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1 Introduction

It is important to compute expectations of diffusion processes numerically, in the case
when we apply mathematical finance to practical problems. There are a lot of works
in this field (cf.. Ballay and Talay [1], Kloeden and Platen [2]). The author gave a
new method in [3] and some related works have already appeared (Lyons and Victoir [7],
Ninomiya [8]).

In the present paper, we refine and extend the idea in [3] by using notions in [9].
We use the notation in [9] for free Lie algebra. Let (Ω,F , P ) be a probability space and
let {(B1(t), . . . , Bd(t); t ∈ [0,∞)} be a d-dimensional Brownian motion. Let B0(t) = t,
t ∈ [0,∞). Let V0, V1, . . . , Vd ∈ C∞

b (RN ;RN ). Here C∞
b (RN ;Rn) denotes the space of

Rn-valued smooth functions defined in RN whose devivatives of any order are bounded.
We regard elements in C∞

b (RN ;RN ) as vector fields on RN .
Now let X(t, x), t ∈ [0,∞), x ∈ RN , be the solution to the Stratonovich stochastic

integral equation

X(t, x) = x +
d∑

i=0

∫ t

0
Vi(X(s, x)) ◦ dBi(s). (1)

Then there is a unique solution to this equation. Moreover we may assume that with
probability one X(t, x) is continuous in t and smooth in x.

Let A = Ad = {v0, v1, . . . , vd}, be an alphabet, a set of letters, and A∗ be the set of
words consisting of A including the empty word which is denoted by 1. For u = u1 · · · uk ∈
A∗, uj ∈ A, j = 1, . . . , k, k ≥ 0, we denote by ni(u), i = 0, . . . , d, the cardinal of
{j ∈ {1, . . . , k}; uj = vi}. Let |u| = n0(u)+. . .+nd(u), a length of u, and ‖ u ‖ = |u|+n0(u)
for u ∈ A∗. Let R〈A〉 be the R-algebra of noncommutative polynomials on A, R〈〈A〉〉 be
the R-algebra of noncommutative formal series on A, L(A) be the free Lie algebra over
R on the set A, and L((A)) be the R Lie algebra of free Lie series on the set A.

Let ι denotes the left normed bracketing operator, i.e.,

ι(vi1 · · · vin) = [. . . [vi1, vi2], . . . , vin].

For any wi =
∑

u∈A∗ aiuu, ∈ R〈A〉, i = 1, 2, let us define an inner product 〈w1, w2〉
and a norm ‖ w1 ‖2 by

〈w1, w2〉 =
∑

u∈A∗
a1ua2u ∈ R and ‖ w1 ‖2= (〈w1, w1〉)1/2.
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We can regard vector fields V0, V1, . . . , Vd as first differential operators over RN . Let
DO(RN) denotes the set of smooth differential operators over RN . Then DO(RN ) is a
noncommutative algebra over R. Let Φ : R〈A〉 → DF (RN) be a homomorphism given
by

Φ(1) = Identity, Φ(vi1 · · · vin) = Vi1 · · ·Vin , n ≥ 1, i1, . . . , in = 0, 1, . . . , d.

Then we see that

Φ(ι(vi1 · · · vin)) = [· · · [Vi1 , Vi2], · · · , Vin ], n ≥ 2, i1, . . . , in = 0, 1, . . . , d.

Let B(t; u), t ∈ [0,∞), u ∈ A∗, be inductively defined by

B(t; 1) = 1, B(t; vi) = Bi(t), i = 0, 1, . . . , d,

and

B(t; uvi) =
∫ t

0
B(s; u) ◦ dBi(s) u ∈ A∗, i = 0, . . . , d.

Also we define B(t; w) t ∈ [0,∞), w ∈ R〈A〉 by

B(t;
∑

u∈A∗
auu) =

∑
u∈A∗

auB(t; u).

