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Abstract. We study the scattering theory for the coupled Klein-
Gordon-Schrödinger equation with the Yukawa type interaction in
two space dimensions. The scattering problem for this equation be-
longs to the borderline between the short range case and the long
range one. We show the existence of the wave operators to this
equation without any size restriction on the Klein-Gordon compo-
nent of the final state and any restriction on the support of the
Fourier transform of the final state.

1. Introduction

We study the scattering theory for the coupled Klein-Gordon-Schrödinger
equation with the Yukawa type interaction in two space dimensions:

i∂tu+
1

2
∆u = uv,

∂2
t v −∆v + v = −|u|2.

(KGS)

Here u and v are complex and real valued unknown functions of (t, x) ∈
R×R2, respectively. This paper is a sequel to the previous paper [21].
In the present paper, we prove the existence of the wave operators to
the equation (KGS) without any size restriction on the Klein-Gordon
component of the final state and any restriction on the support of the
Fourier transform of the final state.

A large amount of works has been devoted to the asymptotic be-
havior of solutions for the nonlinear Schrödinger equation and for the
nonlinear Klein-Gordon equation. We consider the scattering theory
for systems centering on the Schrödinger equation, in particular, the
Klein-Gordon-Schrödinger, the Wave-Schrödinger and the Maxwell-
Schrödinger equations. In the scattering theory for the linear Schrödinger
equation, the (ordinary) wave operators are defined as follows. Assume
that for a solution of the free Schrödinger equation with given initial
data φ, there exists a unique time global solution u for the perturbed
Schrödinger equation such that u behaves like the given free solution
as t→ ∞. (This case is called the short range case, and otherwise we
call the long range case). Then we define the wave operator W+ by
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the mapping from φ to u|t=0. In the long range case, ordinary wave
operators do not exist and we have to construct modified wave oper-
ators including a suitable phase correction in their definition. For the
nonlinear Schrödinger equation, the nonlinear wave equation and sys-
tems centering on the Schrödinger equation, we can define the wave
operators and introduce the modified wave operators in the same way.
According to linear scattering theory, it seems that the equation (KGS)
in two space dimensions belongs to the borderline between the short
range case and the long range one, because the equation (KGS) has
quadratic nonlinearities, and the solutions of the free Schrödinger equa-
tion and the free Klein-Gordon equation decay as t−1 in L∞ as t→ ∞
in two space dimensions. The Maxwell-Schrödinger equation and the
Wave-Schrödinger equation in three space dimensions also belong to
the same case.
There are some results of the long range scattering for nonlinear
equations and systems. Ozawa [15] and Ginibre and Ozawa [4] proved
the existence of modified wave operators in the borderline case for the
nonlinear Schrödinger equation in one space dimension and in two and
three space dimensions, respectively. Their methods applied to the
Klein-Gordon-Schrödinger equation in two space dimensions by Ozawa
and Tsutsumi [16] and to the Maxwell-Schrödinger equation under the
Coulomb gauge condition in three space dimensions by Tsutsumi [23].
In all results mentioned above, the restriction on the size of the fi-
nal state is assumed. Furthermore in [16], the support of the Fourier
transform of the Schrödinger data is restricted outside the unit disk
in order to use the difference between the propagation property of the
Schrödinger wave and the Klein-Gordon wave and to obtain additional
time decay estimates for the nonlinear term uv, because we can not
apply the method of the phase correction mentioned above to this non-
linear term by the fact that all derivatives of the solution for the free
Klein-Gordon equation decay as fast as itself. In [23], the Fourier trans-
form of the Schrödinger data vanishes in a neighborhood of the unit
sphere by the same reason.
Recently Ginibre and Velo [5, 6, 7] have proved the existence of
the modified wave operators for the Hartree equations with long range
potentials with no restriction on the size of the final state. They de-
composed the unknown function u into the complex amplitude w and
the real phase ϕ, and solved the system for w and ϕ. Constructing the
modified wave operators for those equations such that the domain and
the range of them are same space, Nakanishi [13, 14] extended their
results. Using the methods in [5, 6, 7], Ginibre and Velo showed the
existence of modified wave operators for the Wave-Schrödinger equa-
tion ([8]) and for the Maxwell-Schrödinger equation under the Coulomb
gauge condition ([9]) in three space dimensions with no restriction on
the size of the final state. (The restriction on the support of the Fourier
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transform of the final state mentioned above is assumed in [8], and the
vanishing asymptotic magnetic field is considered in [9]).
On the other hand, recently, the author has proved the existence
of wave operators for the two dimensional Klein-Gordon-Schrödinger
equation in [18], and the modified wave operators to the three dimen-
sional Wave-Schrödinger equation in [17] and to the three dimensional
Maxwell-Schrödinger equations under the Coulomb and the Lorentz
gauge conditions in [19] for small scattered states without any restric-
tions on the support of the Fourier transform of them. The proof for
the Klein-Gordon-Schrödinger equation is mainly based on the con-
struction of suitable second correction term (ũ1, v1) of the solution to
that equation so that (i∂t +

1
2
∆)ũ1 − u0v0 and (∂

2
t − ∆ + 1)v1 + |u0|2

decay faster than u0v0 and −|u0|2 as t→ ∞, respectively, and that the
Cook-Kuroda method is applicable. Here u0 and v0 are the solutions
of the free Schrödinger and the free Klein-Gordon equations, respec-
tively. Furthermore combining idea of [8] with that of [17], Ginibre
and Velo [10] have proved the existence of modified wave operators
for the three dimensional Wave-Schrödinger equation with restrictions
on neither size of the scattered states nor the support of the Fourier
transform of them.
In the previous paper [21], the author proved the existence of the
wave operators for the equation (KGS) without any size restriction on
the Klein-Gordon component of the final state. But in [21], the small-
ness of the Schrödinger data is assumed, and the support of the Fourier
transform of the Schrödinger data is restricted outside the unit disk as
in [16]. In order to remove the size restriction on the Klein-Gordon
data from Ozawa and Tsutsumi [16], the difference between the exact
solution for that equation and the asymptotic profile have to decay
more rapidly than the derivatives of it as in [20] (see Proposition 2.1).
That difference decays as t−k (1 < k < 2) as t → ∞ in L2, though
the decay rate of that difference is order t−1 in [16, 18]. Because of
this difficulty, we assumed the restriction on the support of the Fourier
transform of the Schrödinger data in order to obtain an improved time
decay estimate for the nonlinear term uv in [21]. For the Schrödinger
component, the method of the phase correction was applied in order to
handle slowly decaying terms caused by the second correction terms.
In this paper, we prove the existence of the wave operators to the
equation (KGS) without any size restriction on the Klein-Gordon com-
ponent of the final state and any support restriction on the Fourier
transform of the Schrödinger component of the final state. Namely
we remove the support restriction on the Fourier transform of the
Schrödinger data from the previous result [21]. We only assume the
smallness of the Schrödinger data. The proof is mainly based on the
choice of a suitable asymptotic profile which approximates the equa-
tion (KGS) better than that in [18] for large time. More precisely,
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we construct second correction terms and third ones of the asymptotic
profile, while, as mentioned above, we only constructed the second cor-
rection terms in [18]. For the Schrödinger component, the method of
the phase correction is also applied in order to handle slowly decaying
terms caused by the second correction terms as in [21].

