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1 Introduction

Let (Q, F, {F: }iet, P) be afiltered probability space, { (W}, W?) }ier be a [+1'-dimensional
Fi—Brownian Motion, T = [0,7],7 > 0,and b: Tx R? - R? and 0, : Tx R? — RY@ R/
be continuous functions. For each ¢ € [0, 00), we consider the following stochastic differen-
tial equation

Xu(e) = a0 + /Otb(s,Xs(e)) ds +6/0t01(s,Xs(5)) avl teT. (1)

Let F:[0,00) x TxRYxR' — R" and 0, : T x R — R" @ R be bounded Lipshitz
continuous functions, and consider the following stochastic differential equation

Yi(e) :/OtF(e,s,Xs(e),Y;(a))ds+/Otag(s,Y;(g))de. 2)

We think that X;(¢) is a system process and Y;(e) is a observation process. Let Gi(e) =
o(Ys(€);0 < s < t),t > 0,e > 0. Our aim is to obtain the approximate expression of
Elg(X:(€))|Gi(e)] as € | 0 for an arbitrary bounded smooth function g(x).

We assume the following
A.1, The SDE (1) has a unique strong solution for all € > 0.
A.2, There is a n > 0 such that b(t,z) and oy(¢, ) are smooth in the region
D, = {(t,x) € T x R% |z — X;(0)| < n} and F is smooth in [0, 1] x D, x R".

A.3, 0o(t,x)"! exists and is bounded in (¢, z).
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Our main theorem is the following.
Theorem 1

For any bounded smooth function g(z) and t > 0, there exist measurable functionals

A . C(T;RY) = R, k=0,1,2,- - -, satisfying

Iim E

e—0

\—{E BCGENIGAE) O] - 3 Y. (9)

for any p > 1 and n € N.

In Section 3 we give an example of functionals h®) related to a certain problem in
finance.

2 Proof of Theorem

Let G(e, t,z,y) = oo(t,y) ' F(e,t,z,y), and let
ae,t, X.(€),y.)

t 1 gt
—exp{ [ Glecs. Xole)plonltiy) ™ dy = 5 [ [Gles. X,(e), )P
0 0
t 1 gt
= exp{ [ Gle,5, Xo(e), ) W2+ 5 [1G(e,5, Xi(0), ) s )
0 0
Let Q(e) be a probability measure defined by dQ(e) = af(e, t, X.(¢),Y (€).)” dP. Then,

— t
Q(5>|U(X(s)) = P|U(X(5)) and Wt(é) = WE +/0 G(é, S,Xs(e),Ys(e))ds is a E—Wiener

process under Q(¢).

Under this probability measure Q(e),
t —~
Yile) = [ oa(s, Va(e)aWi(e), te[0,7)
0
is independent of X,(¢),t € [0, T]. Let {Y;};er be the solution of the following S.D.E.

~ t ~
K:/®@KWW-
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Then, the distribution of {(X¢(g), Yi(€)) }ter under Q(e) is equal to the distribution of
{(X,(¢),Y)) }ser under P. So we have

E)[g(Xi(e))ale, t, X.(e), Y-(€))|Ge(e)]
BloIGE] = =5a0late,t, X (0), V() IGH(e)]

_ Elg(Xu(e)ale, t. X.2). y)llyovio
E[Oé(&, t7X'(€>7y')]|y~:Y'(5)
Note that, there exists a constant C' such that
E[|f(Xi(e), Y-(e)] = E[lf (Xi(e), Y Ja(e, 1, X.(e), V.)|] < CE[| f(Xu(e), V)

for an arbitary functional f(x,y.). So Theorem 1 follows from the following Lemma .

Lemma 2

For any arbitrary bounded smooth function g(x) for which its derivatives are bounded
for any t > 0, and there exist functionals

r® . C(T;RY) - R, k=0,1,2,---, such that

n

B ale 1 X6 ), — 3T

k=0

limE

e—0

p
|-

for any p € (1,00) and n € N.

