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1 Introduction

Let D be a bounded domain in Rd with a smooth boundary and n(x), x ∈ ∂D, be a outer
normal vector. Let aij : Rd → R, i, j = 1, . . . d, be smooth functions such that aij(x)
= aji(x), x ∈ Rd. Also, let bi : R2d → R, i = 1, . . . d, be bounded measurable functions.
We assume that there are positive constants C0, C1 such that

C0|ξ|2 ≤
d∑

i,j=1

aij(x)ξiξj ≤ C1|ξ|2, x, ξ ∈ Rd.

Let L0 be a second order linear differential operator in R2d given by

L0 =
d∑

i=1

vi ∂

∂xi
+

1

2

d∑
i,j=1

aij(x)
∂2

∂vi∂vj
+

d∑
i=1

bi(x, v)
∂

∂vi

Let W̃ d = C([0,∞);Rd) × D([0,∞);Rd). Now let Φ : Rd × ∂D → Rd be a smooth
map satisfying the following .
(i) Φ(·, x) : Rd → Rd is linear for all x ∈ ∂D.
(ii) Φ(v, x) = v for any x ∈ ∂M and v ∈ Tx(∂D), i.e., Φ(v, x) = v if x ∈ ∂M, v ∈ Rd and
v · n(x) = 0.
(iii) Φ(Φ(v, x), x) = v for all v ∈ Rd and x ∈ ∂D.
(iv) Φ(n(x), x) �= n(x) for any x ∈ ∂D.

The main theorem in the present paper is the following.

Theorem 1 Let (x0, v0) ∈ (D̄)c × Rd. The there exists a unique probability measure µ
over W̃ d satisfying the following conditions.
(1) µ(w(0) = (x0, v0)) = 1.
(2) µ(w(t) ∈ Dc × Rd, t ∈ [0,∞)) = 1.
(3) For any f ∈ C∞

0 ((D̄)c ×Rd), {f(w(t))− ∫ t
0 L0f(w(s))ds; t ≥ 0} is a martingale under

µ(dw).
(4) µ(1∂D(x(t))(v(t)− Φ(v(t−), x(t))) = 0 for all t ∈ [0,∞)) = 1.
Here w(·) = (x(·), v(·)) ∈ W̃ d.
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Now let us think of the following Stochastic Newton equation

dXλ
t = V λ

t dt

dV λ
t = σ(Xλ

t )dB(t) + (b(Xλ
t , V λ

t ) − λ∇U(Xλ
t ))dt

Xλ
0 = x0, V λ

0 = v0.

Here B(t) is a d-dimensional Brownian motion, σ ∈ C∞(Rd;Rd), b : R2d → Rd is a
bounded Lipschitz continuous function, and U ∈ C∞

0 (Rd).
We assume the following also.

(A-1) There are positive constants C0, C1 such that

C0|ξ|2 ≤ |σ(x)ξ|2 ≤ C1|ξ|2, x, ξ ∈ Rd.

(A-2) Let D = {x ∈ Rd; U(x) > 0}. Then there are ε0 > 0, U0 ∈ C∞(Rd;R) and a
non-increasing C1-function ρ : R → R satisfying the following.
(1) x ∈ ∂D, if and only if U0(x) = 0 and dis(x, ∂D) < ε0.
(2) ∇U0(x) �= 0, x ∈ ∂D.
(3) ρ(t) = 0, t ≥ 0, ρ(t) > 0, t < 0, and U(x) = ρ(U0(x)) for x ∈ Rd with dis(x, ∂D) < ε0.

(4) lim
t↑0

ρ′(t)
ρ(t)

= −∞.

Now let d̃is be a metric function on W̃ d given by

d̃is(w0, w1) =
∞∑

n=1

2−n(1 ∧ ((max
t∈[0,n]

|x0(t) − x1(t)|) + (
∫ n

0
|v0(t) − v1(t)|n)1/n)),

for wi(·) = (xi(·), vi(·)) ∈ W̃ d, i = 0, 1.
Then we will show the following.

Theorem 2 Let νλ, λ ∈ [1,∞), be the probability law of (Xλ
t , V λ

t ), t ∈ [0,∞), on W̃0,
and µ be the probability measure given in Theorem 1 in the case when Φ(v, x) = v − 2(v ·
n(x))n(x), v ∈ Rd, x ∈ ∂D. Then νλ conveges to µ weakly as λ → ∞ as probability
measures on (W̃0, d̃is).