Before stating our main result, we introduce some notations.

Notations. We use the following symbols:

∂0 = ∂t =
∂

∂t
, ∂j =

∂

∂xj
for j = 1, 2,

∂α = ∂α
x = ∂

α1
1 ∂

α2
2 for a multi-index α = (α1, α2),

∇ = (∂1, ∂2), ∆ = ∂
2
1 + ∂

2
2 ,

for t ∈ R and x = (x1, x2) ∈ R2.
Let

Lq ≡ Lq(R2) =

{
ψ : ‖ψ‖Lq =

(∫
R2

|ψ(x)|q dx
)1/q

<∞
}
for 1 ≤ q <∞,

L∞ ≡ L∞(R2) = {ψ : ‖ψ‖L∞ = ess. supx∈R2 |ψ(x)| <∞} .
We use the L2-scalar product

(ϕ, ψ) ≡
∫
R2

ϕ(x)ψ(x) dx.

S denotes the Schwartz class, that is, the set of rapidly decreasing
functions on R

2. Let S ′ be the set of tempered distributions on R
2. For

w ∈ S ′, we denote the Fourier transform of w by ŵ. For w ∈ L1(Rn),
ŵ is represented as

ŵ(ξ) = (2π)−n/2

∫
Rn

w(x)e−ix·ξ dx.

For s,m ∈ R, we introduce the weighted Sobolev spaces Hs,m corre-
sponding to the Lebesgue space L2 as follows:

Hs,m ≡ {ψ ∈ S ′ : ‖ψ‖Hs,m ≡ ‖(1 + |x|2)m/2(1−∆)s/2ψ‖L2 <∞}.

Hs denotes Hs,0. For 1 ≤ p ≤ ∞ and a positive integer k, we define
the Sobolev space W k

p corresponding to the Lebesgue space L
p by

W k
p ≡


ψ ∈ Lp : ‖ψ‖W k

p
≡
∑
|α|≤k

‖∂αψ‖Lp <∞

 .

Note that for a positive integer k, Hk = W k
2 and the norms ‖ · ‖Hk and

‖ · ‖W k
2
are equivalent.
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For s > 0, we define the homogeneous Sobolev spaces Ḣs by the
completion of S with respect to the norm

‖w‖Ḣs ≡ ‖(−∆)s/2w‖L2. (1.1)

Ḣs is a Banach space with the norm (1.1) for s > 0.
We set for t ∈ R,

U(t) ≡ e
it
2

∆, Ω ≡ (1−∆)1/2, ω ≡ (−∆)1/2

K(t) ≡ Ω−1 sinΩt, K̇(t) ≡ cos Ωt,
L ≡ i∂t +

1

2
∆, K ≡ ∂2

t −∆+ 1, � ≡ ∂2
t −∆.

C denotes various constants, and they may differ from line to line,
when it does not cause any confusion.

Let (u+, v+, v̇+) be a final state. u+ and (v+, v̇+) are the Schrödinger
and the Klein-Gordon components, respectively. We introduce the fol-
lowing asymptotic functions:

u0(t, x) =(U(t)e
−i|·|2/2te−iS(t,−i∇)u+)(x)

=
1

it
ei|x|

2/2t−iS(t,x/t)û+

(x
t

)
,

(1.2)

u1(t, x) =

(
U(t)e−i|·|2/2te−iS(t,−i∇) i| · |2

2t
u+

)
(x)

=− 1

2t2
ei|x|

2/2t−iS(t,x/t)∆û+

(x
t

)
,

(1.3)

ũ1(t, x) =− 1

it2
f1

(x
t

)
a0

(x
t

)
û+

(x
t

)
ei|x|

2/2t−iS(t,x/t)+i
√

t2−|x|2

+
1

it2
g1

(x
t

)
a0

(x
t

)
û+

(x
t

)
ei|x|

2/2t−iS(t,x/t)−i
√

t2−|x|2,
(1.4)

v0(t, x) = (K̇(t)v+)(x) + (K(t)v̇+)(x), (1.5)

v1(t, x) = − 1
t2

∣∣∣û+

(x
t

)∣∣∣2 , (1.6)

ṽ1(t, x) =
i

2t2

(
1− |x|2

t2

)1/2 (
f1

(x
t

)
− g1

(x
t

)) ∣∣∣û+

(x
t

)∣∣∣2
×
(
a0

(x
t

)
ei
√

t2−|x|2 − a0

(x
t

)
e−i

√
t2−|x|2

) (1.7)

for (t, x) ∈ [1,∞)× R2, where

f1(x) =
2(1− |x|2)

2(1− |x|2)3/2 + |x|2 for |x| < 1, (1.8)

g1(x) =
2(1− |x|2)

2(1− |x|2)3/2 − |x|2 for |x| < 1, (1.9)
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a0(x) =




i

2(1− |x|2)
[
v̂+

(
− x

(1− |x|2)1/2

)

− i(1− |x|2)1/2ˆ̇v+

(
− x

(1− |x|2)1/2

)]
if |x| < 1,

0 if |x| ≥ 1,

(1.10)

S(t, x) =
1

t
(|û+(x)|2 + |a0(x)|2f1(x)− |a0(x)|2g1(x)). (1.11)

The functions u0 and v0 are principal terms of the asymptotic profile.
Note that u0 is an approximate solution for the free Schrödinger equa-
tion and v0 is the solution for the free Klein-Gordon equation. It is
well-known that the function

1

t
a0

(x
t

)
ei
√

t2−|x|2 +
1

t
a0

(x
t

)
e−i

√
t2−|x|2

is the leading term of the asymptotic expansion of the solution for the
free Klein-Gordon equation in two space dimensions (see Lemma 3.2
below).
Let D denote the unit disk in R2. We define the functions g̃1 and g̃2

in the unit disk D:

g̃1(x) =
1

2(1− |x|2)3/2 − |x|2 , g̃2(x) =
1

(1− |x|2)3/2 − |x|2 . (1.12)

Throughout this paper, we assume that the space dimension is two.

The main result is as follows.

Theorem. Let u+ ∈ H2,8, g̃10
1 ∂

αû+ ∈ L2(D) for |α| ≤ 6 and g̃5
1 g̃

5
2∂

αû+ ∈
L2(D) for |α| ≤ 4, v+ ∈ S and v̇+ ∈ S. Assume that ‖u+‖H2,2 is suffi-
ciently small. Let 1 < k < 2. Then the equation (KGS) has a unique
solution (u, v) satisfying

u ∈ C(R;H2), v ∈ C(R;H2) ∩ C1(R;H1),

sup
t≥1
(tk‖u(t)− u0(t)− (u1(t) + ũ1(t))‖L2

+ t‖u(t)− u0(t)− (u1(t) + ũ1(t))‖Ḣ2) <∞,
sup
t≥1
[tk(‖v(t)− v0(t)− (v1(t) + ṽ1(t))‖H1

+ ‖∂t(v(t)− v0(t)− (v1(t) + ṽ1(t)))‖L2)

+ t(‖v(t)− v0(t)− (v1(t) + ṽ1(t))‖Ḣ1∩Ḣ2

+ ‖∂t(v(t)− v0(t)− (v1(t) + ṽ1(t)))‖Ḣ1)] <∞.
In particular,

‖u(t)− U(t)u+‖H2 + ‖v(t)− v0(t)‖H2

+ ‖∂tv(t)− ∂tv0(t)‖H1 → 0,
as t→ +∞.
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Furthermore for the equation (KGS), the wave operator

W+ : (u+, v+, v̇+) �→ (u(0), v(0), ∂tv(0))

is well-defined.
A similar result holds for negative time.

