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Abstract

In this paper we consider the modified maximal operator on the sep-

arable metric space. Define Mkf(x) = sup
r>0

1
µ(B(x, kr))

∫
B(x,r)

|f(y)|dµ(y)

and Mk,ucf(x) = sup
x∈B(y,r)

1
µ(B(y, kr))

∫
B(y,r)

|f(z)|dµ(z) respectively. We

investigate in what parameter k the weak (1, 1)-inequality holds for Mk and
Mk,uc in general metric space and Euclidean space. The proofs are sharper
than the method of Vitali’s covering lemma. When we investigate Rd, we
prove a new covering lemma of Rd. In any case we will prove our results
are best possible. In connection with this we consider the dual inequality
of Stein type and its applications.

Key words: maximal operator, covering lemma, non-homogeneous

1 Introduction

Let (X, d) be a separable metric space endowed with a Radon measure µ such
that all the balls are non-degenerate. We say that a ball B with positive radius is
non-degenerate if µ(B) > 0. In [6] the modified maximal operator is introduced as

M̃f(x) = sup
r>0

1

µ(B(x, 3r))

∫
B(x,r)

|f(y)|dµ(y), where B(x, r) is an open ball with

radius r > 0 and center x ∈ X. They showed that µ({x ∈ X | M̃f(x) > λ}) ≤
1

λ

∫
X
|f(x)|dµ(x).

Motivated to this, we define Mkf(x) = sup
r>0

1

µ(B(x, kr))

∫
B(x,r)

|f(y)|dµ(y).
Section 2 is devoted to the study of the weak-(1, 1) property of Mk. The strong-
(p, p) property and weak-(1, 1) property of Mk still hold if k ≥ 2.
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Yutaka Terasawa showed the following theorem.

Theorem 1.1 Suppose that k > 2. Then we have Mk is weak-(1, 1) bounded.
And the weak-(1, 1) constant is less than 1 :

µ({x ∈ X | Mkf(x) > λ}) ≤ 1

λ

∫
X
|f(x)|dµ(x).

He proved the theorem using an outer measure, which is different from the method
we are going to use.

We shall prove the theorem with k = 2 using a new covering lemma.

Theorem 1.2 M2 is weak-(1, 1) bounded. And the weak-(1, 1) constant is less
than 1 :

µ({x ∈ X | M2f(x) > λ}) ≤ 1

λ

∫
X
|f(x)|dµ(x).

Of course the strong-(∞,∞) property is clear, by interpolation we only need
to prove the weak-(1, 1) property to obtain the strong-(p, p) property.

Yutaka Terasawa proposed the following question. In what parameter k does
Mk satisfy the weak-(1, 1) estimate? Motivated to this we will consider the fol-
lowing problem concerning to the weak-(1, 1) property.

[1] In Rn, when we consider Mk,uc or Mk, in what parameter k do Mk and
Mk,uc satisfy the weak-(1, 1) estimate respectively?

[2] Does there exist a separable metric space such thatMk is weak-(1, 1) bounded
only if k ≥ 2 ?

We will give answers to these questions.
Theorem 1.2 is sharp. We will show this sharpness in Section 2.2 by making

an example whose property is summarized below.

Proposition 1.1 There exist a separable space (X, d) and a measure µ such that
Mk is bounded if and only if k ≥ 2. And the weak-(1, 1) norm of M2 is 1 on this
space.

Next we develop applications of this weak-type inequality and the covering
lemma used to prove Theorem 1.2. First we derive the dual inequality by the
method used in Theorem 1.2. Next using the duality inequality carefully, we
derive the Fefferman-Stein type vector-valued inequality for the nonhomogenuous
space. The result we will get is the following.

Theorem 1.3 If p, q > 1, then we have∥∥∥∥∥∥∥

∑
j∈Z

(Mlfj)
p




1
p

∥∥∥∥∥∥∥
q

≤ Cp,q

∥∥∥∥∥∥∥

∑
j∈Z

|fj|p



1
p

∥∥∥∥∥∥∥
q

,

if l is large enough. l ≥ 22 will do.
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This vector-valued inequality automatically yields the one of the maximal
operator of the singular integral appearing in [3]. We will quote the definition of
singular integral from [6].

Definition 1.1 We say that µ satisfies the growth condition if

µ(B(x, r)) ≤ Crn for all r > 0.

Here n is a positive constant that can be different from the (geometric or Eu-
clidean) dimension of X.

Definition 1.2 Let µ and n be as above, the singular integral operator is a
bounded linear operator T : L2(X) → L2(X) that satisfies the following:

There exists a function K that satisfies three properties listed below.

(1) There exists C > 0 such that |K(x, y)| ≤ C

d(x, y)n
.

(2) There exist ε > 0 and C > 0 such that |K(x, y) − K(z, y)| + |K(y, x) −
K(y, z)| ≤ C d(x, z)ε

d(x, y)ε+n
, if d(x, y) > 2d(x, z).

(3) If f is a bounded measurable function with bounded support, then we have

Tf(x) =
∫
X
K(x, y)f(y)dµ(y) for all x /∈ supp(f).

Definition 1.3 We also define the maximal operator of the truncated integral
by the formula

T ∗f(x) = sup
r>0

∣∣∣∣∣
∫
{y∈X | d(x,y)>r}

K(x, y)f(y)dµ(y)

∣∣∣∣∣ .

Theorem 1.4 Let K, T and µ be ones appearing in the above definitions. If
1 < p, q <∞, then we have∥∥∥∥∥∥∥


∑
j∈Z

(T ∗fj)p



1/p
∥∥∥∥∥∥∥
q

≤ Cp,q

∥∥∥∥∥∥∥

∑
j∈Z

|fj |p



1/p
∥∥∥∥∥∥∥
q

.