Let A∗
m = {u ∈ A∗; ‖ u ‖= m}, m ≥ 0, and let R〈A〉m =

∑
u∈A∗

m
Ru, and R〈A〉≤m

=
∑m

k=0 R〈A〉k, m ≥ 0. Let jm : R〈〈A〉〉 → R〈A〉≤m be a natural sujective linear map
such that jm(u) = u, u ∈ A∗, ‖ u ‖≤ m, and jm(u) = 0, u ∈ A∗, ‖ u ‖≥ m + 1. Let L(A)m

= L(A)∩R〈A〉m, and L(A)≤m = L(A)∩R〈A〉≤m, m ≥ 1. Let A∗∗ = {u ∈ A∗; u �= 1, v0},
and A∗∗

≤m = {u ∈ A∗∗; ‖ u ‖≤ m}, m ≥ 1.
Let Ψs : R〈〈A〉〉 → R〈〈A〉〉, s > 0, be given by

Ψs(
∞∑

m=0

xm) =
∞∑

m=0

sm/2xm, xm ∈ R〈A〉m, m ≥ 0.

Now we introduce a condition (UFG) on the family of vector field {V0, V1, . . . , Vd} as
follows.
(UFG) There are an integer � and ϕu,u′ ∈ C∞

b (RN), u ∈ A∗∗, u′ ∈ A∗∗
≤�, satisfying the

following.
Φ(ι(u)) =

∑
u′∈A∗∗

≤�

ϕu,u′Φ(ι(u′)), u ∈ A∗∗.

Let us define a semi-norm ‖ · ‖V,n, n ≥ 1, on C∞
b (RN ;R) by

‖ f ‖V,n=
n∑

k=1

∑
u1,...,uk∈A∗∗,‖u1···uk‖=n

‖ Φ(ι(u1) · · · ι(uk))f ‖∞ .

Here ‖ f ‖∞ = sup{|f(x)|; x ∈ RN}.
Now let us define a semigroup of linear operators {Pt}t∈[0,∞) by

(Ptf)(x) = E[f(X(t, x))], t ∈ [0,∞), f ∈ C∞
b (RN).

Let us think of a family {Q(s); s ∈ (0, 1]} of linear operators in Cb(R
N).
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Definition 1 We say that Q(s), s ∈ (0, 1], is m-similar, m ≥ 1, if there are a constant
C > 0 and M ≥ m + 1 such that

‖ Psf − Q(s)f ‖∞≤ C(
M∑

k=m+1

sk/2 ‖ f ‖V,k +s(m+1)/2 ‖ ∇f ‖∞),

‖ Q(s)f − Psf ‖∞≤ Cs1/2 ‖ ∇f ‖∞,

and
‖ Q(s)f ‖∞≤ exp(Cs) ‖ f ‖∞

for any s ∈ (0, 1], and f ∈ C∞
b (RN ;R).

Definition 2 (1) We say that an L((A))-valued random variable ξ is L∞−, if

E[‖ jn(ξ) ‖n
2 ] < ∞ for any n ≥ 1.

(2) We say that an L((A))-valued random variable ξ is m-L-moment similar, m ≥ 2, if
jm(ξ) is L∞−,

〈ξ, v0〉 = 1 a.s.,

and if
E[jm(exp(ξ))] = E[jm(X(1))].

Our main results are the following.

Theorem 3 Let m ≥ 1 and ξ be an L((A))-valued m-L-moment similar random variable.
Also, let Y : (0, 1]×RN ×Ω → RN be a measurable map such that Y (s, ·, ω) : RN → RN

is continuous for any s ∈ (0, 1] and ω ∈ Ω, and

sup
s∈(0,1],x∈RN

s−(m+1)/2E[|Y (s, x)|] < ∞.

Let us define linear operators Q(s), s > 0, in Cb(R
N ) by

(Q(s)f)(x) = E[f(exp(Φ(jm(Ψs(ξ))))(x) + Y (s, x))], f ∈ Cb(R
N).

Then {Q(s); s ∈ (0, 1]} is m-similar.