Remark 1.1. In Theorem, neither the size restriction on the Klein-
Gordon component (v+, v̇+) of the final state nor the restriction on the
support of the Fourier transform of the final state is assumed, while we
restrict the restriction on the size of the Schrödinger component u+ of
the final state.

Remark 1.2. Since the function g̃1 has a singularity on some circle
contained in the unit diskD, the singular assumption g̃10

1 ∂
αû+ ∈ L2(D)

for |α| ≤ 6 in Theorem implies that ∂αû+ vanishes on that circle as
in [18]. The assumption g̃5

1 g̃
5
2∂

αû+ ∈ L2(D) for |α| ≤ 4 also causes a
similar phenomenon.

Remark 1.3. It is well-known that the equation (KGS) is globally
well-posed in C(R;H2) ⊕ [C(R;H2) ∩ C1(R;H1)] (see Bachelot [1],
Baillon and Chadam [2], Fukuda and Tsutsumi [3] and Hayashi and
von Wahl [11]).

The outline of this paper is as follows. In Section 2, we solve the
final value problem for the equation (KGS) for the asymptotic profile
satisfying suitable conditions (see Proposition 2.1). In Section 3, we
determine an asymptotic profile satisfying the assumptions of above
final value problem.

2. The Final Value Problem

In this section, we solve the final value problem, that is, the Cauchy
problem at infinity, for the equation (KGS) of general form. Namely,
for an asymptotic profile (A,B) satisfying suitable assumptions, we
construct a unique solution (u, v) for the equation (KGS) which ap-
proaches (A,B) as t→ ∞.
For a given asymptotic functions (A,B), we introduce the following
functions.

R1[A,B] = LA− AB, (2.1)

R2[A,B] = KB + |A|2. (2.2)

Proposition 2.1. Assume that there exist positive constants δ, L1, L2

L3 and L4 such that for t ≥ 1,
‖A(t)‖W 2∞ ≤ δt−1 + L1t

−2, (2.3)

‖B(t)‖W 2∞ ≤ L2t
−1, (2.4)

‖R1[A,B](t)‖H2 ≤ L3t
−3, (2.5)

‖R2[A,B](t)‖H1 ≤ L4t
−3, (2.6)
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and assume that δ > 0 is sufficiently small. Let 1 < k < 2. Then there
exists a constant T ≥ 1, depending only on δ, L1, L2, L3 and L4, such
that the equation (KGS) has a unique solution (u, v) satisfying

u ∈ C([T,∞);H2), v ∈ C([T,∞);H2) ∩ C1([T,∞);H1), (2.7)

sup
t≥T
(tk‖u(t)− A(t)‖L2 + t‖u(t)− A(t)‖Ḣ2) <∞, (2.8)

sup
t≥T
[tk(‖v(t)−B(t)‖H1 + ‖∂tv(t)− ∂tB(t)‖L2)

+ t(‖v(t)− B(t)‖Ḣ1∩Ḣ2 + ‖∂tv(t)− ∂tB(t)‖Ḣ1)] <∞.
(2.9)

We can prove this proposition exactly in same way as in the proof of
Proposition 2.1 in [21]. Therefore we omit the proof of this proposition.

Remark 2.1. In Proposition 2.1, the asymptotic profile (A,B) is not
determined explicitly. In Section 3, we construct the asymptotic profile
satisfying the assumptions of Proposition 2.1.

Remark 2.2. In Proposition 2.1, we do not restrict the size of the pos-
itive constants L1, L2 L3 and L4, though the smallness on the constant
δ > 0 is assumed.

Remark 2.3. By the global well-posedness of the equation (KGS),
the solution (u, v) on the time interval [T,∞) for the equation (KGS)
obtained in Proposition 2.1 can be extended all times.

3. Asymptotics and Proof of Theorem

In this section, by constructing an asymptotic profile (ua, va) satis-
fying the assumptions of Proposition 2.1 under suitable conditions on
the final state, we prove Theorem. Let (u+, v+, v̇+) be a final state.
Throughout this section, we assume that all the assumptions in Theo-
rem are satisfied. Namely, we assume that u+ ∈ H2,8, g̃10

1 ∂
αû+ ∈ L2(D)

for |α| ≤ 6, g̃5
1 g̃

5
2∂

αû+ ∈ L2(D) for |α| ≤ 4, v+ ∈ S, v̇+ ∈ S, and
that ‖u+‖H2,2 ≤ 1 is sufficiently small. Let C(u+), C(v+, v̇+) and
C(u+, v+, v̇+) denote various positive finite constants depending on u+,
(v+, v̇+) and (u+, v+, v̇+), respectively, and they may differ from line to
line.
We find an asymptotic profile of the form

(ua, va) = (u0 + (u1 + ũ1) + u2, v0 + (v1 + ṽ1) + v2). (3.1)

u0 and v0 are the principal terms of ua and va, respectively. u1 + ũ1

and v1+ ṽ1 are the second correction terms, and u2 and v2 are the third
correction ones of ua and va. (u0 � u1, ũ1 � u2, v0 � v1, ṽ1 � v2). It
is natural to expect that (u0, v0) is the free profile or the modified free
profile.

As in [21], we set

v0(t, x) = (K̇(t)v+)(x) + (K(t)v̇+)(x).

8



v0 is a solution of the free Klein-Gordon equation with initial data
(v+, v̇+). The time decay estimates of v0 are well-known. (See, e.g.,
Lemmas 2.2 and 2.3 in Ozawa and Tsutsumi [16]).

Lemma 3.1. There exists a constant C(v+, v̇+) > 0 such that for t ≥
1,

‖v0(t)‖H2 ≤ C(v+, v̇+),

‖v0(t)‖W 2∞ ≤ C(v+, v̇+)t
−1.

We recall the asymptotic expansion of the free profile v0 for the
Klein-Gordon equation. The following lemma is well-known (see, e.g.,
Section 7.2 in Hörmander [12] and Lemma 2.1 in Sunagawa [22]).

Lemma 3.2. For any positive integer N , and any multi-index α ∈ Z
2
+,

there exists a constant CN,α(v+, v̇+) > 0 such that∣∣∣∣∂α
x

{
v0(t, x)− 2

N−1∑
j=0

Re

(
1

tj+1
aj

(x
t

)
ei
√

t2−|x|2
)}∣∣∣∣

≤CN,α(v+, v̇+)t
−1−N

for (t, x) ∈ [1,∞) × R2, where the functions aj ∈ C∞(R2;C), j =
0, 1, 2, . . . , satisfy the following:

• aj(x) = 0 if |x| ≥ 1.
• For any positive integer m and any multi-index α ∈ Z

2
+, there

exists a constant Cj,α,m(v+, v̇+) > 0 such that

|∂αaj(x)| ≤ Cj,α,m(v+, v̇+)(1− |x|2)m for |x| < 1.
In particular, a0 is given by (1.10).