When we consider the Euclidean space endowed with a standard distance, we
haveM1 is weak-(1, 1) bounded. This is due to the Besikovitch’s covering lemma.

For the proof of that lemma, see [2]. We just cite it below for completeness
and comparison with our Theorem 1.5. We state it in the form different from the
one stated in [2].
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Definition 1.4 Let {Bλ}λ∈L be a family of balls in the metric space. We say
{Bλ}λ∈L is disjoint if Bλ1 ∩Bλ2 = ∅ for λ1 �= λ2. Let B be a family of balls and
{Bλ}λ∈L1 , . . . , {Bλ}λ∈LN

be subfamilies of B. We say {Bλ}λ∈L1 , . . . , {Bλ}λ∈LN
are

disjoint subfamilies if {Bλ}λ∈Lj
is disjoint for all j.

Lemma 1.1 Let {Bλ}λ∈L be a family of balls. Suppose the diameters of balls
{Bλ}λ∈L are bounded. Then there exists an integer N depending only on the
dimension that has the following property:

There are N disjoint subfamilies G1,G2, . . . ,GN such that all the centers of
balls {Bλ}λ∈L belong to a ball in some Gj.

The proof that M1 is weak-(1, 1) bounded is omitted, since the proof is anal-
ogous to the proof of Theorem 1.6.

Parallel to this we also define the uncentered maximal operator

Mk,ucf(x) = sup
x∈B(y,r)

1

µ(B(y, kr))

∫
B(y,r)

|f(z)|dµ(z).

We devote Section 3 to the study of Mk,uc. Similar example appearing in the
proposition 3 shows that there exist (X, d) and µ such that Mk,uc is bounded if
and only if k ≥ 3. In Euclidean setting, endowed with a standard distance, M1 is
weak-(1, 1) is bounded by Besikovitch covering lemma. But as for the uncentered
version, Mk,uc is bounded only if k > 1. We show this by proving a new covering
lemma (Theorem 1.5).

Theorem 1.5 For all k > 1 there exists an integer N = Nk, depending only on
the dimension and k, that satisfies the following:

Let {B(xλ, rλ)}λ∈L be a family of balls in Euclidean space endowed with a
standard distance. Suppose that sup

λ∈L
rλ <∞.

Then we can take disjoint subfamilies

{B(xρ, rρ)}ρ∈L1 , {B(xρ, rρ)}ρ∈L2 , . . . , {B(xρ, rρ)}ρ∈LN

such that
⋃
λ∈L
B(xλ, rλ) ⊂

⋃
j=1,...,N

⋃
ρ∈Lj

B(xρ, krρ).

Theorem 1.6 Mk,uc is bounded, if k > 1.

For the uncentered version with k = 1, see [5]: There exists a measure such
that M1,uc is not weak-(1, 1) bounded.
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2 The centered maximal operator

2.1 A covering lemma

The first covering lemma is the refinement of the Vitali’s covering lemma, which
leads us to obtain the weak-(1, 1) boundedness ofM2. And it is used in application
again.

Lemma 2.1 Let δ > 0. Suppose we have a family of n balls {B(xj , rj)}j=1,...,n.
Then we can take a subfamily {B(xj, rj)}j∈A such that

(1) {B(xj , rj)}j∈A is disjoint.

(2)
⋃

j=1,...,n

B(xj , δrj) ⊂
⋃
j∈A
B(xj , (2 + δ)rj).

Remark 2.1 This is an extension of the Vitali’s covering lemma: The lemma is
precisely Vitali’s covering lemma if δ = 1.

Proof. We select j1 so that rj1 = max{r1, . . . , rn}. If⋃
j=1,...,n

{B(xj , δrj)} ⊂ B(xj1 , (2 + δ)rj1),

we have nothing else to do. Let us assume otherwise in the sequel. We define

Λ1 = {j ∈ {1, . . . , n} | B(xj , δrj) is not contained in B(x1, (2 + δ)r1)}.

We inductively define the subsets of {1, . . . , n} and j1, . . . , jp ∈ {1, . . . , n} as
follows:
Suppose that j1, . . . , jq−1 and the subsets Λ1, . . . ,Λq−1 ⊂ {1, . . . , n} are defined.
Then we take jq so that

rjq = max
j∈Λ1∩...∩Λq−1

rj with jq ∈ Λ1 ∩ . . . ∩ Λq−1

and we define

Λq =


j ∈ {1, . . . , n} | B(xj , δrj) is not contained in

⋃
j=1,...,q−1

B(xj , (2 + δ)rj)


 .

This procedure will be stopped because we are dealing with the finite number of
the balls. Suppose we have stopped after we selected jp and Λp. We will verify
that A = {j1, . . . , jp} satisfies all the requirement of the lemma.

To verify this we fix j ∈ {1, . . . , n}. We have three possibilities.

(a) j ∈ {j1, . . . , jp}.
(b) rj1 = rj and j /∈ {j1, . . . , jp}.
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(c) rjk > rj ≥ rjk+1
for some k ∈ {1, . . . , p− 1} and j /∈ {j1, . . . , jp}.

We want to show that B(xj , δrj) ⊂ ∪j∈AB(xj , (2 + δ)rj). If (a) happens, this
inclusion is clear. We assume (c) in the sequel. The rest of the possibility can be
dealt similarly. Assuming (c) we have B(xj , δrj) ⊂ ⋃j=j1,j2,...,jk

B(xj , (2 + δ)rj)
by the definition of Λ1, . . . ,Λk and rjk+1

. Thus our claim is justified.