Before proving this Lemma, we make some preparations.

Let b(t,z) : T x R — R? and 6, (¢, z) : T x R = R?*®@ R/ , be bounded smooth
functions such that their all derivatives are bounded and

Gi(t,x) = oy(t,z), bt,z) = b(t,x) for (t,x) € D,,.
We define {X,(¢)}ser to be a solution of the stochastic differential equation.

Xie) = a0 +/ %(e)) ds+5/t 51(s, Xo()) dWL. (3)



Proposition 3

There exists constants C' and v such that

P((t, X(€)) & Dy for some t € T) < P(sup | Xi(e) — Xu(e)| #0) < Ce /%,

for any 0 < e < 1.

Proof .
Let Zy(¢) = X,(¢) — X,(0). Then Z,(¢) satisfies
Ze)= [ (B(s, Zu() + X.(0)) — B(s, X,(0))}ds + 2 / " 51(5, Zs() + X, (0))dWL.
We have
12 < K [[12.)0ds + <]l [ 3105, Zi(0) + X (0w, € (0,1]t€T.

t
Let M, = / 51(s, Zs(e) + X;(0))dW}. Then for each i,there is a 1-dimensioned
0
Brownian Motion B(t) such that M} = B({M");). Note that
t
(M%), = / {Gi(s, Zy(e) + X,(0)}?ds < k*T, where k= sup |[|&.(¢, )]
0 teT, zeR

So there are absolute constants A and A’, such that

P(sup |M!| > 1//e) < P( sup |By|>1n'/e) < Ae=A1"K T/
teT 0<t<k2T

for any & € (0, 1], 7" > 0.
t
If sup [[M:| < by /e , then [|Z,(e)]| < K/ 1Zs(e)llds +In. So we have
teT A
P(sup || Zy(e)|| > In'e"T) < Ale= 4K/
teT

from Gronwall’s inequality. Letting ' = n(lefT)~1, we have by the pathwise uniqueness
of S.D.E.,
P(sup |Xi(e) — Xi(e)l| #0) < P(sup IXi(e) = X4(0)]| > n) < Ce O/,
te te

This completes the proof. O

The following is due to Kunita [5], Theorem 4.6.4, p.172.



Proposition 4

{X,(¢) et is smooth in e in LP-sence , for any p € (1,00).
Therefore there exists LP bounded continuous process {)N(t(k)}teT, k € N, such that

51 {Xt( ZekX }

lim E [sup

=0 teT

] =0, pe€(l,00),neN.

G(e,t,x,y) has a Taylor expantion in z at )Z(O), so there exist smooth functions

G®(t,z,y): T x R x RY) — R which are polynomials in x and satisfy

G(S t, Xt ngG t Xt ) N( )a)/\(:t@)f"?j{t(k)??'t)

e—0 g™P teT

1
lim —E [sup

for any n € N and p € (1, 00).

Let us denote G(k)(t7 y) - G(k)(t7 )A(/t(o)a )/\{t(l)7 }2;(2), T )A(/t(k)u y)
and a(e, t,y.) = oz(e,t,)N(.(e),y.)

¢ 1 st
and a0 (t,y) = exp { [ GO(s. (s, 9) 7 dy+ 5 [ 160 s s .
0 0

Proposition 5

For anyt € T andp > 1 andn € N,

-1 t " -
a(e, t,Y.) — o, t, Y)Y - { / S GM (s, Y,)aw?
ok O k=1

To

1
lim —E [ sup

k/
1 t n ~ ~
3 [ U 60 TR GO s |
k=0

t N 1 st —
Gley) = [ Gt Xu(e)y)dW? + 5 |16 t.X,(0). ) ds



~ [0y = 2 [[160 s,y s
Then
ale, t,Y.) = aO(t,Y.) exp G(e,Y)),

and
e—0 ghp

limLE[sup’{G £, Y)} {/ ZakG (s,Y.)dW?