Remark 3.1. According to Section 7.2 in Hörmander [12], the func-
tion aj in above lemma has the following form

aj(x) =


ãj

(
− x

(1− |x|2)1/2

)
if |x| < 1,

0 if |x| ≥ 1
with a suitable function ãj ∈ S.
We use the asymptotic expansion of v0 in Lemma 3.2 for N = 1 and

N = 2. We introduce the following functions:

V (0)(t, x) =
1

t
a0

(x
t

)
ei
√

t2−|x|2 +
1

t
a0

(x
t

)
e−i

√
t2−|x|2,

V (1)(t, x) =
1

t2
a1

(x
t

)
ei
√

t2−|x|2 +
1

t2
a1

(x
t

)
e−i

√
t2−|x|2,

where the functions a0 and a1 appears in Lemma 3.2. According to
Lemma 3.2, the functions V (0) and V (0)+V (1) are asymptotic forms of
v0 for large time.
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Let R1 and R2 be defined by (2.1) and (2.2), respectively. We con-
sider the asymptotic profile (ua, va), which has the form (3.1). Then
we see that

R1[ua, va] =Lua − uava

=L(u0 + u1) + Lu2 + (Lũ1 − u0V
(0))

− (u1 + ũ1)V
(0) − u0v1 − u0V

(1) − u0ṽ1

− u0(v0 − (V (0) + V (1)))− (u1 + ũ1)(v0 − V (0))

− ((u1 + ũ1) + u2)(v1 + ṽ1)− u2v0 − uav2,

(3.2)

R2[ua, va] =Kva + |ua|
=(Kv1 + |u0|2) + (Kṽ1 + 2Re(ū0ũ1))

+ (Kv2 + 2Re(ū0u1)) + 2Re(ū0u2)

+ |u1 + ũ1 + u2|2.

(3.3)

In the second equality of (3.3), we have used the fact Kv0 = 0.
Hereafter we construct functions u0, u1, ũ1, u2, v1, ṽ1 and v2 such
that the asymptotic profile (ua, va) of the form (3.1) and the functions
R1[ua, va] and R2[ua, va] satisfy the assumptions in Proposition 2.1.

Recall that the function
1

it
ei|x|

2/2tφ̂
(x
t

)
− 1

2t2
ei|x|

2/2t∆φ̂
(x
t

)
is an asymptotics of the free profile U(t)φ for the Schrödinger equation.
In view of this, as in [21] we define

u0(t, x) =(U(t)e
−i|·|2/2te−iS(t,−i∇)u+)(x)

=
1

it
û+

(x
t

)
ei|x|

2/2t−iS(t,x/t),

u1(t, x) =

(
U(t)e−i|·|2/2te−iS(t,−i∇) i| · |2

2t
u+

)
(x)

=− 1

2t2
∆û+

(x
t

)
ei|x|

2/2t−iS(t,x/t).

We will determine a real phase function S satisfying the following
estimate later: If |α| ≤ 4 and j = 0, 1, then there exist constants
C(u+, v+, v̇+) > 0 and C(u+) > 0 such that

|∂α
x∂

j
tS(t, x)| ≤

{
C(u+, v+, v̇+)|g̃1(x)|t−1−j if |x| < 1,
C(u+)t

−1−j if |x| ≥ 1 (3.4)

for t ≥ 1, where the function g̃1 is defined by (1.12).

We consider the first term Kv1 + |u0|2 in the right hand side of the
equation (3.3). Because |u0|2 = t−2|û+(x/t)|2, ‖|u0(t)|2‖L2 decays as
O(t−1). |u0|2 does not satisfy the assumption (2.6) on R2 in Proposi-
tion 2.1. In order to obtain improved time decay estimates of R2, we

10



choose the second correction term v1 of va such that Kv1+ |u0|2 decays
faster than |u0|2 = t−2|û+(x/t)|2 as in [16, 18, 21]. We put

v1(t, x) = −|u0(t, x)|2 = − 1
t2

∣∣∣û+

(x
t

)∣∣∣2 .
This function coincides with the right hand side of (1.6). Note that
|u0|2 is independent of a choice of the real phase function S though
it has not yet determined explicitly. (As mentioned above, S will be
determined later). Then

Kv1(t, x) + |u0(t, x)|2 = −�
(
1

t2

∣∣∣û+

(x
t

)∣∣∣2) .
By a direct calculation, we have the following lemma.

Lemma 3.3. Let k = 0, 1, 2. There exists a constant C(u+) > 0 such
that for t ≥ 1,

‖ωkv1(t)‖L2 ≤ C(u+)t
−k−1,∑

|α|=k

‖∂αv1(t)‖L∞ ≤ C(u+)t
−k−2,

‖Kv1(t) + |u0(t)|2‖H1 ≤ C(u+)t
−3.

We consider the third term Lũ1 − u0V
(0) in right hand side of the

equality (3.2). Because u0V
(0) decays as t−1 in L2 as t → ∞, it does

not satisfy the assumption (2.5) on R1 of Proposition 2.1. Since all
derivatives of V (0) decay as fast as itself (= O(t−1) in L∞), we can not
apply the method of the phase correction to the slowly decaying term
u0V

(0). In order to overcome this difficulty, we find a second correction
term ũ1 such that Lũ1 − u0V

(0) decays faster than u0V
(0) as t→ ∞ as

in [18].
Let b ≥ 1, m ∈ R \ {0}, let P be a function on R2 supported in the
unit disk {x ∈ R2; |x| < 1}, and let

F (t, x) =
1

it
P
(x
t

)
ei|x|

2/2t−iS(t,x/t).

By a direct calculation, we have

L
(
1

tb
eim

√
t2−|x|2F (t, x)

)

=− 1
tb

(
m

(
1− |x|2

t2

)1/2

+m2 |x|2/t2
2(1− (|x|2/t2))

)
eim

√
t2−|x|2F (t, x)

− i

tb+1

(
b+m

2− (|x|2/t2)
2(1− (|x|2/t2))3/2

)
eim

√
t2−|x|2F (t, x)

− im

tb+1

x/t

(1− (|x|2/t2))1/2
eim

√
t2−|x|2 · F̃ (t, x)

11



− m

tb+1

x/t

(1− (|x|2/t2))1/2
eim

√
t2−|x|2 · ∇S

(
t,
x

t

)
F (t, x)

+
1

tb
eim

√
t2−|x|2LF (t, x),

(3.5)

where

F̃ (t, x) =
1

it
∇P

(x
t

)
ei|x|

2/2t−iS(t,x/t).

Remark 3.2. Noting the equality

LF (t, x) = 1
it
ei|x|

2/2t

(
1

2t2
∆y(e

−iS(t,y)P (y))|y=x/t

+ (∂0S)
(
t,
x

t

)
e−iS(t,x/t)P

(x
t

))
,

we see that if the phase function S satisfies (3.4) and P is a polynomial
of û+ and its derivative, then the first term in the right hand side of
(3.5) decays as t−b, the second and the third ones decay as t−b−1, and
the last two terms decay as t−b−2 as t → ∞ in H2. Indeed, the first
term in the right hand side of (3.5) is the principal part, and the other
terms are the remainder ones.

