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Principal series Whittaker functions on SL(3,R)

HiroYUukt MANABE, Taku ISHII, AND TAKAYUKI ODA

Introduction

The origin of this paper is the master thesis [1] of the first named author Manabe, who ob-
tained the holonomic systems for the A-radial part of (non-spherical) principal series Whit-
taker functions on SL(3,R), and also the formal power series solutions of this holonomic
system. The untimely disease made it impossible for him to develop this research further.

The last named author who has been the advisor of this thesis asked the second named
author Ishii, to push forward this study to have integral expressions of the solutions for the
holonomic systems mentioned above, and other related results.

The study of Whittaker models of algebraic groups over local fields has already some
history. The Jacquet integral is named after the investigation of H.Jacquet [9]. Multiplicity
free theorem by J.Shalika for quasi-split groups, was later enhanced for the case of the real
field by N.Wallach. For reductive groups over the real field, this theme was investigated by
M.Hashizume [6], B.Kostant, D. Vogan, H.Matsumoto, and the joint work of R.Goodman
and N.Wallach [5].

More specifically GL(n,R), explicit expressions for class 1 Whittaker functions are ob-
tained, firstly for n = 3 by D.Bump [2]. The main contributor for the case of general n seems
to be E.Stade. Other related results will be found in the references of the papers of him
([12],(13)).

Let us explain the outline of this paper. The purpose of the master thesis [1] refered
above is to investigate the Whittaker functions belonging to the non-spherical principal series
representations of SL(3,R). The minimal K-type of such representations is 3-dimensional.
So we have to consider vector-valued functions. The main results are, firstly, to obtain
the holonomic system of the A-radial part of such Whittaker functions with minimal K-
type explicitly (§4), and secondly to have 6 formal solutions (§5, Theorem (5.5)), which are
considered as examples of confluent hypergeometric series of two variables. We also have
integral expressions of these 6 solutions(§5, Theorem (5.6)). In the subsequent section, the
Jacquet integral (so to say, the primary Whittaker function) is written as a sum of these
6 secondary Whittaker functions (§6-8). We believe these formulae obtained in this paper
would be fundamental for deeper studies of these functions.

This year happens to be the centennial of the first edition of A Course of Modern Analysis
[17] by Whittaker and Watson. We, the user of this fascinating book, are glad to be able to
investigate the As-type Whittaker functions rather explicitly and exhaustively, together with
the study BCs-case by the authors [11], [8].

The authors thank the referee for careful reading to correct a number of typographic
errors in an earlier draft of this paper.

1 Preliminaries. Basic terminology

1.1 Whittaker model

Given an irreducible admissible representation (7, H) of G = SL(3,R), we consider its model
or realization in the space of Whittaker functions. This means, for a non-degenerate unitary
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character ¢ of a maximal unipotent subgroup N = {| 0 1 x| € G} of G defined by
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with c1,co € R being non-zero, we consider a smooth induction COO—Ind%(w) to G, and the
space of intertwining operators of smooth G-modules

Homg (Hoo, C®-Ind§ (v))

with H, the subspace consisting of C°°-vectors in H. Or more algebraically speaking,
we might consider the corresponding space in the context of (g, K)-modules (with g =
Lie(G), K = SO(3)):

Hom g ) (Hoo, C**-Ind (1)).

1.2 Principal series representations

Let Py be a minimal parabolic subgroup of G given by the upper triangular matrices in GG, and
Py = M AN be a Langlands decomposition of Py with M = K Nn{diagonals in G}, A = expa,
with

a= {diag(tl,tg,tg)‘ti eR,t1+ty+13= O}

In order to define a principal series representation with respect to the minimal parabolic
subgroup Py of G, we firstly fix a character o of the finite abelian group M of type (2,2)
and a linear form v € a* ®g C = Homg(a,C). We write v(diag(ti,te,t3)) = v1t; + vata.
For such data, we can define a representation o ® e” of M A, and extend this to Py by the
identification Py/N = M A. Then we set

Moy = L2-Indg0(a R’ ®1y).

Here p is the half-sum of positive roots of (g,a) for Py, given as follows. For i < j (1 <
i,j < 3), we put n;j(a) = a;j/a; for a = diag(ai,az,a3) (ajagas = 1). Then we have
a*l = [licjai/a; = a?/a% = a}a3 by definition. Hence a” = a?as.

Here the characters o; of M are identified as follows. The group M consisting of 4
elements is a finite abelian group of (2,2) type, and its elements except for the unity is given

by the matrices

1 0 0 -1 0 0 -1 0 O
my = 0 -1 0 , Mo = 0 1 0 , M3 = 0 -1 0
0 0 -1 0 0 -1 0 0 1

Since M is commutative, all the irreducible unitary representations of it is 1-dimensional.
For any o € M, we have 02 = 1. Therefore the set M consisting of 4 characters {oj:j=
0,1,2,3}, where each o, except for the trivial character oy, is specified by the following table
of values at the elements m;.

mi1 | Mg | M3
o1 11 -1 -1
oy | -1 1] -1
o3| -1| -1 1




Proposition (1.1) (i) If o is the trivial character of M, the representation m, is spherical
or class 1, i.e., it has a (unique) K -invariant vector in the representation space Hy .

(ii) If o is not trivial, then the minimal K-type of the restriction 7y, to K is a 3-
dimensional representation of K = SO(3), which is isomorphic to the unique standard one
(12, V). The multiplicity of this minimal K -type is one:

dimc Homg (12, Hyy) = 1,
namely there is a unique non-zero K-homomorphism
L (7—27 Vé) - (WU,V‘K7 HU,I/)

up to constant multiple.

2 Representations of K = SO(3)

2.1 The spinor covering

To describe the finite dimensional irreducible representations of SO(3), the simplest way
seems to utilize the double covering s : SU(2) = Spin(3) — SO(3), which is realized as
follows.

The Hamilton quaternion algebra H is realized in My(C) by

a

H = {(_“b b> € My(C)la,b € C}.

Then SU(2) is the subgroup of the multiplicative group consisting of quaternions with reduced
norm 1, i.e.,

SU(2) = {z € H|detx = 1}.

Let P = {# € Hl|trx = 0} be the 3-dimensional real Euclidean space consisting of pure
quaternions. Then for each x € SU(2), the map

peP—z-p-zteP
preserve the Euclid norm p +— det p and the orientation, hence we have a homomorphism
s:8U(2) — SO(P,det) = SO(3),
which is surjective, since the range is a connected group. The kernel of this homomorphism

is given by {£1s}.
By the derivation of s ds : su(2) — s0(3), the standard generators:

= (0 i) e (G ) (& %)

are mapped to 2K71,2K5,2K3 with

00 0 0 0 1 0 -1 0
Ki=[00 -1],Ka=|0 00| ,K3=(1 0 0]ece,
01 0 -1 0 0 0 0 0

respectively. Here € is the Lie algebra of K.



2.2 Representations of SU(2)

The set of equivalence classes of the finite dimensional continuous representations of SU(2) is
exhausted by the symmetric tensor products 7; (I = 0,1, ... ,) of the standard representation.
These are realized as follows.

Let V; be the subspace consisting of degree [ homogeneous polynomials of two variables

x,y in the polynomial ring C[z,y]. For g € SU(2) with g~ = (_ab z>, and f(z,y) € V; we
set

71(9)f (2, y) = f(az + by, —bx + ay).

Passing to the Lie algebra Lie(SU(2)) = su(2), the derivation of 7;, denoted by the same
symbol, is described as follows by using the standard basis {v, = z¥y'=* (0 < k < 1)} and
the standard generators

w= (G0 )= (0 ) = (YY)

Namely we have
Ti(up)vg = V=11 = 2k)vg, 7(Xi)vg = —k)vgsr, 7(X_)vp = —k-vp_1.

Here we put X = 3(up + v/—Tug), X_ = 3(up — v/—Tus).

The condition that 7; defines a representation of SO(3) by passing to the quotient with
respect s : SU(2) — SO(3) is that 7y(—12) = (—1)! = +1, i.e., [ is even. Therefore the
dimension of Vi, [ 4+ 1 is odd in this case.

The representation 75 of SU(2) is equivalent to the spinor homomorphism. Hence passing
to the quotient, 7» is equivalent to the tautological representation SO(3) — GL(3,C).

2.3 Irreducible components of 7, ® 7, and 7, ® Ad,

For our later use, we want to specify the standard basis of the unique irreducible constituent
To in the tensor product 7 ® 74.

Lemma (2.1) Let {v; (i =0,1,2)} and {w; (0 < j < 4)} be the standard basis of (72, Va)
and (14, Vy), respectively. Then the elements

vy = 0o ®@wa — 201 ® wy + va ® wo,
v = 0o @ ws — 201 ® wy + vy @ wy,
vy = v ®wy — 201 @ w3 + vy Wy

define a set of standard basis in o C 1o @74, which is unique up to a common scalar multiple.
Proof. We have

X_v6 = X_v®@ws+vgR®X_wy—2X_11 @wip — 201 @ X_wy1 +X_vo @ wy + v2 @ X_wy
= 041 ® (=2)w; 4 200 @ w1 — 201 @ (—1)wy + (—2)v1 @ wo + 0
= 0.

This means that v, is the lowest weight vector of some irreducible subrepresentation in the
tensor product. By a similar computation we have

Xyv) =20, X o] =vh, and X vh = 0.



2.4 The K-module isomorphism between pc and V,

We denote by pc the complexification of the orthogonal complement p of ¥ with respect to
the Killing form, on which the group K acts via the adjoint action Ad,. We denote by Ej;
the matrix unit with 1 at (¢, 7)-th entry and 0 at other entries. Then E;; and E;; + Ej; are
considered as elements in p. We set H;; = E;; — Ej; for i # j.

Lemma (2.2) Via the unique isomorphism Vi and pc as K-modules we have the identifi-

cation
wy = —2{Hay3 —+/—1(Fa3 + E32)},
wy = V=1{(Ei2 + En) — vV-1(Es + Es1)},
wy = 2(Hyz+ Hig),
w3 = =1{(Ei2 + Exn) +V—1(E13 + Es1)},
wy = —2{Hoz+v/—1(E23 + E32)}.

Proof. This can be confirmed by direct computation. The adjoint action of %ul on the right
hand side of the third formula reads

2
[Klv gdlag(2, _17 _1)] =0.

