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Abstract

Let χλ (cf (1.1)) be the unit spectral projection operator with respect
to the Laplace-Beltrami operator ∆ on a closed Riemannian manifold M .
We generalize the (L2, L∞) estimate of χλ by Hörmander [3] to those of
covariant derivatives of χλ Moreover we extend the (L2, Lp) estimates of
χλ by Sogge [7] [8] to (L2, Sobolev Lp) estimates of χλ.

1 Introduction

At first let us set the notation for the results of Hörmander and Sogge. Let
(M, g) be a smooth closed Riemannian manifold of dimension ≥ 2 and ∆ the
positive Laplace-Beltrami operator on M . Let L2(M) be the space of square
integrable functions on M with respect to the Riemannian density dv(M) :=√

det (gij) dx. Recall that L2(M) admits a complete orthogonal direct sum
decomposition with respect to the eigenspaces of ∆. That is, one can write

L2(M) =
∞∑
j=0

Ej ,

where Ej is the jth eigenspace corresponding to the eigenvalues λ2
j . The eigen-

values are counted with multiplicity and are arranged in increasing order, i.e.
0 ≤ λ2

0 ≤ λ2
1 ≤ λ2

2 ≤ · · · , where λj are nonnegative real numbers. Also, ej will be
denote the projection onto the jth eigenspace Ej . Thus , an L2 function f can
be written as

f =
∞∑
j=0

ej(f),

2000 Mathematics Subject Classification. Primary 35P20; Secondary 35L05
Key Words and Phrases. the Laplace-Beltrami operator, the unit spectral projection oper-

ator, Sobolev norms
Supported in part by the Japanese Government Scholarship.

1



where the partial sum converges in the L2 norm.
Let ej(x), a real eigenfunction of ∆, be the base of the eigenspace Ej with the

normalized L2 norm. That is, {ej(x)}∞j=0 becomes a complete orthonormal basis
of L2(M). Let λ be a postive real number ≥ 1. We define the spectral function
e(x, y, λ) and the unit spectral projection operator (USPO) χλ as follows:

e(x, y, λ) :=
∑
λj≤λ

ej(x)ej(y) ,

χλf :=
∑

λj∈[λ, λ+1]

ej(f) . (1.1)

As a consequence of the sharp form of the Weyl formula (cf Theorem 4.4 in [3]),
Hörmander proved the uniform estimate of eigenfunctions for x ∈M∑

λj∈[λ, λ+1]

|ej(x)|2 ≤ C λn−1 , (1.2)

which implies
||χλf ||2 ≤ Cλ(n−1)/2||f ||1 (1.3)

and
||χλf ||∞ ≤ Cλ(n−1)/2||f ||2 , (1.4)

where ||f ||r (1 ≤ r ≤ ∞) means the Lr norm of the function f on M . Let δ(r)
be the critical exponent max(n · |1/r − 1/2| − 1/2, 0) for Bochner Riesz means
of the Laplacian on Lr(Rn). With the help of the oscillatory integral theorems
of Carleson-Sjölin [1] and Stein [9], Sogge showed in [7] and [8]

||χλf ||2 ≤ Cλδ(p)||f ||q, q = 2(n+ 1)/(n+ 3) (1.5)

by using the Hadamard parametrix for ∆−(λ+i)2 and the wave operator (∂/∂t)2+
∆ respectively. By the duality and the above inequality, the following estimate
holds:

||χλf ||p ≤ Cλδ(q)||f ||2, p = 2(n+ 1)/(n− 1) (1.6)

Interpolating (1.6) with (1.4) and the inequality

||χλf ||2 ≤ ||f ||2 (1.7)

from the orthogonal relation, Sogge proved the following

Proposition 1.1. (cf C. D. Sogge [7] and [8])

||χλf ||r ≤ Cλ(n−1)(r−2)/4r||f ||2, 2 ≤ r ≤ 2(n+ 1)/(n− 1) ,

||χλf ||r ≤ Cλδ(r)||f ||2, 2(n+ 1)/(n− 1) ≤ r ≤ ∞ .

2



Then we set the notation for our results. For k a nonnegative integer and
u ∈ C∞(M), ∇ku denotes the kth covariant derivative of u (with the convention
∇0u = u). As an example, the components of ∇u in local coordinates are given
by (∇u)i = ∂iu, while the components of ∇2u in local coordinates are given by

(∇2u)ij = ∂iju− Γk
ij∂ku , (1.8)

where Γk
ij are the Christoffel symbols of the Levi-Civita connection of (M, g) and

the Einstein’s summation convention is adopted. We define the length |∇ku| of
the (0, k) tensor ∇ku by

|∇ku|2 := gi1j1 · · · gikjk(∇ku)i1···ik(∇ku)j1···jk
,

where (gij) denotes the inverse martrix of (gij).

Definition 1.1. The Sobolev space Hr
k(M) is the completion of C∞(M) with

respect to the norm

||u||Hr
k
:= (

k∑
j=0

∫
M

|∇ju|rdv(g))1/r, 1 ≤ r <∞ ,

||u||Hr
k
:=

k∑
j=0

sup
x∈M

|∇ju(x)|, r = ∞ .

Sometime we also write Ck, Hk instead of H∞
k , H

2
k .

Proposition 1.2. Hr
k(M) does not depend on the Riemannian metric. And

Hk(M) is a Hilbert space.

We generalize the results of Hörmander and Sogge by considering the Sobolev
spaces in the following

Theorem 1.1. For k = 0, 1, · · · , the following inequalities hold:
||χλf ||Hr

k
≤ Cλk+(n−1)(r−2)/4r||f ||2, 2 ≤ r ≤ 2(n + 1)/(n− 1) ,

||χλf ||Hr
k
≤ Cλk+δ(r)||f ||2, 2(n+ 1)/(n− 1) ≤ r ≤ ∞ .

Remark 1.1. Recently Xiangjin Xu [10] obtained by the maximum principle ar-
gument the same estimate to the C1 norm of the unit spectral projection operator
with respect to the Dirichlet Laplacian on a compact Riemannian manifold with
boundary. However our proof is different from his even in C1 case.