By the definitions of u0 and V
(0), we see that

u0(t, x)V
(0)(t, x) =

1

t
ei
√

t2−|x|2
(
1

it
a0

(x
t

)
û+

(x
t

)
ei|x|

2/2t−iS(t,x/t)

)

+
1

t
e−i

√
t2−|x|2

(
1

it
a0

(x
t

)
û+

(x
t

)
ei|x|

2/2t−iS(t,x/t)

)
.

In view of this, we construct a second correction term ũ1 of the form

ũ1(t, x) =
1

t
ei
√

t2−|x|2F1(t, x) +
1

t
e−i

√
t2−|x|2F2(t, x),

where

F1(t, x) =
1

it
P1

(x
t

)
ei|x|

2/2t−iS(t,x/t), suppP1 ⊂ {x ∈ R
2; |x| < 1},

G1(t, x) =
1

it
Q1

(x
t

)
ei|x|

2/2t−iS(t,x/t), suppQ1 ⊂ {x ∈ R
2; |x| < 1}.

Applying the equality (3.5) to the cases of (b,m) = (1, 1) and (b,m) =
(1,−1), we see that

Lũ1(t, x) =− 1
t
ei
√

t2−|x|2 1

f1(x/t)
F1(t, x) +

1

t
e−i

√
t2−|x|2 1

g1(x/t)
G1(t, x)

− i

t2

(
1 +

2− (|x|2/t2)
2(1− (|x|2/t2))3/2

)
ei
√

t2−|x|2F1(t, x)
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− i

t2

(
1− 2− (|x|2/t2)
2(1− (|x|2/t2))3/2

)
e−i

√
t2−|x|2G1(t, x)

− i

t2
x/t

(1− (|x|2/t2))1/2
ei
√

t2−|x|2 · F̃1(t, x)

+
i

t2
x/t

(1− (|x|2/t2))1/2
e−i

√
t2−|x|2 · G̃1(t, x)

− 1
t2

x/t

(1− (|x|2/t2))1/2
ei
√

t2−|x|2 · ∇S
(
t,
x

t

)
F1(t, x)

+
1

t2
x/t

(1− (|x|2/t2))1/2
e−i

√
t2−|x|2 · ∇S

(
t,
x

t

)
G1(t, x)

+
1

t
ei
√

t2−|x|2LF1(t, x) +
1

t
e−i

√
t2−|x|2LG1(t, x),

(3.6)

where

F̃1(t, x) =
1

it
∇P1

(x
t

)
ei|x|

2/2t−iS(t,x/t),

G̃1(t, x) =
1

it
∇Q1

(x
t

)
ei|x|

2/2t−iS(t,x/t),

and the functions f1 and g1 are defined by (1.8) and (1.9), respectively.
We note that the first and the second terms in the right hand side of
(3.6) decay most slowly if the phase function S satisfies the estimate
(3.4) (see Remark 3.2). If we choose the functions P1 and Q1 such that

u0(t, x)V
(0)(t, x) =− 1

t
ei
√

t2−|x|2 1

f1(x/t)
F1(t, x)

+
1

t
e−i

√
t2−|x|2 1

g1(x/t)
G1(t, x)

(3.7)

holds, then Lũ1 − u0V
(0) decays faster than u0V

(0). In fact, if we set

P1(x) = −f1(x)a0(x)û+(x), Q1(x) = g1(x)a0(x)û+(x), (3.8)

then the equality (3.7) is satisfied. It follows from definitions (3.8) of
P1 and Q1 that

ũ1(t, x) =
1

t
ei
√

t2−|x|2F1(t, x) +
1

t
e−i

√
t2−|x|2F2(t, x)

=− 1

it2
f1

(x
t

)
a0

(x
t

)
û+

(x
t

)
ei|x|

2/2t−iS(t,x/t)+i
√

t2−|x|2

+
1

it2
g1

(x
t

)
a0

(x
t

)
û+

(x
t

)
ei|x|

2/2t−iS(t,x/t)−i
√

t2−|x|2.
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By the equality (3.6), we have

Lũ1(t, x)− u0(t, x)V
(0)(t, x)

=− i

t2

(
1 +

2− (|x|2/t2)
2(1− (|x|2/t2))3/2

)
ei
√

t2−|x|2F1(t, x)

− i

t2

(
1− 2− (|x|2/t2)
2(1− (|x|2/t2))3/2

)
e−i

√
t2−|x|2G1(t, x)

− i

t2
x/t

(1− (|x|2/t2))1/2
ei
√

t2−|x|2 · F̃1(t, x)

+
i

t2
x/t

(1− (|x|2/t2))1/2
e−i

√
t2−|x|2 · G̃1(t, x)

− 1
t2

x/t

(1− (|x|2/t2))1/2
ei
√

t2−|x|2 · ∇S
(
t,
x

t

)
F1(t, x)

+
1

t2
x/t

(1− (|x|2/t2))1/2
e−i

√
t2−|x|2 · ∇S

(
t,
x

t

)
G1(t, x)

+
1

t
ei
√

t2−|x|2LF1(t, x) +
1

t
e−i

√
t2−|x|2LG1(t, x).

(3.9)

From this equality and Remark 3.2, we see that Lũ1 − u0V
(0) decays

as t−2 in H2 if the phase function S satisfies the estimate (3.4). This
term does not satisfy the assumption (2.5) on R1 in Proposition 2.1
though it decays faster than u0V

(0), which decays as t−1 in L2. To
overcome difficulty, we have to construct a third correction term u2 for
the Schrödinger component. This will be done at the end of the choice
of an asymptotic profile (ua, va) in the same manner.

Before constructing a third correction term u2 for the Schrödinger
component, we have to find another second correction term ṽ1 for the
Klein-Gordon component in order to obtain an improved time decay
estimate for the second term Kṽ1 + 2Re(ū0ũ1) in the right hand side
of the equality (3.3). From the definitions of u0 and ũ1, we see

2Re(u0(t, x)ũ1(t, x))

=2Re

[
1

t3
û+

(x
t

)
P1

(x
t

)
ei
√

t2−|x|2

+
1

t3
û+

(x
t

)
Q1

(x
t

)
e−i

√
t2−|x|2

]

=2Re

[
1

t3

(
û+

(x
t

)
P1

(x
t

)
+ û+

(x
t

)
Q1

(x
t

))
ei
√

t2−|x|2
]
,

(3.10)

where the functions P1 and Q1 are defined by (3.8). Here we note that
the function 2Re(ū0ũ1) is independent of a choice of the phase function
S though it has not yet determined explicitly. It follows from above
equality that the function 2Re(ū0ũ1) decays as t

−2 in L2 and that this
14



term does not satisfy the assumption (2.6) on R2 in Proposition 2.1. We
construct a second correction term ṽ1 for the Klein-Gordon component
such that Kṽ1 + 2Re(ū0ũ1) decays faster than 2Re(ū0ũ1). In view of
the equality (3.10), we find a second correction term ṽ1 of the form

v1(t, x) = 2Re

(
1

tb
Y
(x
t

)
ei
√

t2−|x|2
)
,

where b ≥ 1 and Y is a function on R2 supported in the unit disk
{x ∈ R2; |x| < 1}. We determine the constant b and the function Y .
By a direct calculation, we have