Theorem 4 Assume that the family of vector fields satisfies the condition (UFG). Let
m ≥ 1 and Q(s), s > 0, be an m-similar family of linear operators in Cb(R

N ). Also, let

T > 0 and γ > 0, tk = t
(n)
k =

kγT

nγ
, n ≥ 1, k = 0, 1, . . . , n, and let sk = s

(n)
k = tk − tk−1,

k = 1, . . . , n. Then we have the following.
For γ ∈ (0,m − 1), there is a constant C > 0 such that

‖ PT f − Q(sn)Q(sn−1) · · ·Q(s1)f ‖∞≤ Cn−γ/2 ‖ ∇f ‖∞, f ∈ C∞
b (RN ), n ≥ 1.

For γ = m− 1, there is a constant C > 0 such that

‖ PT f − Q(sn)Q(sn−1) · · ·Q(s1)f ‖∞≤ Cn−m−1
2 log(n + 1) ‖ ∇f ‖∞,

f ∈ C∞
b (RN ), n ≥ 1.

For γ > m− 1, there is a constant C > 0 such that

‖ PT f − Q(sn)Q(sn−1) · · ·Q(s1)f ‖∞≤ Cn−m−1
2 ‖ ∇f ‖∞, f ∈ C∞

b (RN), n ≥ 1.
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2 Proof of Theorem 4

First, note the following (cf. [4]).

Theorem 5 Assume that the family of vector fields satisfies the condition (UFG). Then
for any n ≥ 2 there is a constant C > 0 such that

‖ Ptf ‖V,n≤ C

t(n−1)/2
‖ ∇f ‖∞, f ∈ C∞

b (RN), t ∈ (0, 1].

Now let us prove Theorem 4. Note that for k = 2, . . . , n, and � ≥ m + 1,

s
�/2
k

t
(�−1)/2
k−1

= T 1/2 (
∫ k
k−1 γsγ−1ds)�/2

nγ/2(k − 1)(�−1)γ/2
≤ T 1/2γ�n−γ/2(k − 1)(γ−�)/2((

k

k − 1
)γ−1 ∨ 1).

So we have
‖ PT f − Q(sn) · · ·Q(s1)f ‖∞

≤
n∑

k=1

‖ Q(sn) · · ·Q(sk+1)Ptkf − Q(sn) · · ·Q(sk)Ptk−1
f ‖∞

≤ eCT
n∑

k=1

‖ Psk
Ptk−1

f − Q(sk)Ptk−1
f ‖∞

≤ CeCT (
n∑

k=2

(
M∑

�=m+1

s
�/2
k ‖ Ptk−1

f ‖V,� +s
(m+1)/2
k ‖ ∇Ptk−1

f ‖∞) + s
(m+1)/2
1 ‖ ∇f ‖∞)

≤ C1(
n∑

k=2

(
M∑

�=m+1

s
�/2
k

t
(�−1)/2
k−1

) +
n∑

k=1

s
(m+1)/2
k ) ‖ ∇f ‖∞

≤ C2(n
−γ/2

n∑
k=2

(k − 1)(γ−(m+1))/2 + n−(m+1)/2) ‖ ∇f ‖∞ .

So we have the assertions in Theorem 4.

3 Algebraic Structure of itterated integrals

We define a metric function dis over R〈〈A〉〉 by

dis(w1, w2) =
∑

u∈A∗
(d + 2)−|u|(1 ∧ |a1,u − a2,u|)

for wi =
∑

u∈A∗ ai,uu, i = 1, 2, ai,u ∈ R, u ∈ A∗. Then R〈〈A〉〉 becomes a Polish space.
Let B(R〈〈A〉〉) be a Borel algebra over R〈〈A〉〉.