Now we sketch the proof of Theorem 1.1. Recall that the wave kernelK(t, x, y)
is the Schwarz kernel of the wave operator cos(t

√
∆) associated with Laplace-

Beltrami operator ∆. For each x, y ∈M , in the sense of the distribution in t, the
following equality holds:

K(t, x, y) =
∞∑
j=0

cos(tλj)ej(x)ej(y) .
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In Corollary 2.1 in Subsection 2.3, we prove that if ε > 0 is a positive number suffi-
ciently small and depending on the geometry ofM , then t2k+n∇k

x∇k
yK(t, x, y)|x=y

is a smooth (0, 2k) tensor valued function with respect to (t, x) ∈ [0, ε) ×M .
By Corollary 2.1 and the wave kernel method (cf D. Grieser [2]), in Subsection
2.4 we obtain the following estimates of the covariant derivatives of the spectral
function uniformly for x ∈M ::

|∇k
∑

λj∈[λ, λ+1]

ej(x)|2 ≤ Cλn−1+2k, k = 0, 1, · · · (1.9)

which implies the following (L2, Ck) estimates for the USPO χλ:

||χλf ||Ck ≤ Cλk+(n−1)/2||f ||2 . (1.10)

By the L2 a priori estimate of the elliptic operator ∆ and the orthogonal
relation, in Lemma 3.1 of Subsection 3.1 we obtain

||χλf ||H2
k
≤ Cλk||f ||2 , (1.11)

combining which with the Lp a priori estimate and the interpolation method,
also in this subsection we in Lemma 3.2 reduce Theorem 1.1 to the following
estimates:

||χλf ||Hp
1
≤ C λ1+δ(p)||f ||2, ||∆χλf ||p ≤ C λ2+δ(p)||f ||2 . (1.12)

Then similarly to [8], we approximate the operators in Subection 3.2

∇ cos(t
√
∆), ∆cos(t

√
∆), j = 0, 1, · · ·

by certain Fourier integral operators (cf Lemma 3.3) and then in Subsection 3.3
we argue as in [7] to prove (1.12) by virtue of the oscillatory integral theorems of
Carleson-Sjölin [1] and Stein [9].

As long as the organization of the rest of this paper is concerned, in Subection
2.1 we set the notations related to the covariant derivatives on M and prove the
spectral resolution of ∆ as a self-adjoint operator. In Subsection 2.2 we give
a quick review the Hadamard parametrix of cos(t

√
∆) approximating the wave

kernel K(t, x, y) as well as we desire, which will be the crucial tool to the proof
of Theorem 1.1.
Acknowledgement A lot of thanks go to Dr. Xiangjin Xu for his generosity
of showing me his preprint [10]. I also thank Prof. Sogge for informing me the
existence of [10]. Finally I would like to express my deep gratitude to my advisor
Prof. Hitoshi Arai for his patient guidance.
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2 Ck estimates

2.1 The spectral resolution of ∆ and the wave kernel

Let X be an open set of M and x : X → Rn a diffeomorphism of X into Rn,
that is, a chart on M . Then assocaited to the chart are n coordinates vector
fields, written as ∂/∂xj or as ∂j , j = 1, · · · , n. For the given Riemannian metric
on M , define

gjk = 〈∂j, ∂k〉, G = (gjk), g = det G, G−1 = (gjk),

where j, k = 1, · · · , n and det denotes the determinant. Let ∇ be the Levi-Civita
connection determined by the Riemannian metric. On X Christoffel symbols Γk

ij

are defined by
∇∂i
∂j = Γk

ij∂k

and using a standard argument we deduces

Γk
ij =

1

2

∑
l

gkl(∂iglj + ∂jgil − ∂lgij) .

For k an nonnegative integer and u ∈ C∞(M), by the similar computation to the
equalities (1.8), we can see that the component (∇ku)i1···ik of ∇ku is equal to the
main term ∂i1···iku := ∂i1 · · ·∂iku plus the lower-order partial derivatives of u with
smooth coefficients coming from the Riemannian metric. Therefore by Definition
1.1 we have the following

Lemma 2.1. For k a nonnegative integer and u ∈ C∞(M),

||u||Ck(X) ≤ C
∑
|α|≤k

||∂αu||L∞(X) ,

where α = (α1, · · · , αn), with αj nonpositive integers, is a multi-index of length
≤ k and

∂α = (∂/∂x1)
α1 · · · (∂/∂xn)αn .

In the chart X the Laplace-Beltrami operator takes the form

∆ = −
∑

∂j(g
jk∂k) +

∑
bj∂j ,

where bj = −
∑
k

gjk∂k(log
√
g). By the Green’s formula, ∆ is symmetric with

respect to the Riemannian density
√
gdx :

(∆u, u) ≥ 0, (∆ u, v) = (u,∆ v); u, v ∈ C∞(M),
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where

(u, v) :=

∫
M

uv̄
√
gdx .

Let P be the operator defined by ∆ in L2(M) with DP = H2(M). Again by the
Green’s formula, we have

||u||H1 ≤ C ||(P + 1)u||2, u ∈ DP . (2.1.1)

The estimate (2.1.1) implies that P has a discrete spectrum so that the
spectral resolution of ∆ in the beginning of Section 1 holds. Let Eµ be the spectral

family of P and the wave operator cos(t
√

P) associated with P defined by

cos(t
√

P) =

∫ ∞

0

cos(t
√
µ)dEµ .

By direct computation (cf Section 17.5 of [5]), we obtain that the wave kernel
K(t, x, y) ∈ D ′(R × M × M) of cos(t

√
P) is the Fourier transformation with

respect to τ of the temperate measure dm(x, y, τ),

m(x, y, τ) =
√
g(y)(sgn τ)e(x, y, |τ |) . (2.1.2)

We remark that K(t, x, y) = d̂m(t) is an even function with respect to t.

2.2 The Hadamard parametrix of the wave operator

In this subsection we shall quickly review a remarkably simple and precise
construction due to J. Hadamard, which gives the singularities of the wave kernel
K(t, x, y) with any desired precision.