K
(
1

tb
Y
(x
t

)
ei
√

t2−|x|2
)

=

[
− 1

tb+1

2(b− 1)i
(1− (|x|2/t2))1/2

Y
(x
t

)
+�

(
1

tb
Y
(x
t

))]
ei
√

t2−|x|2.
(3.11)

It is easyly seen that the first term in the right hand side of (3.11)
decays as t−b in L2 and the second one decays as t−b−1 in the same
space. Namely the first term is the leading term. Now we put

b = 2, (3.12)

Y (x) =− i

2
(1− |x|2)1/2(û+(x)P1(x) + û+(x)Q1(x))

=
i

2
(1− |x|2)1/2(f1(x)− g1(x))a0(x)|û+(x)|2

(3.13)

so that the equality

−2Re(u0(t, x)ũ1(t, x))

=2Re

(
− 1

tb+1

2(b− 1)i
(1− (|x|2/t2))1/2

Y
(x
t

)
ei
√

t2−|x|2
)

(3.14)

holds. Therefore we determine the second correction term ṽ1 for the
Klein-Gordon component by

ṽ1(t, x) = 2Re

(
1

t2
Y
(x
t

)
ei
√

t2−|x|2
)
, (3.15)

where the function Y is defined by (3.13). Note that this function
coincides with the right hand side of (1.7). It follows from the equalities
(3.10), (3.11), (3.14) and (3.15) that

Kṽ1(t, x) + 2Re(u0(t, x)ũ1(t, x))

=2Re

[{
�
(
1

t2
Y
(x
t

))}
ei
√

t2−|x|2
]
.

(3.16)

By the equalities (3.15) and (3.16), we obtain the following lemma.
15



Lemma 3.4. There exists a constant C(u+, v+, v̇+) > 0 such that for
t ≥ 1,

‖ṽ1(t)‖H2 ≤ C(u+, v+, v̇+)t
−1,

‖ṽ1(t)‖W 2∞ ≤ C(u+, v+, v̇+)t
−2,

‖Kṽ1(t) + 2Re(u0(t)ũ1(t))‖H1 ≤ C(u+, v+, v̇+)t
−3.

Remark 3.3. In this lemma, we have used the assumption g̃10
1 ∂

αû+ ∈
L2(D) for |α| ≤ 6, where g̃1 is defined by (1.12) and D is the unit disk
in R2, because the function g1 appears in the definition of the function
ṽ1.

We next consider the third term Kv2 + 2Re(ū0u1) in the right hand
side of the equation (3.3). By the definitions of u0 and u1, ‖ū0u1‖L2

decays as O(t−2). This is not sufficient to satisfy the assumption (2.6)
on R2 of Proposition 2.1. In order to obtain improved time decay
estimates of R2, we choose the third correction term v2 of va such that
Kv2+2Re(ū0u1) decays faster than 2Re(ū0u1) in the same manner as
in [21]. We put

v2(t, x) = −2Re(ū0u1) = − 1
t3
Im

(
û+

(x
t

)
∆û+

(x
t

))
.

Here we note that the function 2Re(ū0u1) is independent of a choice of
the phase function S though it has not yet determined explicitly. Then

Kv2(t, x) + 2Re(ū0u1) = −�
[
1

t3
Im

(
û+

(x
t

)
∆û+

(x
t

))]
.

By a direct calculation, we have the following lemma.

Lemma 3.5. Let k = 0, 1, 2. There exists a constant C(u+) > 0 such
that for t ≥ 1,

‖ωkv2(t)‖L2 ≤ C(u+)t
−k−2,∑

|α|=k

‖∂αv2(t)‖L∞ ≤ C(u+)t
−k−3

‖Kv2(t) + 2Re(u0(t)u1(t))‖H1 ≤ C(u+)t
−3.

Finally we construct a real phase function S, which appears in the
definitions of u0 and u1, and a third correction term u2 of the Schrödinger
component ua.
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By the definitions of u0, V
(0) and ũ1, we see that

ũ1(t, x)V
(0)(t, x)

=− 1
t2

(
f1

(x
t

)
− g1

(x
t

)) ∣∣∣a0

(x
t

)∣∣∣2 u0(t, x)

+
1

t2
e2i

√
t2−|x|2 1

it
a0

(x
t

)
P1

(x
t

)
ei|x|

2/2t−iS(t,x/t)

+
1

t2
e−2i

√
t2−|x|2 1

it
a0

(x
t

)
Q1

(x
t

)
ei|x|

2/2t−iS(t,x/t),

(3.17)

where P1 and Q1 are defined by (3.8). By the equalities (3.2), (3.9)
and (3.17), we decompose R1[ua, va] into three parts:

R1[ua, va] = q1 + q2 + q3, (3.18)

where

q1 =L(u0 + u1)−
[
v1 − 1

t2

(
f1

(x
t

)
− g1

(x
t

)) ∣∣∣a0

(x
t

)∣∣∣2]u0

=L(u0 + u1)

+
1

t2

[∣∣∣û+

(x
t

)∣∣∣2 + (f1

(x
t

)
− g1

(x
t

)) ∣∣∣a0

(x
t

)∣∣∣2]u0,

(3.19)

q2 =Lu2 − (u1V
(0) + u0V

(1) + u0ṽ1)

− i

t2

(
1 +

2− (|x|2/t2)
2(1− (|x|2/t2))3/2

)
ei
√

t2−|x|2F1(t, x)

− i

t2

(
1− 2− (|x|2/t2)
2(1− (|x|2/t2))3/2

)
e−i

√
t2−|x|2G1(t, x)

− i

t2
x/t

(1− (|x|2/t2))1/2
ei
√

t2−|x|2 · F̃1(t, x)

+
i

t2
x/t

(1− (|x|2/t2))1/2
e−i

√
t2−|x|2 · G̃1(t, x)

−
[
1

t2
e2i

√
t2−|x|2 1

it
a0

(x
t

)
P1

(x
t

)
ei|x|

2/2t−iS(t,x/t)

+
1

t2
e−2i

√
t2−|x|2 1

it
a0

(x
t

)
Q1

(x
t

)
ei|x|

2/2t−iS(t,x/t)

]
,

(3.20)

q3 =− u0(v0 − (V (0) + V (1)))− (u1 + ũ1)(v0 − V (0))

− ((u1 + ũ1) + u2)(v1 + ṽ1)− u2v0 − uav2

− 1
t2

x/t

(1− (|x|2/t2))1/2
ei
√

t2−|x|2 · ∇S
(
t,
x

t

)
F1(t, x)

+
1

t2
x/t

(1− (|x|2/t2))1/2
e−i

√
t2−|x|2 · ∇S

(
t,
x

t

)
G1(t, x)

+
1

t
ei
√

t2−|x|2LF1(t, x) +
1

t
e−i

√
t2−|x|2LG1(t, x).

