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Abstract

Let e(x;y; �) (cf (1)) be the spectral function and �� (cf (2)) the unit spectral projection

operator, with respect to the Laplace-Beltrami operator on a closed Riemannian manifold M .

We generalize the one-term asymptotic expansion of e(x; x; �) by H�ormander [3] to that of

@�x @
�
y e(x;y; �)jx=y for any multi-indices �; � in a suÆciently small geodesic normal coordinate

chart of M . Moreover, we extend the sharp (L2; Lp) (2 � p � 1) estimates of �� by Sogge [10]

[11] to the sharp (L2; Sobolev Lp) estimates of ��.
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1 Introduction

Let (M; g) be a smooth closed Riemannian manifold of dimension n � 2 and � the positive

Laplace-Beltrami operator on M . Let L2(M ) be the space of square integrable functions on M with

respect to the Riemannian density dv(M ) :=
p
det (gij) dx =:

p
g(x) dx. Let e1(x); e2(x); � � � be

a complete orthonormal basis in L2(M ) for the eigenfunctions of � such that 0 � �21 � �22 � � � �
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for the corresponding eigenvalues, where �j are nonnegative real numers. Also, let ej denote the

projection onto the 1-dimensional space Cej . Thus , an L2 function f can be written as

f =
1X
j=0

ej(f);

where the partial sum converges in the L2 norm. Let � be a positive real number � 1. We de�ne

the spectral function e(x; y; �) and the unit spectral projection operator (USPO) �� as follows:

e(x; y; �) :=
X
�j��

ej(x)�ej(y) ; (1)

��f :=
X

�j2[�; �+1]

ej(f) : (2)

Since in (1) the de�nition of e(x; y; �) does not depend on the choice of the orthogonormal basis

fej(x)g1j=1, without loss of generality from now on we assume that ej(x) (1 � j < 1) are real-

valued functions on M so that

e(x; y; �) :=
X
�j��

ej(x)ej(y) :

Approximating the fundamental solution of the wave equation precisely enough, H�ormander [3] [5]

obtained a one-term asymptotic expansion of the spectral function e(x; x; �) as following:

e(x; x; �) = Cn �
n + O(�n�1); as �!1; (3)

where Cn is equal to (2�)�n times the volume of the unit ball of Rn. As a consequence H�ormander

proved the uniform estimate of eigenfunctions for x 2MX
�j2[�; �+1]

jej(x)j2 � C �n�1 ; (4)

which implies

jj��f jj1 � C�(n�1)=2jjf jj2 : (5)

Here jjf jjr (1 � r � 1) means the Lr norm of the function f onM . Let Æ(r) be the critical exponent

max(n � j1=r� 1=2j � 1=2; 0) for Bochner Riesz means of the Laplacian on Lr(Rn). With the help of

the oscillatory integral theorems of Carleson-Sj�olin [1] and Stein [13], Sogge showed in [10] and [11]

jj��f jjq � C�Æ(q)jjf jj2; q = 2(n+ 1)=(n� 1) (6)

by using the Hadamard parametrix for �� (�+ i)2 and the wave operator (@=@t)2+� respectively.

Interpolating (6) with (5) and the inequality

jj��f jj2 � jjf jj2 (7)

from the orthogonal relation, Sogge proved the following

Proposition 1.1. (cf C. D. Sogge [10] and [11])

jj��f jjr � C��(r)jjf jj2; 2 � r �1; (|)

where

�(r) =

(
(n�1)(r�2)

4r if 2 � r � 2(n+1)
n�1 ;

Æ(r) if 2(n+1)
n�1 � r � 1:

The estimate (|) is sharp in the sense that the bounds cannot be replaced by o(��(r)).
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Remark 1.1. Sharpness of the bounds of estimates in this paper always has the similar meaning as

above.

For a positive integer m, we set the following notations:

(2m � 1)!! := (2m � 1)(2m � 3) � � �3 � 1; (�1)!! := 1 :

We say � � � (mod 2) for two multi-indices �; � 2 Zn+ if and only if �j � �j (mod 2) for 1 � j � n.

Let r be the Levi-Civita connection on M and jrkuj be the length of the k-covariant derivative of

a smooth function u on M . (cf Subsection 2.1) Let Bn be the unit ball in Rn with center at 0. We

�rstly generalize H�ormander's asymptotic expansion (3) of the spectral function in the following

Theorem 1.1. In a suÆciently small geodesic normal coordinate chart (X ;x) of M , for multi-

indices �; � 2 Zn+ the following estimates hold uniformly for x 2 X as �!1:

@�x @
�
y e(x; y; �)jx=y =

(
Cn;�;� �

n+j�+�j + O(�n+j�+�j�1) if � � � (mod 2);

O(�n+j�+�j�1) otherwise;
(8)

where for multi-indices �; � such that � � � (mod 2),

Cn;�;� = (2�)�n (�1)(j�j�j�j)=2
Z
Bn

x�+� dx (9)

= (�1)(j�j�j�j)=2
Qn

j=1(�j + �j � 1)!!

�n=2 2n+j�+�j=2 �( j�+�j+n2 + 1)
(10)

In particular, if � = �, then the following estimate holds uniformly for x 2 X as �!1:X
�j��

j@�ej(x)j2 = Cn;��
n+2j�j + O(�n+2j�j�1); as �!1 ; (11)

where Cn;� = Cn;�;� > 0. Moreover, the following uniform estimate holds for x 2M and it is sharp:X
�j2[�; �+1]

jrkej(x)j2 � C �n+2k�1 : (12)

Remark 1.2. More precisely speaking, Theorem 1.1 always holds for the geodesic coordinate (X;x)

satisfying the condition (25). (cf Subsection 2.2)

Using the notations in De�nition 2.1, we generalize the sharp L1 estimate 5 in the following

Corollary 1.1. The following estimate holds and it is sharp:

jj��f jjCk � C �k+(n�1)=2jjf jj2 :

As a consequence of Proposition 1.1 and Corollary 1.1, it is not hard for us to generalize the

sharp Lp estimate of �� by Sogge to the sharp Sobolev Lp estimate on M . (cf De�nition 2.1 for

Sobolev spaces Hr
k and Ck spaces on M )

Theorem 1.2. Let k be a nonnegative integer, 2 � r � 1 and �(r) be the same as Proposition 1.1.

Then the following estimate holds :

jj��f jjHr
k
� C��(r)+kjjf jj2 : (�)

Moreover the estimate (�) is sharp. In particular, for a single eigenfunction ej(x) the following

holds:

jjejjjHr
k
� C �

�(r)+k
j ;

which in general can not be improved in the sense of Example 1.1.
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Example 1.1. Let Mn be the unit n-sphere Sn of the Euclidean space Rn+1. Let Zm be the zonal

harmonic function of degree m with respect to the north pole and Qm the spherical harmonic de�ned

by

Qm(x) = (x2 + ix1)
m :

Then there exists a positive constant C independent of m such that the following inequalities hold:

jjZmjjHr
k
=jjZmjj2 � C m�(r)+k; 2(n+ 1)=(n� 1) � r � 1; (13)

jjQmjjHr
k
=jjQmjj2 � C m�(r)+k; 2 � r � 2(n+ 1)=(n� 1): (14)

Remark 1.3. Let N be a compact Riemannian manifold with smooth boundary @N . On N we

consider the Dirichlet Laplacian �N with respect to the Dirichlet boundary value problem

�Nu = f; x 2 NÆ; u(x) = 0; x 2 @N:

Let feNj (x)g1j=1 be the real normalized eigenfunctions of �N such that

�Ne
N
j (x) = �2j e

N
j (x); x 2 NÆ; eNj (x) = 0; x 2 @N ;

where 0 < �21 � �22 � � � � are the eigenvalues of �N . Similarly to (2) we can also de�ne the USPO

�N;� associated to �N . In particular, when N is a bounded region in Rn, by studying the heat

kernel of �N , Ozawa [8] proved

X
�j��

�����@eNj (x)@�

�����
2

= C�n+2 +O(�n+1); as �!1; (15)

for every x 2 @N , where � is the unit outward normal derivative at x 2 @N . For the general

Riemannian manifold N with boundary @N , Grieser [2] and Sogge [12] proved that the estimate (5)

holds for �N;�, by which Xiangjin Xu [15] used a clever maximum principle argument to show the

estimate

jj�N;�f jjC1(N) � C�(n+1)=2jjf jjL2(N) : (16)

The results of Ozawa and Xiangjin Xu stimulated the author to think of Theorem 1.2.