Applying the adjoint actions of X on these elements, we can confirm other identification. O

3 Principal series (g, K )-modules

3.1 The case of the class one principal series
3.1.1 The Capelli elements

A set of generators for the center Z(g) of the universal enveloping algebra U(g) of g = sl3 is
obtained as Capelli elements, because sl3 is of type Az (cf. [7, §11]).
Let

En—— ZEaa 1= By (i #9).
Then Egj € g. Define a matrix C of size 3 Wlth entries in g by
En By B
C=|E5 Ej Ey|+diag(-1,0,1).
By Eyy Ey
Then for
A= (Aijh<ij<s = x- 13 = C € Mz(glz]) C M3(U(g)[z]),
we define its vertical determinant by
det | (A) = > sgn(0)A1o(1) A2o(2) Aso(s)-
ceB3
Then it is written in the form 23 + Cpax — Cps € U(g)[x] with some elements Cpy and Cps
in Z(g).
Proposition (3.1) The set {Cp2,Cps} is a system of independent generators of Z(g). Here
are explicit formulae of Cps and Cps:
Cpy = (En —1)Ey + Eg(Ess +1) + (B — 1)(Ess + 1)
—Ea3Es3y — E13E31 — ErgFon,
Cps = (B} — 1)E5 (B3 + 1) + E1oEas B3 + Er3Ea Esp
—(Eqy — 1)Ea3Esy — E13FES, Es1 — E19F9 (Ehs + 1).



3.1.2 Reduction of Capelli elements

For the class one principal series, 0 = o is the trivial character of M. Let fy be the element
generating the minimal K-type in Hg, , normalized such that fo|K = 1.

To compute the infinitesimal character of our 7, ,,, we investigate the action of the Capelli
elements Cpo, Cps on fy. By simple computation, we have

Cpa = (B —1)Ey + Ey(Es33 + 1) + (B — 1)(E33 + 1)
—E3; — B}y — B}y — 5Fo3u1 + $Ei3us — 5 E1aus.
Therefore we have

Cpy = (Ey — 1)Ey + Ey(Ess + 1) + (EYy — 1)(E33 +1)
—E3, — B, — E%, (modU(g)t).

By similar computation we have

Cps = (B} — 1)Eyy(Ehs + 1) + E19EosEr3 + E13E19Eq3 — E,
—E53(Eyy — 1) = Efy By — Efy(Ejy +1) (modU(g)e).

3.1.3 Eigenvalues of Cps, Cps

We want to compute the value Cpafo(e) and Cpsfo(e). For elements X in n = Lie(NN) we

have X fo(e) = 0. Hence it suffices to check the first terms of Cps and Cps. We have
Eifole) = 3(2En — B — E33) fo(e)

Hi + H3) fo(e)

21 +p1) — (v2 + p2)}

(21/1 — Uy + 3) = %(21/1 — VQ) + 1.

O 00 | L0 00| =
=

Similarly
, 1 , 1 1
E fole) = §(2y2 — 1) and E55fp(e) = —g(ul +1v9+3) = —g(Vl + o) — 1.

Therefore ) ) 1
Cpafole) = 52(5(21/1 — 1), §(2V2 —v1), g(Vl + 1))

and

Cpsfole) = 53(é(2yl — ), é(% — ), é(m ).

Here S3(a,b,c) = ab+ be + ca and Ss(a, b, c) = abe are the elementary symmetric functions
of three variables of degree 2 and 3, respectively.
Now summing up the above computation, we have the following.

Proposition (3.2) The infinitesimal character of 7y, , is given by

1 1 1
Cpafo= 52(5(21/1 — 1), §(2V2 — 1), _g(Vl +12)) fo

and
1 1 1
Cpsfo= 53(5(21/1 — 1), §(2V2 —v1), —g(Vl +12)) fo.



3.2 (g, K)-module structure of non-spherical principal series at the minimal
K-type

3.2.1 Construction of K-equivariant differential operators

Lemma (3.3) Let {f; (i =0,1,2)} be the set of the standard basis of the minimal K -type
T C T of a non-spherical principal series representation m,, = m. Define another three
C>-elements {p; (i =0,1,2)} by the formulae:

o = 27m(2E1 — Es — Es3)fo
—2\/—_17T(E12 + Eo1 — \/—_1(E13 + E31))f1
—27(Eg — Es3 — /—1(E23 + Es32)) f,
¢1 = V=1r(Ei2 + Eo1 +V—-1(E13 + E31)) fo
—37(2E11 — B — E33) f1
+\/—_17T(E12 + F91 — \/—_1(E13 + E31))f27
p2 = —2n(FEy — E33+v—1(Ea3 + E32)) fo
—2\/—17(E12 + Eo1 +vV—1(E13 + E31)) f1
+27(2E11 — Ego — E33) fo.

Then (¢, ¢1,p2) is a constant multiple of (fo, f1, f2).

Proof. Let ¢ : 79 C m be the injective K-homomorphism unique up to constant multiple.
Since the canonical surjection

m(pc) @ Im(e) — 7(pc) - Im(e)

is a K-homomorphism, the target space is contained in the sum of 75,74 and 74 isotypic
subspaces of m. By the previous Lemmata (2.1) and (2.2), the 3 elements {p; (i =0,1,2)}
corresponds to the image of the standard basis in the m»-isotypic component in the tensor
product 7w(pc) ® Im(¢). Since the K-type 75 occurs with multiplicity one in 7, we have the
conclusion of our lemma. a

3.2.2 Computation of eigenvalues

The previous lemma tells that there exist a scalar A(o,v) depending on o and v such that
wi = Ao,v)fi (i =0,1,2). We determine this eigenvalue A(o, ) by using explicit models of
the principal series 7, .

To do this, we have to find functions in

L*Ind} (o) = Ly, (K) = {f € L*(K)|f(mk) = o;(m) f(k) for all m € M,k € K}

corresponding to the standard basis in the minimal K-type for each i.
In the larger space L?(K), the mo-isotypic component is generated by the 9 matrix elements
si5(k) (1 <14,5 < 3) of the tautological representation

ke K+— S(k) = (Sab(k))lga,bg?) S 50(3)

It is directly confirmed that s;,(k) (b =0, 1,2) belong to the subspace L?wm(K) for each 1.
Diagonalizing the action of w1, we find that s;; corresponds to v; for each i. And finally
we find that the standard basis is given by

Vo = \/—1(82'2 — \/—181'3), V1 = Si1, and Vo =V —1(312 + V —181'3).
We need the values of these standard functions f,(k) = v, (a = 0,1,2) at the identity e € K.

Lemma (3.4) The values of the standard functions at e € K is given as follows.



L If o =01, (fo(e), fi(e), f2(e)) = (0,1,0).

2. If =03, (fole), fi(e), fo(e)) = (V=1,0,v/~1).

3. If 0 =03, (fole), f1(e), f2(e)) = (1,0, -1).

Now we can proceed to the computation of the value A(i, ).

Lemma (3.5)

4 4 4
Moy,v) = —5(21/1 —1g), Mog,v) = §(V1 —2u3), Mos,v) = g(Vl + 13).

Proof. 1f o = oy, the values of the standard functions at e € K is given by (fo(e), f1(e), f2(e)) =
(0,1,0). Hence to determine A(o,v) it suffices to compute the value p1(e) = A(o,v). Since
the principal series is the induced representation Indg0 (c®e" P ®1 N) for any element X € n
the values X f;(e) is equal to 0. Hence 7(E;; + Ej;) fi(e) = m(Ej; — Eyj) fi(e) for i < j. Thus

p1(e) = V=Ir(Eyn — E1z + V—1(Es1 — E13)) fo(e) — 3m(Hiz + His) fi(e)
+V=1n(Ey — Eig + v—1(E31 — Ei3) fa(e)

%\/—_17T(U3 —v/—1uz) fole) + % —17(ug + v—1uz) f2(e)
—3m(Hio + Hiz) fi(e)

m(Xy)fole) — m(X_) fa(e) — §7(Hiz + Hiz) fi(e)

2f1(e) +2f1(e) — 5{2(1 + p1) — (v2 + p2)} f1(e)

—4(21/1 — I/Q)fl(e).

Therefore A\(o1,v) = —%(2 — 13).
If o = 09 we have (fo(e), fi(e), fo(e)) = v—1(1,0,1). Thus by similar computation, we
have

2n(Hy2 + His) fole)
=2/ =17 (B9 — E1p — V=1(E31 — E13)) fi(e)
—27T(H23 — V=1(E32 — Eg3))fa(e))
2m(Hia + Hiz) fole) + 2m(X ) fi(e) — 2m(Hy
% m(Hiz2 + Hiz) fo(e) + (—2) fo(e) + 2f2(e) +
2{2(1 + p1) — (v2 + p2)} fole) + (—2) fole)
3201 — 12) fo(e) + (—=2)v2 f2(e).

Since fo(e) = fa(e) in this case, we have pg(e) = %(Vl —2w9) fo(e), i.e., A(o2,v) = %(Vl —2u9).
If 0 = o3, the initial values are given by

(f0(6)>f1(e)>f2(e)) = (17()’ _1)'

Quite similarly as the case o9, we have the equality

wol(e)

23 — 3V —1u1) fa(e)
(=2)m(Has) f2(e)
+ (=2){(v2 + p2) — 1} fa(e)

pole) = 521 — 1) fole) + (=D ae).

Input fo(e) =1 and fa(e) = —1 to get

4 2 4
wole) = 3V~ gl 4+ 2u9 = 5(1/1 + 19).

Summing up the lemmata in this section, we have the following.



Proposition (3.6) Let {f; (i = 0,1,2)} be the set of the standard basis of the minimal
K-type T C 75, of a non-spherical principal series representation m,, = m. Define another
three C>-elements {¢; (i =0,1,2)} by the formulae:

o = Zm(Hio+ His)fo
—2\/—17n(E12 + Eo1 — V—1(E13 + E31)) f1
—27(Haz — V/—1(2Es3 + 2u1) fo,

o1 = V=1r(Eia+ Exn +V—1(Ei3+ Es))fo
—3m(Hio + His) f1
+vV/—17(E12 + Eo1 — V—1(E13 + E31)) fo,

o = —2m(Has+vV—1(2E23 + 3u1) fo
—2\/—_17T(E12 + Eo9p + \/—_1(E13 + E?)l))fl
+§7T(H12 + ng)fg.

Then we have
(w0, 1, 92) = Ao, v)(fo, f1, f2)

with eigenvalue \(o;,v) given by
4 4 4
Ao,v) = —§(2V1 —19), Mog,v) = §(y1 —2w9), M os,v) = 5(1/1 + 19).

In the next section, we consider the Whittaker realization of the equation of the above
proposition. Then we need the following Iwasawa decomposition of standard elements of g.

Lemma (3.7) We have the following decomposition of standard generators of g with respect
to the Iwasawa decomposition g =n+ a+t. For H;; € a we have

Hz'j :0—|—H2'j—|—0.
Since Ez'j + Eji = 2E¢j — (EZ — Eji), we have

4 The holonomic system for the A-radial part of the principal
series Whittaker functions

4.1 The case of the class one principal series

Let I be a non-zero Whittaker functional from the class one principal series 74, ,, to COO-Ind]C\;, ().
Let F be the restriction of the image I(fy) of the K-fixed vector fy to A. We write here the
holonomic system for F' with respect to the variables y; = n12(a) = a1/az, ya = nes(a) =
az/az = aya3.