Let the open subset X (cf Subsection 2.1) ofM be sufficiently small so that for
every point in it we can introduce the geodesic normal coordinates which vanish
there and satisfy the condition∑

k

gjk(x)xk =
∑
k

gjk(0)xk . (2.2.1)

By Lemma 17.4.1 in [5], there exist unique smooth functions u0, · · · , uν with
u0(0) = 1 satisfying

2νuν − huν + 2〈x, ∂u/∂x〉 + 2∆uν−1 , (2.2.2)

where u−1 = 0 and

h(x) =
∑

gjk(0)b
j(x)xk =

∑
gjk(x)b

j(x)xk . (2.2.3)
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It follows from Corollary C.5.2 of [5] that there is a neighborhood V of the zero
section {0} ×M of the tangent bundle TM , a neighborhood W of the diagonal
in M ×M , and a well-defined diffeomorphism

V � (x̃, y) �→ (expy x̃, y) ∈ W ,

where expy is the exponential map at y with expy 0 = y and (d expy)|x̃=0 equal
to the identity. The metric tensor in the x̃ coordinates∑

g̃jk(x̃, y)ξjξk = p(expy x̃,
t(d expy)

−1(x̃) ξ)

satisfies (2.2.1), where p is the principal symbol of ∆. If (x, y) ∈ W we have a
well-defined Riemannian distance s(x, y) which is realized by a unique geodesic
between x and y. We choose V such that {x̃ : (x̃, y) ∈ V } is convex for every
y ∈ M . Pulling the functions uν(x̃, y) defined by (2.2.2) back to W from V , we
obtain uniquely defined Uν ∈ C∞(W ). Since W is open, we further choose the
open set X so small that X ×X ⊂ W . We can choose c > 0 such that

Xc ×Xc ⊂ W , (2.2.4)

where
Xc = {y ∈M : inf

x∈X
s(x, y) < c} .

As Lemma 17.4.2 of [5], with notation (3.2.17) of [4] In Rt×Rn
x we define the

homogeneous distributions Eν (k ∈ Z) of degree 2ν + 1− n with support in the
forward light cone {(t, x) : t ≥ |x|} by

Eν = 2−2ν−1π(1−n)/2χ
ν+(1−n)/2
+ (t2 − |x|2), t > 0 . (2.2.5)

We have

(∂2/∂t2−
∑

∂2/∂x2
j )Eν = νEν−1, ν �= 0; (∂2/∂t2−

∑
∂2/∂x2

j )E0 = δ0,0; (2.2.6)

−2∂Eν/∂x = xEν−1, ν ∈ Z . (2.2.7)

With some abuse of the notation we shall write Eν(t, |x|) instead of Eν(t, x) in
what follows; when t = 0 this should be interpreted as the limit when t → +0.
Moreover it follows from the proof of Lemma 17.4.2 in [5] with the notation
(3.2.10)’ of [4] that

∂t(Eν(t, 0)− Ěν(t, 0))

=




2−2ν π(1−n)/2 t2ν−n/Γ(ν + (1− n)/2), if n is even
2−2ν−1 π(1−n)/2 |t|2ν−n/Γ(ν + (1− n)/2), if n is odd and 2ν > n
(−1)k 2−2ν−k π(1−n)/2 δ(2k)/(1× 3× · · · × (2k − 1)),
if n is odd and n− 1− 2ν = 2k ≥ 0 ,

(2.2.8)
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where Ěν is the reflection of Eν with respect to the origin of Rt. It follows from
(2.2.1) and (2.2.6) (cf Proposition 17.4.3 in [5]) that we have in (−∞, c)×Xc×X

(∂2/∂t2 + ∆)E (t, x, y)

= (∂2/∂t2 +∆)

N∑
0

Uν(x, y)Eν(t, s(x, y))

= δ0,y/
√
g(y) + (P (x,D)UN(x, y))EN(t, s(x, y)) . (2.2.9)

When s(x, y) ≤ c the coefficients Uj are defined by integrating the equation (2.2.2)
in geodesic coordinates, and when s(x, y) > c their definition is irrelevant.

By the proof of Theorem 17.5.5 in [5], in (−c, c)×Xc ×X, we have

K(t, x, y)− ∂t(E (t, x, y)− Ě (t, x, y))/
√
g(y) ∈ CN−n−3 (2.2.10)

and∣∣∣∣∂αt,x,y
(
K(t, x, y)− ∂t(E (t, x, y)− Ě (t, x, y))/

√
g(y)

)∣∣∣∣ ≤ C|t|2N−n−|α| , (2.2.11)

where the multi-index α has length |α| ≤ N − n− 3. By the definition of Eν we
know that E (t, x, y) has support in the forward light cone {t ≥ s(x, y)} and its
reflection Ě (t, x, y)) with respect to the origin of Rt has support in the backward
light cone {t ≤ −s(x, y)}. Here all terms are continuous functions of (x, y) with
values in D ′(R) by Lemma 17.4.2 in [5]. Multiplying with tn, by (2.2.9) we can
get rid of the singularity of the wave kernel K(t, x, x) on the diagonal. More
precisely, the product

tn ∂t(E0(t, 0)− Ě0(t, 0))

of the principal term ∂t(E0(t, 0) − Ě0(t, 0)) of K(t, x, x) with tn is smooth on
[0, c) × X, from which we can in fact immediately reach the estimate (1.2) by
the wave kernel method in Subsection 2.4. We shall further apply (2.2.10) to
investigating the singularities of the derivatives ∂αx∂

α
yK(t, x, y)|x=y of the wave

kernel on the diagonal in the following subsection.

2.3 The derivatives of the wave kernel on the diagonal

Let α = (α1, · · · , αn) be a multi-index of length |α| = k ≥ 0. In the coor-
dinate chart (X × X, (x, y)) of M × M , we shall consider the singularities of
∂αx∂

α
yK(t, x, y)|x=y (x ∈ X). From now on, we let the N in (2.2.10) be as large as

necessary. By (2.2.10), we know

∂αx ∂
α
yK(t, x, y)|x=y = ∂αx∂

α
y ( ∂t(E (t, x, y)− Ě (t, x, y))/

√
g(y) )|x=y

+ CN−n−2k−3 term . (2.3.1)
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By the above equality we know that ∂αx∂
α
yK(t, x, y)|x=y is the sum of a contin-

uous function of (t, x) ∈ (−c, c) × X and finite homogeneous distributions of t
with coefficients smooth functions of x ∈ X. We call the distribution summand
of ∂αx∂

α
yK(t, x, y)|x=y with the lowest homogeneous degree the principal singu-

lar term of ∂αx∂
α
yK(t, x, y)|x=y. We observe that the principal singular term of

∂αx∂
α
yK(t, x, y)|x=y is equal to a smooth function of x depending on the metric of

X times
∂αx∂

α
y ∂t(E0(t, s(x, y))− Ě0(t, s(x, y)))|x=y . (2.3.2)

Firstly we need the following

Lemma 2.2. In the open set X with the geodesic coordinates, we have the fol-
lowing Taylor expansion of the square distance function s(x, y)2:

s(x, y)2 = |x− y|2 + higher− order terms.