n

1 ~ - ~ K’
5 <|G (5, 7.) + 3 eha® (s, 7.)12 — |G (s, Y.)|2> ds}
k=1

for any n, k" € N and p € (1, 00).
On the other hand,

l’k x Y1 Y2 Yn
=S [ ey v} s

"

So we have
zn: .%’_ ‘x|n+1 ]
im0 KT (n+ 1)
Therefore,
~ ~ n+1 p
o S {GE T Ge, V)| I
B [exp{%,y.)} -y CEDEN cp p Pl wlae )y |
We see that,

1
lim —— B lsup“G £ Y)\”H‘ ] =0, for any € (1,00),

0e™  |ieT

and
E [{exp|G(e,V)|}'] < E|exp{gG(e,Y)}] +E [exp{—qG(e, V)}]

< 2e29"K°T for any ¢ € (1,00).
by the following Proposition.

Proposition 6

Let G : T x Q — R is adapted and satisfy |G,| < K for some constant I. Then,

T
E [exp{q/ GSdWSQ}] < e3?KT for any q € R.
0



Proof .

[ T 2 1 T )
E |exp qGsdW; 5 lqGs|*ds
0 0

So we have,

[ T
E exp{/ qGSdWEH
0
T o 17 2 LT o e
=E|exp / qGsdW: ——/ lgGs|“ds ¢ exp —/ q°|Gs|7ds
0 2 Jo 2 Jo

T 1 [T 1 (T
<E |exp / qG.dW? — —/ 1qG,)?ds ¢ | exp —/ ¢ K?ds
0 2 Jo 2 Jo
S eéqQKQT 0
Therefore,
1 " {G(e, V)3
llir(l) —E l exp{G(e,Y)} — k/z_:o | = 0.
So,
1 - _ noq t n
lim —E[sup a(e,t,Y.) — a9, v.) Y —{/ S GM (s, Y,)dw?
s e et wo B UJo i

2/ <\Zeka<k 5, V)12 — |GO(s, ?;)\2> ds}

1
<lim —E [sup
e=0em | 4eT

07 ) {exp{é'(e,?.)} -y e

k'=0

+thE[sup|oz (Y] zn:;,{{G(g o}

E—>€

[ S etammaanz ] [ (15 et Toe - |G<“><s,fa>|2)ds}k/}

0 k=1

_ |

1 ~
Because hm E[sup 1Y )| =0 for any ¢ € (1,00), we have our assertion.
e=0e? geT

This complete the proof of Proposition 5 . O

Now let us prove Lemma 2.



§(X,(¢)) has an asymptotic expantion in e, because X;(¢) has an asymptotic expantion
by proposition 4 and because g is smooth and bounded. Also a(t, X.(¢),y.) also has an
asymptotic expantion by Proposition 5. So, there exists h*) (y.) such that

n p
-y 5’%(’“)(}/.)} 1 =0
k=0
for any t > 0, p € (1,00) and n € N. h¥)(y.) satisfy

S BN Ele, X.(2), V)] - 34 gl

limE 1n {E[g(x(a))a(e,t,X 5

e—0

p

< gin{E[g(Xt(g»a(gv t X'> ?)lgt(g)] - E[g()’i(g»a(ga t 5(/'7 ?)lgt({f)]}

p

BB ot 1. K. 7)) - 3 A0 (7))

We have,

ABGGE)ale 1, X TIGE)] - B ()ate, t, X T)IGE)]

B 5o T 1, X V)l +5(Ru()ale, 1, X TG

P
<

< gin{P(Xt(@ # Xi(e)}EE [{|g(Xu(e))ale, t, X, V)| + [§(Xi(e)ale, t, X, V)]
We have, ll_r% %{P(Xt(g) + )N(t(g))}% — 0 by Proposition 3.