Moreover the balls {B(xj, rj)}j∈A are disjoint. Indeed suppose j < j
′
, so that

we have rj ≥ rj′ . By the definition of Λj , we have B(xj′ , δrj′) is not contained in

B(xj , (2+ δ)rj), since j < j
′
. Thus the center xj′ is not an element of B(xj , 2rj).

This implies d(xj , xj′ ) ≥ 2rj. Furthermore as noted, we have rj ≥ rj′ . Combining
them, we obtain {B(xj , rj)}j∈A is disjoint.

2.2 Proof of Theorem 1.2

First of all let us remark the following fact, which is often used in the sequel.

Remark 2.2 B(x, r) is an open ball with radius r > 0 and center x ∈ X. We use
B(x, r) to denote a closed ball with radius r > 0 and center x ∈ X . By Radon
property, we can replace B(x, r) by B(x, r) in the definition of Mk and Mk,uc.
Thus for all measurable f : X → C we have Mkf(x) → Mk0f(x) as k → k0.

Noting this remark, we shall prove Theorem 1.2. Fix λ > 0. By Remark 2.2,
it follows that⋃

k>2

{x ∈ X | Mkf(x) > λ} = {x ∈ X | M2f(x) > λ}.

Let δ > 0 and k = 2+ δ. We define Ek = {x ∈ X | Mkf(x) > λ}. For all x ∈ Ek,

by its definition there exists rx > 0 such that
1

µ(B(x, krx))

∫
B(x,rx)

|f(y)|dµ(y) >
λ. Since µ is a Radon measure, Ek is an open set. Since X is separable, so with
the aid of the Linderöf covering theorem we can take xj ∈ Ek, j = 1, 2, . . . such
that Ek ⊂

⋃
j∈N

B(xj , δrxj
).

By Lemma 2.1 there exists A ⊂ {1, . . . , n} such that

B(xj , δrxj
)j=1,...,n ⊂ ⋃

l∈A
B(xl, (2 + δ)rxl

) and {B(xl, rxl
)}l∈A is disjoint.

By the definition of Ek, we also have

µ(B(xl, (2 + δ)rxl
)) ≤ 1

λ

∫
B(xl,rxl

)
|f(x)|dµ(x).

Putting them together, we obtain

µ(
⋃

j=1,2,...,n

B(xj , δrxj
)) ≤ µ(⋃

l∈A
B(xl, rxl

)) ≤∑
l∈A
µ(B(xl, rxl

))
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≤∑
l∈A

1

λ

∫
B(xl,rxl

)
|f(x)|dµ(x) ≤ 1

λ

∫
X
|f(x)|dµ(x).

Letting n tend to infinity in the above inequality, µ(Ek) ≤ 1

λ

∫
X
|f(x)|dµ(x)

is derived. As is noted in Remark 2.2, we have
⋃
k>2

{x ∈ X | Mkf(x) > λ} =

{x ∈ X | M2f(x) > λ}. Tending k ↓ 2, we get µ({x ∈ X | M2f(x) > λ}) ≤
1

λ

∫
X
|f(x)|dµ(x).

Remark 2.3 This theorem is an extension of the result [1]. In [1], Carleson
proved on the Euclidean space with normal distance. He used the method ap-
peared in [4]. But we cannot apply it to the metric space with non-doubling
measure, because we cannot use the Lebesgue differential theorem in general
separable metric space.

Corollary 2.1 We have for p > 1

‖M2f‖p ≤ Cp‖f‖p.

Proof. Since ‖M2f‖∞ ≤ ‖f‖∞ is trivial, by interpolation we obtain the desired
inequality.

2.3 An example showing sharpness of Theorem 1.2

Next we want to construct a space whereMk is not bounded if k < 2. First we
define a set on which the distance and the measure will be defined. The distance
is quite different from the one of the usual Euclidean space.

Definition 2.1 Let D be a closed unit disk on the complex plane. Define X as
a direct product of a countable copies of D.

In what follows [·] is used to denote the Gauss sign.

Definition 2.2 We define a function d as follows: Take x = {xn}n∈N and y =
{yn}n∈N. Then there exists r ≤ 2 such that |xn − yn| ≤ r for all n ≤ 2 + [log10

1
r
]

We define d(x,y) as an infimum of such r > 0.

Remark 2.4 r that appears in the definition does exist: r = 2 will be enough.

Lemma 2.2 This function defines a distance.

Proof. We will omit the proof, since it is easy to show the lemma, noting
next remark.
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Remark 2.5 If r > 0, the open ball B(x, r) is precisely the set{
y = {yn}n∈N ∈ X | |xn − yn| ≤ r for all n ≤ 2 +

[
log10

1

r

]}
.

Lemma 2.3 The space X, endowed with a distance function d, is a separable
subspace.

Proof. Using standard argument, this lemma is easy to show. So we will
omit the proof.

This is the distance space we work on. Next let us define the measure.

Definition 2.3 Let B be a σ-algebra generated by B(x, r) with x ∈ X and r > 0.

The following proposition ensures the measurability of a maximal function.

Proposition 2.1 The σ-algebra B is nothing but the one generated by the cylin-
der sets of the form A1 × . . . × Al × D × D × . . ., where A1, . . . , Al are Bore-
measurable sets of D.

Proof. Put ∆(a, r) = {z ∈ D | |z − a| < r}, where a ∈ D and r > 0. Let us
show that ∆(a1, r1)×∆(a2, r2)× . . .×∆(al, rl)×D×D× . . . is B-measurable, if
a1, a2, . . . , al ∈ D and r1, r2, . . . , rl > 0. In fact B(a, 10−l+2) is contained in B for
all a ∈ X. Since ∆(a1, r1)×∆(a2, r2)× . . .×∆(al, rl)×D×D× . . . is expressible
as a countable union and intersection of balls of the form B(a, 10−l+2), where
a ∈ X, ∆(a1, r1)×∆(a2, r2)× . . .×∆(al, rl)×D×D× . . . is B-measurable. Thus
σ-algebra B contains σ-algebra generated by cylinder sets. The reverse inclusion
is clear so our claim is justified.