Proof. By [6] we know the square distance function s(x, y)2 is a smooth
on X × X. Let η(x, y) = s(x, y)2. Under the geodesic coordinates, the square
distance function η satisfies the following properties:
(i) η(0, 0) = η(x, x) = 0,
(ii) η(0, x) = η(0,−x) = |x|2,
(iii) η(x, y) = η(y, x).
From (ii), we obtain

∂xj
η(0, 0) = ∂yj

η(0, 0) = 0 , ∂2
xj
η(0, 0) = ∂2

yj
η(0, 0) = 2 , (2.3.3)

where j = 1, · · · , n. Let z = (0, · · · , 0, xj , 0, · · · , 0) have the j-th coordinate xj
and others 0. The restriction on (0, 0) of the second derivative of η(z, z) gives

∂2
xj
η(0, 0) + 2 ∂2

xjyj
η(0, 0) + ∂2

yj
η(0, 0) = 0 ,

which combined with (2.3.3) implies ∂2
xjyj
η(0, 0) = −2. q.e.d.

We denote
E ′

ν(t, x) = ∂tE
′
ν(t, x), Ě

′
ν(t, x) = ∂tĚν(t, x)

and then
2∂E ′

ν/∂x = xE′
ν−1, 2∂Ě

′
ν/∂x = xĚ ′

ν−1 (2.3.4)

hold. We compute the principal singular term of (2.3.2) as follows.
With η = s(x, y)2, s = s(x, y), then

∂xj
(E ′

ν(t, s)− Ě ′
ν(t, s)) = −1

4
∂xj
η(E ′

ν−1(t, s)− Ě ′
ν−1(t, s))

By Lemma 2.2, (2.3.4) and above equality, we have

∂2
xjyj

(E ′
ν(t, s)− Ě ′

ν(t, s))

= −1

4
∂2
xjyj
η(E ′

ν−1(t, s)− Ě ′
ν−1(t, s)) +

1

16
∂xj
η∂yj

η(E ′
ν−2(t, s)− Ě ′

ν−2(t, s))
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In particualr,

∂xj
∂yj

(E ′
0(t, s)− Ě ′

0(t, s))|s = 0

= −1

4
∂2
xjyj
η(E ′

−1(t, s)− Ě ′
−1(t, s))|s=0 +

1

16
∂xj
η∂yj

η(E ′
−2(t, s)− Ě ′

−2(t, s))|s=0

=
1

2
(E ′

−1(t, 0)− Ě ′
−1(t, 0)) ; (2.3.5)

and

∂2
xj
∂2
yj

(
E ′

0(t, s)− Ě ′
0(t, s)

)|s=0

= −1

4
∂2
xj
∂2
yj
η
(
E ′

−1(t, s)− Ě ′
−1(t, s)

)|s=0

+
( 1

16
(∂2

xjyj
η)2 +

1

8
(∂2

xj
∂yj
η∂yj

η + ∂2
yj
∂xj
η∂xj

η)

+
1

16
∂2
xjyj

(∂xj
η∂yj

η)
)(
E ′

−2(t, s)− Ě ′
−2(t, s)

)|s=0

+
(
− 3

32
∂2
xjyj
η∂xj

η∂yj
η − 1

32
∂2
xj
η(∂yj

η)2 − 1

32
∂2
yj
η(∂xj

η)2
)(
E ′

−3(t, s)− Ě ′
−3(t, s)

)|s=0

+
1

256
(∂xj

η)2(∂yj
η)2

(
E ′

−4(t, s)− Ě ′
−4(t, s)

)|s=0

=
3

4
(E ′

−2(t, 0)− Ě ′
−2(t, 0)) + (E ′

−1(t, 0)− Ě ′
−1(t, 0)) times

a constant depending on the geometry of M near x. (2.3.6)

The equalities (2.3.5) and (2.3.6) tell us that the principal singular term of

∂lxj
∂lyj

(E ′
0(t, s)− Ě ′

0(t, s)|s=0, l = 1, 2

are certain constants times

E ′
−l(t, 0)− Ě ′

−l(t, 0), l = 1, 2 .

In general we can prove the following

Lemma 2.3. Let α ∈ Zn
+ be a multi-index of length |α| = k > 0 and X a geodesic

coordinate chart of M satisfying (2.2.4). Let (t, x) be in (−c, c) ×X. Then the
principal singular term of

∂αx∂
α
y (E

′
0(t, s(x, y))− Ě ′

0(t, s(x, y))|x=y

is a smooth function of x times

E ′
−k(t, 0)− Ě ′

−k(t, 0) ,

where the smooth function depends on α and the geometry of M on X.
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Proof. By Lemma 2.2 and the induction argument, we can show that

∂αx∂
α
y (E

′
0(t, s(x, y))− Ě ′

0(t, s(x, y)) =

2k∑
1

Pm(E
′
−m(t, s(x, y))− Ě ′

−m(t, s(x, y))) ,

where Pm (0 ≤ m ≤ 2k) is a polynomials in partial derivatives of s(x, y)2. In
particular, if m = k+ l (1 ≤ l ≤ k), every summand of Pm has a divisor which is
a polynomial of order 2l in the first partial derivatives ∂xj

s(x, y)2, ∂yj
s(x, y)2 of

s(x, y)2. Since
∂xj
s(x, y)2|x=y = ∂yj

s(x, y)2|x=y = 0 ,

∂αx ∂
α
y (E

′
0(t, s(x, y))− Ě ′

0(t, s(x, y))|x=y =

k∑
1

Pm(x, x)(E
′
−m(t, 0)− Ě ′

−m(t, 0)) .

q.e.d.