2 Basic lemmas

Let (Ω,F , {Ft}t∈[0,∞), P ) be a filtered probability space, and B(t) = (B1(t), . . . , Bd(t))
be a d-dimensional Brownian motion. Let B0(t) = t, t ∈ [0,∞). Let σi : RN → RN ,
i = 0, 1, . . . , d, be Lipschitz continuous functions, and let X : [0,∞) ×RN ×Ω → RN be
the solution to the following SDE

X(t, x) = x +
d∑

i=0

∫ t

0
σi(X(s, x))dBi(s), t ≥ 0, x ∈ RN .

We may assume that X(t, x) is continuous in (t, x) (c.f. Kunita [2]).
Then we have the following.
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Lemma 3 For any T > 0 and p0, p1, . . . , pm ∈ (1,∞), m ≥ 1, with
∑m

k=0 p−1
k = 1, there

is a constant C > 0 such that

E[
∫
RN

m∏
k=0

|fk(X(tk, x))|dx] ≤ C
m∏

k=0

‖ fk ‖Lpk (RN ,dx)

for all 0 = t0 < t1 < . . . < tm ≤ T, and fk ∈ C∞
0 (RN), k = 0, 1, . . . , m.

Proof. From the assumption, there is a C0 > 0 such that

|σi(x) − σi(y)| ≤ C0|x − y|, x, y ∈ RN .

Let ϕ ∈ C∞
0 (RN) such that

∫
RN ϕ(x)dx = 1. Let ϕn(x) = nNϕ(nx), x ∈ RN , for n ≥ 1,

and let σ
(n)
i = ϕn ∗ σi, i = 0, . . . , d. Then σ

(n)
i ∈ C∞(RN ;RN). Let

W
(n),j
i,k (x) =

∂

∂xk
σ

(n),j
i (x), x ∈ RN , j, k = 1 . . . , N, i = 0, 1, . . . , d, n ≥ 1.

Then we see that |W (n),j
i,k (x)| ≤ C0, x ∈ RN . Let X(n) : [0,∞) × RN × Ω → RN be the

solution to the following SDE

X(n)(t, x) = x +
d∑

i=0

∫ t

0
σ

(n)
i (X(n)(s, x))dBi(s), t ≥ 0, x ∈ RN .

Then we may think that X(n)(t, ·) : RN → RN is a diffeomorphism with probability

one. Let J
(n),j
k (t, x) = ∂

∂xk X(n),j(t, x). Let W n
i (x) = (W

(n),j
i,k (x))k,j=1,...,N and J (n)(t, x)

= (J
(n),j
k (t, x))k,j=1,...,N . Then the N × N -matrix valued process J (n)(t, x) satisfies the

following SDE

J (n)(t, x) = IN +
d∑

i=0

∫ t

0
W

(n)
i (X(n)(s, x))J (n)(s, x)dBi(s).

Also, we see that
J (n)(t, x)−1

= IN −
d∑

i=0

∫ t

0
J (n)(s, x)−1W

(n)
i (X(n)(s, x))dBi(s)

+
1

2

d∑
i=1

∫ t

0
J (n)(s, x)−1W

(n)
i (X(n)(s, x))2ds.

Then we see that

CT = sup{E[det J (n)(t, x)−p0+1]; t ∈ [0, T ], x ∈ RN , n ≥ 1} < ∞.

So we have

E[
∫
RN

n∏
k=0

|fk(X
(n)(tk, x))|dx]

≤ E[
∫
RN

|f0(x)|p0(
m∏

k=1

det J (n)(tk, x)−p0/pk)dx]1/p0
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×
m∏

k=1

E[
∫
RN

|fk(X
(n)(tk, x))|pk det J (n)(tk, x)dx]1/pk

≤ CT (
∫
RN

|f(x)|p0dx)1/p0

m∏
k=1

(
∫
RN

|fk(x))|pkdx)1/pk

Letting n → ∞, we have our assertion.
Now let D be a bounded domain in RN and F j : RN → R, j = 1, 2, be C2 functions

satisfying the following assumptions (F1),(F2), furthermore.
(F1) For x ∈ D and i = 1, . . . , d,

N∑
j=1

σj
i (x)

∂

∂xj
F 1(x) = 0.