Proposition (4.1) Put F(y1,y2) = y1y2G(y1,y2) (note a? = y1y2). Then G(y1,y2) satisfies
the partial differential eqautions:

1
AsG = g(y% + 1/22 —1n1n)G
and

1
{01(01 — 92)02 + Am* Y301 — AT Y102} G = _ﬁ(QVl —19)(2v0 — 1) (v1 + 112)G.



Here 0; is the Fuler operator yig—yi fori=1,2. and we write

Ao = (0 + 05 — 010) — A (Y + 3y3).

Proof. By definition the action of any element X in £ on F' is zero. We have two lemmata.

Lemma (4.2) The A-radial part of the operators Eyo, E13, Eos are the multiplication oper-

ators of the functions
2nv—1leciyr, 0, 27V —lcoys,

respectively.
Proof of Lemma. The action of exp(tE12) on the restriction F’ of some element in the
Whittaker model to A is given by

F'(a-exp(tE12)) = F'(aexp(tEiz)a”" - a)
= ¢(aexp(tEr2)a”")F'(a)
= exp(2mvV—1lcyy)F'(a),

for aexp(tF12)a~! € N. The derivation of this in ¢ at t = 0 yields EjoF’ = 27/~ 1cyy F'.
The cases F13, o3 are done similarly. O

Lemma (4.3) For F' = F'(y) on A which is the restriction of some element in the Whittaker
model, the action of H;; are given by

H12F/ = (281—82)F'(y),

H13F/ = ((91 +82)F/(y ,
H23F/ (—81 + 282)F'(y).

Moreover for E!, we have
EilF/ = 81F/, EQQF/ = (—61 —|—82)F/, EédF/ = —82F/.

Proof of Lemma. By one parameter subgroup exp(tHi2) (t € R), (y1,y2) is mapped to
(y1 exp(2t),y2 exp(—t)). Then

d
H12F/ = E{F/(yleXp(zt)a?ﬁeXp(_t)}}‘t:O
0 0
= —F —yp—F'.
yl@yl y28y

The other two H;; are settled in the same way.
The latter statement follows immediately from the former, since

1 1 1
By = g(Hu + Hi3), Eyy = 5(—H12 + Hog), E35 = g(—Hl?, — Hoag).

O
Now let us go back to the proof of Proposition above. Since the Capelli element Cpy is
equal to

(B}, — 1)Eyy + Eyy(Es3 + 1) + (B} — 1)(Ej3 + 1) — E3y — Efy — Efy,

its action on the A-radial part F' of the K-invariant element in the Whittaker model is given
by the operator

(01— 1) (=01 4+ 32) 4+ (=01 4+ ) (= + 1)+ (01 — 1) (=2 +1) — 27V =11y )? — (2mvV/—1eyn) 2.

10



By a’-twist, it gives the operator
O (=01 + 02) + (=01 + 02)(—0a) + 01(—Da) — (27V—Lc1yn)? — (2mv—1caya)?

on G. Therefore the first equation follows from the first equation of Proposition (3.2).
The second equation is obtained similarly from the A-radial part

pa(Cps) = (01 — 1)(=01 + 02) (=2 + 1) — (2meayaV—1)*(01 — 1) — (2meryivV—1)%(—0s + 1).

By a’-twist of this, we have the second equation of the proposition above.

Remark From these equations for the monodromy exponents o, o at the origin y; = 0, yo =
0, we have an equality of sets of complex numbers:

1 1 1
{041, -1 + a9, —Oég} = {§(2V1 — VQ), 5(21/2 — I/l), —§(V1 + VQ)}.

4.2 The holonomic system for the A-radial part of non-spherical Whittaker
functions

Let I be a non-zero Whittaker functional from the principal series 7y, ,. For the set {f;|(i =
0,1,2)} of standard functions, we put F; = I(f;).

Theorem (4.4) Let F(a) = "(Fo(a), Fi(a), F2(a)) = (y192)'(Go(y), G1(y), G2(y)) be the
vector of the A-radial part of the standard Whittaker functions with minimal K-type of the
principal series representation m,, with non-trivial o = o;. Then it satisfies the following
partial differential equations:

(i):
o1 Admeryr 01 — 207 — 4meayo Go(y) 1 Go(y)
—2mc1yr —20, —2mc1yr Gi(y) | = 5)\2' Gi(y) |,
O — 200 + 4mcoys  4Ameiyr o1 Ga(y) Ga(y)
(ii):
Go(y) Go(y) G1(y) 1 (Go)
Ag-13- | Giy) | — 2mcays 0 +2rayr | 3(Go(y) + Ga(y)) | = 1 | Gily)
Ga(y) —Ga(y) Gi(y) Ga(y)

Moreover the eigenvalues \; and p depending on the representation m,, are given by

)\1 —§(2V1 - V2) (U - Ul)
)\2:§(V1—2V2) (0=02) and p=vi+v;— s
A3 = 3(v1 +12) (o =o03)

Remark We can write the differential equations (i) and (ii) of the above Theorem as
(i): DG = NG (ii): DG = uG,
with D; (i = 1,2) 3 by 3 matrix-valued differential operators. Then we have
D1 Dy —Dy-Dy =0.

Proof of Theorem.  (i): This equation is obtained from Proposition (3.6), i.e., it is the
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Whittaker realization of this proposition. The main ingredient to compute this realization is
the Iwasawa decomposition of the standard elements in g, i.e., Lemma (3.7). After that it
suffices to apply Lemmata (4.2) and (4.3).

(ii): The Capelli element Cps is written as

Cpy = (B —1)Ey + Eg(Ey3 +1) + (B — 1)(E33 + 1)
—E3, — B3y — B}y — FEo3 Ky + E13Ks — E12 K.

Since F13 belongs to the commutator of n we can drop the terms Efg and F13K5. Then the
Whittaker realization of the first 5 terms are the same as the case of class one:

—{(8F + 05 — 0102) — Am*(ciyi + c3y3) Hs.

We need to compute only the sum of the remaining two terms — Fo3 K1 — F19K3. Since — Fog
and —FE19 are the multiplication operators —2mw+/—1coyo and —2m+/—1c1y; respectively, this
sum is realized as

1 0 O 0 1 0
+2mcoys |0 O 0 | — 27y % 0 %
0 0 -1 0 1 0

4.3 The equations via the tautological basis

Let k € K — S(k) = (si;j(k))1<ij<3 be the tautological representation of K = SO(3). Let
I € Homg g (7s; , Ind§ () be a Whittaker functional and define function Tj; on A by

I(sij)ja = y1y2Tii(y) (1 <4,5,<3).

Then
Go 0 v—-1 1 T;
Gi ]| =11 0 0 T;
Go 0 +v—-1 -1 T

Then for each 4, the equation (1) of the above theorem is transformed to

—01 =27/ =1y 0 T; 1 T;
—2mv/—1leiyr 01 — 0o —2my/—1cay9 T | = 5)\1 Tis |,
0 =27/ —1caye 0> T; T;

and the equation (ii) to

0 2w/ —1lecin 0 T; 1 T;
AQ . 13 + —271'\/ —1Cly1 0 27‘(’\/ —102y2 E = gu E
0 —27'(\/ —102]/2 0 Tz’ Tig

12



5 Power series solutions at the origin

We determine 6 linearly independent formal power series at the origin (y1,y2) = (0,0) for
generic parameter v in this section. These formal solutions converges because the singularity
at the origin is a regular singularity. These solutions do not have exponential decay at infinity,
different from the unique ‘good’ solution given by Jacquet integral. We refer to these solutions
as secondary Whittaker functions sometimes.

5.1 The case of the class one principal series

This case is more or less discussed in the paper of Bump [2], up to some difference of notations.

Theorem (5.1) Assume that Y(\, — N) € Z. Let {e1,e2,e3} be a permutation of the three
complex numbers {—3(2v1 —12), —1 (2va—11), 2 (11 +12)} = {3A1, 302, TA3}. Then the power
series

(I)(yl y2 =y —e1 62 Z Z (62561 +1)n1+n2(7T01y1)2"1(7r02y2)
| 1 m1 ol (5% + Dy (5% 4 Do (952 4 Dy (955 + Dy

2n2

n1=0n2=0

Here the symbol («),, means T'(a+m)/T(«).

An integral expression of this power series solution was found by Stade ([12, Lemma 3.10],
[14, Theorem 2]) as an analogue of an integral formula for Jacquet integral by Vinogradov
and Takhadzhyan [15].

Theorem (5.2) For Re(ea —e1) > 2,

€3

(I)(yl,yQ) = F(% + 1)F(% + 1)F(% + 1)(7T01y]_)%(WCQyQ)_?(ﬂ'C]_)el (7T02)_e2

1 3. du
. Tey—cy 2meryn/ 1+ 1/u)ley—ey (2meayov/1 + u) w2
27V =1 Jjy=1 2 2 U

5.2 The case of the non-spherical principal series

In this case also, the holonomic system obtained in Theorem (4.4) has regular singularities at
the origin (y1,y2) = (0,0). The rank of this system is 6, i.e., the order of the Weyl group of
SL(3,R), for generic values of parameter v. We want to determine the characteristic indices
and the convergent formal power series solutions at y = 0. Here to abridge the notation, we
write the set of variables (y1,y2) as y collectively.

Also after some computation, by inspection we find that it is convenient to introduce
scalar functions ®;(y1,y2) (¢ =0,1,2) by

0 1 1
F(y) =y1y2G(y) = 1y2{Po(y) | 1| +P1(y) [0 | +P2(y) | O |}
0 1 —1

5.3 The holonomic system for ®;(y)

Now we can rewrite the holonomic system for G; to that for ®;.

Proposition (5.3) The holonomic system in Theorem (4.4) is equivalent to the following
system for ®; = ®;(y1,y2) (i =0,1,2).

(1) (1) [01 + %)\i]CDO + (27T61y1)q>1 =0,
(ii) [01 — D2 — F NP1 + (2mery1)Po + (2meay2) P2 = 0,
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(02 — T Xi] @2 — (2meay2) Py =

1] ®o +
| ®1 +

( )

(2me1y1) Py

( )
1] P2 — ( )

0,
2me1y1)Po — (2meay2) P2 = 0,
0.

~—~
o
—
[>
C,~:>I»—l C,~:>I»—l w“_.

27T62y2 (Pl
5.4 The characteristic indices at the origin (y;,y2) = (0,0) and the recur-
rence formulae.