Remark 2.6 The topology induced by this distance is the same as product topol-
ogy induced by Euclidean topology of D. This can be shown using the same idea
as that of Proposition 2.1.

Definition 2.4 We define f : D → R as follows:
First we define an =

∏n+2
l=1 l!. We define annulus An and Bn with n = 0, 1, . . . as

An =

{
z ∈ D | 3−n

(
1− 1

a3
n

)
< |z| < 3−n

}

Bn =

{
z ∈ D | 3−n−1 < |x| < 3−n

(
1− 1

a3
n

)}
.

And we define the density function f as

f(z) =



l/an on An

l/a5
n+3 on Bn

0 otherwise.
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We define ν = f(z)dz, where dz is the Lebesgue measure on D. Constant l is
taken so that ν(D) = 1. Let µn be a measure on D×D× . . .×D (n-tuple)defined
as µn = ν × ν × . . . × ν. Since ν(D) = 1, we can use Kolmogorov’s extension
theorem to define µ as a countable product of ν.

Firstly, let us examine the property of the (complicated) function f . It is
summarized as a lemma below.

Lemma 2.4 (a) The ball is non-degenerate if its radius is positive. And there

are infinitely many integers n such that B
(
x,

1

3n

)
and B

(
x,

1

2 · 3n
)

are

made up of the product of the same number of nontrivial balls and the closed
unit disks, where a ball is nontrivial means that it is a proper subset of D.

(b) Define Ω1 = Ω1,n as

Ω1 = {x+√−1y ∈ D | (x− 3−n)2 + y2 ≤ 4 · 9−n}.
Then we have

lim
n→∞

ν(Ω1)

2πl/9na4
n

= 1.

(c) Let 3
2
< k < 2. Define Ω2 = Ω2,n as

Ω2 = {x+√−1y ∈ D | (x− 3−n)2 + y2 ≤ k2 · 9−n}.
Then we have

lim
n→∞

ν(Ω2)

2πl/9na4
n

= Ck,

where Ck is a geometric constant strictly less than 1 that depends on k.

(d) Define Ω3 = Ω3,n as

Ω3 = {x +√−1y ∈ D | x2 + y2 ≤ 9−n}.
Then we have

lim
n→∞

ν(Ω3)

2πl/9na4
n

= 1.

Proof. (a) is clear because log10 3 = 0.4771 . . . and f(x) is dx-almost every-
where positive, where dx is a Lebesgue measure onD. Let us prove (b). Note that

{x+
√
(−1)y ∈ D | x2 + y2 ≤ 3−n} ⊂ Ω1 ⊂ {x+

√
(−1)y ∈ D | x2 + y2 ≤ 31−n}.

Hence we have Ω1∩Ak = Ak,Ω1∩Bk = Bk, if n ≤ k. Ω1∩Ak = ∅,Ω1∩Bk = ∅,
if n > k+1. Taking this into account, we will estimate Ω1∩Ak with n < k, Ω1∩Bk

with n < k, Ω1 ∩ An, Ω1 ∩ Bn, Ω1 ∩ An−1, and Ω1 ∩ Bn−1 respectively. Firstly a
little long computation leads us to a rough estimate that ν(Ω1∩An−1) is bounded

9



by C/9na6
n−1, which is less than C/9na4

n if n is large. As for ν(Ω1 ∩ Bn−1), it is
bounded by C/9na5

n+2, which is also less than C/9na4
n if n is large. Furthermore

we have lim
n→∞

ν(Ω1 ∩ An)

2πl/9na4
n

= 1. This is due to the fact that the Lebesgue measure

of An is equal to

π
(
3−n
)2 − π

(
3−n
(
1− 1

a3
n

))2

≈ π × 2× 9−n
1

a3
n

and that on An we have f(x) =
l

an
.

We also have

ν


Ω1 ∩

⋃
k:n<k

Ak


 ≤ C/9na3

n+1an

and

ν


Ω1 ∩

⋃
k:n≤k

Bk


 ≤ C/9na5

n+3an.

With these estimates we obtain (b).
(c) and (d) follow similarly. But the proof of (c) is the crucial point of the

proof of unboundedness of Mk with k < 2. So we will point out what counts.
The essential difference lies in the estimate of ν(Ω2 ∩ An). With k fixed

geometric observation shows that there exists Ck strictly less than 1 such that
ν(Ω2 ∩ An)

ν(An)
→ Ck as n → ∞. More precisely, Ck is given by the following

formula:

Ck =
|{(x, y) | x2 + y2 = 1, (x− 1)2 + y2 ≤ k2}|

|{(x, y) | x2 + y2 = 1}| =
1

π
cos−1

(
2− k2

2

)
,

here |E| means arc length of an arc E. This is the critical point of (c) and the
rest is quite similar to that of (b), so the detail is omitted.

Remark 2.7 Our calculation shows

ν(Ω1) =
2πl

9na4
n

(
1 +O

(
1

n2

))
.

This will be used in Remark 2.9.

Under this measure, we will show that Mk is bounded only if k ≥ 2. Before
proving this, we introduce one more notation.

Notation 2.1 For a positive measure α on X we denote sup
r>0

α(B(x, r))

µ(B(x, kr))
by

Mkα(x). Let δ0 the Dirac measure at 0 = (0, 0, . . .).
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Proposition 2.2 Mk is not bounded, if k < 2.