(F2) inf{det(∇F i(x) · ∇F j(x))i,j=1,2; x ∈ D} > 0.
Then we have the following

Lemma 4 For a.e.x,

P (X(t, x) ∈ D,F (X(t, x)) = 0 for some t > 0) = 0.

Here F = (F 1, F 2) : RN → R2.

Proof. Let

τ (s, x) = inf{t ≥ s; X(t, x) ∈ Dc} ∧ (s + 1), x ∈ RN , s > 0.

Also, let

p(x, s) = P (F (X(t, x)) = 0 for some t ∈ [s, τ (s, x))), x ∈ RN , s > 0.

Then we see that

P (X(t, x) ∈ D,F (X(t, x)) = 0 for some t > 0) ≤ ∑
r∈Q+

p(x, r),

where Q+ is the set of positive rational numbers. Let V (m) = {x ∈ RN ; |x| ≤ m},
m ≥ 1. Let us define random variables ZT,m, T > 0, m ≥ 1, and constant C1 by

ZT,m = sup{|t − s|−1/3|X(t, x) − X(s, x)|; 0 ≤ s < t ≤ T, x ∈ V (m)} < ∞,

and

C1 = sup{|σ0(x)||∇F 1(x)| + 1

2

d∑
i=1

|∇2F 1(x)||σi(x)|2 + |∇F 2(x)|; x ∈ D̄}.

Then we see that P (ZT,m < ∞) = 1 (c.f. Kunita[2]). By the assumtion (F1), we see that

F 1(X(t, x)) = F 1(x) +
∫ t

0
(σ0(X(s, x))∇F 1(X(s, x))

+
d∑

i=1

1

2
∇2F 1(X(s, x))(σi(X(s, x)), σi(X(s, x)))ds.
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So we see that

|F 1(X(t, x)) − F 1(X(s, x))| ≤ C1|t − s|, t ∈ [s, τ (s, x)), s ≥ 0, x ∈ RN ,

and

|F 2(X(t, x)) − F 2(X(s, x))| ≤ C1ZT,m|t − s|1/3 t, s ∈ [0, T ], x ∈ V (m).

Also, by the assumption (A2), we see that there is a constant C2 > 0 such that

∫
D

1A(F (x))dx ≤ C2|A|

for any Borel set A in R2, where |A| denotes the area of A.
Let ∆�,n,k = [−C1n

−1, C1n
−1]× [−
C1n

−1/3, 
C1n
−1/3], 
, n ≥ 1, k = 1, . . . , n. Then we

have for any 
 ≥ 1,∫
V (m)

dxP (F (X(t, x)) = 0 for some t ∈ [s, τ (s, x)), Zs+1,m ≤ 
)

≤
n∑

k=1

∫
V (m)

dx P (X(s, x) ∈ D,X(s + (k − 1)/n, x) ∈ D,F (X(s + (k − 1)/n, x)) ∈ ∆�,n,k)

=
n∑

k=1

E[
∫
RN

dx1V (m)(x)1D(X(s, x))1D(X(s+(k−1)/n, x))1∆�,n,k
(F (X(s+(k−1)/n, x)))]

≤ C
n∑

k=1

|V (m)|1/10|D|1/10(
∫

D
1∆�,n,k

(F (x))dx)4/5

≤ CC2n|V (m)|1/10|D|1/10(4C2
1
n

−4/3)4/5.

Here C is the constant in Lemma 3 for T = s+1, p0 = p1 = 10 and p3 = 5/4. Since n ≥ 1
is arbitrary, we see that∫

V (m)
dxP (F (X(t, x)) = 0 for some t ∈ [s, , τ (s, x)), Zs+1,m ≤ 
) = 0, 
 ≥ 1.

This implies that
∫
RN p(x, s) = 0, s > 0.

Therefore we have our assertion.