Let (Ω,F , P ) be a complete probability space. One can define R〈〈A〉〉-valued random
variables and their expectaions etc. naturally. Let {Ft}t∈[0,∞) be a filtration satisfying a
usual hypothesis, (B1(t), . . . , Bd(t)), t ∈ [0,∞), be a d-dimensional {Ft}t∈[0,∞)-Brownian
motion, and B0(t) = t, t ∈ [0,∞). We say that X(t) is an R〈〈A〉〉-valued continuous
semimartingale, if there are continuous semimartingales Xu, u ∈ A∗, such that X(t) =
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∑
u∈A∗ Xu(t)u. For R〈〈A〉〉-valued continuous semimartingale X(t), Y (t), we can define

R〈〈A〉〉-valued continuous semimartingales
∫ t
0 X(s) ◦ dY (s) and

∫ t
0 ◦dX(s)Y (s) by

∫ t

0
X(s) ◦ dY (s) =

∑
u,w∈A∗

(
∫ t

0
Xu(s) ◦ dYw(s))uw,

∫ t

0
◦dX(s)Y (s) =

∑
u,w∈A∗

(
∫ t

0
Yw(s) ◦ dXu(s))uw,

where
X(t) =

∑
u∈A∗

Xu(t)u, Y (t) =
∑

w∈A∗
Yw(t)w.

Then we have

X(t)Y (t) = X(0)Y (0) +
∫ t

0
X(s) ◦ dY (s) +

∫ t

0
◦dX(s)Y (s).

Since R is regarded a vector subspace in R〈〈A〉〉, we can define
∫ t
0 X(s) ◦ dBi(s),

i = 0, 1, . . . , d, naturally.
Now let us consider the following SDE on R〈〈A〉〉

X(t) = 1 +
d∑

i=0

∫ t

0
X(s)vi ◦ dBi(s), t ≥ 0. (2)

One can easily solve this SDE and obtains

X(t) =
∑

u∈A∗
B(t; u)u.

We also have the following.

Proposition 6 log X(t) ∈ L((A)), t ≥ 0, with probability one.

Proof. Note that

δ(X(t)) = 1 ⊗ 1 +
d∑

i=0

∫ t

0
δ(X(s))(vi ⊗ 1 + 1 ⊗ vi) ◦ dBi(s),

and

X(t) ⊗ X(t) = 1 ⊗ 1 +
∫ t

0
◦d(X(s) ⊗ 1)(1 ⊗ X(s)) +

∫ t

0
(X(s) ⊗ 1) ◦ d(1 ⊗ X(s))

= 1 ⊗ 1 +
d∑

i=0

∫ t

0
X(s) ⊗X(s)(vi ⊗ 1 + 1 ⊗ vi) ◦ dBi(s).

Here δ is the coproduct (see [9] p.19). Since one can easily see the uniqueness of such
SDE on R〈〈A〉〉, we have

δ(X(t)) = X(t) ⊗ X(t).

Then we have our assertion from [9] Theorem 3.2.
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Proposition 7 For any m, n ≥ 1, and x ∈ L((A)) with 〈x, 1〉 = 0,

jm(πn exp(x)) = πn(jm exp(x)).

Here πn is the canonical projection (see [9] p.57-61).

Proof. Let x ∈ L((A)) with 〈x, 1〉 = 0. Then there are xk ∈ L(A)k, k = 1, 2, . . . , such
that x =

∑∞
k=0 xk. Then we see that

exp(x) = 1 +
∞∑

�=1

1

(�!)2

∑
k1,...k�

∑
σ∈S�

xkσ(1)
· · ·xkσ(�)

.

One can easiely see that

jm(πn(
∑
σ∈S�

xkσ(1)
· · ·xkσ(�)

)) = πn(jm(
∑
σ∈S�

xkσ(1)
· · ·xkσ(�)

)).

So we have our assertion.
Let Em = L(A)≤m ∩ (

∑
u∈A∗∗ Ru), m ≥ 1, and let Φm : Em → R〈A〉≤m, m ≥ 2, be an

algebraic map given by

Φm(x) = jm(exp(x + v0)), x ∈ Em.