Now we sketch the proof of Theorem 1.1. Firstly we make an observation thatX
�j��

@�ej(x)@
�ej(x) = @�x @

�
y e(x; y; �)jx=y : (17)

We recall that the wave kernel K(t; x; y) 2 D 0(R�M�M ) is the Schwarz kernel of the wave operator

cos(t
p
�) associated with the Laplace-Beltrami operator �. For each x; y 2 M , by (17.5.9) of [5]

K(t; x; y) is the Fourier transformation with respect to � of the temperate measure dm(x; y; � ):

m(x; y; � ) =
p
g(y) (sgn � ) e(x; y; j� j) :

In Proposition 2.2 and Corollary 2.1 of Subsection 2.3, we obtain the detailed information of the

singularities for @�x @
�
yK(t; x; y)jx=y for x in a suÆciently small geodesic coordinate X of M and t

in a small interval (�c; c), where c is a positive constant depending on the geometry of M . In

particular, by Corollary 2.1 tn+j�+�j@�x @
�
yK(t; x; y)jx=y is smooth in [0; c)�X. Then in Subsection

2.4 we complete the proof of (11) with the help of a Tauberian lemma (cf Lemma 2.5). As long

as the constant Cn;�;� is concerned, we �rstly observe that it does not depend on the Riemannian

manifoldM and then obtain its accurate value by the computation on the n-dimensional at torus.
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(cf Subsection 2.5) We can easily derive Corollary 1.1 from (11) and the detail is given in Lemma

2.7.

Then we state the outline of the proof of Theorem 1.2. We have only to consider 2 � r < 1 by

Corollary 1.1. Making reduction by the elliptic regularity (cf Corollary 3.1) and the duality, we only

need to show that the following estimates hold for j = 0; 1; � � � and they are sharp:

jj�j��f jj2 � C�2j+�(r)jjf jjr0 ; jjgrad�j��f jj2 � C�2j+1+�(r)jjf jjr0 ; r0 = r=(r � 1): (18)

Finally we can obtain the above estimates and their sharpness by Proposition 1.1 and direct compu-

tations. The detail will be given in Section 3.

As long as the organization of the rest of this paper is concerned, in Subsection 2.1 we set

the notations related to the covariant derivatives, Sobolev spaces and the wave kernel on M . In

Subsection 2.2 we give a quick review for the Hadamard parametrix of cos(t
p
�), which approximates

the wave kernel K(t; x; y) as well as we desire, and is the crucial tool to the proof of Theorem 1.1.

In Section 4 we have some explicit calculations to check the validity of (13) and (14), in which the

asymptotic property of the Jacobi polynomials is involved.

Acknowledgment Special thank goes to Doctor Xiangjin Xu for his generosity of showing me his

preprint [15]. I thank Professor Christopher D. Sogge for informing me the existence of [15]. I

am indebted to Doctors Shuming Li and Wuqing Ning for doing numerical computations to the

gradients of the zonal harmonics, which led me to think of Lemma 4.2. I would like to express my

deep gratitude to Professor Hitoshi Arai for constant encouragement and patient guidance. I am

also indebted to him for telling me an elegant computation of the integral in (9). Finally I would

like to express my sincere gratitude to the referee for several valuable comments.

2 Derivatives of spectral function

2.1 Sobolev spaces and the wave kernel

For k a nonnegative integer and u 2 C1(M ), rku denotes the kth covariant derivative of u (with

the convention r0u = u). As an example, the components of ru in local coordinates are given by

(ru)i = @iu, while the components of r2u in local coordinates are given by

(r2u)ij = @2iju�
X
k

�kij@ku ; (19)

where �kij are the Christo�el symbols of the Levi-Civita connection r of (M; g). We de�ne the length

jrkuj of rku by

jrkuj2 :=
X

gi1j1 � � �gikjk(rku)i1���ik(rku)j1���jk ;

where (gij) denotes the inverse matrix of (gij) and the sum is taken for 1 � i1; � � � ; ik;
j1; � � � ; jk � n.

De�nition 2.1. The Sobolev space Hr
k(M ) is the completion of C1(M ) with respect to the norm

jjujjHr
k
:=

� kX
j=0

Z
M

jrjujrdv(g)
�1=r

; 1 � r <1 ;

jjujjHr
k
:=

kX
j=0

sup
x2M

jrju(x)j; r =1 :

Sometimes we also write Ck;Hk instead of H1
k ;H2

k.
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The following result is well known.

Proposition 2.1. Hr
k(M ) does not depend on the Riemannian metric. And Hk(M ) is a Hilbert

space.

Lemma 2.1. Let X be a relatively compact open set of M and x : X ! Rn a di�eomorphism of X

into Rn, that is, a chart on M . For k a nonnegative integer and u 2 C1(M ),

jjujjCk(X) � C
X
j�j�k

jj@�ujjL1(X) ;

where � = (�1; � � � ; �n) is a multi-index and @� = (@=@x1)
�1 � � � (@=@xn)�n .

Proof. By the similar computation to the equalities (19), we can see that the component (rku)i1���ik
of rku is equal to the main term @i1 � � �@iku plus the lower-order partial derivatives of u with smooth

coeÆcients coming from the Riemannianmetric. Then the statement follows from thatX is relatively

compact in M .

In the chart X the Laplace-Beltrami operator takes the form

� = �
X

@j(g
jk@k) +

X
bj@j ;

where bj = �
X
k

gjk@k(log
p
g). Let P be the operator de�ned by � in L2(M ) with DP = H2(M ).

It is well known that P is a self-adjoint operator on L2(M ) and that P has a discrete spectrum

so that the spectral resolution of � in the beginning of Section 1 holds. Let cos(t
p
P) be the wave

operator associated with P de�ned by

cos(t
p
P) =

Z 1

0
cos(t

p
�)dE� ;

where E� is the spectral family of P. By the standard computations (cf Section 17.5 of [5]), the

wave kernel K(t; x; y) 2 D 0(R�M �M ) of cos(t
p
P) is the Fourier transformation with respect to

� of the temperate measure dm(x; y; � ),

m(x; y; � ) =
p
g(y) (sgn � ) e(x; y; j� j)=2 : (20)

We remark that K(t; x; y) = cdm(t) is an even function with respect to t.

2.2 The Hadamard parametrix of the wave operator

In this subsection we shall quickly review a remarkably simple and precise construction due to J.

Hadamard, which gives the singularities of the wave kernel K(t; x; y) with any desired precision.