Proof. We may assume 3
2
< k < 2, since Mk is decreasing as k increases.

Suppose we have Mk is bounded. We want to derive a contradiction. We begin

with constructing an approximation of Dirac delta. Let gr =
1B(0,r)

µ(B(0, r))
. Mkgr

tends pointwise to Mkδ0 as r → 0, where δ0 is a point mass at 0. Let a be a
point defined as follows:
Put Kn = 2 + [log10 3

n]. Define a = (aj)j∈N as

aj =

{
3−n (j ≤ Kn)
0 (otherwise).

Take λ =
1

µ(B(a, k3−n))
. We have {x ∈ X | Mkδ0(x) > λ} ⊃ B(0, 3−n).

Thus we have µ(B(0, 3−n)) ≤ C

λ
. So we have µ(B(0, 3−n))/µ(B(a, k3−n)) ≤ C.

By the definition of ν and Lemma 2.4 (b), there are infinitely many integers n
such that{

ν({x +√−1y ∈ D | x2 + y2 = 9−n})
ν({x +√−1y ∈ D | (x− 3−n)2 + y2 = k2 · 9−n})

}(2+[log10 3n])

≤ C.

Take limit of this quantity as n, running through such a integer, to infinity. With
the aid of (c) and (d) of Lemma 2.4 contradiction is obtained, since Ck is strictly
less than 1.

By construction we can check the following:

Proposition 2.3 In the above space the measure of B(x, r) grows in the polyno-
mial order of any degree, that is, µ(B(x, r))/rn is bounded for all positive integer
n.

Remark 2.8 This proposition can be interpreted that the dimension of the space
is ”infinity” according to the terminology of [6]. But this proposition cannot be
improved in the sense that µ(B(x, r))/rn is bounded uniformly on n.

Remark 2.9 Using Lemma 2.4 (b), (d) and Remark 2.7, the proof of the Theo-
rem 1.2 and the reproduction of the proof with the parameter of k changed into
2 shows that the Theorem 1.2 is sharp in the following sense: We cannot take the
weak-(1, 1) constant strictly less than 1 in general.

2.4 Proof of Theorem 1.3 and Theorem 1.4

As an application of Lemma 2.1 and Theorem 1.2 we will prove Theorem 1.3
and Theorem 1.4. First of all we get a weighted inequality of the Stein type,
using again Lemma 2.1.

11



Proposition 2.4 We have
∫
{M7f≥λ}

|g(x)|dµ(x) ≤ 1

λ

∫
X
|f(x)|M2g(x)dµ(x),.

Proof. Take k > 7. Let E = {x ∈ X | Mkf ≥ λ}. By the definition of E,
for all x ∈ E there exists rx such that

1

µ(B(x, krx))

∫
B(x,rx)

|f(x)|dµ(x) > λ.

Since E is an openset, again by the Linderöf theorem, there exist xj , j =
1, 2, . . . such that E ⊂ ∪j∈NB(xj , arxj

). We will take a = (k − 7)/20.
We claim that∫

⋃
j=1,...,n

B(xj ,arxj
)
|g(x)|dµ(x) ≤ 1

λ

∫
X
|f(x)|M2g(x)dµ(x).

By Lemma 2.1 there exists a subfamily of balls {B(xj , arxj
)}j∈Λ (Λ ⊂ {1, 2, . . . , n})

that satisfies the following properties.

(a) {B(xj, rxj
)}j∈Λ is disjoint. (b)

⋃
j=1,...,n

B(xj , arxj
) ⊂ ⋃

j∈Λ

B(xj , (2 + a)rxj
).

Note that we have, for all x ∈ B(xj , rxj
),

1

µ(B(xj , krxj
))

∫
B(xj ,(2+a)rxj

)
|g(y)|dµ(y)

≤ 1

µ(B(x, (6 + 2a)rxj
))

∫
B(x,(3+a)rxj

)
|g(y)|dµ(y) ≤M2g(x).

Using this, we obtain
∫
⋃

j=1,...,n
B(xj ,arxj )

|g(x)|dµ(x)

≤
∫
⋃

j∈Λ
B(xj ,(2+a)rxj )

|g(x)|dµ(x) ≤∑
j∈Λ

∫
B(xj ,(2+a)rxj )

|g(x)|dµ(x)

≤∑
j∈Λ

1

λ

∫
B(xj ,rxj

)
|f(x)|dµ(x) 1

µ(B(xj, krxj
))

∫
B(xj ,(2+a)rxj

)
|g(x)|dµ(x)

≤∑
j∈Λ

1

λ

∫
B(xj ,rxj

)
|f(x)|M2g(x)dµ(x) ≤

∫
X
|f(x)|M2g(x)dµ(x).

By the definition of E we have

∫
{Mkf>λ}

|g(x)|dµ(x) ≤ 1

λ

∫
X
|f(x)|M2g(x)dµ(x).

Letting k ↓ 7, we finally obtain
∫
{M7f>λ}

|g(x)|dµ(x) ≤ 1

λ

∫
X
|f(x)|M2g(x)dµ(x).

Thus we have finished.
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Corollary 2.2 If p > 1, then we have∫
X
(M7f(x))

p|g(x)|dµ(x) ≤ Cp

∫
X
|f(x)|pM2g(x)dµ(x).

Proof. For the positive function w we denote ‖ · ‖∞,w is a L∞-norm of the
function with respect to the weighted measure wdµ. Since

‖M7f‖∞,|g| ≤ ‖f‖∞,M2g

is clear, this is again just a matter of the interpolation of this inequalities and
the last results.

Remark 2.10 We use the following analogous which is used below to obtain
Theorem 1.3. The proof is only the change of the parameters k of Theorem 2.4
and Corollary 2.2 respectively.