Then by Proposition 7, we see that

π1(Φm(x)) = x + v0, x ∈ Em.

So we see that Φm is an immersion and Φm(Em) is a closed manifold in R〈A〉≤m of
dimensions dim Em.

Lemma 8 The distribution of jm(log X(1) − v0) on Em is absolutely continuous and its
density is smooth for any m ≥ 2.

Proof. This lemma is somehow well-known in Malliavin calculus, so we give a sketch
of a proof only. Let Y = jm(log X(1) − v0). Let H be the Cameron-Martin space of d-
dimensional Wiener process, that is, H is the Hilbert space consisting of h = (h1, . . . , hd) :
[0,∞) → R such that hi(t), i = 1, . . . , d, are absolutely continuous in t, and

‖ h ‖2
H=

d∑
i=1

∫ ∞

0
| d

dt
hi(t)|2dt < ∞.

Then we see that for each h ∈ H

D(X(t))(h) =
d∑

i=0

∫ t

0
D(X(s))(h)vi ◦ dBi(s) +

d∑
i=1

∫ t

0
X(s)vi

d

ds
hi(s)ds,

and so we have

D(X(t))(h)X(t)−1 =
d∑

i=1

∫ t

0
X(s)viX(s)−1 d

ds
hi(s)ds, t ≥ 0.
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Note that for w ∈ R〈A〉

X(t)wX(t)−1 = w +
d∑

i=0

∫ t

0
X(s)[vi, w]X(s)−1 ◦ dBi(s), t ≥ 0.

Then we have

jm(D(X(T ))(h)X(T )−1) =
d∑

i=1

∫ T

0
(

∑
u∈R〈A〉≤m−1

B(t; u)�(uvi))
d

ds
hi(t)dt, T ≥ 0.

Here � is an operator defined in [9] . Then by the usual argument (e.g. [4]), we see that

E[inf{‖ 〈jm(D(X(1))(·)X(1)−1), w〉 ‖H∗ ; w ∈ Em, 〈w,w〉 = 1}−p] < ∞, p ∈ (1,∞).

Note that jm(X(1)) = Φm(Y ). So we have our assertion from Taniguchi [10].

4 Proof of Theorem 3

For any vector field V ∈ C∞
b (RN ;RN) on RN , let us think of ODE given by

d

dt
x(t, x) = V (x(t, x)), t > 0,

x(0, x) = x ∈ RN ,

and let us define a diffeomorphism exp(V ) : RN → RN by exp(V )(x) = x(1, x). Then we
have

d

dt
f(exp(tV )(x)) = (V f)(exp(tV )(x))

for any f ∈ C∞(RN).
So we have the following.

Proposition 9 For any vector field V ∈ C∞
b (RN ;RN),

f(exp(tV )(x)) =
n∑

k=0

tk

k!
(V kf)(x) +

∫ t

0

(t − s)n

n!
(V n+1f)(exp(sV )(x))ds,

for any n ≥ 1, t > 0, x ∈ RN and f ∈ C∞(RN). In particular,

|f(exp(V )(x)) −
n∑

k=0

1

k!
(V kf)(x)| ≤ 1

(n + 1)!
‖ V nf ‖∞,

for any n ≥ 1, x ∈ RN and f ∈ C∞(RN).

Corollary 10 Let z ∈ L((A)) and n, m ≥ 1. Then we have

|f(exp(Φ(jmz))(x)) −
n∑

k=0

1

k!
(Φ((jmz)k)f)(x)| ≤ 1

(n + 1)!
‖ Φ((jmz)n+1)f ‖∞,

for any x ∈ RN and f ∈ C∞(RN).
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Then we have the following.

Lemma 11 Let z1, z2 ∈ L((A)) and m ≥ 1. Then we have

|f(exp(Φ(jmz1))(exp(Φ(jmz2))(x)) − ∑
k+�≤m

1

k!�!
(Φ((jmz2)

k(jmz1)
�f)(x)|

≤
m∑

�=0

1

�!(m + 1 − �)!
‖ Φ((jmz)m+1−�(jmz1)

�)f ‖∞,

for any x ∈ RN and f ∈ C∞(RN).