Proposition 2.1. Under the assumptions of Lemma 2.3, the principal singular
term of ∂αx ∂

α
yK(t, x, y)|x=y is a smooth function of x times

E ′
−k(t, 0)− Ě ′

−k(t, 0)

for t ∈ (−c, c), where the smooth function depends on α and the geometry of M
on X. Moreover,(
∂αx ∂

α
yK(t, x, y)−∂αx∂αy

∑
0≤2ν<2k+n

(
(E ′

ν(t, s(x, y))−Ě ′
ν(t, s(x, y)))Uν(x, y)/

√
g(y)

))
x=y

is in C∞((−c, c)×X) if n is even, and in C∞((−c, c)×X) after division by |t|
if n is odd. All derivatives are bounded in (−c, c)×X.
Proof. The first statement directly follows from the equalities (2.2.9), (2.3.1)
and Lemma 2.3. Write the function in the second statement briefly in R(t, x).
Then

R(t, x) =

(
∂αx ∂

α
yK(t, x, y)− ∂αx ∂αy ( ∂t(E (t, x, y)− Ě (t, x, y))/

√
g(y) )

)
x=y

+ ∂αx ∂
α
y

∑
2k+n≤2ν≤2N

(
(E ′

ν(t, s(x, y))− Ě ′
ν(t, s(x, y)))Uν(x, y)/

√
g(y)

)
x=y

.(2.3.7)

The first term in the right hand side (RHS) of (2.3.7) is in CN−n−2k−3((−c, c)×X)
by (2.3.1). Since it is even in t, its quotient by |t| is in CN−n−2k−4((−c, c)×X). As
a similar result of the first statement, the principal singular term of the summand

∂αx ∂
α
y

(
E ′

ν(t, s(x, y))− Ě ′
ν(t, s(x, y)))Uν(x, y)/

√
g(y)

)
x=y
, 2k + n ≤ 2ν ≤ 2N,
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of the second term in the RHS of (2.3.7) is a smooth function times

E ′
ν−k(t, 0)− Ě ′

ν−k(t, 0), 2ν ≥ n + 2k

which by (2.2.8) is in C∞((−c, c)×X) if n is even, and in C∞((−c, c)×X) after
division by |t| if n is odd. The same result holds for the second term of the LHS
of (2.3.7). Letting N → ∞, we complete the proof. q.e.d.

Corollary 2.1. Let (t, x) be in (−c, c)×X and α a multi-index of length |α| =
k ≥ 0. If n is even, ∂αx ∂

α
yK(t, x, y)|x=y is equal to

t−2k−n × a smooth function + a smooth function ;

if n is odd, ∂αx∂
α
yK(t, x, y)|x=y is equal to

δ
(n−1+2k)
0 (t)× a smooth function + |t| × a smooth function .

In particular, t2k+n∂αx∂
α
yK(t, x, y)|x=y is in C

∞([0, c)×X).

Proof. Firstly let n be even. By the equality (2.2.8) and the proof of Lemma
2.3 and Proposition 2.1,

∂αx ∂
α
yK(t, x, y)|x=y =

(2k+n−2)/2∑
−k

(E ′
ν(t, 0)− Ě ′

ν(t, 0))Qν(x) ∈ C∞((−c, c)×X ,

where Qν(x) are smooth functions of x. The statement follows from that for
−k ≤ ν ≤ (2k + n− 2)/2

E ′
ν(t, 0)− Ě ′

ν(t, 0) = const t2ν−n = const t−2k−n × t2(ν+k) .

Then let n be odd. By the equality (2.2.8) and the proof of Lemma 2.3 and
Proposition 2.1, the following holds:

∂αx∂
α
yK(t, x, y)|x=y =

(n−1)/2∑
−k

(E ′
ν(t, 0)− Ě ′

ν(t, 0))Qν(x) = |t| × a smooth function ,

where Qν are smooth function of x. The statement follows from the equality

E ′
ν(t, 0)− Ě ′

ν(t, 0) = const δ(n−1−2ν)(t) = const δ(n−1+2k)(t)× t2(ν+k)

for −k ≤ ν ≤ (n− 1)/2. q.e.d.
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2.4 The wave kernel method and L∞ estimates

By Corollary 2.1 and the wave kernel method (cf D. Grieser [2]), in this subsec-
tion we shall prove the following pointwise estimates of the covariant derivatives
of the spectral function uniformly for x ∈M :∑

λj∈[λ, λ+1]

|∇kej(x)|2 ≤ Cλn−1+2k, k = 0, 1, · · · (2.4.1)

which implies the following (L2, Ck) estimates for the USPO χλ:

||χλf ||Ck ≤ Cλk+(n−1)/2||f ||2 . (2.4.2)

In fact, by Lemma 2.1 in order to prove the above inequality, we have only to
show

||∂αχλf ||L∞(X) ≤ Cλ|α|+(n−1)/2||f ||2 .
Withoud loss of generality, we assume that the smooth function f takes real
values on M in what follows. Since

χλf(x) =

∫
M

∑
λj∈[λ, λ+1]

ej(x)ej(y)f(y)
√
g(y)dy ,

for any x ∈ X, by the Cauchy-Schwarz inequality and (2.4.1) we have

|∂αxχλf(x)|2 ≤
∑

λj∈[λ, λ+1]

|∂αx ej(x)|2
∑

λj∈[λ, λ+1]

(∫
M

ej(y)f(y)
√
g(y)dy

)2

≤ Cλn−1+2|α|||f ||22 .

Proof of (2.4.1) Since M is compact, by the proof of Lemma 2.1 and the
known result (1.2), we have only to show that for any multi-index α ∈ Zn

+ with
length |α| = k > 0 the following inequality holds:

|∂αx
∑

λj∈[λ, λ+1]

ej(x)|2 ≤ Cλn−1+2k, x ∈M, (2.4.3)

where λ is positive number ≥ 1. Let ρ be a Schwarz function in S (R) satisfying

ρ ≥ 0, ρ|[0, 1] ≥ 1, supp ρ̂ ⊂ (−c, c) . (2.4.4)

Theorem 17.5.3 of [5] says that |∂αx,ye(x, y, λ)| ≤ Ckλ
n+|α|, which implies that the

sum ∞∑
j=0

ρ(λ− λj)∂αx ej(x)∂αy ej(y)
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convergences absolutely. By Fourier inversion formular,

ρ(λ− λj) = 2(ρ̂(t) cos(tλj))
∨(λ)− ρ(λ+ λj) .