Let the open subset X (cf Lemma 2.1) of M be suÆciently small so that for an arbitrary point

p 2 X we can introduce the geodesic normal coordinates of X which vanish at p and satisfy the

condition X
k

gjk(x)xk =
X
k

gjk(0)xk : (21)

By Lemma 17.4.1 in [5], there exist unique smooth functions u0; � � � ; u� with u0(0) = 1 satisfying

2�u� � hu� + 2hx; @u=@xi+ 2�u��1 ; (22)

where u�1 = 0 and

h(x) =
X
j;k

gjk(0)b
j(x)xk =

X
j;k

gjk(x)b
j(x)xk : (23)
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It follows from Corollary C.5.2 of [5] that there is a neighborhood V of the zero section f0g �
M of the tangent bundle TM , a neighborhood W of the diagonal in M �M , and a well-de�ned

di�eomorphism

V 3 (~x; y) 7! (expy ~x; y) 2 W ;

where expy is the exponential map at y with expy 0 = y and (d expy)j~x=0 equal to the identity. The

metric tensor in the ~x coordinatesX
~gjk(~x; y)�j�k = p(expy ~x;

t(d expy)
�1(~x) �)

satis�es (21), where p is the principal symbol of �. If (x; y) 2 W we have a well-de�ned Riemannian

distance s(x; y) which is realized by a unique geodesic between x and y. We choose V such that

f~x : (~x; y) 2 V g is convex for every y 2 M . Pulling the functions u�(~x; y) de�ned by (22) back to

W from V , we obtain uniquely de�ned U� 2 C1(W ). We remark that

U0(x; x) = 1; (x; x) 2 W : (24)

Since W is open, we further choose the open set X so small that X �X � W . We can choose c > 0

such that

Xc �Xc � W ; (25)

where

Xc = fy 2M : inf
x2X

s(x; y) < cg :

As Lemma 17.4.2 of [5], with the notation (3.2.17) of [4] In Rt �Rn
x we de�ne the homogeneous

distributions E� (k 2 Z) of degree 2�+1�n with support in the forward light cone f(t; x) : t � jxjg
by

E� = 2�2��1�(1�n)=2�
�+(1�n)=2
+ (t2 � jxj2); t > 0 : (26)

We have

(@2=@t2 �
X

@2=@x2j)E� = �E��1; � 6= 0; (@2=@t2 �
X

@2=@x2j )E0 = Æ0;0; (27)

�2@E�=@x = xE��1; � 2 Z : (28)

With some abuse of the notation we shall write E�(t; jxj) instead of E�(t; x) in what follows; when

t = 0 this should be interpreted as the limit when t ! +0. Moreover it follows from the proof of

Lemma 17.4.2 in [5] with the notation (3:2:10)0 of [4] that

@t(E�(t; 0)� �E�(t; 0))

=

8><>:
2�2� �(1�n)=2 t2��n=�(� + (1 � n)=2); if n is even

2�2��1�(1�n)=2 jtj2��n=�(� + (1� n)=2); if n is odd and 2� > n

(�1)k 2�2��k �(1�n)=2 Æ(2k)=(2k � 1)!!; if n =odd and n� 1� 2� = 2k � 0;

(29)

where �E� is the reection of E� with respect to the origin of Rt. It follows from (21) and (27) (cf

Proposition 17.4.3 in [5]) that we have in (�1; c)�Xc �X

(@2=@t2 + �)E (t; x; y)

:= (@2=@t2 +�)
NX
0

U�(x; y)E�(t; s(x; y))

= Æ0;y=
p
g(y) + (P (x;D)UN (x; y))EN (t; s(x; y)) : (30)
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When s(x; y) � c the coeÆcients Uj have been de�ned previously by integrating the equation (22)

in geodesic coordinates, and when s(x; y) > c their de�nition is irrelevant.

By the proof of Theorem 17.5.5 in [5], in (�c; c)�Xc �X, we have

K(t; x; y)� @t(E (t; x; y)� �E (t; x; y))
p
g(y) 2 CN�n�3 (31)

and ����@�t;x;y�K(t; x; y)� @t(E (t; x; y)� �E (t; x; y))
p
g(y)

����� � Cjtj2N�n�j�j;
j�j � N � n� 3: (32)

By the de�nition of E� we know that E (t; x; y) has support in the forward light cone ft � s(x; y)g
and its reection �E (t; x; y)) with respect to the origin of Rt has support in the backward light cone

ft � �s(x; y)g. Here all terms are continuous functions of (x; y) with values in D 0(R) by Lemma

17.4.2 in [5]. We shall apply (31) and (32) to investigating the singularities of the derivatives

@�x @
�
yK(t; x; y)jx=y of the wave kernel on the diagonal in the following subsection.

2.3 The derivatives of the wave kernel on the diagonal

Let � = (�1; � � � ; �n); � = (�1; � � � ; �n) 2 Zn+ be two multi-indices. In the coordinate chart

(X �X; (x; y)) of M �M , we shall consider the singularities of @�x @
�
yK(t; x; y)jx=y. From now on,

we let the positive integer N in (31) be as large as we need. By (31), we know

@�x @
�
yK(t; x; y)jx=y = @�x @

�
y ( @t(E (t; x; y)� �E (t; x; y))

p
g(y) )jx=y

+ CN�n�j�+�j�3 term : (33)

By the above equality we know that @�x @
�
yK(t; x; y)jx=y is the sum of a continuous function of

(t; x) 2 (�c; c)�X and �nite homogeneous distributions of t with coeÆcients of smooth functions of

x 2 X. We call the distribution summand of @�x @
�
yK(t; x; y)jx=y with the lowest homogeneous degree

the principal singular term of @�x @
�
yK(t; x; y)jx=y. We observe that the principal singular term of

@�x @
�
yK(t; x; y)jx=y is equal to that of

@�x @
�
y

�p
g(y)U0(x; y) @t

�
E0(t; s(x; y)) � �E0(t; s(x; y))

��
x=y

: (34)

In order to write out the above principal singular term explicitly, �rstly we need the following

Lemma 2.2. In the geodesic coordinate X satisfying (25), the Taylor expansion of the square dis-

tance function s(x; y)2 is as follows :

s(x; y)2 = jx� yj2 + higher even order terms:

In particular, at a �xed point (z; z) 2 X �X

@x;y�(z; z) = 0; jj = odd; (35)

@xj�(z; z) = @yj�(z; z) = 0; @2xjxk�(z; z) = @2yjyk�(z; z) = �@2xjyk�(z; z) = 2Æjk : (36)

Proof. By [6] we know the square distance function s(x; y)2 is a smooth on X �X. Let �(x; y) =

s(x; y)2. Under the geodesic coordinates, the square distance function � satis�es the following equal-

ities:

(i) �(0; 0) = �(x; x) = 0

(ii) �(0; x) = �(0;�x) = jxj2
(iii) �(x; y) = �(y; x)
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Let �k(x; y) be the k-th term of the Taylor expansion of � with respect to (0; 0). By (i), �0 = 0.

By (ii) and (iii), �1(x; y) � 0. By (i)-(iii), the homogeneous quadratic polynomial �2(x; y) of x; y

satis�es the following equalities:

(a) �2(x; x) = 0

(b) �2(0; x) = �2(0;�x) = jxj2
(c) �2(x; y) = �2(y; x)

By (a),

�2(x; y) =
nX
j=1

�
const � (xj � yj)

2 + const � (x2j � y2j )
�
:

Then by (c), we can see

�2(x; y) =
nX
j=1

const � (xj � yj)
2 ;

by which (ii) implies that �2(x; y) = jx� yj2.
Finally we have only to show that �2k+1(x; y) � 0 (k � 1). By (i)-(iii), �2k+1 satis�es (a), (c) and

(b0) �2k+1(0; x) = �2k+1(0;�x) = 0.

By (b0) we can write the homogeneous polynomial �2k+1(x; y) of degree 2k+ 1 as

�2k+1(x; y) =
2kX
l=1

X
1�i1;��� ;il;j1;��� ;j2k+1�l�n

�i1;��� ;ilj1;��� ;j2k+1�l (x; y);

�i1;��� ;ilj1;��� ;j2k+1�l
(x; y) =

ai1;��� ;ilj1;��� ;j2k+1�l
xi1 � � �xilyj1 � � � yj2k+1�l + bi1;��� ;ilj1;��� ;j2k+1�l

yi1 � � �yilxj1 � � �xj2k+1�l :

By (a),

ai1;��� ;ilj1;��� ;j2k+1�l
+ bi1;��� ;ilj1;��� ;j2k+1�l

= 0 ;

by (c),

ai1;��� ;ilj1;��� ;j2k+1�l = bi1;��� ;ilj1;��� ;j2k+1�l :

By above equalities, we can see that all ai1;��� ;ilj1;��� ;j2k+1�l
and bi1;��� ;ilj1;��� ;j2k+1�l

vanish. That is, �2k+1(x; y) � 0.

q.e.d.