And E {{\g(Xt(e))a(g,t, X,V )| 4 |3(X(e))ale, t,j(v.,f/.)\}g] is bounded. Because g is
bounded and

~ 2 —
E Ua(e,t,X.,Y.)ﬂ < exp { (4 5 q)KQT} ,  for any ¢ € (1, 00).

by same argument in the proof of the Proposition 6.

Therefore,

%{E[g(Xt( Dale, t, X.(c Za"”h ] 0.

This complete the proof. O

lim E [
e—0




3 Example

At the frictionless market, if we suppose no arbitrage, then one bond will have a unique
price. But we can only know the price that distored by many reasons. In this section , we
use above theorem for C.I.R and Vasicek model.

Let (Q, F,{F:}ieT, P) be a probability space, and T = [0,7T] be a parameter of time,
and a, b, o, B, are constants satisfying a € (0,00),b,c, 5 € [0,00),¢ € [0,1], aff + ba > 0
and ¢ satisfies axg+ 8 > 0. And let {(W}!, W?2)ier} be a 2-dim F;-Brownian Motion. We
assume that spot rate process { X;(¢) }ser satisfies following stochastic differential equation.

g) = 1w+ /Ot(—aXs(a) +b) ds+ 5/0t\/aXt(5) + B dW}.

We regard X;(e) as the spot rate process and P is a risk neutoral measure. The 0-cupon
bond price F(e,t, X;(¢)) with maturity 7', is given by

F(e,t, X,(e)) = E [exp (- /tTXS(e)ds> m], teT.
Here
F(e,t,x) = exp{A(e,T — t) + B(e,T — t)x}

where A and B satisfies following differential equation.

Bl(e,t) = —aB(e, ) + %5%{3(5, D —1, B(0)=0
Ale,t) = bB(e, 1) + 3525{3(5,@}2, Ale,0) = 0

We assume that we can only observe the process {Y;(¢) }ier given by

Yi(e) = /Ot F(e,s, X,(g))ds + cW?.

Let af(e, t, X.(g),y.) = exp {/Ot 1F(e s, Xs(e))dys — / F(e, s, Xs( ))|2ds}
and Gi(¢) = 0(Ys(e);0 < s <t). Then,

_ EQO[F(e,t, Xy(e))ale, t, X.(€), y)]ly=y(o)

E[F (e, t, X4(¢))|G(e)] EQC)[a(e, t, X.(e), y)]ly—v.o)

Remark 1
af + ba > 0 is the condition for X;(€) to be well defined.
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Remark 2
This model is called the C.I.R model if 3 = 0, and is called the Vasicek model if o = 0.

Remark 3 3
F(e,t,x) is bounded on {x eR;z > ——}, because B'(e,t) < 0.
a

Now we show an asymptotic expantion of E[F (e, t, X;(¢))a(e, t, X., y.)].

1
Let n be a constant satisfies n < 5 {xo + é}, and let
!

b
D, = {(t,x) ETXR55’70_77§1'§1’08Xp_aT+a+77},

Then —ax + b and v/ax + B are smooth and bounded in the region D,, and F(e,t, z)

is, t00. So there exists {X; () }ter that has an asymptotic expantion

. 1 k
e |2 (50 50 50 -
For example ,
b 1
. —+ (29 — 7)e a0
Xt(O) — a 2
xo + bt a=0

— t —

X0 = et [y JaX,(0) + paw!
0

— t

X® = e_at/ e
0\ /aX,(0

Let F(e,t,x) : T x R — R be the bounded smooth function that is equal to F(e,t,z)

X<1>dW1

in the region D,. Then we have

}sl_I%E HE[F({;‘, t, Xt(g))a(e, t, X'> y')”y:UWQ- - E[ﬁ’(t’ Z(5>>a(57 tw;(/'» y-)”y.:aWQ.

] =o.