Proof. Note that

|f(exp(Φ(jmz1))(x)) −
m∑

�=0

1

�!
(Φ((jmz1)

�)f)(x)| ≤ 1

(m + 1)!
‖ Φ((jmz1)

m+1)f ‖∞,

and

|(Φ((jmz1)
�)f)(exp(Φjmz2)(x)) −

m−�∑
k=0

1

k!
(Φ((jmz2)

k(jmz1)
�)f)(x)|

≤ 1

(m + 1 − �)!
‖ Φ((jmz2)

m+1−�(jmz1)
�)f ‖∞ .

Thus we have our assertion.

Corollary 12 Let z1, z2 ∈ L((A)) and m ≥ 1. Then we have

|f(exp(Φ(jmz1))(exp(Φ(jmz2))(x)) − (Φ(jm(exp(jmz2) exp(jmz1)))f)(x)|

≤ ∑
2≤k+�≤m+1

1

�!k!
‖ Φ((jmm+1 − jm)((jmz2)

k(jmz1)
�))f ‖∞,

for any x ∈ RN and f ∈ C∞(RN).

Proof. Note that
jm(exp(jmz2) exp(jmz1))

=
∑

k+�≤m

1

k!�!
(jmz2)

k(jmz1)
� − ∑

2≤k+�≤m

1

�!k!
(jmm+1 − jm)((jmz2)

k(jmz1)
�),

and
m∑

�=0

1

�!(m + 1 − �)!
(jmz)(m+1−�)(jmz1)

�

=
∑

k+�=m+1

1

�!k!
(jmm+1 − jm)((jmz2)

k(jmz1)
�).

So we have our assertion.
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Lemma 13 For any n ≥ 1, there is a Cn > 0 such that

‖ Φ(jnz)f ‖∞≤ Cn ‖ jnz ‖2‖ ∇f ‖Cn−1

for any z ∈ L((A)) and f ∈ C∞(RN ). Here

‖ f ‖Cn=‖ f ‖∞ +
n∑

k=1

N∑
α1,...,αk=1

‖ ∂k

∂xα1 · · · ∂xαk
f ‖∞, n ≥ 0.

Proof. For each w ∈ A∗ \ {1}, there exists a Cw > 0 such that

‖ Φ(w)f ‖∞≤ Cw ‖ ∇f ‖C|w|−1

for any f ∈ C∞(RN). Then we have

‖ Φ(jnz)f ‖∞≤ ∑
w∈A,1≤‖w‖≤n

Cw|〈z, w〉| ‖ ∇f ‖∞ .

This implies our assertion.

Lemma 14 For any m ≥ 1, there is a Cm > 0 such that

|f(exp(Φ(jmΨsz1))(exp(Φ(jmΨsz2))(x))

−f(exp(Φ(jm(log(exp(jmΨsz2) exp(jmΨsz1))))(x))|
≤ Cms(m+1)/2(1+ ‖ jmz1 ‖2 + ‖ jmz2 ‖2)

m2(m+1) ‖ ∇f ‖Cm

for any s ∈ (0, 1], z1, z2 ∈ L((A)) and f ∈ C∞(RN).

Proof. Let w = log(exp(jmz2) exp(jmz1)). Then we have

Ψsw = log(exp(jmΨsz2) exp(jmΨsz1))

and
jm exp(jmΨsw) = jm(exp(jmΨsz2) exp(jmΨsz1)).

Then letting z1 = w and z2 = 0 in Corollary 12, we have

|f(exp(Φ(jmΨsw))(x)) − (Φ(jm(exp(jmΨsw)))f)(x)|

≤
m+1∑
k=2

1

k!
‖ Φ((jmm+1 − jm)((jmw)k))f ‖∞ .