We denote

E0
�(t; x) = @tE�(t; x); �E0

�(t; x) = @t �E�(t; x)

and then

�2@E0
�=@x = xE0

��1; �2@ �E0
�=@x = x �E0

��1 (37)

hold. For simplicity of notations, we denote

F� = F�(t; s(x; y)) = E0
�(t; s(x; y)) � �E0

�(t; s(x; y)) (38)

in what follows. We compute @�x @
�
yF�(t; s(x; y))jx=y for some small �; � as follows.

With � = s(x; y)2; s = s(x; y), then

@xjF� = �1

4
@xj�F��1; @xjF�jx=y = 0:
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By Lemma 2.2, (37) and above equality, we have

@2xjyjF� = �1

4
@2xjyj�F��1 +

1

16
@xj�@yj�F��2 (39)

In particular,

@2xjyjF� jx=y =
1

2
F��1(t; 0) :

We also have

@2xj@
2
yjF� = (�1=4)F��1@

2
xj@

2
yj�

+ (�1=4)2F��2

�
2(@2xjyj�)

2 + 2(@2xj@yj�@yj� + @2yj@xj�@xj�) + @2xj�@
2
yj�
�

+ (�1=4)3F��3

�
4@2xjyj�@xj�@yj� + @2xj�(@yj�)

2 + @2yj�(@xj�)
2
�

+ (�1=4)4F��4(@xj�)
2(@yj�)

2 : (40)

In particular,

@2xj@
2
yj
F�jx=y = 3

4
F��2(t; 0)� 1

4
@2xj@

2
yj
�(x; x)F��1(t; 0) :

In general we can prove the following

Lemma 2.3. Let �; � 2 Zn+ be two multi-indices and (X; x) a geodesic normal coordinate chart of

M satisfying (25). Let (t; x) be in (�c; c)�X and ��;�;m be the set de�ned by

��;�;m = ffjgm1 : j 2 Z2n
+ ; jj j > 0;

mX
j=1

j = (�; �)g :

Then we have the following equality:

@�x @
�
yF�(t; s(x; y)) =

j�+�jX
m=1

Q�;�;m(x; y)F��m(t; s(x; y)) ; (41)

where

Q�;�;m(x; y) =
X

fjgm1 2��;�;m

�
�1

4

�m
� const �

mY
j=1

@jx;y� (42)

and the const above is a positive integer depending on �; � and fjgm1 . Moreover,

@�x @
�
yF�(t; s(x; y))jx=y =

[j�+�j=2]X
m=1

Q�;�;m(x; x)F��m(t; 0) ; (43)

where [a] is the maximal integer not exceeding the real number a. More detailedly speaking, we have

the followings:

(i) Suppose � � � (mod 2). Then

@�x @
�
yF�(t; s(x; y))jx=y =

j�+�j=2X
m=1

Q�;�;m(x; x)F��m(t; 0) ; (44)

where q�;� = Q�;�;j�+�j=2(x; x) is a positive (negative) constant depending only on n; �; � if and only

if j�j�j�j can (cannot) be divided by 4. In particular, when � = �, letting Q�;m(x; y) = Q�;�;m(x; y),

we have the following equality

@�x @
�
y F�(t; s(x; y))jx=y =

j�jX
m=1

Q�;m(x; x)F��m(t; 0) (45)
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and q� = Q�;j�j(x; x) is a positive constant depending only on �.

(ii) Suppose that j� + �j is even and � � � (mod 2) does not hold. Then Q�;�;j�+�j=2(x; x) = 0.

Hence

@�x @
�
yF�(t; s(x; y))jx=y =

j�+�j=2�1X
m=1

Q�;�;m(x; x)F��m(t; 0): (46)

(iii) Suppose that j�+ �j is odd. Then @�x @�yF�(t; s(x; y))jx=y = 0.

Proof. For simplicity, we write F� = F�(t; s(x; y)); Q�;�;m = Q�;�;m(x; y) in what follows if there

is no confusion. We shall �rstly show (41) by induction with respect to the nonnegative integer

j�+�j. If j�+�j = 0; 1; 2, the validity of (41) can be checked by the previous computation. Letting

(41) hold for @�x @
�
yF�, we show that it also holds for @xj@

�
x @

�
yF� as following and then complete the

induction argument.

Let @ ~� = @xj@
�; @

~� = @� .

@ ~�@
~�F� = @xj

j�+�jX
m=1

Q�;�;mF��m

=

j�+�jX
m=1

�
@xjQ�;�;mF��m + (�1=4)@xj�Q�;�;mF��m�1

�

=

j~�+~�jX
~m=1

P~�;~�; ~mF�� ~m ;

where P~�;~�; ~m are as follows:

P~�;~�;1 = @yjQ�;�;1 = (�1=4) @ ~�
x @

~�
y � ;

P~�;~�;j~�+~�j = (�1=4) @yj�Q�;�;j�+�j = (�1=4)j~�+~�j

j~�+~�jY
j=1

@jx;y� ;

where fjgj~�+~�j
1 2 �~�;~�;j~�+~�j = ffjgj~�+~�j

1 g:

and if 2 � ~m � j�+ �j, then by the induction assumption on the expression of Q�;�;m the following

holds:

P~�;~�; ~m = @xjQ�;�; ~m + (�1=4) @xj�Q�;�; ~m�1

=
X

fjg ~m1 2�~�;~�; ~m

�
�1

4

� ~m

� const �
~mY

j=1

@jx;y� ;

where the const is a positive integer depending on fjg ~m
1 .

We observe that in the equality (42) the number of the multi-index j with length 1 is not less

than 2m� j�+ �j. In fact, if the number be l, then it follows from the inequality

l + 2(m � l) � j�+ �j

implied by the de�nition of the set ��;�;m. Then by (36), we obtain the equalities (43). Now we are

going to prove (i)-(iii).

(i) Let R be the set of partial derivative operators de�ned by

R = f@2xl; @2xlyl ; @2yl : 1 � l � ng

11



and ��;� be the set de�ned by

��;� = ffjgj�+�j=21 : j 2 Z2n
+ ; @jx;y 2 R;

j�+�j=2X
j=1

j = (�; �)g :

Then by (36), we have the following equality:

Q�;�;j�+�j=2(x; x) =
X

fjg
j�+�j=2
1 2��;�

�
�1

4

�j�+�j=2
� const �

j�+�j=2Y
j=1

@jx;y�(x; x) ;

where the const is a positive integer depending on fjgj�+�j=21 . For any element fjgj�j1 from ��;�,

let the numbers of j such that @
j
x;y takes the forms of

@2xl ; @
2
xlyl

; @2yl (1 � l � n)

be al; bl; cl respectively. Then by the de�nition of ��;�

2al + bl = �l; 2cl + bl = �l : (47)

Let

a =
nX
l=1

al; b =
nX
l=1

bl; c =
nX
l=1

cl :

Then

2a+ b = j�j; 2c+ b = j�j:

By (36) we have

j�+�j=2Y
j=1

@jx;y�(x; x)(�1=4)j�+�j=2 = 2a+c (�2)b(�1=4)j�+�j=2 = 2�j�+�j=2(�1)(j�j�j�j)=2 ;

from which (i) follows.

(ii) For the proof ofQ�;�;j�+�j=2 = 0, we only need to show that for any fjgj�+�j=21 2 ��;�;j�+�j=2,
j�+�j=2Y
j=1

@jx;y�(x; x) = 0. Otherwise, there exists a fjgj�+�j=21 2 ��;�;j�+�j=2 such that f@jx;ygj�+�j=21

belongs to R. Hence the equality (47) holds for fjgj�+�j=21 . It implies � � � (mod 2). Contradiction!