Let

Sey) = 57U Y Chmme (Te1y)™ (meay2)™, (k= 0,1,2)

n1,m2>0

be a system of formal power series solutions at the origin ¥y = 0. Then the first task is to
compute the characteristic indices (—ej, ez) of the system at the origin and to determine the
first coefficients cy.0,0. Moreover we need the recurrence relations between the coefficients.

Now we can determine the 6 pairs (—ej, e2) of characteristic indices, and the corresponding
initial values conditions for F' or ®;.

Lemma (5.4) When o = o; fori=1, 2 or 3, we have the following:

(1) The characteristic indices take the siz values:

(—er,ea) = (—3xe, 1A)  (1<k#£1<3).

(2) For each case, the set of first coefficients, or the initial values at the origin are given as
follows:

(i) If (—e1,e2) = (—3A; i)\k # 1)

(yl Yo , 2G)( e 62‘190)(0 0) =1, and (yl Yy S2P,; )(0,0) =0 for

other 7.
(11) [f (_€1>€2) = (_%)\k’v %)‘l) (k 7& Zal 7& Zak 7& l)7

(y1'y, *G)(0,0) = | O e., (yi'yy ®1)(0,0) = 1, and (yi'y, “®;)(0,0) =0 for

[

other j.
(iif) If (—e1,e2) = (— 3k, $Xi) (K #14),
1

(y1 Yy EQG)( 0) = 0 (ZJ1 Yo e2‘1’2)(0 0) =1, and (ZJ1 Yo ) PO )(070) =0
-1
for other j.

(3) We have the following recurrence relations for the coefficients:

(i) (n1—er + i&')co;m,ng + 2¢1m, 1,0, = 0;
(i) (n1 —ng —e; —eg — %)\i)cl;nl,ng + 2¢0:n1 1m0 + 2€2:n1 po—1 = 05

(iii) (n2 + €2 — 1A)C2n1mo — 2C1n; mo—1 = 0.
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Proof. (1): From the holonomic system we have

—ey + %)\i €0:0,0 0
_61_62_i)\i c00] =101,
€2—ﬁ)\z €2:0,0 0
and
€0;0,0 0
2, 2 1
((—e1) +€2—(—€1)(€2)—§M)13 c100 | =0
€2:0,0 0
Hence we have
(—er + 220 A)(es — 22) =0
e AN —er — er — AN (e — ZN) =
1 4 7 1 2 4 7 2 4 7 5
2, 9 1
(e1) +€2—(—61)(62)—§M=

By the first equation, we have either

1 1 1
—€e] = —Z)\i, €y = Z)\“ or —ep —eg = Z)\Z

Input either of these three values, then the second equations give both —e; and es.

(2): This is a just exercise of linear algebra.
(3): Direct computation yields the relations.

5.5 Power series solutions at the origin

Now we can show the following formulae for the power series solutions.
Theorem (5.5) Assume that 1(A\y — ) € Z. Then we have the following.

(I) When o = 01 we have the following siz independent solutions.

Al A2

11 1,0 1, -3
t(‘bo 0Py =y gyt

) (2252 + Dy tma , (meryn)*™ (meays)*™
I e e
- > (2252 + o mat1 . (meryn)* ™t (meays) P2
a0 (2 4 )1 (P25 H)my ol (PAgA 4 )1 (P22 Dy
_ Z (2252 + Dy tmat1 . meryr)* M (wegyp) P2

m1,m2>0

Aa A3
tral I <110 <1100y —% 53
(‘Do , @77, Dy )—111 Yo

()\25)\1 + %)m1+1()\2§/\1 + %)m2+1 m1!m2!(/\3§/\1 + %)m1+1()\2§/\3 + 1)m2

m1,m22>0

A1
1LV <1,V %1,V - T
t(q)o 00,07 ) =y oyt

»‘kj’

15

Z (2522 + 1)y 4y . (meryn)? ™ H (reays) ™
g (52 1), (B 1), g (B2 4 D), (B 1D,
_ Z (*3—?2 + 1)y 4me ) (meryr)?™ (wegyz) ™
m1,m2>0 (% + 1)m1(% + Dmsy ml!m?l(% + %)ml(/\3g)\1 * %)mQ ’
R s e

(% + 1)“%(% + 1)m2 ml'm2'(M—§A2 + %)ml()\3g>\l + %)m2+1




)2m1+1( )2m2+1

TC2Y2

_ Z (% + %)m1+m2+1 ) (77013/1

m1,m2>0 (A1§>\2 + %)ml-l-l(% + %)mz-i-l ml!m?l(% + 1)m1()\1g>\3 T %)mTH
Z (ME22 4 §matma+t , (meryy)®™ (meayn)® ™2
m1,ma>0 (M52 + D) (522 4 D maIma! (23522 + D)o, (1522 + L)y 7
) (522 + Dy tma , (Wclyl)ml (meays)*™?
o 2 Do (2 4 Py ol (522 51, (552 ),

1,II

LIV 1,VI ) .
;@ and @77 are given by exchanging the role of g and A3

and other three solutions ®;
in the expression for <I>1I <I>1 i and <I>1 V, respectively.

(IT) When o = o4, exchange \1 and X\ in the part (I).
(III) When o = o3, exchange A1 and A3 in the part (I).

Proof. The third statement of the previous lemma, i.e., the recurrence relations between
coefficients determines the coefficients cj.p,, n, recursively from the initial coefficients cg.g .
So the necessary task is to check that our formulae are compatible with these relations and
the other relations coming from the system of equations (ii) in Theorem (4.4).

Case 1: When (—ej,e2) = 1(—=A1, A2) (or (—e1,e2) = (=1, A3), resp.). This means that
. 11 1,11

we consider ®;” (or ®;, resp.).

The assumption %()\k — A1) € Z implies

(1) Clini—1ne = 0= Cosnine = 07
(i) e1ny,m—1 = 0= canym, =0,

(iii) Coni—1,n2 = C2jny,np—1 = 0= Clini,ne = 0.

€0;0,0 1
Since | c1,00 | = | 0], the conyi nas Cling nas C2in1mo are zero unless (ng,ng) € {(even, even)},
€2;0,0 0

(n1,n2) € {(odd,even)}, (n1,n2) € {(odd, odd)}, respectively.
For <I>i.L " the remaining recurrence relations are

Sublemma 1.
(1 () 2
(ii)
(iii)
2 @

M1C0:2my 2mo + 2€C1:2m1 —1,2ms = 0;
(2m1 — 2ma + 1(A3 — A1) + 1)C12m, +1,2ms + 2€02m1 2ms + 262:2my +1,2ma—1 = 0;
(2ma + T(A2 = A1) + 1)c2.2m, +1,2ma+1 — 2€1:2my +1,2my = 0.

[(2m1 — A1)+ (2ma+ 1 X2)? — (2m1 — 1 A1) (2ma+ 1 A2) — 35 (AT +A3+A3)|co2my 2m, —
400;2m1—2,2m2 400;2m1,2m2—2 + 201;2m1—1,2m2 =0;
(ii) [(2m1 — 3A1 4+ 12+ (2ma + 1A2)% — (2m1 — A1 + 1)(2ma + 1A2) — 35(AF + A3 +
A3)]C1:2my +1,2ms —4C1:2m1 —1,2ms —4€1:2m1 +1,2m2—242€0:2m1 2my — 2€1:2my +1,2ma—1 = 0;
(iti) [(2m1 — 2N +1)2 4+ 2mo + 2Ae + 1) — (2mg — A +1)(2ma + X0+ 1) — o5 (A2 +
A3+ A2)]c2.2my +1.2ma+1 — 4C2.9m1 —1 2ma+1 — 4C2.9m1 +1 2ma—1 — 2C1:2m4 +1,2my = 0.
And up to constant multiple, the unique system of non-zero solutions of these recurrence
relations is given by

(p)ml +mo 1
(p)ml (p)m2 ml'mQ'(q)ml (T)mQ )

(1) co2m2m, =
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(11) c — (p)m1+m2+1 1
L;:2m1+1,2my ®)mq+1(P)mgy m1m2l(@)my +1(")my

(p)m1+m2+1 1
®)mq+1(@)mg+1 m1!mal(@)mq +1(T)my

(iii) C2;2m1+1,2ma+1 = —
with

1 1 1 1 1
8()\2 )\1)+2, q 8()\3 A1)+2, r 8(A2 A3)+1 (—p+q+r )

Proof. These are obtained by direct computation.

Case 2: When (—ej,e2) = $(—A2, A1), or (—e1,e2) = 1(—A3, A1), i.e., we consider <I>Z-1’V or
(I)l,VI‘

00,0 0
Similarly as Case 1, the initial condition Since | c¢1.00 | = | 0 |, implies that the co.n, ny»
€2:0,0 1

Clinymas C2myme are zero unless (ny,n2) € {(odd,odd)}, (n1,n2) € {(even,odd)}, (n1,n2) €
{(even,even)}.
The remaining recurrence relations are

Sublemma 2.

L G

(i) (2m1 —2ma+ ()\3 — A1) — 1)e1:2my 2mot1 + 2€0:2m1 —1,2ma+1 + 2€2:2m1 2ms = 0;

(2m1 + 2(A1 = A2) + 1)co2my +1,2ma+1 + 2€152m1 2ma 41 = 0;

)
i)
(iii) 2mac2.2m; 2ms — 2€1:2my 2ma—1 = 0.
(2) (1) [@mi— A+ 12+ 2ma+ A +1)2 — (2my — fA2+ 1)(2ma + 1A +1) — 55 (M +
A3+ A2)]co2my+1,2ma+1 — 4C02m1 —1,2ma+1 — 4C0:2m1 +1,2ma—1 + 2€1:2m1 2ma+1 = 0;
(i) [(2m1 — 2XA2)2 4+ (2mo + TA1 + 1)2 — (2m1 — $X0)(2mo + TA1 + 1) — (AT + A3 +
A%)}Cl'2m172m2+1_401;2777/1—2 2m2+1_401 2my,2mo—1 +200;2m1—1,2m2+1_202;2m1,2m2 = O;
(ili) [(2m1—1X2)2+(2ma+1A1)2 = (2m1 — T A2) 2ma+ A1) — 5 (AT + A3+ A3)]e2,2m, 2ms —
4¢2.9m1 -2 2ma+1 — 4€2.2m4 2ms—2 — 2€1:2m; 2ma—1 = 0.

And up to constant multiple, the unique system of non-zero solutions of these recurrence
relations is given by

(p)m1+m2+1 1
(P)mq+1(P)mg+1 m1lma(@)mq (M mg+1”’

(i) co2mi,2me = —

(p)’m1+m2+1
P)m1 P)mg+1 MM (@)mq (Nmg+1°

(i) cromi+1,2me =

(p)’ml +mo 1
(p)ml (p)m2 ml!mQ!(Q)ml (T)mQ :

(iii) C2;2m1+1,2ma+1 =

with ] 1 ] 1
=—-(AM1—A — =—-(A3—A 1 =—(A1— A =
8(1 2)+27 q 8(3 2)+1, 7 8(1 3) +
Proof. These are obtained by direct computation.
Case 3: When (—e1,e2) = 2(—A2, A3), or (—e1,€2) = 1(—A3, A2).