Corollary 5 Suppose moreover that x0 ∈ (D̄)c, σi, i = 0, . . . , d, are smooth around x0

and that dim Lie[ ∂
∂t
− V0, V1, . . . , Vd](0, x0) = N + 1. Here

Vi(x) =
d∑

j=1

σj
i (x)

∂

∂xj
, i = 1, . . . , d,

and

V0(x) =
d∑

j=1

(σj
0(x) − 1

2

d∑
i=1

N∑
k=1

σk
i (x)

∂σj
i

∂xk
(x))

∂

∂xj
.

Then
P (X(t, x0) ∈ D,F (X(t, x0)) = 0 for some t > 0) = 0.
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Proof. Let U be a open neighborhood of x0 such that σi, i = 0, . . . , d, are smooth around
Ū and that Ū ∩ D̄ = ∅. Let τ = inf{t > 0;X(t, x0) ∈ U c}. Then we see that

P (X(t, x0) ∈ D,F (X(t, x0)) = 0 for some t > 0)

≤
∞∑

n=1

P (X(t, x0) ∈ D,F (X(t, x0)) = 0 for some t >
1

n
, τ >

1

n
)

≤
∞∑

n=1

∫
U

P (X(
1

n
, x0) ∈ dx, τ >

1

n
)P (X(t, x) ∈ D,F (X(t, x)) = 0 for some t > 0).

However, by [3], we see that P (X( 1
n
, x0) ∈ dx, τ > 1

n
) is absolutely continuous. So by

Lemma 4, we have our assertion.

3 Proof of Theorem 1

Since the proof is similar, we prove Theorem 1 in the case that D = {x = (x1, . . . , xd) ∈
Rd; x1 < 0} ⊂ Rd, and Φ(v, x) = (−v1, v2, . . . , vd) for v = (v1, v2, . . . , vd) and x ∈ ∂D.
In general, if we take a double cover of Dc and change the coordinate functions, we can
apply a similar proof. Let aij : Rd → R, i, j = 1, . . . d, be bounded Lipschitz continuous
function such that aij(x) = aji(x), x ∈ Rd and that there are positive constants C0, C1

such that

C0|ξ|2 ≤
d∑
i,j

aij(x)ξiξj ≤ C1|ξ|2, x, ξ ∈ Rd.

Let b : R2d → Rd be a bounded measurable function.
Let L0 be a second order linear differential operator in R2d given by

L0 =
d∑

i=1

vi ∂

∂xi
+

1

2

d∑
i,j=1

aij(x)
∂2

∂vi∂vj
+

d∑
i=1

bi(x, v)
∂

∂vi

Then Theorem 1 is somehow equivalent to the following Theorem. So we prove this
Theorem.

Theorem 6 Let (x0, v0) ∈ (D̄)c × Rd, and suppose that aij, i, j = 1, . . . , d, are smooth
around x0. Then there exists a unique probability measure µ over W̃ d satisfying the fol-
lowing conditions.
(1) µ(w(0) = (x0, v0)) = 1.
(2) µ(w(t) ∈ Dc × Rd, t ∈ [0,∞)) = 1.
(3) For any f ∈ C∞

0 ((D̄)c ×Rd), {f(w(t))− ∫ t
0 L0f(w(s))ds; t ≥ 0} is a martingale under

µ(dw).
(4) µ(1{0}(x1(t))(v1(t) + v1(t−)) = 0, t ∈ [0,∞)) = 1 and

µ(vi(t) is continuous in t ∈ [0,∞), i = 2, . . . , d) = 1.

Proof. Let ãij : Rd → R, i, j = 1, . . . d, be given by

ãij(x) = aij(|x1|, x2, . . . , xd), x = (x1, x2, . . . , xd) ∈ Rd.
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Let b̃i : R2d → R, i = 1, . . . d, be given by

b̃1(x) = sgn(x1)b1(|x1|, x2, . . . , xd),

and
b̃i(x) = bi(|x1|, x2, . . . , xd), i = 2, . . . , d

for x = (x1, x2, . . . , xd) ∈ Rd. Let L̃0 be second order linear differential operators in R2d

given by

L̃0 =
d∑

i=1

vi ∂

∂xi
+

1

2

d∑
i,j=1

ãij(x)
∂2

∂vi∂vj
+

d∑
i=1

b̃i(x, v)
∂

∂vi
.