(iii) Since j�+ �j is odd, for any fjgm1 2 ��;�;m (1 � m � (j�+ �j � 1)=2), there exists l such

that jlj is odd. The statement follows from (35). q.e.d.

Proposition 2.2. (i) Suppose � � � (mod 2). Then the principal singular term of @�x @
�
yK(t; x; y)jx=y

is

q�;�
p
g(x)F�j�+�j=2(t; 0)

for (t; x) 2 (�c; c) �X. Moreover,�
@�x @

�
yK(t; x; y)� @�x @

�
y

X
0�2�<j�+�j+n

F�(t; s(x; y))U�(x; y)
p
g(y)

�
x=y

is in C1((�c; c) � X) if n is even, and in C1((�c; c) � X) after division by jtj if n is odd. All

derivatives are bounded in (�c; c)�X.

(ii) Suppose that j� + �j is even and � � � (mod 2) does not hold. Then for (t; x) 2 (�c; c) �X
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the principal singular term of @�x @
�
yK(t; x; y)jx=y is F1�j�+�j=2(t; 0) times a smooth function of x.

Moreover, �
@�x @

�
yK(t; x; y) � @�x @

�
y

X
0�2�<j�+�j+n�2

F�(t; s(x; y))U� (x; y)
p
g(y)

�
x=y

is in C1((�c; c) � X) if n is even, and in C1((�c; c) � X) after division by jtj if n is odd. All

derivatives are bounded in (�c; c)�X.

(iii) Suppose that j� + �j is odd. Then there exists a nonnegative integer r(�; �) = (j� + �j �
1)=2 or (j� + �j � 3)=2, which will be determined in the proof afterward, such that for (t; x) 2
(�c; c)�X the principal singular term of @�x @

�
yK(t; x; y)jx=y is F�r(�;�)(t; 0) times a smooth function

of x. Moreover,�
@�x @

�
yK(t; x; y)� @�x @

�
y

X
0�2�<n+2r(�;�)

F�(t; s(x; y))U�(x; y)
p
g(y)

�
x=y

is in C1((�c; c) � X) if n is even, and in C1((�c; c) � X) after division by jtj if n is odd. All

derivatives are bounded in (�c; c)�X.

Proof. (i) The �rst statement directly follows from the equalities (24), (34) and (44). Let R(t; x)

be the function in the second statement. Then

R(t; x) =

�
@�x @

�
yK(t; x; y)� @�x @

�
y ( @t(E (t; x; y)� �E (t; x; y))

p
g(y) )

�
x=y

+ @�x @
�
y

X
j�+�j+n�2��2N

�
F�(t; s(x; y))U� (x; y)

p
g(y)

�
x=y

: (48)

The �rst term in the right hand side (RHS) of (48) is in CN�n�j�+�j�3((�c; c)�X) by (33). Since

it is even in t, its quotient by jtj is in CN�n�j�+�j�4((�c; c) � X). As a similar result of the �rst

statement, the principal singular term of the summand

@�x @
�
y

�
F�(t; s(x; y)))U�(x; y)

p
g(y)

�
x=y

; j�+ �j+ n � 2� � 2N;

of the second term in the RHS of (48) is a smooth function of x times F��j�+�j=2(t; 0) (2� �
n+ j�+ �j), which by (29) is in C1((�c; c)�X) if n is even, and in C1((�c; c)�X) after division

by jtj if n is odd. The same result holds for the second term of the RHS of (48). Letting N ! 1,

we complete the proof of (i).

(ii) The �rst statement directly follows from the equalities (24), (34) and (46). The other part

can be proved similarly as above.

(iii) By the equality (34) and (iii) of Lemma 2.3, the principal singular term of @�x @
�
yK(t; x; y)jx=y

equals that of X
<(�;�)

�
@x;yF0(t; s(x; y))@

(�;�)�
x;y

�p
g(y)U0(x; y)

��
x=y

:

If there exists a  = (1; 2) < (�; �) such that jj = j� + �j � 1 and 1 � 2 (mod 2), by (i)

the principal singular term of above sum is F�(j�+�j�1)=2(t; 0) times a smooth function of x, which

implies r(�; �) = (j� + �j � 1)=2. Otherwise, by (ii) the principal singular term of above sum is

F�(j�+�j�3)=2(t; 0) times a smooth function of x, which implies r(�; �) = (j�+ �j � 3)=2. Hence the

�rst statement holds. The left part can be showed similarly as (i).

Corollary 2.1. Assume the notations in Proposition 2.2. Let (t; x) be in (�c; c)�X and �; � be

multi-indices in Zn+. Let

L(�; �) =

8><>:
1� j�+ �j=2 if � � � (mod 2)

1� r(�; �) if j�+ �j = odd

2� j�+ �j=2 otherwise
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If n is even, @�x @
�
yK(t; x; y)jx=y equals the principal singular term plus

(n�2)=2X
L(�;�)

F�(t; 0) � a smooth function of x + a smooth function:

If n is odd, @�x @
�
yK(t; x; y)jx=y equals the principal singular term plus

(n�1)=2X
L(�;�)

F�(t; 0)� a smooth function of x + jtj � a smooth function :

In particular, tj�+�j+n@�x @
�
yK(t; x; y)jx=y is a smooth function in ([0; c)�X).

Proof. By the de�nition of F� , we can see that if 2� � n, then F�(t; 0) is a smooth function when

n is even and it is jtj times a smooth function when n is odd. By this fact, (29), Proposition 2.2 and

Lemma 2.3 the proof is completed.

2.4 Proof of Theorem 1.1 | I The Tauberian method

Except the precise computation of the constant Cn;�;� in (9), in this subsection we shall prove

Theorem 1.1 and Corollary 1.1. Firstly we need two lemmas on a rude estimate of derivatives of

spectral function and on the Tauberian method respectively.

Lemma 2.4. (Theorem 17.5.3 in [5]) Let X be a geodesic normal coordinate ofM . For a multi-index

 2 Z2n
+ , there exists a constant C depending on  such that

j@x;ye(x; y; �)j � C(1 + �)n+jj

for (x; y) in X �X.

By Section 17.5 in [5] there exists an even positive function � in S (R) such thatZ
R

�(� )d� = 1; supp �̂ � (�1; 1) :

For a positive number �, let ��(� ) := �(�=�)=�.

Lemma 2.5. Let � be a nonnegative number and � in [0; �]. Let a be a positive number and a0; a1

be two real numbers � a. Let v be a function of locally bounded variation such that v(0) = 0 and

either one of (49) and (50) holds:

jdv(� )j � M0(j� j+ a0)
�d� (49)

v is increasing and satis�es jdv � �a(� )j � M0(j� j+ a0)
� (50)

Let u be an increasing temperate function with u(0) = 0 such that

j(du� dv) � �a(� )j � M1(j� j+ a1)
�; � 2 R : (51)

Then

ju(� )� v(� )j � C
�
M0 a(j� j+ a0)

� +M1(j� j+ a)(j� j+ a1)
�
�

(52)

where C only depends on � and �.

Proof. The statement for the case (49) is just Lemma 17.5.6 in [5]. Note that in the proof of Lemma

17.5.6 in [5], the assumption (49) are only used to deduce the following inequalities:

jdv � �a(� )j � CM0(j� j+ a0)
�; jv(� ) � v � �a(� )j � CaM0(j� j+ a0)

� :
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Suppose that v satis�es (50). To prove the statement, we only need to show the second one of above

two inequalities. Choose c0 > 0 so that � > c0 in (�1=2; 1=2). Since v is increasing,

c0a
�1

Z �+a=2

��a=2

dv � dv � �a �M0(1 + j� j)� :

Dividing (0; s) into � [s] + 1 intervals of length � 1, we obtain from the above inequality that

c0jv(� )� v(� � as)j � a(jsj+ 1)M0(j� j+ a0 + ajsj)� :

Multiplication by �(s) and integration yields jv(� ) � v � �a(� )j � CaM0(j� j+ a0)
�. q.e.d.