In this case, the com; ny» Cling ngs €2y ne are zero unless (np,ng) € {(odd,even)}, (n1,n2) €
{(even,even)}(ni,n2) € {(even,odd)}.
The remaining recurrence relations are

Sublemma 3.
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(1) (1) 2m1+ 1M = A2) + 1)co,2my+1,2ms + 2€1:2m1 2my = 0;
(11) (2m1 - 2m2)cl;2m1,2m2 + 200;2m1—1,2m2 + 202;2m1,2m2—1 = 0;
(iti) (2ma + L(A3 — M) + 1)e22my 2mat1 — 2€1:2imy,2ms = 0.
(2) (1) [2m1 — $A2+ 1%+ 2mo + $A3)% — (2my — A2 + 1)(2mo + 1A3) — 35 (AT + A3 +

A3)]Co2my+1,2ms — 4€0.2m1 —1,2ms — 4€0.2m1 +1,2ma—2 + 2€1:2my 2ms = 0;

(i) [(2m1— i)\2)2 +(2mo+ i)\g)Z —(2my— i)\g)(QmQ + %)\3) — %()\%+)\%+)\:23)}01;2m1,2m2 -
401;2m1—2,2m2 - 401;2m1,2m2—2 + 200;2m1—1,2m2 - 202;2m1,2m2—1 = 0;

(i) [(2mq — $X2)? + (2mo + A3+ 1) — (2mg — 1 A2)(2me + $A3 + 1) — 55(A\7 + A +
A3)]C2.2my 2ma+1 — 4€2.2m; —2.9ma+1 — 4C2:2my 2ma—1 — 2C1:2my 2my = 0.

And up to constant multiple, the unique system of non-zero solutions of these recurrence
relations is given by

(1) ¢ — (p)m1+m2 1
0;2m1+1,2ma (p)ml (p)mz ml!mQ!(q)m1+1(r)m2 ’

(p)’ml +mo 1
(p)ml (p)mQ ml!mQI(Q)ml (T)m2 ’

(i) c1,2my,2my = —

_ (Pmi+m 1
(1) Coma 2mat1 = ~ Gy T e TmasT
with
1 1 1 1 1
=—-(A3—A 1 =—(A1— A = =—(A3—A — = .
P 8(3 2)+1, ¢ 8(1 2)+27 T 8(3 1)‘1'2 (p=q+r)
Proof. These are obtained by direct computation. O

5.6 Integral representations of the secondary Whittaker functions

In this subsection, we rewrite the power series solutions of the previous subsection by integral
expressions.

Theorem (5.6) (I) When o = o1 we have

1 1 1 A341 _ 23,1
Hagt o, @y = (mery) 3 T3 (meayn) T T2

/ Iry—x, _1(27T61y1\/ 1+ 1/U)IA2_A1 _ (27T62y2\/ 1+ u) u_%)‘3+3—
lu|=1 B 2 8 U

1
2

: d
(—1) / g, 2 (2meryn /1 Lu) g ony o (2meayay/T+ u)u™ 167971 (14 u)2 =
lu|=1 ] 2 g 2 U
; d
(—1)/ IAQ—A1+l(27T61y1\/ 1+ 1/u)h241+l(2ﬂ02y2\/1 + u) u—isra— i 2
lu|=1 ] 2 8 2 U

for Re(—)‘Qg)‘l) > %,

111 III III A1 _M
@™, @™ &y M) = (meryn) ® (meays)

>

2 A

(2my/=T)TIT (A2 4 PR 4+ HD(A22 4 1) (mer) 7 (mep) ™ @
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: d
(mewyn) / Ingxy (2meryiy/1+ 1/u)Ing—n, (2meayav/1 + w) P (L e
ul=1 8 g u

(—1)/ [mery1v/1+ ulaors(2meryiy/T+1/u) + (Azds 4 1y

|u|=1
1 du

Taz-r, 2me1y1/ 1+ 1/u)]IAS—A2 (2meaye V1 4+ u)u —ieAs Ty
8 8

u

d
(—=1)(meay2) / Ing—, Cmcryiv/1+ 1/u)ag—x, 2meayavV1 +u)u —dghaty 20

Ju|=1 8 8 U

for Re()‘?’—g’\2) > 1,

A3, 1 _ A3
YoV, opY, @5Y) = (meryn) 5 T2 (meaye) ™S T

>
=

A2 A

(2my/=1) T IT(MgR2 4 )D(MgAe 4 D252 4 1) (mey) T (mep) ™0

d
(—1)/ Tnyog ys (mery /T4 1/u)In oy 3 (2meaya VT w)u” FERCRS
Ju|=1

u
d
I 1 Crayiv1+1/u)la—x =t (27702y2\/1 +u) u_%)‘r%(l + u)%—u
Ju|=1 8 2 u
d
Ix,—x, _l(27'(‘61y1\/ 1+ 1/@6)[)\17)\2 (27‘(‘62y2\/ 1+ u) U —15ha— 411_11,
lu|]=1 8 2 8 u

for Re(21522) > 3.

To have the integral expression for @1 1 @?’IV and @Z-l’VI, we have to exchange the role of Ay

i
1 III

and A3 in the expression for <I>11 ¢ and @}’V, respectively.

(IT) When o = o4, exchange A1 and Ay in (I).
(III) When o = o3, exchange A1 and A3 in (I).

5.7 Proof of Theorem (5.6)
Firstly we need the following.
Lemma (5.7) For Re (x +y+1) >0,

1 i} nd
- Ia(27rc1y1 1—I—I/u)Iﬁ(2w02y2\/1+—u)u5—z(1_‘_u)m_;_y_%ﬂ_u
20/ =1 Jju=1 ”
= > (me1yn) M (megyg) 22t D(ky+ ke +ax+y+1)
Filko Tk +a+ D00z + 8+ D Tk + 2+ D0(kz +y + 1)

k1,k2>0
Proof of Lemma. Utilize the formula ([14, Theorem 1))

: w1 y-1u = M or Re(x _

Then (LHS) is

/ Z (meryiy/1 + 1/u)? 17 SN (meaya/T + u) e th
lul=1f

o/ —1 E'T(ky + a4 1) = kE!T'(ka + B+ 1)

u
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Interchanging the order of integration and summation, the last formula equals to

2k1+o (71'02 y2)2k2 +4

Z (meryr)
o0 klko!T(ki +a+ D)D(ke + B+ 1)

: (4 1/ (1wt s (1w

2V =1 Jjy|=1 U

14+u

Here in view of the equality u = i/

the last integrand is equal to

(L+w)>TY(1 + 1/u)*.
Therefore the last integral equals to

F(k1+k2+x+y+1)
T+ 2+ DI(ks +y+1)

as desired. O

Proof of Theorem (5.6). We consider only the case 0 = 1. Other cases are settled completely

similarly by symmetry.

Case 1: For <I>;L’I or @3’11. Also by symmetry Ao < g, it suffices to consider <I>;L’I. Then
M Ao

C e e . . . 11
characteristic indices are (=<}, 52). Rewrite the power series expression of & as

Mo—M 1 As—A 1 dp— A N
Mg + g + Mg + Dlre) (rea)™
(meays)®™ =T (meayn) ¥t 1 D(2252% 4 5 + ma + my)

mytmaD(A22A0 L o ) D222 4 1 o) (A 1 (222 1 4my)

m1,m2>0
Apply the previous lemma with
Ao—A 1 A=A 1 A=

a:ﬁ: 8 2?'1‘ 8 2?y 8 )

then we have the formula in the theorem. For (IJi’I and @%’I the factor before summation
should be taken as

P ERP VR R VI VRN NP PRap v
SO N 4 ON(E ),

And to apply the lemma, we set

DTS VR TR VO VR RS VRN VI B S
a=—g—+5 =73 p PT g Ty VT g o
and A — N1 A=A 1 Ag — A
g MM L A A L A A
a=f=——7%—"+3 8 ’ g

respectively. We have done the case 1.

Case 2: ®, Vis considered, i.e., the case where the characteristic indices is given by (—%, )\T)
The case @3 Vs similar.

Here we note the symmetry with the case tl)z-l’l. Say, @é’v is obtained from @;’I by
replacement of variables and parameters:

y1 < y2, (A1, A2,A3) = (=M1, —X2,—A3), and u — 1/u in the integral.
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Case 3: <I>i»L M and <I>Z-1 IV It suffices to show the former case, where the characteristic indices

are (—%, %) For <I>(1)’IH and <I>§’IH firstly we pull out the gamma factor
A3 — A AM =X 1. A3—X\ 1
Tr nr I —
i

before the summation symbol. After that we apply the previous lemma with

A3 — Ao Al—Ay 1 A3—A1 1

8 8 2’ 8 2’
and Ag — A M-y 1 Na— N1
- A B ) _ A=A - A A S
a - ﬁ 8 ) a,: 8 2 b y 8 + 2 b
respectively.

The remaining case @1’111 is slightly different from other cases. We start from @1’111 =

— 27r011y1 (01 + %)@é’m. The derivation in the integrand shows our formula.

Now we have finished the proof of our Theorem. O

6 Evaluation of Jacquet integrals

In this section, we give explicit descriptions of Jacquet integrals for non-spherical principal
series Whittaker functions. The procedures of evaluation is similar to the class one case ([15]).

6.1 Jacquet integrals

Let us denote by g = n(g)a(g)k(g) the Iwasawa decomposition of g € G. We define Jacquet
integral J;j for oy € M (1 <i,j <3) as

Ji(g) = /N O(n) " a(sy 'ng)" s (k(s5 ng))dn
for 1 < j < 3. Here
So — -1
—1

the longest element in the Weyl group of SL(3,R) and s;;(k) is the element of the tautological
representation of K (cf. [5, (7.1)]).
Since

vo =V —1(si2 — V—1si3), v1 = 851, v2 = V—1(si2 + VvV —15;3)
(83.2.2) and
Oy = Gy, 291 = Go + Ga, 209 = Gp — G,

(§5.2) the vector of integrals (.J;1, v/—1Ji2, J;3) has the same K-type as !(®g, P1, P2).

Lemma (6.1) If we use the coordinate (y1,y2) = (a1/az,a1a3) for a = diag(ar, as, 1/(araz))e
A, the Iwasawa decomposition sy 'na = n(sy 'na)a(sy 'na)k(sy 'na) is described as follows.