Proposition 2.5 Let X, µ be as above.

(a) The estimate

∫
{M22f≥λ}

|g(x)|dµ(x) ≤ 1

λ

∫
X
|f(x)|M7g(x)dµ(x)

holds for all λ > 0.

(b) If p > 1, then we have∫
X
(M22f(x))

p|g(x)|dµ(x) ≤ Cp

∫
X
|f(x)|pM7g(x)dµ(x).

At last we are in the position of proving Theorem 1.3. If q ≥ p > 1, a little
more can be said. We have the following.

Theorem 2.1 If q ≥ p > 1, then∥∥∥∥∥∥∥

∑
j∈Z

(M7fj)
p




1/p
∥∥∥∥∥∥∥
q

≤ Cp,q

∥∥∥∥∥∥∥

∑
j∈Z

|fj |p



1/p
∥∥∥∥∥∥∥
q

.

Proof. The case when p = q is trivial. Assume that p < q. Put r = q
p
and

let r′ be a conjugate exponent of r.
By using Theorem 1.2 and Corollary 2.2 we get to∥∥∥∥∥∥∥


∑
j∈Z

(M7fj)
p




1/p
∥∥∥∥∥∥∥
p

q

= sup
‖g‖r′=1,g≥0

∫ ∑
j∈Z

(M7fj)
p


 gdµ
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= sup
‖g‖r′=1,g≥0

∑
j∈Z

∫
(M7fj)

pgdµ ≤ Cp,q sup
‖g‖r′=1,g≥0

∑
j∈Z

∫
|fj|pM2gdµ

≤ Cp,q sup
‖g‖′r=1,g≥0



∫ ∑

j∈Z

|fj |p


r

dµ




1/r {∫
(M2g)

r′dµ
}1/r′

≤ Cp,q



∫ ∑

j∈Z

|fj|p


r

dµ




1/r

sup
‖g‖′r=1,g≥0

(∫
gr

′
dµ
)1/r′

= Cp,q



∫ ∑

j∈Z

|fj|p


r

dµ




1/r

.

Taking 1
p
-th power of both sides, we obtain

∥∥∥∥∥∥∥

∑
j∈Z

(M7fj)
p




1/p
∥∥∥∥∥∥∥
q

≤ Cp,q

∥∥∥∥∥∥∥

∑
j∈Z

|fj |p



1/p
∥∥∥∥∥∥∥
q

.

For the case that p > q, we use the Proposition 2.5 and Theorem 2.1
Proof. (of Theorem 1.3) By Theorem 2.1, it remains to show when p > q.

Let p > q in what follows and take another r < p so close to p that
qr

p
> 1.

According to (L
qr
p -L( qr

p
)′) -duality we have

∥∥∥∥∥∥∥

∑
j∈Z

(M22fj)
p




1/p
∥∥∥∥∥∥∥

p
r

q

= sup
{‖g‖

(
qr
p )′=1,g≥0}

∫ ∑
j∈Z

(M22fj)
p




1/r

gdµ

Keeping this in mind, let us fix positive g with ‖g‖( qr
p

)′ = 1.

Note that p > q implies

(
qr

p

)′
> r′, so that we are in the position of using

Theorem 2.1 with parameter

(
qr

p

)′
> r′. We also use Proposition 2.5 to obtain

∫ ∑
j∈Z

(M22fj)
p




1/r

gdµ = sup∑
k
hr′

k
=1 hk≥0

∫ ∑
j∈Z

((M22fj)
p
rhj)g


 dµ

(Below we will write sup instead of sup∑
k
hr′

k
=1 hk≥0

.)

≤ Cp,q sup
∫ ∑

j∈Z

|fj|
p
r


M7(hjg)dµ

≤ Cp,q sup
∫ ∑

j∈Z

|fj|p



1/r 
∑
j∈Z

(M7hjg)
r′



1/r′

dµ
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≤ Cp,q sup



∫ ∑

j∈Z

|fj|p


q/p

dµ



p/qr

×


∫ ∑

j∈Z

(M7hjg)
r′



(qr/p)′/r′

dµ




1/(qr/p)′

≤ Cp,q



∫ ∑

j∈Z

|fj|p


q/p

dµ



p/qr

× sup



∫ ∑

j∈Z

(|hjg|r′)



(qr/p)′/r′

dµ




1/(qr/p)′

= Cp,q



∫ ∑

j∈Z

|fj|p


q/p

dµ



p/qr

.

Putting together this and first observation we finish the proof.

This vector-valued inequality is different from the one that appeared in the
[6] only in that we enlarged k by 22 or 7 times not by three times.

We will assume the assumption posed on Definition 1.1 and Definition 1.2
until the end of this section. With minor modification of the results of [6] we
obtain

Theorem 2.2 [6] We have for β > 1 and large l

T ∗f(x) ≤ Cβ,l(Ml(Tf)(x)) + Cβ,l{(Ml|f |β)(x)
1
β }.

The next result is due to Garćıa-Cuerva [3].

Theorem 2.3 [3] If 1 < p, q <∞, we have

∥∥∥∥∥∥∥

∑
j∈Z

|Tfj|p



1/p
∥∥∥∥∥∥∥
q

≤ Cp,q

∥∥∥∥∥∥∥

∑
j∈Z

|fj|p



1/p
∥∥∥∥∥∥∥
q

.

Combining these results and Theorem 1.3, we obtain Theorem 1.4.

