof of the above theorem, we make a quick review on the for-
mula for second variation of the energy (cf J. Jost [10]) for a family of harmonic
mappings.
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Let M be a compact, and N a complete Riemannian manfiolds of dimension
m and n, respectively. In local coordinates, the metric tensor of M is written as

(γαβ)α,β=1,···,m ,

and the one of N as
(gij)i,j=1,···,n .

We shall use the notation

(γαβ)α,β=1,···,m = (γαβ)
−1
α,β=1,···,m (inverse metric tensor).

Let f : M → N be a smooth map and f−1TN the pullback bundle on M by
f of the tangent bundle TN of N . f−1TN has the metric (gij(f(x)), and the
cotangent bundle T ∗M of course has the metric (γαβ). Then the energy density
e(f) is defined as

1

2
||df ||2 ,

which is the square of the norm of the differential of f as a section of the Rie-
mannian bundle T ∗M ⊗ f−1TN . The energy of f : M → N is

E(f) :=
∫

M
e(f)dM

with dM the volume form of M . The smooth map f : M → N is harmonic if
and only if it is a critical point of the energy functional E.

Let

Ft(x) = F (x, t)

F : M × (−ε, ε) → N

be a family of smooth maps between Riemannian manfiolds, in which

F0(x) = F (x, 0) = f .

Then W :=
∂F

∂t
|t=0 is a section of f−1TN . Let ∇ denote the Levi-Civita connec-

tion in f−1TN and RN the curvature tensor of N . Then we have the following

Fact E For the second variation of energy the equality

∂2

∂t2
E(Ft)|t=0 =

∫
M
||∇W ||2f−1TN −

∫
M
traceM〈RN(df,W )W, df〉f−1TN

holds provided that F (x, ·) is geodesic for every x.

Then we recall a result on homotopic harmonic mappings by Hartman [7].
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Fact H (cf [10]) Assume that N is a complete manifold of nonpositive sectional
curvature. Let f0, f1 : M → N be homotopic harmonic mappings. Then there
exists a family ft : M → N, t ∈ [0, 1], of harmonic mappings connecting them,
for which the energy E(ft) is independent of t, and for which every curve γx(t) :=
ft(x) is geodesic, and || ∂

∂t
γx(t)|| is independent of x and t.

Proof of Theorem 2.1 Let h1 : M → N be a harmonic map homotopic to h0.
We can find a family ht : M → N, t ∈ [0, 1], of harmonic mappings connecting
them with the property as Fact H. By Fact E, since N has nonpositive sectional
curvature,

0 =
d2

dt2
E(ht)

=
∫

M
(||∇ ∂

∂t
γx(t)||2 − traceM〈RN(dht,

∂

∂t
γx(t))

∂

∂t
γx(t), dht〉f−1TN) ≥ 0 .

Hence we obtain that for any x ∈ M and any t ∈ [0, 1],

traceM〈RN(dht,
∂

∂t
γx(t))

∂

∂t
γx(t), dht〉f−1TN) = 0,

in particular,

traceM〈RN(dh0(p),
∂

∂t
γp(t))

∂

∂t
γp(t), dh0(p)〉f−1TN = 0 .

By assumptions (a), (b) and the following Fact T, we can see that the tangent
vector ∂

∂t
γp(t) of the geodesic γp(t) vanishes. By Fact H every geodesic γx(t), x ∈

M, t ∈ [0, 1] degenerates into a point. That is, h0 = h1.

Fact T Let R be a n × n real symmetric matrix having nonpostive eigenvalues
and negative trace. Suppose B is a m × n real matrix with full rank. Then the
matrix BRBt also has negative trace, where Bt is the transposed matrix of B.

Proof Without loss of generality, we can assume R to be the diagonal matrix




λ1

λ2
. . .

λn


 ,

in which λ1 < 0 and λ2, · · · , λn ≤ 0. We denote B = (bij)1≤i≤m, 1≤j≤n. Since
B has rank n, there exists a nonzero element bi1 in the first row of B. By
computation, we know

trace BRBt ≤ λ1b
2
i1 < 0 .
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3 Two lemmata

Lemma 3.1 Let M and N be compact connected smooth Riemannian manifolds
of the same dimension and f : M → N a smooth mapping. Assume deg f = m �=
0 if M is orientable, and deg f ≡ 1 (mod 2) if M is non-orientable. Define a
subgroup A of I(M) by

A = {α ∈ I(M)|f ◦ α = f}.

Then if M is orientable, the order of A divides m. In particular, in case of deg
f = ±1, the group A is trivial. If M is non-orientable, the order of A is an odd
integer.

Proof. We firstly prove the part in which M is orientable. Taking a regualr
value y0 ∈ N whose preimages under f are x1, · · · , x2k+m, then

m = deg f = Σ2k+m
i=1 sgn det Jf(xi),

where Jf(xi) is the Jacobian matrix of f at point xi. Without loss of generality,
we set m ≥ 1 and

sgn det Jf(xi) = 1, for 1 ≤ i ≤ k +m;

sgn det Jf(xj) = −1, for k +m+ 1 ≤ j ≤ 2k +m.

The group A acts on the set f−1(y0) by the definition of A. We claim that A acts
freely on this set. In fact if an element β ∈ A has x1 as its fixed point, then its
differential at point x1 is the identity map since df(x1) ◦ dβ(x1) = df(x1). Since
M is connected, β must be the identity of M .