Multiplying ∂αx ej(x)∂
α
y ej(y) with above equality and taking sum, from the equality

∂αx∂
α
yK(t, x, y) =

∞∑
j=0

cos(tλj)∂
α
x ej(x)∂

α
y ej(y) ,

we obtain the following estimates

∞∑
j=0

ρ(λ− λj)∂αx ej(x)∂αy ej(y) = 2(ρ̂(t)∂αx ∂
α
yK(t, x, y)|x=y)

∨(λ)

+ O(λ−∞) . (2.4.5)

Letting x = y in above inequality, we have∑
|λj−λ|≤1

|∂αx ej(x)|2 ≤ 2(ρ̂(t)∂αx∂
α
yK(t, x, y)|x=y)

∨(λ) + O(λ−∞) . (2.4.6)

By Corollary 2.1, in order to estimate (ρ(t)∂αx∂
α
yK(t, x, y)|x=y)

∨(λ), instead of
∂αx∂

α
yK(t, x, y)|x=y we may only consider

t−2k−n , if n is even ;

and
δ(n−1+2k)(t), if n is odd .

By Example 7.1.17 of [4], the Fourier transformation of t−l−1 is const × (sgn ξ)ξl

if l ≥ 0 and const × δ−l−1 if l < 0. For n=even, as follows:

|(ρ̂(t)t−2k−n)∨(λ)| = |(ρ ∗ (t−2k−n)∨(λ)|
≤ C (ρ ∗ (|ξ|n+2k−1))(λ)

≤ C

∫
R

(1 + |ξ|)−(n+2k+1)|λ− ξ|n+2k−1dξ

≤ C
n+2k−1∑

0

∫
R

(1 + |ξ|)j−(n+2k+1)λjdξ

≤ Cλn+2k−1 .

For n=odd, we have also the above estimate. q.e.d.
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3 Sobolev Lp estimate

3.1 Lp a priori estimates and Sobolev Lp norms of USPO

In this subsection we shall reduce Theorem 1.1 to the estimates of certain
Sobolev norms of USPO χλ. Firstly we show some elliptic estimates related to
Sobolev Lp norms.

Proposition 3.1. Let u be a smooth function on M , 1 ≤ r <∞ and k a positive
integer. Then the followings hold :

||u||Hr
2k
≤ C

k∑
j=0

||∆ju||r, ||u||Hr
2k+1

≤ C
k∑

j=0

||∆ju||Hr
1
. (3.1.1)

Proof. Let l be a positive integer ≥ 2. By the well known elliptic a priori
estimate

||u||Hr
2
≤ C (||u||r + ||∆u||r) , (3.1.2)

and that the commutator operator [∆, ∂α] has order < 2 + |α|, the following
inequality holds:

||u||Hr
l

≤ C
∑

|α|≤l−2

||∂αu||Hr
2
≤ C

∑
|α|≤l−2

(||∂αu||r + ||∆∂αu||r)

≤ C
(
||u||Hr

l−2
+

∑
|α|≤l−2

|| [∆, ∂α] u ||r +
∑

|α|≤l−2

||∂α∆u||r
)

≤ C (||u||Hr
l−1

+ ||∆u||Hr
l−2

) . (3.1.3)

Letting l = 3 in above inequality gives, by (3.1.2) we have

||u||Hr
3
≤ C (||u||r + ||∆u||Hr

1
) ≤ C (||u||Hr

1
+ ||∆u||Hr

1
) . (3.1.4)

In the following we show the inequalities (3.1.1) by induction argument. Firstly
let (3.1.1) hold for ≤ 2k. Then by (3.1.3) we have

||u||Hr
2k+1

≤ C (||u||Hr
2k
+ ||∆u||Hr

2k−1
) ≤ C

( k∑
j=0

||∆ju||r +
k∑

j=1

||∆ju||Hr
1

)

≤ C

k∑
j=0

||∆ju||Hr
1
.

That is, (3.1.1) holds for 2k + 1.
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Finally letting (3.1.1) hold for ≤ 2k+1. Then by this assumption and (3.1.2),
we show (3.1.1) holds for 2k + 2 as following:

||u||Hr
2k+2

≤ C (||u||Hr
2k+1

+ ||∆u||Hr
2k
) ≤ C

( k∑
j=0

||∆ju||Hr
1
+

k∑
j=1

||∆ju||r
)

≤ C
k+1∑
j=0

||∆ju||r .

By above two inequalities and the inequalities (3.1.2) and (3.1.4), we complete
the induction argument. q.e.d.

Let u be a real valued smooth function on the Riemannian manifold M . The
gradient gradu of u is defined to be the dual vector field of one form du = ∇u
by

g(gradu, V ) = du(V )

for arbitrary smooth vector field V on M . We shall identity ∇u with gradu and
only consider the latter in what follows. Since in the coordinate chart (X, x)

|grad u| = |∇u| =
∑

gjk∂ju∂ku , (3.1.5)

by the Green’s formula we have

||u||2H1 = ||u||22 +
∫
M

|grad u|2 dv(M) = ||u||22 +
∫
M

u∆udv(M). (3.1.6)

Adding up to (3.1.6) the equality ∆χλf =
∑

|λ−λj |≤1

λ2
j ej(f) and the orthogonal

relation, we obtain
||χλf ||H1 ≤ Cλ||f ||2 , (3.1.7)

combining which with (3.1.1) and the equalities

χ2
λ = χλ on L2(M), ∆χλ = χλ ∆ on C∞(M),

we have

||χλf ||H2k+1 ≤ C
k∑

j=0

||∆jχλf ||H1 = C
k∑

j=0

||χλ(∆
jχλf)||H1

≤ Cλ
k∑

j=0

||∆jχλf ||2 ≤ Cλ1+2k||f ||2 . (3.1.8)

It follows also from (3.1.1) that

||χλf ||H2k ≤ C
k∑

j=0

||∆jχλf ||2 ≤ Cλ2k||f ||2 . (3.1.9)

Summing up the inequalities (3.1.6), (3.1.8) and (3.1.9), we obtain the following
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Lemma 3.1. Let k be a nonnegative integer. The following (L2, Hk) estimates
for the USPO χλ hold :

||χλf ||Hk ≤ C λk||f ||2 , k = 0, 1, · · · . (3.1.10)

Now we can do reduction of Theorem 1.1 in the following

Lemma 3.2. Suppose that the following estimates hold for p = 2(n+ 1)/(n− 1)

||gradχλf ||p ≤ C λ1+δ(p)||f ||2, (3.1.11)

||∆χλf ||p ≤ C λ2+δ(p)||f ||2 . (3.1.12)

In (3.1.11) the Lp norm ||grad u||p =
(∫

M

|grad u|p dv(M)
)1/p

for a smooth func-

tion u on M . Then Theorem 1.1 holds.