Then by transformation of drift (c.f. Ikeda-Watanabe[1]), we see that there is a
unique probability measure ν on C([0,∞);R2d) such that ν(w(0) = (x0, v0)) = 1 and
that {f(w(t))− ∫ t

0 L̃0f(w(s))ds; t ≥ 0} is a martingale under ν(dw) for any f ∈ C∞
0 (R2d).

Let ξ̃(w) = inf{t > 0; x1(t) = 0, v1(t−) = 0}. Then by Corollary 5 and Girsanov’s
transformation, we see that ν(ξ̃(w) = ∞) = 1. Let

X(t, w) = (|x1(t)|, x2(t), . . . , xd(t)), t ∈ [0,∞),

and

V (t, w) =
d+

dt
X(t, w), t ∈ [0,∞).

Let µ is the probability law of (X(·, w), V (·, w)) under ν. Then we see that µ satisfies the
conditions (1)-(4). So we see the existence.

Now let us prove the uniqueness. Let µ be a probability measure as in Theorem. Let
ξ(w) = inf{t > 0; x1(t) = 0, v1(t−) = 0}. Also, let us define stopping times τk : W̃0 →
[0,∞], k = 0, 1, 2, . . . , inductively by τ0(w) = 0 and

τk+1(w) = inf{t > τk(w); x1(t) = 0}, w ∈ W̃ d, k = 0, 1, . . . .

Then we see from the assumption (4) that if τk(w) < ξ(w), then τk(w) < τk+1(w) for
µ-a.s.w. Also, it is easy to see that ξ(w) ≤ supk τk(w), w ∈ W̃ d.

For any ε > 0 and k = 0, 1, 2, . . . , let

σ0
k(w) = inf{t > τk(w); x1(t) > ε},

and
σ1

k(w) = inf{t > σ0
k(w); x1(t) < ε/2}, w ∈ W̃ d, k = 0, 1, . . . .

Then we see from the assumption (3) that

f(x(t ∧ σ1
k), v(t ∧ σ1

k)) − f(x(t ∧ σ0
k), v(t ∧ σ0

k)) −
∫ t∧σ1

k

t∧σ0
k

L0f(x(s), v(s))ds

is a bounded continuous martingale for any f ∈ C∞
0 (R2d).

Now let

X̃(t, w) =

{
x(t), t ∈ [τk(w), τk+1(w)), if k is even,

(−x1(t), x2(t), . . . , xd(t)), t ∈ [τk(w), τk+1(w)), if k is odd,
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Ṽ (t, w) =

{
v(t), t ∈ [τk(w), τk+1(w)), if k is even,

(−v1(t), v2(t), . . . , vd(t)), t ∈ [τk(w), τk+1(w)), if k is odd.

Then we can see that (X̃(t∧ ξ), Ṽ (t∧ ξ)) is continuous in t for µ-a.s.w. Also, we see that

f(X̃(t ∧ σ1
k), Ṽ (t ∧ σ1

k)) − f(X̃(t ∧ σ0
k), Ṽ (t ∧ σ0

k)) −
∫ t∧σ1

k

t∧σ0
k

L̃0f(X̃(s), Ṽ (s))ds

is a continuous martingale for any f ∈ C∞
0 (R2d).

Therefore we see that

f(X̃(t ∧ τk+1), Ṽ (t ∧ τk+1)) − f(X̃(t ∧ τk), Ṽ (t ∧ τk)) −
∫ t∧τk+1

t∧τk

L̃0f(X̃(s), Ṽ (s))ds

is a continuous martingale for any f ∈ C∞
0 (R2d). So we can conclude that

f(X̃(t ∧ ξ), Ṽ (t ∧ ξ)) −
∫ t∧ξ

0
L̃0f(X̃(s), Ṽ (s))ds

is a continuous martingale for any f ∈ C∞
0 (R2d).

Therefore we see that the probability law of (X̃(· ∧ ξ), Ṽ (· ∧ ξ)) under µ is the same
of w(· ∧ ξ̃) under ν, by the argument of shift of drift and the fact that a strong solution
of stochastic differential equation with Lipschitz continuous coefficients is unique. So we
see that µ(ξ(w) = ∞) = 1. Since we see that

x(t) = (|X̃1(t)|, X̃2(t), . . . , X̃d(t)), t ∈ [0, ξ),

and

v(t) = (
d+

dt
|X̃1(t)|, Ṽ 2(t), . . . , Ṽ d(t)), t ∈ [0, ξ),

we see the uniqueness.
This completes the proof.