Lemma 2.6. Let � 2 Zn+ be a multi-index and (X; x) be a geodesic normal coordinate chart of M

satisfying (25). Then there exists a positive number Cn;� only dependent on n and � such that (11)

holds. Moreover the estimate (12) holds uniformly for x 2M and it is sharp.

Proof. By the equality (29) and Example 7.1.17 of [4], there exists a positive constant Dn;� such

that F�(t; 0) (2� < n) is the Fourier transform of

d

d�

�
Dn;�(sgn � )j� jn�2�

�
: (53)

Let c be the constant in (25) and Cn;� = 2q� �Dn;�j�j. We shall apply Lemma 2.5 with a = 1=c

and

u(� ) = (1=2)
p
g(x) (sgn � )

X
�j�j�j

j@�ej(x)j2 = (1=2)
p
g(x) (sgn � ) @�x @

�
y e(x; y; j� j)jx=y

v(� ) = Cn;�
p
g(x) sgn � j� jn+2j�j=2 :

We use the following Claim to connect u(� ) with the wave kernel K(t; x; y).

Claim 1 The Fourier transform of

d

d�

�p
g(y) (sgn � ) @�x @

�
y e(x; y; j� j)=2

�
with respect to � can be written by

@�x @
�
yK(t; x; y) +

X
<�

P(y)@

x@

�
yK(t; x; y);

where P(x) ( < �) are smooth functions of x depending on the metric g ofM . In particular, cdu(t)
equals �

@�x @
�
yK(t; x; y) +

X
<�

P(y)@

x@

�
yK(t; x; y)

�
x=y

:

Proof of Claim 1: We argue by induction with respect to the nonnegative integer j�+ �j. The case
of � = � = 0 follows from (20). We denote the Fourier transform of w(� ) by F[w](t). Since

F[(d=d� )
p
g(y) (sgn � ) @yj@

�
x @

�
y e(x; y; j� j)=2](t)

= @yjF[(d=d� )
p
g(y) (sgn � ) @�x @

�
y e(x; y; j� j)=2](t)

� @yj log(
p
g(y) )F[(d=d� )

p
g(y) (sgn � ) @�x @

�
y e(x; y; j� j)=2](t) ;

the left part of the induction argument can be completed by direct computation.

By Claim 1, (53), Proposition 2.2 and Corollary 2.1, when t in (�c; c), the principal singular

term of cdu equals that of @�x @�yK(t; x; y)jx=y, which is the Fourier transform of dv; the other singular
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terms are Fourier transforms of jtjn+2j�j�2j�1 times smooth functions of x for 0 < j � j�j+(n�1)=2.
Hence (du� dv) � �a is the sum of the regularizations of these functions and a bounded function, so

by the choice of a = 1=c and easy computations from

(du� dv) � �a(� ) = F�1[(cdu�cdv)c�a](� ); suppc�a � (�c; c) ;

(51) holds with � = max(n+2j�j� 3; 0) and (49) holds with � = n+2j�j� 1. Therefore by the (49)

case of Lemma 2.5, we obtain

ju(�)� v(�)j � C�n+2j�j�1 (� � 1): (54)

The estimate (12) follows from the compactness of M and the similar argument in the proof of

Lemma 2.1. q.e.d.

Corollary 1.1 follows from (12) and the following

Lemma 2.7. The following uniform estimatesX
�j2[�; �+1]

jrkej(x)j2 � C�n�1+2k; x 2M; k = 0; 1; � � � ; (55)

are equivalent to the (L2; Ck) estimates for the USPO ��:

jj��f jjCk � C�k+(n�1)=2jjf jj2 ; k = 0; 1; � � � ; (56)

Proof. Let the estimate (55) hold. By Lemma 2.1 in order to prove (56), we have only to show

jj@���f jjL1(X) � C�j�j+(n�1)=2jjf jj2

for any multi-index �. Without loss of generality, we assume that f is a real-valued function on on

M in what follows. Since

��f(x) =

Z
M

X
�j2[�; �+1]

ej(x)ej(y)f(y)dv(M ) ;

for any x 2 X, by the Cauchy-Schwarz inequality and (55) we have

j@�x��f(x)j2 �
X

�j2[�; �+1]

j@�x ej(x)j2
X

�j2[�; �+1]

�Z
M

ej(y)f(y)dv(M )

�2

� C�n�1+2j�jjjf jj22 :

Let the estimate (56) hold. Take a point x 2 M and without loss of generality we let x belong

to the coordinate chart X. In order to prove (55), we have only to showX
�j2[�; �+1]

j@�ej(x)j2 � C �n�1+2j�j (])

for any multi-index �. The estimate (56) implies

j@���f (x)j = j
X

�j2[�; �+1]

Z
M

@�ej(x) ej(y)f(y)dv(M )j � C �(n�1)=2+j�jjjf jj2 :

Letting f(�) =
X

�j2[�; �+1]

@�ej(x) ej(�) in the above inequality, we obtain the inequality (]). q.e.d.
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Let Z(x; � ) =
1

2

p
g(x) sgn � @�x @

�
y e(x; y; j� j)jx=y ((x; y) 2 X �X). Since

@�x @
�
y e(x; y; �) =

X
�j��

@�x ej(x)@
�
y ej(y) ;

letting � = � above and applying Lemma 2.4, we obtainX
�j��

j@�ej(x)j2 � C(1 + �)n+2j�j ;

by which and the Cauchy inequality, we can see the total variation of Z(x; �) on [0; �] does not exceed
X
�j��

j@�ej(x)@�ej(x)j �
�X
�j��

j@�ej(x)j2
�1=2�X

�j��

j@�ej(x)j2
�1=2

� C(1 + �)n+j�+�j :

Then Z(x; �) has bounded variation locally so that by the Jordan decomposition Z(x; � ) = Z+(x; � )�
Z�(x; � ), where if � � 0, then Z+(x; � ); Z�(x; � ) are the positive variation and the negative variation

of Z(x; �) on [0; � ] respectively; and if � < 0, then Z�(x; � ) := �Z�(x;�� ): Then Z(x; �) = Z+(x; �)�
Z�(x; �) holds on R. Let

G(x; � ) := sgn �
X

�j�j� j

j@�ej(x)@�ej(x)j : (57)

Sometimes for simplicity we just write Z(x; � ) = Z(� ), G(� ) = G(x; � ) and Z�(x; � ) = Z�(� ) if

there is no confusion. Then Z�(� ) and G(� ) are increasing temperate functions satisfying Z�(0) =

G(0) = 0 and the following

Lemma 2.8. Let  be an even positive function in S (R). Then

dG �  (� ) � C (1 + j�j)n+j�+�j�1 : (58)

In particular,

dZ� �  (� ) � dG �  (� ) � C (1 + j�j)n+j�+�j�1 : (59)

Proof. The inequality dZ� �  (� ) � dG �  (� ) in (59) follows from

Z+(� ) + Z�(� ) � G(� ); � 2 [0; 1) :

Similarly to Section 4.1 in [4], the convolution of the rapidly decreasing function  and the temperate

distribution dG is de�ned by dG �  (� ) = dG( (� � �)). By the de�nition (57) of G, we have

dG( (� � �)) = h
X
�j>0

j@�ej(x)@�ej(x)j(Æ�j + Æ��j ) ;  (� � �)i

=
X
�j>0

j@�ej(x)@�ej(x)j
�
 (� + �j) +  (� � �j)

�
:

Hence dG �  (� ) is an even function so that we only need to prove (58) for nonnegative � .