Proof. By the interpolation method and the estimates (2.4.2), (3.1.10), we
have only to prove (∗) : ||χλf ||Hp

k
≤ C λk+δ(p)||f ||2, for any nonnegative integer

k. Firstly let k be even. By (3.1.12) and Proposition 1.1, for any nonnegative
integer j, the following inequality holds by induction:

||∆jχλf ||p ≤ C λ2j+δ(p)||f ||2 .

Then (∗) follows from Proposition 1.1, Proposition 3.1 and above inequality.
Then let k be odd. It follows from Proposition 1.1, (3.1.5) and (3.1.11) that

||χλf ||Hp
1
≤ C

(
||χlf ||p + ||gradχlf ||p

)
≤ Cλ1+δ(p)||f ||2 .

In particular, the following holds for any nonnegative integer j:

||∆jχlf ||Hp
1
= ||χl(∆

jχlf)||Hp
1
≤ C λ1+δ(p)||∆jχlf ||2 ≤ C λ1+2j+δ(p)||f ||2 .

The (∗) follows from Proposition 3.1 and above inequality. q.e.d.

3.2 Fourier Integral operators

In this subsection, we shall approximate operators ∆ cos(t
√

P), grad cos(t
√

P)
by Fourier integral operators (FIOs) and reduce the estimates (3.1.11) and (3.1.12)
to the corresponding estimates of the FIOs. In subsection 2.2, in order to write the
covariant derivatives of the wave kernel explicitly, we constructed the Hadamard
parametrix in the coordinate chart X. Here we consider the parametrix on M .
Using the same argument in Subsection 2.2 , there exists a positive number c
depending on M such that in (−c, c)×M ×M , we have

K(t, x, y)− ∂t(E (t, x, y)− Ě (t, x, y))/
√
g(y) ∈ CN−n−3 (3.2.1)
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where

E (t, x, y) =

N∑
0

Uν(x, y)Eν(t, s(x, y)) , (3.2.2)

Uν(x, y) are C
∞ function and can be assumed to be supported in a neighbourhood

C = {(x, y) ∈M ×M : s(x, y) < c}

of the diagonal, and U0(x, x) = 1. By Lemma 17.4.2 of [5], we have

E ′
0(t, x)− Ě ′

0(t, x) = (2π)−n

∫
Rn

cos(t|ξ|)ei〈x , ξ〉dξ .

Therefore, the followings holds:

∂(E ′
0(t, x)− Ě ′

0(t, x))/∂x = (2π)−n

∫
Rn

cos(t|ξ|)(iξ)ei〈x , ξ〉dξ , (3.2.3)

n∑
j=1

(∂/∂xj)
2(E ′

0(t, x)− Ě ′
0(t, x)) = (2π)−n

∫
Rn

cos(t|ξ|)(−|ξ|2)ei〈x , ξ〉dξ . (3.2.4)

Firstly we consider the Lp gradient estimate (3.1.11) and do some preparations
for it. The Riemannian metric on M induces naturally the the inner products on
the space of smooth vector fields of M , and on Λ1M , the space of smooth one
forms of M . Also the spaces L2(TM), L2(Λ1M) consisting of square integrable
vector fields, square integrable one forms can be defined respectively. We denote
the inner products in L2(TM), L2(Λ1M) simutaneously by ( , ) if there is no con-
fusion. Then (gradu, gradu) = (du , du) holds for u ∈ C∞(M). In particular,
by Green’s formula, we know

(dej , dek) = (grad ej , grad ek) = (∆ej , ek) = δjkλ
2
j . (3.2.5)

That is, {grad ej}, {dej} are orthogonal basis of L2(TM), L2(Λ1M) respectively.
Let ρ be the Schwarz function in S (R) satisfying (2.4.4). To prove (3.1.11),

by the dual argument and (3.2.5), it is enough for us to show

||χ̃g,λf ||2 ≤ C λ1+δ(q)||f ||q , (3.2.6)

where χ̃g,λf =
∑

ρ(λ− λj) gradej(f) and q = 2(n + 1)/(n + 3). Without loss

of generality, we assume f to be in C∞(M) in what follows. And
∑

will mean
∞∑
0

. We can write χ̃g,λf as

χ̃g,λf = (2π)−1

∫
R

ρ̂(τ)e−iτλ
∑

eiτλj grad ej(f)dτ .
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We define ˜̃χg,λ as

˜̃χg,λ = (2π)−1

∫
R

ρ̂(τ)e−iτt
∑

cos(τλj) grad ej(f)dτ , (3.2.7)

so that
2 ˜̃χg,λf = χ̃g,λf +

∑
ρ(λ+ λj) grad ejf .

By the L∞ gradient estimate |grad
∑

|λj−λ|≤1

ej| ≤ C λ(n+1)/2 (cf (2.4.1)) and the

Young’s inequality, we have

||
∑

ρ(λ+ λj) grad ej ||(L1(M), L2(TM)) = O(λ−∞) ,

interpolating which with

||
∑

ρ(λ + λj) grad ej||(L2(M), L2(TM)) = O(1)

followed from (3.2.5), we obtain

||
∑

ρ(λ+ λj) grad ej ||(Lq(M), L2(TM)) = O(λ−∞) .

Thus it suffices to show that the operator ˜̃χg,λ satisfies (3.2.6).
To do this, we use the Hadamard parametric (3.2.1) and (3.2.3), which for

t ∈ (−c , c) allows us to write the gradient of cos(t
√

P)f as follows

gradx cos(t
√

P)f(x) =

∫
M

∫
Rn

gradx e
iΦ(x,y,ξ) cos(t|ξ|)U0(x, y)f(y)dξdy+Rtf(x) .

(3.2.8)
Here Rt is also a Fourier integral operator, but it is of one order lower. Also,

Φ(x, y, ξ) = 〈x− ỹ , ξ〉 , (3.2.9)

where, for a given x, ỹ denotes the geodesic normal coordinates of y. This phase
function is always well defined in C . It follows from (3.2.7) and (3.2.8) that,
modulo an operator which has an (Lq , L2) norm that is O(λ−1) better by the
argument in Subsection 3.3, ˜̃χg,λ has kernel

Kλ(x, y) = U0(x, y)

∫ ∫
gradx e

iΦ(x,y,ξ) cos(λ|ξ|) ρ̂(τ) e−iτλ dτdξ .