1 2
_ yiys (y2\: [A
olsitna) = (U2, (2)/3L).
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1 (y%ng + nl(nlng — ng))/Al ng/Ag
n(sgna) = | 0 1 n1(ys +n3)/Ag
0 0 1

and k(s na) is

1 VAz(ng —ning) vV Agying —V A2y1y2
yiysna +yinang  nz(ning —ng) — yiys  yani(ng — ning) — yiyane |,

Bid —\/ATmm —\/A_lyznl —\/A_mg
with
Ar = yiys +ying + (ning —n3)?, Ao = yiys +ysnt +nj.
Proof. Direct computations. O
Under the symbol of the lemma
Tii(y) = ngul—I/Q)/3+1yél/1+l/2)/3+l

Aglxg—ul—l)/QA

\ é_yg_l)mkzij exp(—27r\/—1(cln1 + C2n2)) dnidnadns.
R

Here (kij)lﬁi,jgi% = k(salna).

6.2 Integral representations of Jacquet integrals
To write down our results, we use the following notation.

Notation.

Az

3 Az _ M _ A2
K(a,B,7,0;y) := 42 (nler) T (wlea)) ™ T (yrye) (xlerlyn) T (wlealyz) ™S
o0 -
[ Ko emaln VIF ) Kapoar y(2alealyny/TH0) o855 (1 4 0)
0 8 8

6d’U
v

with K, (z) the K-Bessel function.

6.2.1 The case of the class one principal series

In the case of class one, the Jacquet integral Jy(y) is

J(](y) _ ngVl_VQ)/3+1y§V1+V2)/3+1
/ \ Agyg_yl_l)/QAé_yg_l)/Q exp(—27r\/—1(cln1 + C2n2)) dnidnadns.
R

Theorem (6.2) ([15]) For Re(A2 — A1) > 0, Re(A3 — A2) > 0,

1
Joly) = K(0,0,0,0:y).
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6.2.2 The case of the non-spherical principal series

Theorem (6.3) For Re(A2 — A1) > 0, Re(A3 — A2) > 0, the Jacquet integrals J;; can be
written as follows.

J 3 3 3 i EEK_lv_lalvo;
TN _ (et el ekt (22K Cq TR0 d)
- A2—A\1 A3—A2 1 A3—A\1 20 20 4020 ’
Juy))  TEFTHUNESE+ NS + ) ~K(3.1,-L0s5y)
Jo1(y) . —Le1K(0,0,— 5,059)
J22(y) = Mo\ M\ e\ N _K(O 0, 2 1,y) )
Ja(y))  TEFHHDIETE DTG +5) \ /T6K(0,0,4.0:)
J 3 1 -K lvlvlvo;
WO bl ial waw? (R ETT00,
J P(M+—)F()‘5 A2 +1)F()\3_)‘1 _|_1) 1 2_712’_1472"
33(y) 8 2 8 8 6152](( 25 9> 4,07:1/)

Here g; (i =1,2) means 1 if ¢; >0 and —1 if ¢; <O.

6.3 Preparation for the proof of theorem

Let us start the most computational subsection in this paper. We want to prove the following
lemma.

Lemma (6.4) Let

I(a, B,7) = I(c, B,75v, 105 y)
= / ng n2n3A AY exp( 2y —1(e1ng + CQTLQ)) dnidnadns,
R3

with o, B,y € Z, v,u € C and put

47”( leren]) TV TR (yrye) T

D)D) (—v —p— 1)
v— d
/ Kyaputa(@rlen |yt v/ TH 1/0) Ky (2 lealyav T 0) 07 /(14 0)° &

A(OC?/@?’Y?(S;Z/) =

(1) 1(0,0,0) = y1y2 A(1,1,0,05y),

(2) 1(1,0,0) = —vV/~Te1yiy2 A(2,1, -5, 5:9),

(3) 1(0,1,0) = —/—Tea 192 A(1,2,0, 2 539,

(4) 1(0,0,1) = —e1eayFys A(2,2,—3,0;y),

(5) I(1,1,0) = —e1e297y3 A(2,2,—%,1;y),

(6) 1(1,0,1) = vV=Tea{(nler )7 (v + p + 3)uiv3 A(2,2, —3,059) + yiys A(1,2,—1, 5:9) },
(7) 1(0,1,1) = —v/=Ter{(2nleal) '0iy5 A(2,2,—35,059) — viy3 A(2,3,—5,5:9) },

(8) 1(2,1,0) = vV=Tea{(nler )7 (v + 1+ 3)uiv3 A(2,2, =3, 159) + iys A(1,2,—1,3:y) ],
(9) 1(0,0,2) — I(1,1,1) = (27|ea])'yiy5 A(1,2,0, -5 ;) — yiys A(1,3,0,0;y)

= (mler) (v + n+ 3)yiys A2,3, 5, 339).
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Proof. Our calculation is similar to [15]. We first collect some Fourier transforms which will

be used in the proof of lemma (cf. [4]).

Auxiliary formulae For a > 0,b > 0,c € R and v € C,

2v 2v+1

Q) /R (az® + b)” exp(—2rv/“Tex) da = -2 :rVF(_';)' " <27r|c|\f )

([4, chap I, 1.3 (7)])

ii 2 v = T 2UI$|C| v sen(c 7le
(ii) /Rac(ax +b)” exp(—27v/~1cz) dx = \/_ﬂ'VF( ” gn(c)K, s <2 | ]\/7>
([4, chap II, 2.3 (11)]

1 2.2
2 — _(T)2 e
(iii) /Rexp( ar” + 2w/ 1cx)da:—(a) exp( - >,
T3 cAn?
(iv) /mexp(—a$2+27r\/—lcx)d:c:V—lc(—) exp(— ),
R a a

5
2.5 2.2

c T
a

Here the conditions on the parameters are (i) Re(r) < 0 and (ii) Re(v) < —

(v) / 2% exp(—az? + 2V —1cx) dx
R

N[

Now we return to the proof of lemma. The change of variables (ni,ns3) — (ni1y1, n3y1y2),
induces the replacement

2 2 _ yaninz)\2 yiys (1+ni+n3)
{Al —yr(l+ ”1)(”2 1+n2 ) + 14+n2 ’

Ag +— y%y%(l + n% + n%)

Then I(a, 3,7) is equal to

C2Yy2n1n3
/3(711?J1)Ol(n:s?J1y2)7 (yiys (1 +ni +n3)) yiye eXp( 2mv/—1(c1ying + T))
R

yaning\9 yiya (1 + nf +n3) Vv
.(n2+ 1—|—n%) ( 21+ n2)n3 + 22 1+n1% 3) exp(—2mv —1leang)dnidnadns.

After the integration with respect to ng by using (i) and (ii) of Auxiliary formulae, we get

-1
M y2V+2u+2+a+'ny+2u+%+~/
' T(—v) 1 2
—3 2l Cayanin
./Qn?ng(un%) (14 n +nd) 5 exp (- 27r\/_(cly1nl+w))

1+
W
wwmdn&

1+ n?

I(c,0,7) =

'Ku-i-% (27T|02‘y2

-1
M 2V+2u+2+a+wa+2u+%+~/
mT(—v) 1 2

~/2 ning(1+ n%)_% exp( 2mv/—1(c1ying + ciyiﬂD
R

\/1+n1+n§)

1+n%

I(o,1,7) =

2v+1

[n1n3(1+n%+n§)’” 1 Ku+%<27r|02|y2
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2t V14 n?+n}
—1 52(1—|—n1+n )“+ KV_,’_% (27T|02|y21+—;%3):|d711dn3.
for Re(v) < —%. We modify the K-Bessel function in the above. In view of
2

4

e ) 2 t d
K, (ct) = %/0 exp(—(a: + %)g)m_”?x (c,t > 0),

v _ L /OO (—er) ™ (>0, Re(v) > 0)
cV = exp(—cr) z¥ — , ,
Tw) J, °P z
we find
2
(1+n%+n§)qu( 1+n%+n§'7f‘f‘y2)
1,1 2\ p+i 1 p+i 1 _qdt
7'("02‘3/2 1+n 1 0 1—i—n1 t1 1
B 1 (1+n%)p+q
2T(—p—3) 7T|02|y2
1+n1—|—n3 7|ca|y2 1+ n? + n? ) —q,—p—2dty dts
t t ti 't 22— =
// exp 7T|02|y22 2 1+TL%(1+ t ) 1 Uo t to
B (1—i—nl)p+q
QF(—P——) 7T\02\y2

1 tl 7T|CQ|y2 1 —p—— dtl dtQ
' exp( —mlealys (t2 + — + - ty + )tqt
/0/0 sp(~rlealun(ta + ) T i) .

for Re(p + 2) < 0. We apply this formula for (p,q) = (1 + %, —v— %), (1 + 2”#;3, —v— %)
(note that K, (z) = K_,(z)). Then, for Re(u) < 0,

T eI 2 242424+ V+u+ +“// / / pu—1
I(a,0 = ’ Ty (1 2
(Oé, 77) F(—I/) F(_,U) Y1 nl + nl

- exp (—7T|02|y2 (t2 + i + T %) — 27?\/—_101y1n1) nj
Xp(_TfLin (t2+ ) o \/—C2y2n17123>t11/+5t2 i_?i_?d \dns,
H(a,1,7) = WP”(_“I\/C;\P(V_:) : R A Braky Yt +v/ / / no(1 + n2)i-3
- exp (—7r|02|y2 (t2 + ti + T n%) — 27r\/—_101y1n1) n3(ning — vV—1eaty)
T

Now we consider the integration with respect to ns. If we define Py (§ =0,1,2) by

2
5 ( mlealy2 1 C2y2n1n3) ( mny|calyo )
ng ex to + —)n3 — 2mV/—1 —"—-")dng = Ps ex ,
[R P\ ) (2 tl) 1+ n2 ST P )t + 1/t

then (iii) (iv) and (v) of Auxiliary formulae lead

1 1 1

Py = (lealy2) 2 (L +ni)2(ta + 1/t1)" 2,
1 1 3
—\/—15—:2(\02|y2)_5n1(1 + nl)_(tg + 1/t1)_5,
3 1 1 5
Py = (2m) M (lealya) "3 (1 +n2)3 (b2 + 1/01) 7% — (Jealyz) 2n3(1+ n2)3 (to + 1/t:)73.
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Therefore we find the following.