4 Proof of Theorem 2

We will make some prparations to prove Theorem 2.

Proposition 7 Let T > 0. Let A0 be the set of w ∈ D([0, T );R) for which w(0) = 0,
w(T−) ≤ 1, and w(t) is non-decreaing in t. Then A0 is compact in Lp((0, T ), dt), p ∈
(1,∞), and its cluster points are in D([0, T );R).

Proof. Suppose that wn ∈ A0, n = 1, 2, . . . . Then we see that wn(t) ∈ [0, 1], t ∈ [0, T ),
n ≥ 1. So taking subsequence if necessary, we may assume that {wn(r)}∞n=1 is convergent
for any r ∈ [0, T ) ∩ Q. Let w̃(r) = limn→∞ wn(r), r ∈ Q, and let w(t) = limr↓t w̃(r),
t ∈ [0, T ), and w(T ) be arbitrary such that supt∈[0,T ) w(t) ≤ w(T ) ≤ 1. Then we see that
w ∈ D([0, T );R) and w is non-decreasing, and that wn(t) → w(t), t ∈ [0, T ), if t is a
continuous point of w. So we see that wn → w, n → ∞, in Lp((0, T ), dt).

This completes the proof.
We have the following as an easy consequence of Proposition 7.
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Corollary 8 Let T > 0. Let A be the set of w ∈ D([0, T );Rd) for which w(0) = 0 and
the total variation of w is less than 1. Then A is compact in Lp((0, T );Rd, dt), p ∈ (1,∞),
and its cluster points are in D([0, T );Rd).

Now let us prove Theorem 2. Let

Hλ
t = λU(Xλ

t ) +
1

2
|V λ

t |2, t ≥ 0.

Then we have

Hλ
t =

1

2
|v0|2 +

∫ t

0
V λ

s · σ(Xλ
s )dBs +

∫ t

0
V λ

s · b(Xλ
s , V λ

s )ds +
1

2

∫ t

0
trace(σ(Xλ

s )∗σ(Xλ
s ))ds

So we have for any p ∈ [2,∞) there is a constant C independent of λ such that

E[ sup
t∈[0,T ]

(Hλ
t )p] ≤ C(|v0|2p + 1 + E[

∫ T

0
|V λ

t |pdt])

≤ C(|v0|2p + 1 + 2p/2TE[ sup
t∈[0,T ]

(Hλ
t )p]1/2).

So we see that
sup
λ>0

E[ sup
t∈[0,T ]

(Hλ
t )p] < ∞, p ∈ [1,∞). (1)

Therefore we see that

sup
λ>0

E[ sup
t∈[0,T ]

|V λ
t |p] < ∞, p ∈ [1,∞).

So we see that {Hλ
t }t∈[0,∞), and {Xλ

t }t∈[0,∞), λ ≥ 0, are tight in C. Moreover, we see that

E[ sup
t∈[0,T ]

U(Xλ
t )p] → 0, λ → ∞, p ∈ [1,∞). (2)

Let us take an ε ∈ (0, ε0) such that

C0 = sup{|∇U0(x)|−1; dis(x, ∂D) ≤ ε} < ∞.

Let ϕ ∈ C∞
0 (Rd), such that 0 ≤ ϕ ≤ 1, ϕ(x) = 1, if dis(x, ∂D) < ε/3, and ϕ(x) = 0,

if dis(x; ∂D) > ε/2. Let D0 = {x ∈ D; dis(x, ∂D) > ε/4}, and let τ = τλ = inf{t >
0; Xλ

t ∈ D0}. Then we see by Equation 2 that

P (τλ < T ) → 0, λ → ∞,

for any T > 0. Let Aλ
t , t ≥ 0 be a non-decreasing continuous process given by

Aλ
t = −λ

∫ t∧τ λ

0
ϕ(Xλ

s )ρ′(U0(X
λ
s ))|∇U0(X

λ
s )|2ds, t ≥ 0.