However, it is easy to check that the kernel

U0(x, y)

∫ ∫
gradx e

iΦ(x,y,ξ)−τ |ξ| ρ̂(τ) e−iτλ dτdξ = U0(x, y)

∫
gradx e

iΦ(x,y,ξ)ρ(λ+|ξ|)dξ
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give rise to a operator with rapidly decreasing (Lq , L2) norm, which, in turn,
implies that we need only show that the operator with kernel

Kλ(x, y) = U0(x, y)

∫ ∫
gradx e

iΦ(x,y,ξ)+τ |ξ| ρ̂(τ) e−iτλ dτdξ

= U0(x, y)

∫
gradx e

iΦ(x,y,ξ)ρ(λ− |ξ|)dξ (3.2.10)

satisfies (3.2.6)
Using (3.2.4) and the parallel argument as above, we can prove the similar

reduction of the (L2, Lp) estimate (3.1.12). Therefore we have the following

Lemma 3.3. Let the two operators Υg,λ : Lq(M) → L2(TM) and Υ∆,λ : Lq(M) →
L2(M) have kernels of Kλ(x, y) in (3.2.10) and K̃λ(x, y) defined by

K̃λ(x, y) = U0(x, y)

∫ ∑
gjk(x)ξjξk e

iΦ(x,y,ξ)ρ(λ− |ξ|)dξ (3.2.11)

respectively. Suppose that the following estimates hold for q = 2(n+ 1)/(n+ 3) :

||Υg,λf ||L2(TM) ≤ C λ1+δ(q)||f ||q, (3.2.12)

||Υ∆,λf ||L2(M) ≤ C λ2+δ(q)||f ||q . (3.2.13)

Then the estimates in (3.1.11) and (3.1.12) hold.

This Lemma will be proved in the following subsection.

3.3 Oscillatory integrals

In this subsection we shall apply the Carleson-Sjölin method and oscillatory
integral theorems of Carleson-Sjölin [1] and Stein [9] to proving Lemma 3.3, com-
bining which with Lemma 3.2, we immediately obtain the proof of Theorem 1.1.
We firstly take computations involving stationary phase in the following lemma
to find the essential parts in kernels Kλ, K̃λ as λ → +∞, which determine the
(Lq, , L2) norms of Υg,λ, Υ∆,λ.

Lemma 3.4. Let (x, y) be in the neighbourhood C of the diagonal in M ×M and
x �= y. Then every component of Kλ(x, y) is essentially a C

∞ function times

λ(n+1)/2eiλs(x,y) s(x, y)−(n−1)/2

and K̃λ(x, y) is essentially a C
∞ function times

λ(n+3)/2eiλs(x,y) s(x, y)−(n−1)/2 .
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Proof. Firstly we prove the following

Claim 1 The integral

∫
Rn

eiz·ξρ(λ− ξ)dξ is essentially a C∞ function times

λ(n−1)/2eiλ|z||z|−(n−1)/2

for 0 �= z and λ→ +∞.

We prove Claim 1 by stationary phase argument. Let Jm(r), m ≥ 0 an integer
or a half-integral, be the Bessel function defined by

Jm(r) =
rm

π1/22mΓ(m+ 1/2)
·
∫ 1

−1

eirt(1− t2)m−1/2 dt ,

whose asympototic form as r → +∞ can be written by

√
reir × a smooth function +

√
re−ir × a smooth function .

Without loss of generality, we shall only consider the first term of above when
using the Bessel function in what follows. By [9], the Fourier transform d̂σ(ξ) of
the Lebesgue measure on the unit sphere Sn−1 ⊂ Rn satisfies

d̂σ(ξ) =

∫
Sn−1

e−2πiθ·ξ dσ(θ) = 2π|ξ|(2−n)/2J(n−1)/2(2π|ξ|) .

By the above equalities, we have∫
Rn

eiz·ξρ(λ− ξ)dξ = const ×
∫ ∞

0

ρ(λ− r)rn−1d̂σ(
r|z|
2π

)dr

= |z|(1−n)/2

∫ ∞

0

eir|z|r(n−1)/2ρ(λ− r)dr × a smooth function

= λ(n−1)/2eiλ|z||z|−(n−1)/2 × a smooth function

Since gradx e
iΦ(x,y,ξ) has the components

(
gradx Φ(x, y, ξ)

)
j
=

n∑
k=1

gjk(x)(iξk)e
iΦ(x,y,ξ) ,

by the similar computation as above the proof for Kλ is completed. By (3.2.11)
we can use the similar argument in the proof for K̃λ. q.e.d.

Proof of Lemma 3.3 By Lemma 3.4, to prove Lemma 3.3, we have only to
show the operator Υλ : Lq(M) → L2(M) with kernel

λ(n−1)/2eiλ s(x,y) s(x, y)−(n−1)/2U0(x, y)
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satisfies the estimate

||Υf ||Lq(M) ≤ C λδ(q)||f ||L2(M) .

By using the compactness ofM and the local coordinates, it is clear from the dual
argument that above estimate would be a consequence of the following estimate:∣∣∣∣

∣∣∣∣
∫

Rn

η(x, y)λ(n−1)/2 eiλs(x,y) s(x, y)−(n−1)/2 f(y)dy

∣∣∣∣
∣∣∣∣
Lp(Rn)

≤ C λδ(p)||f ||L2(Rn) ,

(3.3.1)
where p = 2(n+1)/(n−1) and η ∈ C∞

0 (Rn×Rn) has support ⊂ {(x, y)|s(x, y) ≤
c}. On the other hand, Sogge (cf (4.6) of [7]) proved (3.3.1) by using the Carleson-
Sjölin method and oscillatory integral theorems of Carleson-Sjölin [1] and Stein
[9]. q.e.d.
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[1] Carleson, L.; Sjölin, P. Oscillatory Integrals and a Multiplier Problem for
the Disc. Studia. Math. 1972, 44, 287-299.

[2] Grieser, D. Uniform Bounds for Eigenfunctions of the Laplacian on Manifolds
with Boundary. Comm. Partial Differential Equations. 2002, 27 (7-8), 1283-
1299.
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