(3.21)
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We choose a real phase function S such that q1 defined by (3.19)
decays as t−3 in H2 as t→ ∞ (see assumption (2.5) in Proposition 2.1).
We set

W =W0 +W1, W0(t, x) = û+(x), W1(t, x) = − i

2t
∆û+(x).

Then by a direct calculation, we have

q1 =MDe
−iS

[
i∂tW0 +

(
i∂tW1 +

1

2t2
∆W0

)

+

(
∂tS +

1

t2
(|û+|2 + |a0|2f1 − |a0|2g1)

)
W

+
1

2t2
∆W1 − i

2t2
(2∇S · ∇W +W∆S)− 1

2t2
|∇S|2W

]

=MDe−iS

[(
∂tS +

1

t2
(|û+|2 + |a0|2f1 − |a0|2g1)

)
W

+
1

2t2
∆W1 − i

2t2
(2∇S · ∇W +W∆S)− 1

2t2
|∇S|2W

]
,

where M and D are the following operators:

(Mf)(t, x) = ei|x|
2/2tf(x), (Dg)(t, x) =

1

it
g
(
t,
x

t

)
.

In the same way as in [21], we determine

S(t, x) =
1

t
(|û+(x)|2 + |a0(x)|2f1(x)− |a0(x)|2g1(x))

so that

∂tS(t, x) = − 1
t2
(|û+(x)|2 + |a0(x)|2f1(x)− |a0(x)|2g1(x))

for (t, x) ∈ [1,∞)× R2. Then

q1 =MDe
−iS

[
1

2t2
∆W1 − i

2t2
(2∇S · ∇W +W∆S)

− 1

2t2
|∇S|2W

]
,

(3.22)

We note that the function S defined above coincides with the right
hand side of (1.11) and that it satisfies the time decay estimate (3.4).
Therefore u0, u1 and ũ1 are determined completely, and they are equal
to the right hand sides of (1.2), (1.3) and (1.4), respectively.
By using Lemma 3.2 and noting the equation (3.22), we have the fol-
lowing lemma exactly in the same way as in the derivation of Lemma 3.4
in [21].
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Lemma 3.6. There exist constants C > 0 and C(u+, v+, v̇+) such that
for t ≥ 1,

‖u0(t)‖H2 ≤ C‖u+‖H2 + C(u+, v+, v̇+)t
−1,

‖u0(t)‖W 2∞ ≤ C‖u+‖H2,2t−1 + C(u+, v+, v̇+)t
−2,

‖u1(t)‖H2 ≤ C(u+, v+, v̇+)t
−1,

‖u1(t)‖W 2∞ ≤ C(u+, v+, v̇+)t
−2,

‖ũ1(t)‖H2 ≤ C(u+, v+, v̇+)t
−1,

‖ũ1(t)‖W 2∞ ≤ C(u+, v+, v̇+)t
−2,

‖q1(t)‖H2 ≤ C(u+, v+, v̇+)t
−3.

Here the constant C is independent of (u+, v+, v̇+), and the constant
C(u+, v+, v̇+) depends on them.

Remark 3.4. In this lemma, we have used the assumption g̃10
1 ∂

αû+ ∈
L2(D) for |α| ≤ 6, where g̃1 is defined by (1.12) and D is the unit
disk in R

2, because the function g1 appears in the definitions of the
functions ũ1 and S.

We next construct a third correction term u2 for the Schrödinger
component such that q2 decays as t

−3 in H2 as t→ ∞ (see assumption
(2.5) in Proposition 2.1) exactly in the same way as in the construction
of the second correction term ũ1. Recalling the definitions of u0, u1,
V (0), V (1) and ṽ1, we rewrite q2 defined in (3.20) as

q2 =Lu2 −
[
1

t2
ei
√

t2−|x|2 1
it
Φ(1)

(x
t

)
ei|x|

2/2t−iS(t,x/t)

+
1

t2
e−i

√
t2−|x|2 1

it
Ψ(1)

(x
t

)
ei|x|

2/2t−iS(t,x/t)

+
1

t2
e2i

√
t2−|x|2 1

it
Φ(2)

(x
t

)
ei|x|

2/2t−iS(t,x/t)

+
1

t2
e−2i

√
t2−|x|2 1

it
Ψ(2)

(x
t

)
ei|x|

2/2t−iS(t,x/t)

]
,

(3.23)

where

Φ(1)(x) =i

(
1 +

2− |x|2
2(1− |x|2))3/2

)
P1(x)

+
ix

(1− |x|2)1/2
· ∇P1(x)− i

2
∆û+(x)a0(x)

+ û+(x)a1(x) + û+(x)Y (x),
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Ψ(1)(x) =i

(
1− 2− |x|2
2(1− |x|2))3/2

)
Q1(x)

− ix

(1− |x|2)1/2
· ∇Q1(x)− i

2
∆û+(x)a0(x)

+ û+(x)a1(x) + û+(x)Y (x),

Φ(2)(x) = a0(x)P1(x),

Ψ(2)(x) = a0(x)Q1(x).

We construct a third correction term u2 such that q2 decays faster than
[. . . ] in the right hand side of (3.23), which decays as t−2 in L2. We
find u2 of the form

u2(t, x) =
1

t2
ei
√

t2−|x|2F2,1(t, x) +
1

t2
e−i

√
t2−|x|2G2,1(t, x)

+
1

t2
e2i

√
t2−|x|2F2,2(t, x) +

1

t2
e−2i

√
t2−|x|2G2,2(t, x),

where

F2,j(t, x) =
1

it
P2,j

(x
t

)
ei|x|

2/2t−iS(t,x/t), suppP2,j ⊂ {x ∈ R
2; |x| < 1},

G2,j(t, x) =
1

it
Q2,j

(x
t

)
ei|x|

2/2t−iS(t,x/t), suppQ2,j ⊂ {x ∈ R
2; |x| < 1}

for j = 1, 2. We determine the functions P2,j and Q2,j (j = 1, 2).
Applying the equality (3.5) to the cases of (b,m) = (2, 1), (2,−1),
(2, 2), (2,−2) and noting Remark 3.2, we see that the principal part of
Lu2 is

− 1
t2
ei
√

t2−|x|2 1

f1(x/t)
F2,1(t, x) +

1

t2
e−i

√
t2−|x|2 1

g1(x/t)
G2,1(t, x)

− 2
t2
e2i

√
t2−|x|2 1

f2(x/t)
F2,2(t, x) +

2

t2
e−2i

√
t2−|x|2 1

g2(x/t)
G2,2(t, x),

where the functions f1 and g1 are defined by (1.8) and (1.9), respec-
tively, and

f2(x) =
1− |x|2

2((1− |x|2)3/2 + |x|2) for |x| < 1,

g2(x) =
1− |x|2

2((1− |x|2)3/2 − |x|2) for |x| < 1.

As in the construction of ũ1, we put

P2,j(x) = −fj(x)Φ
(j)(x), (j = 1, 2),

Q2,j(x) = gj(x)Ψ
(j)(x), (j = 1, 2)

20



so that the principal term of Lu2 mentioned above coincides with [. . . ]
in the right hand side of (3.23). Then we see that q2 decays faster than
[. . . ] in the right hand side of (3.23).
Therefore, recalling Lemma 3.2, we have the following estimates.