Note that Aλ
0 = 0. Since we have

ϕ(Xλ
t∧τ λ)(∇U0(X

λ
t∧τ λ) · V λ

t∧τ λ) − ϕ(Xλ
0 )(∇U0(X

λ
0 ) · V λ

0 )
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= Aλ
t +

∫ t∧τ λ

0
ϕ(Xλ

s )∇2U0(X
λ
s )(V λ

s , V λ
s )ds +

∫ t∧τ λ

0
ϕ(Xλ

s )(∇U0(X
λ
s ) · b(Xλ

s , V λ
s ))ds

+
∫ t∧τ λ

0
ϕ(Xλ

s )(∇U0(X
λ
s ))∗σ(Xλ

s )dBs +
∫ t∧τ λ

0
(∇ϕ(Xλ

s ) · V λ
s )(∇U0(X

λ
s ) · V λ

s )ds,

we see that
sup
λ>0

E[(Aλ
T)p] < ∞, p ∈ [1,∞).

Since we have

∫ T∧τλ

0
λU(Xλ

t )dt =
∫ T∧τλ

0

ρ(U0(X
λ
t ))

|ρ′(U0(X
λ
t ))| |∇U0(X

λ
t )|−2dAλ

t ,

we see that

P (
∫ T∧τλ

0
λU(Xλ

t )dt > δ)

≤ P ( sup
t∈[0,T ]

U(Xλ
t ) > η) + P (C2

0Aλ
T sup

ρ−1(η)≤s<0

ρ(s)

|ρ′(s)| > δ)

for any δ, η > 0. So we see that

P (
∫ T∧τλ

0
|Hλ

t − 1

2
|V λ

t |2|dt > δ) → 0, λ → ∞ (3)

for any δ > 0.
Also, we see that

V λ
t∧τ λ = v0 + V λ,0

t + V λ,1
t ,

where

V λ,0
t = +

∫ t∧τ λ

0
|∇U0(X

λ
s ))|−2∇U0(X

λ
s )dAλ

s ,

and

V λ,1
t =

∫ t∧τ λ

0
σ(Xλ

s )dBs +
∫ t∧τ

0
b(Xλ

s , V λ
s )ds.

So we see that the total variation of V λ,0
t , t ∈ [0, T ], is dominated by C0A

λ
T . Also,

{V λ,0
t }t∈[0,∞) is tight in C.
Then by Corollary 8 it is easy to see that {V λ

t }t∈[0,T ) is tight in Lp((0, T );Rd) and its
limit process is in D([0, T );Rd) with probability one for any T > 0 and p ∈ (1,∞).

Let F ∈ C∞(Rd ×Rd;Rd) be given by

F (x, v) = ϕ(x)(v − |∇U0(x)|−2(∇U0(x) · v)∇U0(x)), (x, v) ∈ Rd × Rd.

Then by Ito’s lemma it is easy to see that {F (Xλ
t , V λ

t )}t∈[0,∞), λ ∈ (0,∞), is tight in C,
and that {f(Xλ

t , V λ
t ) − ∫ t

0 L0f(Xλ
s , V λ

s )ds} is a continuous martingale for any λ ∈ (0,∞)
and f ∈ C∞

0 ((D̄)c × Rd).
So we see that there are stochastic processes {(Xt, Vt)}t∈[0,∞) and {Ht}t∈[0,∞) and a

subsequence {λn}∞n=1, λn → ∞, n → ∞, such that {((Xλn
t , V λn

t ), Hλn
t )}t∈[0,∞) converges

in law to {((Xt, Vt), Ht)}t∈[0,∞) in W̃ d ×C with respect the metric function d̃is + disC .
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Then we see that {f(Xt, Vt) − ∫ t
0 L0f(Xs, Vs)ds}t∈[0,∞) is a continuous martingale for

any f ∈ C∞
0 ((D̄)c ×Rd), and that {F (Xt, Vt)}t∈[0,∞) is a continuous process. Also, we see

by Equation (3) that ∫ T

0
|Ht − 1

2
|Vt|2|dt = 0 a.s.

for any T > 0. So we see that {|Vt|2}t∈[0,∞) is a continuous process. Therefore we have

P (1∂D(Xt)(Vt − Vt− − 2(n(Xt) · Vt−)n(Xt)) = 0, t ∈ [0,∞)) = 1.

So we see that the probability law of {(Xt, Vt)}t∈[0,∞) in W̃ is µ in Theorem 1.
This complets the proof of Theorem 2
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