Therefore by Corollary 12, there is a C > 0

|f(exp(Φ(jmΨsz1))(exp(Φ(jmΨsz2))(x)) − f(exp(Φ(jmΨsw))(x))|
≤ C(

∑
2≤k+�≤m+1

‖ (jmm+1 − jm)((jmΨsz2)
k(jmΨsz1)

�) ‖2

+
m+1∑
k=2

‖ (jmm+1 − jm)((jmw)k)) ‖2) ‖ ∇f ‖Cm
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for any s ∈ (0, 1] and f ∈ C∞(RN). Note that

‖ (jmm+1 − jm)((jmΨsz2)
k(jmΨsz1)

�) ‖2≤ s(m+1)/2 ‖ (jmz2)
k(jmz1)

� ‖2

≤ s(m+1)/2 ‖ jmz2 ‖k
2‖ jmz1 ‖�

2

and that

‖ jmw ‖2=‖ jm(
m∑

i=1

(−1)i−1

i
(

∑
1≤k+�≤m

1

k!�!
(jmz2)

k(jmz1)
�))i) ‖2

≤
m∑

i=1

(
∑

1≤k+�≤m

‖ jmz2 ‖k
2‖ jmz1 ‖�

2)
i.

These imply our assertion.

Corollary 15 Let ξ1, ξ2 be L((A))-valued L∞− random variable. Then for any m ≥ 1
and p ∈ [1,∞), there is a C > 0 such that

‖ exp(Φ(jmΨsξ1))(exp(Φ(jmΨsξ2))(x))

− exp(Φ(jm(log(exp(jmΨsξ2) exp(jmΨsξ1))))(x) ‖Lp≤ Cs(m+1)/2

for any s ∈ (0, 1] and x ∈ RN .

Proof. Let f(x) = xi, x = (x1, . . . , xN) ∈ RN . Then we have ‖ ∇f ‖Cn= 1. Applying
Lemma 14, we have our assertion.

Proposition 16 (1) For any m ≥ 1 and f ∈ C∞(RN),

f(X(t, x)) = (Φ(jmX(t))f)(x)

+
∑ ′

∫ t

0
◦dBi1(s1)

∫ s1

0
◦dBi2(s2) · · ·

∫ sn−1

0
◦dBin(sn)(Vin . . . Vi1f)(X(sn, x)).

Here
∑′ is the summation taken for i1, . . . , in = 0, 1, . . . , N such that ‖ vin−1vin−2 . . . vi1 ‖≤

m and ‖ vin−1vin−2 . . . vi1 ‖≥ m + 1.
(2) For any m ≥ 1 and p ∈ [1,∞), there is a C > 0 such that

‖ f(X(t, x)) − (Φ(jm(X(t)))f)(x) ‖Lp≤ Ct(m+1)/2 ‖ ∇f ‖Cm+1

for any t ∈ (0, 1] and f ∈ C∞(RN).

Proof. The assertion (1) is easy to prove by induction in m. The assertion (2) follows
from the fact that ∫ sn−1

0
◦dBin(sn)(Vin . . . Vi1f)(X(sn, x))

=
∫ sn−1

0
(Vin . . . Vi1f)(X(sn, x))dBin(sn) +

1

2

N∑
j=1

δjin

∫ sn−1

0
(VjVin . . . Vi1f)(X(sn, x))dsn.

This completes the proof.
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Corollary 17 For any m ≥ 1, there is a C > 0 such that

|E[f(X(s, x))] − E[f(exp(Φ(jmΨs log X(1))))(x)]| ≤ Cs(m+1)/2 ‖ ∇f ‖∞
for any x ∈ RN , s ∈ (0, 1] and f ∈ C∞

b (RN ).

Proof. Let H(x) = x, x ∈ RN . Then by Proposition 16 (2), there is a C1 > 0 such
that

‖ X(s, x) − (Φ(jm(X(s)))H)(x) ‖L1≤ C1s
(m+1)/2, x ∈ RN , s ∈ (0, 1].