—v— —v—p—1
@ ”|C I e T SRS |

1(a,0,0) = ) y
() D(=p) ™
+1
/ / / nl 1+n1 (t2+1/t1) 2t2_IJ
! ! 1 tato dt, dts
. ; B ) i,
eXp< 7T|C2|y2( 2 + + to + 1/t1 + 1 —i—n% ty & 1/t1) 7T\/_01y1n1 t ni
V —V—p| gy |V k1
I(ay 0,]_) = — -1 X v U’|C2| v—p y%V+2u+3+ayl2,+u+2
D(—v)T(—p)
1
/ / / RO (14 n2)(ty + 1/t)) 5t 2"
! ! 1 tato dt, dts
. ; B ) i,
eXp< 7T|C2|3/2(2+ +t2+1/t1 1"‘”%752-1-1/151) v —1lerying P n
. —v—p—
P(—v)T(— )
eo[—V=Ini(t2+1/0) > —\/_1(t2+1/t1) S n
: ! 1ty dty dts
. ; ., )__d
exp< TF‘C2‘?/2(2+ +t2+1/t1+1+n%t2—|—1/t1) Vv —=1lerying — ny
_ _V 15271'_1’ “|02| v—pu—1 y%zx+2u+2+ayl2,+“+2
L(=v)T(=p)
/// nS(1+ 02Uty + 1/t) 32 P (14 02 + tyts)
! ! 1 tato dt, dts
. ; B )__d |
exp< mlealy2 (ta + — +t2+1/t1+1+n%t2+1/t1) w e )5 i,

—V—u v—p—1
I(a,1,1) = ( |C)2|( . 2 V-HH-S/ // no

| @rlealy) (14 nd) (ke + /1)

1 5 3
(L4 ) (1) R = (L ) (e 1) TR
1 1ty dty dts

+ — 21/ —1c n) —dn.
th 1 1/t 1+n§t2+1/t1) o, e

1
'exp< 7T|02|y2(t2+ —|—

We change the variables (t1,t2) — (v1,v2) by

to 4 1 tito
v = —, Uy = .
R n3
Then
1+ (1 + n%)vg (1 + n%)vlvg dtldtQ dvldvg
h=——""""", tag=——"—5— and = .
vy 14+ (14 nf)ve tita V102

Further we integrate with respect to vy by using

o 14w\ dv iy
/ vy pexp(—ﬂ\CQ\yg(vl + o 2)) v—ll =2(1+v9) ng(Qﬂcﬂyg\/l + v9).
0
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Therefore,

v |—v—p—1
I(a,0,0) = T ”|C2| YR o toutota vutl

Yy Yo
(=) 7
1
/ / / nfoy" (14 (1 nd)op) T2
_ 14w dvy dv
vy TH 1exp( 7T|02|y2( o )_277\/ Cly1n1)—1—22dn1
_ 2V gy | TV N
—v)T(=p) ’

[eS) v
// n?v;“(1+(1+n%)@)”+“+ (14 w) 3
R Jo
dv
Ky pr1(27lea|y2v/1 + v2) exp(—QW\/—lclylnl)U—;dnl,

v-—1 5271'_1/_”‘02‘_”_“_1 y2v+2,u+3+ayu+u+2
F(—u) ! ?

1
/// M1+ (14 n2)uy) T2
o 1+ dvy d
v U TH exp( 7r\02|y2(v1+ 1U2)—27r\/ clylnl)%vi;dnl

2V —leam VT e VT y2v+2,u+3+ayu+u+2
I'(— V)F(—M) ! ?

// n§ o (1 (1 nd)en) T (1 )

dv
.KV+M+2(27T|02‘y2\/ 1+ 7)2) eXp(—Qﬂ'\/ —1cly1n1)v—22dn1,

I(,0,1) = —

V-l EQW_V_“‘@‘_V_“_I 2w+2u+2+0, vAp-+2
2 Yo
v)(=p)

/// nfvy (14 v2) (1 + (14 n)vy) 2

o 14 v
vl 1% exp( 7r\02|y2(1)1—|— o )—271'\/ clylnl)—lv—anl

I(e,1,0) =

_2\/—1 gom YT “‘02‘ VTR y2y+2,u+2+ayu+u+2
T(—) T(—p) ! 2

e’} oy
// %oy (14 (14 n2)ug) 2 (1 4 0g) 75
R JO
dv

2
.KV+M+2(27T|02‘y2\/ 1+ 7)2) eXp(—Qﬂ'\/ —1cly1n1)v—2dn1,

7T_"_’“‘ 02 el 3 3
I(Oé, 1’ 1) | | 'u) ylu+2u+ +ayl2/+u+

1
/ / / O‘H 27T|02|y2)_1v1_”_“_2112_”(1 +(1+ n%)w)uﬂﬁ?

1
oY TR () (1 (1 + n%)@)”ﬂ”‘i]

1+wv
eXP( 7| ealyz (v1 + 2) — 2V — Clylnl)—v—dnl
U1 CIR)
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21V Hcp| TV e phk3
T(—p) 7! 2

I'(-v)
* a+l, —p 1 1 2 V'HH'%
. n{ ™ v, ( +( +n1)112)
R JO
—v—p—1

—v—p—2
'[(277\02|y2)_1(1+v2) 2 Ky pr2(27|calyov/T + vg) — (1 4+ v9) ™ 2

dv
Ky g put3(27|ea|yav/1 + ’Ug):| exp(—2mv/ —1cly1n1)v—2dn1.
2

Finally, we integrate with respect to ny. By means of (i) and (ii) of Auxiliary formulae,

1
Qs = / n‘f(l + (14 n%)vg)lﬂr’”? exp(—2mv —1leyying)dng
R

is as follows.

1
2 V3 (|eg|yr —v—p—=1  vpu v4utl
QO _ (| | ) U22 (1 —|—U2) g KZ,+“+1(27T|C1|Z/1 1+ 1/U2)7

D(—v —p—3)
1
2\/_—16 VTR (e —v—p—1 vqp-1 vtpt2
01— - 1 { 1|13/1) vy 2 (14v) "2 Ko7l |nv/1+ 1/v2),
L(—v—p—73)
3
2V E5 (e —V—p=2  yqp-1 v+p+2
0y — - V(| 1/Ly1)3) vy 2 (1+wv) 2 K,pura(2rleilyiv/1+ 1/vg)
—V=FrE73
1
271_—11—[14—5 c _V_:u'_l vtp—2 v+u+3
L(—v—p—3)
Thus we complete the proof of lemma. =

6.4 Completion of the proof of theorem
The formulae for Ji; and J3; are immediate from the lemma. From (2) and (7) of lemma

L

3 A 2
2 —v) /341 (n14v2)/3+1 4T2 (T2 crca]) 2 T (yry2) 2 —
JQl(y) :yi i)/ yg’/l )/ T(ta=vet2\(vet2\(at3 ( —1519%,@%)
(A=) (=)D (75)

o
/ K_%(2ﬂ|61|y1\/ 1+1/v) [—(27T|02|y2)_1K_%1(27T|02|y2\/1 +v)
0
1 —v1+2v9-2 du
+(14v)2 (—K_%_1(27T|02|y2\/1—|—v) +K_v721+1(27r|02|y2\/1+v))}v 1 —

v
By using the relation
2v
Ky-1(2) = Kpq1(2) = —— Ky (2) (%)
for the bracket [ ], it becomes
——K_ v (27|co|yaV1 +v) = ——— ——— Ky (27|co|y2v/'1 + v).
27| ealy2 2 2 7lealya 2

Thus

4/=Term (nlal) T (wleg) T mz2ayy mtom
i y2

J: =
21(y) F(u1—1212+2)1-\(112;—2)1-\(111;—1) 1
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—vi+2v9-2 du
[ K emtaln VTF 0Ky (rleayay T oo~

v

In a similar way, we can prove for Jo3(y).
Finally we treat Joa(y). From (1) and (9) of the lemma, J2a(y) is equal to

__Anile)Frle)?  ama e
F(u1—52+2)r(1/2;2)1-\(u1;—3) 1 2 1€2|Y1Y2

o0
/ Koy 1oy T+ 1/0) Koy (2lealyo VT )
0

1
_—KV 27TC 1+1 UKV 27TC 1+U
o lcalyav/l + v 4 (27 1y1vV/1+1/v) (27 ealy2 v )

v +1
- Kuv (27le 1+1/v)Kv1i_(27|c \/m
2rler|yiy/1+ 1/v 3 1y V1 +1/0) 11 (2le2y: )

—v1+2v de
+EKu  2rler|yrv1 + 1/U)K”71_1(27T|02|y2\/1+—v)] v

v

If we use (x) for the integrand, the term in the bracket [ | is written as

v1+1
_—KV 27TC 1+1UKV 27TC 1+U
2rlcalyav/I £ 0 vy (2ferfy /1 + 1/0) Ky (2]ealy2v/1 + v)

vy +1
_ Kwv (27|c 1+ 1/0)Kv (27|ca|ya V1 + 0).
2rfer|yr/1+ 1/v 2 1l V1 +1/0) 11 (2mle2ly: )

Then Ja2(y) becomes

43 (n|er]) 7 (nleal) 7 viZ2vp g Zvdvs g
_F(Vl w2 (2D (L) Y (7

o0
'[(|Cl|yl)/ KL21+1(27T\C1|y1\/1+1/v)
0
> —vi+2vp+2 _1dv
+(\02\y2)/ Ky (2mleryr/T+1/0)Kn _ 2nlealyoy/THo)o™ 0 (140)72—
0

— U 12 d
Kvi (2m|ca|yav1 +v)v 122 (1+ v)_%—v

LN
2 v

dri(mlen])? (nlep) T agrag caien,
= - = Y1 Ys
F(Vl ;2—1—2)1-\(1/2;2)]:1(1/1;-1)
e —v1t+2vo+2 _1 dv
. K%(2W|cl|y1\/1+1/U)K%(2ﬂ|02|y2\/1—|—v)v - (1+v) -
0
Here we use the formula
o
/ {xlvl+1/7)K1,+1($1\/1+1/U)Kl,(£62\/1+1))
0
d
2oVT+ 0 Ky (21y/1+ 1/0) Ky 1 (22T + 0) }o7 (1 4 v) ! %’

/K 1+1/U) (2\/1+v)v7(1+v)_1c§}—v,

which can be verified by considering the Mellin transform of both sides (cf. Lemma (7.1)).
This completes the proof of theorem. O
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7 Integral expression of Mellin-Barnes type

As in [12], we consider the Mellin-Barnes integral expression for J;;(y) to find linear relations
between Jacquet integrals J;; and power series solutions @Z’*.

Lemma (7.1) For p,q € C,

0 dv

(7T|01|y1)p(7f|02\y2)q/ Ko (2|e1|yiy/1+ 1/v)Kp(2m|calyav/T+ 0) v (1 4+ 0)° o
0

1 /p1+\/—_100/p2+\/—_100

Vo(s1,s2)(mler]yr) ™™ (mlez|y2) "2 dsidsa,

24(27T _1)2 p1—v/—Too J pa—y/—Too
with
~ - —2y—26
Vo(s1. 52) — P(s1+§)+a)r(sl+2p a)F(31+;2)+27)F(sz+2¢]+ﬁ)r(82+2q B)F(32+q 227 2 )

F( 81+822+p+q _ 5)

Here the lines of integration are taken as to the right of all poles of the integrand.