We also claim that A should preserve the orientation of M . Otherwise let Ā
be the subgroup of A whose elements preserve the orientation of M , then we have
[A : Ā] = 2. Hence we can set

Ā = {g1, · · · , gn}, A = {g1, · · · , gn, gg1, · · · , ggn}

and then the equalities

sgn det Jf(x) = sgn det Jf(gi(x)), sgn det Jf(x) = −sgn det Jf(ggi(x))

hold for any x ∈ f−1(y0) and 1 ≤ i ≤ n. As A acts freely on f−1(y0), we obtain deg
f=0 and a contradiction. Since A preserves the orientation of M and acts freely
on the set {x1, · · · , x2k+m}, A should act freely on the two set {x1, · · · , xk+m} and
{xk+m+1, · · · , x2k+m} respectively so that the order of A divides m.

When M is non-orientable, we know the number of the set f−1(y0) is odd
because of deg f ≡ 1 (mod 2). By the same way, we can show that A acts
freely on f−1(y0) so that the order of A is also odd.
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Remark 3.1 Schoen and Yau proved a result (cf. Theroem 4 (i) of [15]) more
general than Lemma 3.1. However we prefer a simple proof for our case.

Lemma 3.2 Let M be a non-orientable smooth manifold and M ′ its orientable
double covering. Then a diffeomorphism of M can be lifted to that of M ′.

Proof. Let Γ and Γ′ be the fundamental groups of M and M ′ respectively,
which are two deck transformation groups acting freely and discontinuously on
the universal covering space M̃ of M and M ′. And Γ′ is the normal subgroup of
Γ of index 2 which consists of all the orientation-preserving elements in Γ . Let
f : M → M be a diffeomorphism and f̃ : M̃ → M̃ a lifting on M̃ of f . If an
element γ of Γ preserves the orientation of M̃ , then so does the one f̃ ◦ γ ◦ f̃−1 of
Γ. That is, f̃ ◦ Γ′ ◦ f̃−1 = Γ′. Therefore there exists a diffeomorphism f ′ of M ′

such that f̃ is one of its liftings on M̃ , which tells us that f ′ is the lifting on M ′

of f .

4 Compact group actions

Proof of Theorem 1.1 At first we prove the finiteness of G. We only need
to show that the identity component G0 is trivial. Since G is a compact Lie
group acting on N , we can choose a Riemannian metric g such that G action
on (N, g) is isometric. By Eells-Sampson [6], there exists a harmonic mapping
h : (N, g) → (N, g0) homotopic to the identity so that h is surjective. We shall
prove

Claim 1 h is the only harmonic mapping in its homotopy class.

Since (N, g0) is quasi-Ricci-negatively curved , there exists an open subset U
of N on which (N, g0) has negative definite Ricci tensor. On the other hand, by
virtue of Sard’s theorem and the surjectivity of h, we know the regular value set
of h is a dense subset of N so that there exists a regular point of h whose image
belongs to U . Then we apply Theorem 2.1 complete the proof of Claim 1.

By Claim 1 G0 is contained in the set

{α ∈ G : h ◦ α = h},

which is a finite set by Lemma 3.1. That is, G0 is trivial.
Then we prove that no two element of G are homotopic. We only need to

prove that an element α of G homotopic to the identity is the identity. If N is
orientable, then by Claim 1 and Lemma 3.1 it follows from that h has degree 1.
In the following we assume that N is non-orientable. Let N ′ be its orientable
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double covering space and γ : N ′ → N ′ the deck transformation. By Lemma 3.2
α has two liftings α̃, γ ◦ α̃ on N ′, in which α̃ is homotopic to idN ′. Since the order
of α̃ is equal to that of α ≤ |G|, by the previous result in the orientable case, we
can see that α̃ is idN ′ and then α is the identity of N . QED

By Lemma 3.1 and the above argument, in fact we have proved

Theorem 4.1 Let M, N be compact connected Riemannian manifolds. Suppose
that h : M → N be the only harmonic mapping in its homotopy class. Suppose
that
(i) h have degree 1 in case that N is orientable,
(ii) M is diffeomorphic to N and h is homotopic the identity in case that N is
non-orientable.
Then the isometry group of M is finite, and no two elements of it are homotopic.

Let (N, g1) be a real analytic Riemannian manifold of of nonpositive sectional
curvature and G a Lie compact group acting effectively, real analytically and
homotopically trivally on N . As in the proof of Theorem 1.1 we also have a
harmonic mapping h : (N, g) → (N, g1) homotopic to the identity and G acts
isometrically on (N, g). For an element α ofG, since h and h◦α are two homotopic
harmonic mappings satisfying the condition of Theorem SY, there exists one and
only one element β of I0(N, g1) such that

h ◦ α = β ◦ h ,

which leads to a Lie group homomorphism

ρ : G → I0(N, g1), ρ(α) := β .

We have the following

Claim 2 If N is orientable, then ρ is a monomorphism.

Claim 2 follows from that the kernel of ρ is trivial by Lemma 3.1.

Proof of Theorem 1.2 If N is orientable, then by Claim 2 we have a
monomorphism ρ : G → I0(N, g1), the image I0(N) of which is a torus of di-
mension equal to rank of Center π1(N) (cf Lawson-Yau [15]). Sine dimG =
dim I0(N, g1), ρ must be an isomorhism so that G is a torus. Here we explain
the zero dimensional torus group acting on N to be the trivial group.

If N has dimension 2, by a result of Jost-Schoen [11], we can take the harmonic
mapping h as above to be a diffeomorphism ofN . This tells us the homomorphism
ρ is injective so that we complete the proof.
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