So we see that

|E[f(X(s, x))] − E[f((Φ(jm(X(s)))H)(x))]| ≤ C1s
(m+1)/2 ‖ ∇f ‖∞, x ∈ RN , s ∈ (0, 1].

Also by Corollary 12 we have

| exp(Φ(jmΨs log X(1)))(x) − (Φ(jm(ΨsX(1)))H)(x)|

≤
m+1∑
k=2

1

k!
s(m+1)/2 ‖ Φ((jmm+1 − jm)((jm log X(1))k))H ‖∞, x ∈ RN , s ∈ (0, 1].

So we see that there is a C2 > 0 such that

‖ exp(Φ(jmΨs log X(1)))(x) − (Φ(jm(ΨsX(1)))H)(x) ‖L1≤ C2s
(m+1)/2

for any x ∈ RN , s ∈ (0, 1], which implies that

|E[f(exp(Φ(jmΨs log X(1)))(x))] − E[f((Φ(jm(ΨsX(1)))H)(x))]| ≤ C2s
(m+1)/2 ‖ ∇f ‖∞

for any x ∈ RN , s ∈ (0, 1]. Since jm(X(s)) and jmΨsX(1) has the same law, we have our
assertion.

Lemma 18 Let m ≥ 2 and ξ is a m-L-similar L((A))-valued random variable. Then
there is a constant C > 0 such that

|E[f(X(s, x))] −E[f(exp(Φ(jmΨsξ))(x))]|

≤ C(
mm+1∑
k=m+1

sk/2 ‖ f ‖V,k +s(m+1)/2 ‖ ∇f ‖∞)

for any s ∈ (0, 1] and f ∈ C∞
b (RN ).

Proof. Let η0 = log(exp(−v0)X(1)) and η1 = log(exp(−v0) exp(ξ)). Then η0 and η1

are L((A))-valued L∞− random variable and we see that

E[jm(exp(η0))] = E[jm(exp(−v0)jm(X(1)))]

= E[jm(exp(−v0)jm(exp(ξ))] = E[jm(exp(η1))].
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Note that jm(ηi) ∈ L(A) ∩ (
∑

w∈A∗∗ Rw), i = 0, 1. So there is a C1 > 0 such that

‖ Φ((jmm+1 − jm)(jmΨsηi)
�)f ‖∞≤ C1

mm+1∑
k=m+1

sk/2 ‖ f ‖V,k

for any i = 0, 1, s ∈ (0, 1] and f ∈ C∞
b (RN). So we see that there is a C2 > 0 such that

‖ f(exp(Φ(jmΨsηi))(y))− (Φ(jm(exp(jmΨsηi))f)(y) ‖L1≤ C2

mm+1∑
k=m+1

sk/2 ‖ f ‖V,k

for any i = 0, 1, s ∈ (0, 1], y ∈ RN , and f ∈ C∞
b (RN). However,

E[Φ(jm(exp(jmΨsηi))f)(y)], i = 0, 1 are coincident. So letting y = exp(Φ(jmΨsv0))(x),
we have

|E[f(exp(Φ(jmΨsη0))(exp(Φ(jmΨsv0))(x)))]

−E[f(exp(Φ(jmΨsη1))(exp(Φ(jmΨsv0))(x)))]| ≤ 2C2

mm+1∑
k=m+1

sk/2 ‖ f ‖V,k

for any x ∈ RN , and f ∈ C∞
b (RN ). Note that

jm log(exp((jmv0))(exp(jmηi))) = jm log(exp(v0)(exp(ηi))), i = 0, 1.

Then by Corollaries 15 and 17, we have our assertion.
This completes the proof.
Now Theorem 3 follows from Lemma 18, since

|E[f(exp(Φ(jmΨsξ))(x))]| − E[f(exp(Φ(jmΨsξ))(x) + Y (s, x))]| ≤ E[|Y (s, x)|] ‖ ∇f ‖∞ .

This completes the proof of Theorem 3.
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