3 The uncentered maximal operator on the Eu-

clidean space

In this section we examine the uncentered maximal operator. The result by [6]
which appeared in the introduction is sharp: We can construct a similar example
of the space on which Mk,uc is not bounded if k < 3, using an idea of Section 2.3.
Hence in this section we limit ourselves to the space Rd with Euclidean distance.
If the space is Euclidean and the ball is defined by a standard distance, we shall
show that M̃k,uc is bounded if k > 1. This is best possible as [5] shows: As in [5]
for µ = exp(x2 + y2)dxdy in R2, M1,uc is not weak-(1, 1) bounded.
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3.1 Another covering lemma (Proof of Theorem 1.5)

We want a substitute of Besikovitch’s covering lemma. This Theorem 1.5 is a
covering lemma for our purpose. This may be viewed also as a substitute of
Vitali’s covering lemma. To prove Theorem 1.5, firstly we prove it by posing
another assumption.

Lemma 3.1 Let {B(xλ, rλ)}λ∈L be a family of balls and assume that

supλ∈L rλ
infλ∈L rλ

<
√
k.

Then we can take disjoint subfamilies as in Theorem 1.5.

Proof. First of all by scaling, we may normalize to have sup
λ∈L
rλ = 1. (We are

working on the Euclidean space. So we are able to multiply the scalar.)
In this part we divide the family of balls. More precisely we proceed as follows:

Let Q0 be a family of dyadic cubes of side length 1. Here we are now considering
cubes of the form Q = Πd

j=1[mj , mj + 1), where mj, j = 1, . . . , d are integers. We
abbreviate the dyadic cubes in Q0 to ”cubes” for short. Let Q0 be [0, 1)d. We
divide the cubes into subfamily:

If −→m = (m1, m2, . . . , md) is an element of {0, 1, 2, 3}d, we put

Q−→m = {Q ∈ Q0 | Q− (−→p +−→m) = Q0 for some −→p ∈ (4Z)d}.

Next we define L−→m as

L−→m = {λ ∈ L | xλ is contained in some cube in Q−→m}.

Note that the cubes in Q−→m satisfy the following property: Suppose that Q
and Q′ are both inQ−→m and thatQ andQ′ are different, then the distance between
the two cubes is larger than 3. Hence if the center of B is in Q and the center of
B′ is in Q′, then B and B′ are disjoint.

Taking into account of the preceding paragraphs we may assume that all the
centers of the balls are in Q0. In fact once this is proved, by the last paragraph
we can take the balls satisfying the property of this lemma from Q−→m for any
−→m ∈ {0, 1, 2, 3}d. For any −→m ∈ {0, 1, 2, 3}d, we obtain families B(1)−→m, . . . ,B

(Nk)−→m .

Translation shows the number Nk is not dependent on
−→m. So our desired family

is ⋃
−→m∈{0,1,2,3}d, j≤Nk

B(j)−→m.

So in what follows let us assume that all the centers of the balls are in Q0 and
that sup

λ∈L
rλ = 1 by normalization.

First take a ball B(xλ1 , rλ1) arbitrarily from the family {B(xλ, rλ)}λ∈L.
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The assumption
1

infλ∈L rλ
<

√
k ensures that the radius of the ball is between

1√
k
and 1. Thus the ball B(xλ1 , krλ1) contains all the ball B(xλ, rλ) such that

d(xλ, xλ1) is less than
√
k − 1.

Next take a ball B(xλ2 , rλ2) such that d(xλ2 , xλ1) ≥
√
k−1. We may choose it

arbitrarily as long as this condition is satisfied. As in the proceeding paragraph,
the ball B(xλ2 , krλ2) contains all the ball B(xλ, rλ) such that d(xλ, xλ2) is less
than

√
k − 1.

In this way we repeatedly take a ball B(xλp , rλp) such that d(xλp , xλj
) ≥

√
k−1

for all j = 1, 2, . . . , p − 1. This procedure will be stopped at qth step when we

obtain
⋃
λ∈L
B(xλ, rλ) ⊂

q⋃
p=1

B(xλp , krλp).

In fact this procedure stops in finite times: Precisely speaking, q appearing
in the last part is bounded by the constant that depends only on k > 1 and d.
Let us show this. Since all the radius of the ball is at most 1, all the ball is
contained in [−1, 2]d. By the construction of {xλa}, we have d(xλa , xλb

) ≥
√
k−1

for all a < b ≤ q. Thus we have q disjoint balls whose radii are more than√
k − 1

2
. Precisely speaking,

{
B

(
xj ,

√
k − 1

2

)}
j=1,...,q

is disjoint. And we have

B

(
xj ,

√
k − 1

2

)
is contained in [−1, 2]d for all j = 1, . . . , q. Hence we have

q

(√
k − 1

2

)d
V ≤ 3d, where V is volume of a unit ball. Thus q is bounded by the

quantity which depends only on k > 1 and d. We put this bound N . If q is less
than N , we formally define Lj = ∅ for j > q. Peacing together these observations
we are done.

Next we prove Theorem 1.5, that is, we want to eliminate the assumption

supλ∈L rλ
infλ∈L rλ

<
√
k.

Proof. (of Theorem 1.5) Again we may assume that supλ∈L rλ = 1. First we
take the subfamilies Bj,p inductively as follows (j runs through all the positive
integers and p through [1, N ], where N is a number obtained in the Lemma 3.1):
First we define X1 as

X1 =

{
B(xλ, rλ) | rλ > 1√

k

}

Let B1,p be families obtained from X1, using the Lemma 3.1. Suppose we have
obtained the families of the balls Bl,p with l = 1, . . . , j, p = 1, . . . , N and that Xl
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with l = 1, . . . , j are defined as the subsets of {B(xλ, rλ)}λ∈L. Then we define

Xj+1 = {B(xλ, rλ) | 1√
k
j ≥ rλ > 1√

k
j+1 ,

B(xλ, rλ) is not contained in
⋃

p=1,...,N

⋃
l=1,...,j

⋃
B∈Bl,p

kB.},

where kB is an abbreviation of B(x, kr) when B = B(x, r). And we apply the
Lemma 3.1 to this subset to obtain Bj+1,p with p = 1, . . . , N , which enjoy the
following properties:

{Bj+1,p}1≤p≤N are disjoint subfamilies and
⋃

B∈Xj+1

B ⊂ ⋃
p=1,...,N

⋃
B∈Bj+1,p

kB.