Let k be a nonnegative integer. Then by (12) showed in Lemma 2.6 and the Cauchy inequality

we have X
k<�j�k+1

j@�ej(x)@�ej(x)j � C(1 + k)n+j�+�j�1 : (60)

For �j > 0, there exists a unique integer k � 0 such that �j 2 (k; k + 1] and

 (� + �j) +  (� � �j) � C(2 + j� � kj)�(n+j�+�j+1) ;
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where C is a positive constant only depending on  and n+j�+�j. By (60) and the above inequality,
we obtain

dG( (� � �)) � C

1X
k=0

(2 + j� � kj)�(n+j�+�j+1)(1 + k)n+j�+�j�1

=

[� ]X
k=0

+
1X

[� ]+1

= S1 + S2 :

We estimate S2 as follows:

S2 �
1X
j=1

(j + 1)�(n+j�+�j+1)(1 + j + � )n+j�+�j�1 � C(1 + � )n+j�+�j�1 :

We observe

S1 �
Z �+1

0

(2 + � � x)�(n+j�+�j+1)(1 + x)n+j�+�j�1 =: S3 :

Then S3 � C(1 + � )n+j�+�j�1 follows from the following

Claim 2 Let a; b be positive integers such that a � 2. Then there exists a positive constant C only

depending on a; b such that Z �+1

0
(2 + � � x)axb dx � C(1 + � )b :

Proof of Claim 1 Using integration by part, we haveZ �+1

0

(2 + � � x)axb dx =
1

a� 1
(� + 1)b � b

a� 1

Z �+1

0

(2 + � � x)1�axb�1 dx :

Since a � 2, Z �+1

0

(2 + � � x)1�axb�1 dx �
Z �+1

0

(2 + � � x)�1=2xb�1 dx

� (1 + � )b�1=2

Z 1

0

(1� y)�1=2yb dy

= B(1=2 ; b + 1)(1 + � )b�1=2 :

Combining the above two inequalities, we complete the proof of Claim 2 and (58). q.e.d.

Proof of Theorem 1.1 We shall discuss three cases as in Lemma 2.3. In the proof we shall use

the notations in the proof of Lemma 2.6.

(i) Suppose � � � (mod 2). Let Cn;�;� = 2q�;��Dn;�j�+�j. We shall apply the (50) case of Lemma

2.5 with a = 1=c and

u(� ) = Z+(� )

v(� ) = Z�(� ) +
1

2
Cn;�;�

p
g(x) sgn � j� jn+j�+�j :

Then by Lemma 2.8, the condition 50 holds for � = n+ j�+ �j � 1. Since

(Z+ � Z�)(� ) = Z(� ) =
1

2

p
g(x) sgn � @�x @

�
y e(x; y; j� j)jx=y ;

by the similar proof as Lemma 2.6, we can show that (51) holds for � = max(n + j� + �j � 3; 0).

Therefore by the (50) case of Lemma 2.5, we obtain that for � � 1 the following inequality holds:

C�n+j�+�j�1 � ju(�)� v(�)j = 1

2

p
g(x) � j@�x @�y e(x; y; j� j)jx=y �Cn;�;��

n+j�+�jj :
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(ii) Suppose that j�+ �j = even and � � � (mod 2) does not hold. We shall apply the (50) case of

Lemma 2.5 with a = 1=c and

u(� ) = Z+(� ); v(� ) = Z�(� ) :

Then by Lemma 2.8, the condition (50) holds for � = n + j� + �j � 1. By By Claim 1, (53),

Proposition 2.2 and Corollary 2.1, when t in (�c; c), the principal singular term of \du� dv equals

that of @�x @
�
yK(t; x; y)jx=y, which is the Fourier transform of

d

d�
sgn � j� jn+j�+�j�2 � a smooth function of x ;

the other singular terms are Fourier transforms of jtjn+j�+�j�2j�3 times smooth functions of x for

0 < j � (n + j� + �j � 3)=2. Similarly as the proof of Lemma 2.6, we can show (51) holds with

� = n+ j�+ �j � 3. Therefore by the (50) case of Lemma 2.5, we obtain for � � 1

C�n+j�+�j�1 � ju(�)� v(�)j = 1

2

p
g(x) � j@�x @�y e(x; y; �)jx=yj :

(iii) Suppose that j�+ �j is odd. We also apply the (50) case of Lemma 2.5 with a = 1=c and

u(� ) = Z+(� ); v(� ) = Z�(� ) :

Then by Lemma 2.8, the condition (50) holds for � = n+ j�+ �j � 1. By Claim 1, (53), Proposition

2.2 and Corollary 2.1, when t in (�c; c), the principal singular term of \du� dv equals that of

@�x @
�
yK(t; x; y)jx=y, which is the Fourier transform of

d

d�
sgn � j� jn+2r(�;�) � a smooth function of x ;

the other singular terms are Fourier transforms of jtjn+2r(�;�)�2j�1 times smooth functions of x for

0 < j � �n + 2r(�; �) � 1
�
=2. Similarly as the proof of Lemma 2.6, we can show (51) holds with

� = n+2r(�; �)�1 � n+ j�+�j�2. Therefore by the (50) case of Lemma 2.5, we obtain for � � 1

C�n+j�+�j�1 � ju(�)� v(�)j = 1

2

p
g(x) � j@�x @�y e(x; y; �)jx=yj :

We shall put o� the computation of the constant Cn;�;� (� � � (mod 2)) to the following

2.5 Proof of Theorem 1.1 | II The constant Cn;�;�

We remark that Cn;�;� does not depend on the Riemannian manifold M . Although it may be

possible to �nd the precise value of Cn;�;� by re�ning the analysis in the proof of Lemma 2.3, we

prefer another approach by considering the n-dimensional at torus in the following

Example 2.1. Let Tn = Rn=(2�Z)n be the standard n-dimensional torus with the at metric

induced from Rn. Let k = (k1; � � � ; kn) denote a lattice point in Zn and jkj2 :=
nX
1

k2j . Let � =

(�1; � � � ; �n) denote a point in [0; 2�)n and k � � :=
Pn

1 kj�j . Then the eigenvalues of the positive

Laplacian on Tn are jkj2 (k 2 Zn), the corresponding L2-normalized eigenfunctions are exp(ik �
�)=(2�)n=2 (k 2 Zn), and the spectral function

e(�; �0; �) = (2�)�n
X
jkj��

exp
�
ik(� � �0)

�
:

By simple computation, we obtain

@�� @
�
�0e(�; �

0; �)j�=�0 =
(

(2�)�n(�1)(j�j�j�j)=2Pjkj�� k
�+� if � � �

0 otherwise
(61)
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Let D be a bounded domain in Rn such that any line pararrel to any coordinate axes meets D

in a bounded number of straight-line segment. Let D be completely contained in a hyper-rectangle

D0 = fx : aj � xj � bj ; bj � aj > 1 (1 � j � n)g :

Proposition 2.3. (Theorem 1.1.7 in [7]) Let f(x) in D0 be nonnegative, continuous and monotonic

in each variable. If jf(x)j � F in D0, then�����X
k2D

f(k) �
Z
D

f(x) dx

����� � F jD0j
nX
1

1

bj � aj
:

By Proposition 2.3 the estimateX
jkj��

k�+� = �n+j�+�j
Z
Bn

x�+� dx+O(�n+j�+�j�1) as �!1; � � � (mod 2); (62)

holds. In fact, we can apply Proposition 2.3 with

f(x) = x�+�; D = fx 2 Rn : jxj � �g \ [0; 1)n; D0 = [0; �]n :

We complete the proof of (9) and (10) in Theorem 1.1 by (61), (62) and the following integral

equality: Z
Bn

x�+� dx =
�n=2

2j�+�j=2 �( j�+�j+n2 + 1)

nY
j=1

(�j + �j � 1)!!; � � � (mod 2): (63)

3 Sobolev norms of eigenfunctions

In this section we shall prove Theorem 1.2. Firstly we cite a well known elliptic estimates as

following

Proposition 3.1. Let u be a smooth function on M , 1 � r <1 and k a positive integer. Then the

followings hold :

jjujjHr
2k
� C

kX
j=0

jj�jujjr; jjujjHr
2k+1

� C
kX

j=0

jj�jujjHr
1
; (64)

where the constant C only depends on the metric g of M and k.