Lemma 3.7. There exists a constant C(u+, v+, v̇+) such that for t ≥ 1,
‖u2(t)‖H2 ≤ C(u+, v+, v̇+)t

−2,

‖u2(t)‖W 2∞ ≤ C(u+, v+, v̇+)t
−3,

‖q2(t)‖H2 ≤ C(u+, v+, v̇+)t
−3.

Remark 3.5. In this lemma, we have used the assumptions g̃10
1 ∂

αû+ ∈
L2(D) for |α| ≤ 6 and g̃5

1 g̃
5
2∂

αû+ ∈ L2(D) for |α| ≤ 4, where g̃1 and g̃2

are defined by (1.12) and D is the unit disk in R
2, as in Lemma 3.6.

(Note that the function g2 appears in the definition of the function u2).

Now the asymptotic profile (ua, va) of the form (3.1) is determined ex-
plicitly. Noting Lemmas 3.1–3.7 and Remark 3.2 and using the Hölder
inequality and the Sobolev embedding theorem, we have the following
lemma.

Lemma 3.8. There exists a constant C(u+, v+, v̇+) such that for t ≥ 1,
‖q3(t)‖H2 ≤ C(u+, v+, v̇+)t

−3.

Recalling the definitions of the functions (ua, va), R1[ua, va] andR2[ua, va]
and using Lemmas 3.1–3.8, the Hölder inequality and the Sobolev em-
bedding theorem, we obtain the following time decay estimates for ua,
va, R1[ua, va] and R2[ua, va].

Lemma 3.9. There exist constants C > 0 and C(u+, v+, v̇+) such that
for t ≥ 1,

‖ua(t)‖W 2∞ ≤ C‖u+‖H2,2t−1 + C(u+, v+, v̇+)t
−2,

‖va(t)‖W 2∞ ≤ C(u+, v+, v̇+)t
−1,

‖R1[ua, va](t)‖H2 ≤ C(u+, v+, v̇+)t
−3,

‖R2[ua, va](t)‖H1 ≤ C(u+, v+, v̇+)t
−3.

Here the constant C is independent of (u+, v+, v̇+), and the constant
C(u+, v+, v̇+) depends on them.

Proof of Theorem. We assume that all the assumptions of Theorem are
satisfied. If we put

(A,B) = (ua, va),

δ = C‖u+‖H2,2 ,

L1 = L2 = L3 = L4 = C(u+, v+, v̇+),

where C > 0 and C(u+, v+, v̇+) are the constants which appear in
Lemma 3.9, then the assumptions in Proposition 2.1 are satisfied. By
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Proposition 2.1, if ‖u+‖H2,2 is sufficiently small and if T ≥ 1, which
depends on ‖u+‖H2,2 and C(u+, v+, v̇+), is sufficiently large, then there
exists a unique solution (u, v) satisfying

u ∈ C([T,∞);H2), v ∈ C([T,∞);H2) ∩ C1([T,∞);H1), (3.24)

sup
t≥T
(tk‖u(t)− ua(t)‖L2 + t‖u(t)− ua(t)‖Ḣ2) <∞, (3.25)

sup
t≥T
[tk(‖v(t)− va(t)‖H1 + ‖∂tv(t)− ∂tva(t)‖L2)

+ t(‖v(t)− va(t)‖Ḣ1∩Ḣ2 + ‖∂tv(t)− ∂tva(t)‖Ḣ1)] <∞.
(3.26)

Since the equation (KGS) is globally well-posed in C(R;H2)⊕[C(R;H2)∩
C1(R;H1)] (see Bachelot [1], Baillon and Chadam [2], Fukuda and
Tsutsumi [3] and Hayashi and von Wahl [11]), the unique solution
(u, v) on the time interval [T,∞) obtained above can be extended to
all times. Since ‖u2(t)‖H2 = O(t−2) and ‖v2(t)‖H2 = O(t−2) (see Lem-
mas 3.5 and 3.7) and since 1 < k < 2, the third correction terms u2

and v2 are negligible in the estimates (3.25) and (3.26), respectively.
This completes the proof of Theorem.
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[20] A. Shimomura, Scattering theory for Zakharov equations in three space dimen-
sions with large data, to appear in Commun. Contemp. Math.
[21] A. Shimomura, Scattering theory for the coupled Klein-Gordon-Schrödinger
equations in two space dimensions, Preprint, Preprint Series, UTMS 2003-32.
[22] H. Sunagawa, A note on the large time asymptotics for a system of Klein-
Gordon systems, to appear in Hokkaido Math. J.
[23] Y. Tsutsumi, Global existence and asymptotic behavior of solutions for the
Maxwell-Schrödinger equations in three space dimensions, Comm. Math. Phys.,
151 (1993), 543–576.

23



Preprint Series, Graduate School of Mathematical Sciences, The University of Tokyo

UTMS

2003–26 Shushi Harashita: The a-number stratification on the moduli space of supersin-
gular abelian varieties.

2003–27 Xu Bin: Derivatives of spectral function and Sobolev norms of eigenfunctions
on a closed Riemannian manifold.

2003–28 Li Shumin and Masahiro Yamamoto: Inverse source problem for Maxwell’s
equations in anisotropic media.

2003–29 Igor Trooshin and Masahiro Yamamoto: Identification problem for one-
dimensional vibrating equation.

2003–30 Xu Bin: The degree of symmetry of certain compact smooth manifolds II.

2003–31 Miki Hirano and Takayuki Oda: Integral switching engine for special Clebsch-
Gordan coefficients for the representations of gl3 with respect to Gelfand-
Zelevinsky basis.

2003–32 Akihiro Shimomura: Scattering theory for the coupled Klein-Gordon-
Schrödinger equations in two space dimensions.

2003–33 Hiroyuki Manabe, Taku IshiI, and Takayuki Oda: Principal series Whittaker
functions on SL(3, R).

2003–34 Shigeo Kusuoka: Approximation of expectation of diffusion processes based on
Lie algebra and Malliavin Calculus.

2003–35 Yuuki Tadokoro: The harmonic volumes of hyperelliptic curves.

2003–36 Akihiro Shimomura and Satoshi Tonegawa: Long range scattering for nonlinear
Schrödinger equations in one and two space dimensions.

2003–37 Akihiro Shimomura: Scattering theory for the coupled Klein-Gordon-
Schrödinger equations in two space dimensions II.

The Graduate School of Mathematical Sciences was established in the University of
Tokyo in April, 1992. Formerly there were two departments of mathematics in the Uni-
versity of Tokyo: one in the Faculty of Science and the other in the College of Arts and
Sciences. All faculty members of these two departments have moved to the new gradu-
ate school, as well as several members of the Department of Pure and Applied Sciences
in the College of Arts and Sciences. In January, 1993, the preprint series of the former
two departments of mathematics were unified as the Preprint Series of the Graduate
School of Mathematical Sciences, The University of Tokyo. For the information about
the preprint series, please write to the preprint series office.

ADDRESS:
Graduate School of Mathematical Sciences, The University of Tokyo
3–8–1 Komaba Meguro-ku, Tokyo 153, JAPAN
TEL +81-3-5465-7001 FAX +81-3-5465-7012