By the definition of Xj we have,

B(xλ, rλ) ∈ Xj implies rλ ≤ 1√
k
j−1

and

B(xλ, rλ) is not contained in
j−1⋃
l=1

N⋃
p=1

⋃
B∈Bl,p

kB.

Next we claim that there is an integer N ′, which depends only on k, that
satisfies the following:

If |j − l| > N ′, B′ ∈ ∪pBj,p, and B ∈ ∪pBl,p, then we have B ∩ B′ = ∅.

In fact suppose that B ∩ B′ � x and l > j. Then by property noted above,
there exists y ∈ B\kB′. Let c be the center of B′. If E is a subset of Rd, diam(E)
denotes the diameter of E. Under this notation and setting we have

d(x, y) ≤ diam(B), d(c, y) ≥ k

2
diam(B′), and d(c, x) ≤ 1

2
diam(B′).

Thus
(k − 1)

2
diam(B′) <diam(B). By the construction of Xj , diam(B)≤

2√
k
l−1 and diam(B′)≥ 2√

k
j , hence we have

2√
k
l−1 ≥ (k − 1)√

k
j . Since k > 1, this

is possible only if the difference of j and l is small, that is,
log 2

√
k

k−1

log
√
k
> l − j.

Put Gj,p =
⋃

i : i≡j mod N ′
Bi,p. Then {Gj,p}j≤N ′,p≤N does satisfy all the demands

of the theorem.

Using this covering Lemma we can prove Theorem 1.6.
Proof. (of Theorem 1.6)
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Put
E = {x ∈ Rd | Mkf(x) > λ}.

By definition of E, for all x ∈ E, there exists rx such that

µ(B(x, krx)) ≤ 1

λ

∫
B(x,rx)

|f(x)|dµ(x).

By Theorem 1.5, there exists Nk and x1, x2, . . . such that

1E(x) ≤
∑
j

1B(xj ,krxj )(x) and
∑
j

1B(xj ,rxj )(x) ≤ Nk

for all x ∈ Rd.
Using this we obtain

µ(E) ≤ µ(⋃
j

B(xj , krxj
)) ≤∑

j

µ(B(xj , krxj
)) ≤∑

j

1

λ

∫
B(xj ,rxj )

|f(x)|dµ(x)

=
∑
j

1

λ

∫
Rd

1B(xj ,rxj )|f(x)|dµ(x) ≤ Nk

λ

∫
Rd

|f(x)|dµ(x).

Thus we have finished.
We consider another application of this covering lemma. This covering lemma

allows us to obtain various estimates.

Theorem 3.1 We have the dual inequality

∫
{Mb,ucf≥λ}

|g(x)|dµ(x) ≤ Ca,b

λ

∫
Rd
Ma,ucg(x)|f(x)|dµ(x).

if b > a > 1, where Ca,b is a positive constant depending on a, b and d.

Proof. Fix R > 0. We ”cut off” the maximal function. Put

MR
b,ucf(x) = sup

x∈B(z,r),R>r>0

1

µ(B(z, br))

∫
B(z,r)

|f(y)|dµ(y).

(This notation is rather complicated but we want to emphasize that we are con-
sidering maximal operator with radii less than R.)

Fix λ > 0. We set

Eb = {x ∈ Rd | MR
b,ucf(x) > λ}.

For all x ∈ Eb by its definition there exists rx < R and yx such that

1

µ(B(yx, brx))

∫
B(yx,rx)

|f(z)|dµ(z) > λ and x ∈ B(yx, rx).
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Note that supx∈Eb
rx is at most R. So we can apply Theorem 1.5. Applying

the theorem with k =
b

a
> 1, we obtain a countable subset A ⊂ Eb such that

{B(yx, rx)}x∈A satisfies

⋃
x∈Eb

B(yx, rx) ⊂
⋃
j

B

(
xj ,
b

a
rj

)
and

∑
j

1B(xj ,
b
a
rj) ≤ Ca,b.

Using these properties, we have
∫
Eb

g(x)dµ(x)

≤
∫
⋃

j
B(xj ,

b
a
rj)
g(x)dµ(x) ≤∑

j

1

µ(B(xj , brj)

∫
B(xj ,

b
a
rj)
g(x)dµ(x)× µ(B(xj , brj))

≤∑
j

inf
x∈B(xj ,rj)

MR
a,ucg(x)

1

λ

∫
B(xj ,rj)

|f(y)|dµ(y) ≤ Ca,b

λ

∫
Rd

|f(y)|MR
a,uc,g(y)dµ(y).

To obtain the last inequality we used
∑
j

1B(xj ,
b
a
rj)

≤ Ca,b Tending R to ∞,

we are done.

As a corollary we have another estimate.

Theorem 3.2 If p, q, k > 1, then

∥∥∥∥∥∥∥

∑
j∈Z

(Mk,ucfj)
p




1/p
∥∥∥∥∥∥∥
q

≤ Cp,q,k

∥∥∥∥∥∥∥

∑
j∈Z

|fj |p



1/p
∥∥∥∥∥∥∥
q

.

The proof is obtained by changing the parameters in Theorem 1.3 suitably.
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