Proof. Mellin transform of the left hand side is

(o) (o) d
[ ([ matemtenTF T aler i+ 22 )
0 0
o d d
(/ Kp(2m|ealyav1 + U)(W\C2|y2)q+81%>m(1 +o) &
0 1

v
-2 (p (g (e ()

. /OO Y TEP)/2( 4 v)ﬁ—(81+82+p+q)/2@.
0 (%

Here we use the formula

* sdr oo StV S—V
/0 Ky(ar) 2 = 22 (22 Y)

(Re(s) > |Re(v)|, a > 0) and then the Mellin inversion formula implies the assertion. 0

Proposition (7.2) Let

M(a17a27a3 ;b17b27b3;c;y)
1 /P1+ﬁw/p2+ﬁoo

V(s1,s2)(mler|yr) ™" (mle2|y2) "2 ds1dsa,

V=12 )y, v=t00 Sy /oo
with
V(s1,89) = P(S1+a21—)\1)I‘(S1+a22—)\2)I‘(S1+a23—)\3)r(s1+b21+)\1)F(81+b22+)\2)r(51+b23+)\3)

F( 81+§2+C)

Here the lines of integration are taken as to the right of all poles of the integrand. Then

J 3 A3 M €162M(0,1,1;1,0,0;1;
JE% = me(rlel) 7 (rlea)) + g1 : —\/1—3525\4(1 0,0;1,0 og) Y)
J 41—‘()\2_A1 + 1)1—‘()\3_A2 + l)I—‘(Ad_Al + 1) 7' ) 7 7' ) i 7 ) )
13(y) 8 8 2 8 _M(17010707111717y)
J. s . Y —/“1eM(1,0,1;0,1,0:1;
Jilg; = w2 (wlea) T (wleal)"F g N 1( 0;0,1,0;0;) .

- Ao—N\ Az —N\ Az—\ 1 sy My Yy Sy My Yy ’
Ja(y)) AT A DIEFE A DIER +2) \ Vo T6M(0,1,031,0,1;15y)
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Ja1(y) 2 len )2 (les )2 —M(1,1,0;0,0,1;1;y)
w2 (7m|C 4 (71| C 4
Jn(y) | = AM( lea]) 2 (les])” T 519, | VTeM(0,0,150,0,1;05)

1 A3—A A3—A\
Jis(y))  ATEETAINEFE A DIET A1)\ o 0)M(0,0,151,1,0515y)

Proof. 1t is obvious from Lemma (7.1). O

Remark. In view of this proposition, we can see the following symmetry for .J;; with respect
to the parameter (A1, A2, A3). This is natural but is not immediately seen from the formulae
for J;; (Theorem 6.3). We denote

3 A3 M —1
. chicia) o) Yy Y
Ji(A1, A2, A3) = , — Jir(y), Ji2(y), Jiz(y
(A Ao, g) (F(Wl+pi)r(&§&+qi)r(&8hM) (Jir (), Tia (). Tis ()

with (p;,qi,m5) = (1,3,1) (i=1), (1,1,3) (i =2), (3,1,1) (i = 3). Then

Jo(A, A2, A3) = (—V=1) ea i (M2, A1, A3),  J3(A1, Ao, A3) = —e160J1 (A3, A2, A1),

8 Relation between Jacquet integrals and power series solu-
tions.

8.1 The case of the class one principal series

Theorem (8.1) ([12]) Let

A3 A3—A1 2ma

EESTPYY ( + Dy +ma (Te1y1) ™ (me2y2)
DO(N1, Ao, A3) = y; * gt . —
( ) 1 2 Z (Agg)\l + 1)m1()\3§)\1 + 1)m2()\2g)\1 + 1)m1(% + 1)m2

u>|j’

2m1 (

m1,m2>0

(Theorem (5.1)). Then

3 A3 M
Toly) = w3 (wlen]) 7 (wleal) T g1y
4P(A2§>\1 + %)F(Mgh + %)F(Mgh + %)
A A
> w((ler) T (rle) F (A2 DAL (22522)80 (1, Mo, Aa) ).
weWw

Here W = &3 is the Weyl group of SL(3, R) and whose elements permute (A1, A2, A3).

Remark. Hashizume ([6]) studied the linear relation between the Jacquet integrals and power
series solutions for class one principal series for arbitrary semisimple Lie group inspired by
the work of Harish-Chandra for spherical functions.

8.2 The case of the non-spherical principal series

In the same way of [12] for class one case, we move the lines of Mellin-Barnes integral expres-
sion in Proposition (7.2) to the left and sum up the residues at the poles. Then we obtain
the following.

Theorem (8.2)
3 (wlea]) F (lcal) ~F
. T2 (7| T|Co Y1Yy2
J , , =
( 11(3/) 12(3/) 13(3/)) 4P()\2g)\1 +1)F(A3§)‘2+%)F()‘3§)‘1+1)

A A
|e1ea(mlen ) (rlea) FOA22 + r(ghs + Dr(2agi2) (o', @1, @)

31



A A
terza(mlen])” T (nlea) TL(AA 4 TR + 5P (22g2e) (2", 07, 2y

A As

_52(W|cl|)—%(ﬂ|@|)7“p(%+ )F(Al —)s +%)F(A2 A3 t( 1111 1111 @é’m)
A A

—ea(mler]) ™ (wlep|) FL(2a5A 4+ D)T(M +%>r< A2 f( oy, oY, @yY)

>

1,V
v,y
1 VI 1 VI £1,VI
(1)2 )] )

B
(A 4 (g W

A
—(xler])”F (mlea]) F T (2252 + D)
A4 A
—(xler])™F (mea]) T L(R2g2e + DD

3 A3
T (rler) * (rleal) =119
a1 (y), Jaa(y), J- —
(21(y) 22(y) 23(y)) 4P()\2§>\1+1)F()\3§)\2+1)F(>\3 )\1+_)

[ (rlea ) (mlea) F U (2252 4+ Hr(degde 4 Hr(dagd) (o, 03, a3)

+51(7r|cl|)—%(77|02|)%3p(ﬂ+ )I‘()\z AL LM = Aa)t (@2 o211 211 211)
—(m|er])™ 2 (7T|82\)4F(A1 —A2 4 1 )F(AQ A3 )F(Al Xa)t(p? o211 2111 (I)gm)
—(mle1])” & (7r|02|)Tl r(dzde 4 hp(deh A1+ Lyp (212 o2V 21V, 21\/)
~ea(rler]) + (rlea) ¥ T + PP 4+ ) (2] 2)
_52(71"01‘)_%(71'|02‘)% (AggAng%)r(%Jr%)F(xg, ALy t(p2 o2V1 2v1 @SVI)],

3 A3 A1
: _ —m2(wle]) @ (wleal)” T yiye
(J31(y)’J32(y)’J33(y)) - 4F()\2—>\1 4 l)I‘(Agg)\Q + 1)F()\3—)\1 + 1)

[(rler) ™ (rleal) F (352 4 Hr(dughe 4+ Hreegi ey, o}, of)

t (I):S,H’ @3,11 (I);,II)

t (<D3,HI 3 III 3 JIT

Az

+(mler]) ™4 (7T|C2D 102 etk 4 hpuzhe)
—51(7T|01|)_AT(7T|C2|)TF(%—|—§)I‘( - A
—er(mler )~ F (leal) FT (2252 4 JP(Pazh
—erea(mlen))F (mleal) TT(A2 4

(2252 4 1

)

<I>3 v (1)3 v (1)3 IV)
3v

LDy )

t(q)3VI (1)3\11 (1)3\/1)]

=
—~
> o
=

oof |
]

A3
4

N
—e162(mler|) ™7 (mlez))

Proof. By Proposition (7.2), poles of the integrand of Jy; are

{(s1,50) = (3 — 2k1, =22 — 2ky), (3 — 27{71,—— — 2ks),
(%2 —1— 2k, —28 — 2ky), (% — 1 — 2k, —22 — 2ky),
(3 —1— 2k, —2 —1—2ky), (3 — 1 — 2k, — 3 — 1= 2k) | k1, ey € Zno}.
The residue at (s1,$2) = (— — 2k, —22 — 2ky) is (m|ey|yr) 2R 3 (7T|Cg|y2)2k2+ 1 times

(Dbt D(Rg 4 5 — kl)W%& + 3 = k)D(F2 + 5 — ko) D252 — ko)

kllk&! F(—)‘lgk2 +%—]€1—]€2)
By using
(—1)* 1 L (=D
I'a—k)=T(a) ———, T(a+s5—k)=T(a+5 ,



the above is equal to

F(% + %)I‘(% + %)F()\58)\2) . ()\2 1 + )k1+k2
Bkl (2520 e, (A5 + )iy (M52 4 Do (M52 + Dy

Thus Zk17k220 ReS(SI,SQ):(%I_zkl,—%—%z) 15

A1
(wleal)™ ¥ (rlea) ¥ <“gk2+%>r<—hgkg+%>r<k3 ) @'

We see the pole (s1,s2) = (ﬁ — 1 — 2k, —4% — 2kg) similarly. Since the residue is

(7le1lyr) =7 T (xey Iyg)%2+ i times

(—1)k1+hs p(% _ % _ kl)l“()\28)\3 _ kl)r(% + % _ ;@)p(% — ko)
k1o (22528 — oy — ky)
DA% 4 PP(AEA 4+ HI(A2EA) - ()2 4 1y

 halhol (25522 1), (B2 4 1), (1522 4 D), (B2 + D)y,

(note F(a—%—k) = F(a—i—%)(—l)k“/(%—a)kﬂ), then Zkl,kgzo Res

is

(81752):(%—1—%17—%—2/@)

_22 A3 — —
ex(mler])” 7 (mleal) ¥ T(A2gA0 4 §T(Mg28 4 5)D(A22) @y
A A
Also, the residue at (s1, s2) = (%—1—2]{:1, —%—1—2]4:2) is (m]ey |y1)2 T (7| calyg) 22t T
times

(_1)k1+k2 F(% _ % _ kl)r(kz—&s )F( l _ ka)r(% _ % — k)
k1 lo! r(zgd — 1 kl kg)

B (22520 + Dp(daght 4 1)1“(&8“) C(MF22 4 D)y bt
ferlka! (A2 + 1) 4 (522 + )1 (2522 4 1), (21528 + D)y

Then >, ;,>0Res

is
(s1,52)=(22 —1=2k1,— 5L —1-2ky)

A2 _1 _ _ _ 1
erea(mler]) T (wleaf) T TR 4+ HP(Agh 4 T (A2g2) by
Therefore we get the relation between Jy; and (I>,1€’* and the others can be shown in the same

way. O
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