We show an asymptotic expantion of E[ﬁ(e, t, )A(/t(g))a(e, tX., y.)].
There exist F(t) such that

p

|-

%{F(é‘ t Xt Z&ka }

lim E [sup
€

=0 teT
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for any p > 1 and n € N.
For example, there exist Ay(t), A2(t), Bo(t) and Bs(t) such that

1
limsup | {A(e,1) = A(t) - 52A2(t)}' —0
. 1 )
limsup | {B(e,t) = Bo(t) — *Ba(t) }| = 0
for any p > 1 and n € N.
—G—Ze_“t—ét—i—a—z a#0
Ao(t) =
—%bt2 a=20
bOZ"‘QGzﬂ {_e2at+éeat+gt+é_1}+b_ieat a;éO
An(t) = 4a a a a a
5 (1) =
1 1
ﬂabt4 + 66753 a=0
2(6_‘“ -1) a#0
Bo(t) =
—t a=0
- —2at —at
Taﬁ(e — 2ate” " 4+ 1) a#0
Bs(t) =
gat?’ a=0.

Using these, we have
Fyo(t) = exp {Ao(T — t) + Bo(T — £)X,(0)}
Fy(t) = Fo(t)Bo(T — 1) X;"

Fy(t) = Fy(t){Ao(T — t) + Bo(T — ) X,(0) + Bo(T — )X + %BO(T —1)2(XV)2}.

T

So, there exist founctionals G(y.) such that

1 t ~ , 1 t _ ) n i
—{( [ Fes Eienaans - [ s Rue)Pas) - 3 ctentr.ow .>}

k=0

lim E

su
e—0 P

teT

forany t >0, p € (1,00) and n € N.

For example,

Golw) = [ Fols)in = [ 1Fo(s)Pas

2 Jo
G (y.) :/OtFl(s)dys—/Ot Fo(s)F (s)ds
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Galy) :/OtFQ(s)dys—/Ot{Fo(s)FQ(s)+%\F1(s)|2}ds.

Furthermore, there exist founctionals oy (y.) such that

L 0t X e),0W2) = 3 chap (o)
{ |

n
€ k=0

limE

e—0

sup
teT

1o

forany t >0, p € (1,00) and n € N.
For example,
ao(y_) = eGO(y-)

aq(y.) = eGO(y')Gl(y.)

an(y.) = Golw) {%Gl(y.)Q + GQ(y.)}.

Therefore,
1 N N n p
lir%E [sup — {E[F(s,t,Xt(s))a(a,t,X.,y.)]\y:ng, - Zakh(k)(aWQ.)} ] = 0.
& teT |E" =0

forany t >0, p € (1,00) and n € N.
For example,
RO (y.) = Fy(t)eGow)

M) =BG () + Fily) )] =0
Let v(t) = E{XM}?] = e—2at /Ot e?*(aX,(0) + B)ds. Then, h®(y.) is as follows.

K (y.) = W) F,(0){Ao(T — t) + Bo(T — ) X,(0)} + 1eGWIFL(0)(Bo(T — t))?v(t)
+eS0 W)y, (Fy(4)2{ Ax(T — t) + Bs(T — 1) X,(0)}

G0 F(£) /O A AS(T — 5) + By(T — )X, (0))Vds
e Ry | " Fo(s){A(T — s) + Ba(T — 5)X.(0) }ds

~ W Ey(r) [ " Fo(s)Bo(T — ))20(s)ds
16000y, Fy(1)Bo(T — £)}20(1)
~ 3 E(0) [yl EO)(Bo(T = 5))u(s) s

G0y LRy (1) Bo(T — t) Yo (t)

12



—eGoW) Fy(£) By(T — t)e™ /(:(Fo(s))2BO(T — s)e®v(s)ds

+eGoW) [y () Bo(T — t)e~ /Ot Ys{Fo(8)Bo(T — s)e*v(s)} ds
W) (42 (Fo(8))* (Bo(T — 1)) (t)

—eO00 Ey(t) [ (g Fo()BolT = )Y Pe*u(s)ds
e ) [ ()2 (Fo(5))2(BolT — ))*(aX(0) + B)ds

~w Ey() | "(Fo() (Bo(T — s))20(s)ds.
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