Let u be a real valued smooth function on the Riemannian manifoldM . The gradient gradu of

u is de�ned to be the dual vector �eld of one form du = ru by

g(gradu; V ) = du(V )

for arbitrary smooth vector �eld V on M . In the coordinate chart (X;x)

jgraduj = jruj =
X

gjk@ju@ku ; (65)

we de�ne the Lp (1 � p <1) norm of gradu as

jjgradujjp =
�Z

M

jgradu(x)jp dv(M ) dx
�1=p

:

Then

jjujjHp
1
� jjujjp + jjgradujjp ;

where f � g means that there exists a positive constant C depending only on the metric g of M

such that g=C � f � Cg. By Proposition 3.1, we have the following
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Corollary 3.1. Let u be a smooth function on M , 1 � r < 1 and k a positive integer. Then the

following relations hold:

jjujjHr
2k
�

kX
j=0

jj�jujjr; jjujjHr
2k+1

�
kX

j=0

(jj�jujjr + jjgrad�jujjr); (66)

where f � g means that there exists a positive constant C depending on k; r and the metric g of M

such that g=C � f � Cg.

Proof of Theorem 1.2: By Corollary 1.1 we can let 2 � r <1. By Corollary 3.1, we have only

to prove the following estimates hold for j = 0; 1; � � �:

jj�j��f jjr � C�2j+�(r)jjf jj2; jjgrad�j��f jjr � C�2j+1+�(r)jjf jj2;

and they are sharp. By the duality, we need only to prove the estimates

jj�j��f jj2 � C�2j+�(r)jjf jjr0; jjgrad�j��f jj2 � C�2j+1+�(r)jjf jjr0 (67)

hold for r0 = r=(r�1) and they are sharp. The dual version of Proposition 1.1 says that the following
estimate holds and it is sharp:

jj��f jj2 � C��(r)jjf jjr0 : (68)

The proof is completed by the following relations:

jj�j��f jj2 � �2jjj��f jj2; jjgrad�j��f jj2 � �2j+1jj��f jj2 : (69)

The �rst relations follows from

���f =
X

j���jj�1

�2j ej(f) :

The second one can be deduced from the equalityZ
M

grad ej(x) � grad ek(x)dv(M ) = Æjk�
2
j

derived by the Green's formula. q.e.d.

4 Spherical harmonics

In this section, we do some computations on spherical harmonics Qm; Zm in Example 1.1 to prove

(13) and (14). With respect to the positive Laplacian on Sn, both Qm and Zm are eigenfunctions of

eigenvalue m(m + n� 1).

Proof of (14) By (66) we only need to show that k = 0 case and the following estimate hold:

jjgradQmjjr=jjQmjj2 � Cm�(r)+1 (2 � r � 2(n+ 1)=(n� 1)) : (70)

The k = 0 case of (14) follows directly from the following integral estimate:Z
Sn
(�21 + �22 )

a d�n(�) = 22�n�(n+1)=2�(a+ 1)=�
�n+ 2a+ 1

2

�
� a1�n ; a � 1; (71)

where d�n(�) is the area measure on Sn. Let

V = (�21 + �22)
�1=2 (�2@=@�1 � �1@=@�2) ;
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which is a vector �eld of unit length de�ned almost everywhere on Sn. Since jV Qm(�)j = m(�21 +

�22 )
(m�1)=2 and jgradQmj � jV Qmj hold almost everywhere on Sn, by (71) we obtain (70). q.e.d.

Before the proof of (13) we need some preparations on the Bessel function and the Jacobi poly-

nomials. In this section we let �; � be nonnegative real numbers. As (1.71.1) in [14] the Bessel

function J�(z) of the �rst kind of order � is de�ned to be

J�(z) =
1X
�=0

(�1)�(z=2)�+2�

�!�(� + �+ 1)
: (72)

As in Sections 2.4.1, 4.1 of [14] the Jacobi polynomials P
(�;�)
m (x) are de�ned to be orthogonal on

[�1; 1] with the weight function (1� x)�(1 + x)�. The normalization of P
(�;�)
m (x) is made by

P (�;�)
m (1) =

(m+ �)(m + �� 1) � � � (m + ��m+ 1)

m!
:

Since the zonal function Zm only depends on the geodesic distance from the north pole 1. As [12]

we de�ne the function bZm on [�1; 1] by Zm(�) = bZm(h�; 1i). We also write bZm(x) =
bZm(cos �),

where x = cos � and � 2 [0; �] is the angle between � and 1. By (2.1) in [12],

bZm = cm P (n�2)=2;(n�2)=2
m ; (73)

where cm =
� 2m

n� 1
+ 1
��(n=2)�(n+m � 1)

�(n� 1)�(n=2 +m)
� mn=2 : (74)

Lemma 4.1. (cf Theorem 8.1.1 in [14]) Let �; � be nonnegative real numbers. Then

lim
m!1

m��P (�;�)
m (cos

z

m
) = (z=2)�� J�(z) :

This formula holds uniformly in every bounded region of the complex z-plane.

Lemma 4.2. Let �; � be nonnegative real numbers. Then

lim
m!1

m���1 d

d�
P (�;�)
m (cos �)j�= z

m
= �(z=2)1�� J�(z) :

This formula holds uniformly in every bounded region of the complex z-plane.

Proof. By (4.21.2) in [14],

P (�;�)
m (x) =

mX
�=0

1

�!(m� �)!

�(m + �+ � + � + 1)

�(m + �+ � + 1)

�(m + �+ 1)

�(� + �+ 1)

�x� 1

2

��
:

Since
d

d�
P (�;�)
m (cos �) =

d

dx
P (�;�)
m (x)jx=cos � (� sin �),

d

d�
P (�;�)
m (cos �)j�= z

m
=

m�1X
�=0

1

(� + 1)!(m� � � 1)!

�(m+ �+ � + � + 2)

�(m+ �+ � + 1)

��(m + �+ 1)

�(� + �+ 2)

� + 1

2

�
� sin2

z

2m

��
� sin

z

m

�
:

Letting z and � be �xed and m ! 1, we have for the �-term of the above sum the following

asymptotic expression:

1

(� + 1)!(m� � � 1)!

�(m+ �+ � + � + 2)

�(m+ �+ � + 1)

�(m+ �+ 1)

�(� + �+ 2)

� + 1

2
��

� sin2
z

2m

��
� sin

z

m

� �= m�+1

2�(�+ � + 2)�!

��z2
4

��
� (�z);
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where f(m) �= g(m) means lim
m!1

f(m)

g(m)
= 1 or f(m) � g(m). As m is large enough and z is in a

bounded region of complex z-plane we have

m�1��

���� dd�P (�;�)
m (cos �)j�= z

m

����
� C

m�1X
�=0

m�1��

(m � � � 1)!

�(m + �+ � + � + 2)

�(m + �+ � + 1)

�(m + �+ 1)

22�m2�+1

� C

m�1X
�=0

m�1��

m!
m�+1(2m+ �+ �)�+1 �(m+ �+ 1)

(2m)�+1m�

2

2�

= O

�m�1X
�=0

1

2�

�
= O(1) :

Hence we can pass to the limit under the summation sign for m���1 d

d�
P (�;�)
m (cos �)j�= z

m
and com-

plete the proof.

Proof of (13) Since J�(z) � z� as z ! 0, by (73), (74) and Lemmas 4.1, 4.2 we have two precise

estimates for a small constant d > 0:

bZm(cos �) � mn�1 (0 � � � d

m
) (75)

d

d�
bZm(cos �) � �mn+1� (0 � � � d

m
) (76)

Since it is well known that kZmk1 = kZmk22 � mn�1, the r =1 case of (13) follows from (75) and

(76). To show the left part for r <1, by (66) we only need to show the following two estimates:

kZmkr=kZmk2 � C m�(r); k @
@�
Zmkr=kZmk � C m�(r)+1 ;

which also follow from (75) and (76) by restricting the integrals of the numerators on the domain

f0 � � � d

m
g of Sn.
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