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Abstract

We introduce some geometrically invariant systems of dif-
ferential equations on any Riemannian manifolds and also on
any Kähler manifolds, which are natural extensions of the elas-
tic wave equations on R

3. Further we prove the local decompo-
sition theorems of distribution solutions for those systems. In
particular, the solutions of our systems on Kähler manifolds are
decomposed into 4 solutions with different propagation speeds.

0 Introduction and Results

Introduction

The elastic wave equation on R3 is written as follows:

Pu := ρ
∂2

∂t2
u− (λ+ µ)grad div u− µ∆u

= ρ
∂2

∂t2
u− (λ+ 2µ)grad div u+ µ rot rot u = f,
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where u is a 3-dimensional vector field of the displacement of an elastic
body, ρ is the density constant and λ, µ are the Lamé constants. It is
well-known that any distribution solution u of Pu = 0 is decomposed
into a sum u = u1 + u2 of solutions u1, u2 satisfying the following
additional equations:

rot u1 = 0, div u2 = 0.

We call u1, u2 a longitudinal wave solution and a transverse wave so-
lution, respectively. In a physical generalization of this system of
equations to Riemannian manifolds we replace div , rot with some
covariant differentiations. However covariant differentiations do not
commute with each other in general.

To begin with, in Chapter 2, we consider the physical generaliza-
tion Porg u = 0 of the elastic wave equation on a Riemannian mani-
fold. In Chapter 3, we introduce a new differential equation PR u = 0
which is a modification on the lower order term of the original equa-
tion Porg u = 0. Then we show that; the new differential equation
admits a decomposition of any solutions into longitudinal wave so-
lutions and transverse wave solutions. However, the original equa-
tion does not admit any similar decompositions in general. On the
other hand, by its duality, PR and Porg operate on 1-differential forms.
Through this duality, we can generalize PR and Porg to operators on
p-differential forms. In Chapter 4, we deal with the differential equa-
tions PC u = 0, P ∗

C u = 0 on complex manifolds and PK u = 0 on
Kähler manifolds. We show any distribution solutions of the differ-
ential equations PC u = 0 and P ∗

C
u = 0 admit some decompositions

into 2 solutions with different propagation speeds. In the same way,
we also show that any distribution solution of the equation PK u = 0
admits a decomposition into 4 solutions with 4 different propagation
speeds.

Results

Definition 0.1. Let M be an n-dimensional Riemannian manifold
and M̃ = Rt ×M . Let u =

∑
ui∂i be a contravariant vector field

on M with parameter t; precisely, a contravariant vector field on M̃
with 〈dt, u〉 = 0. We assume the density constant ρ and the Làme
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constants λ, µ are positive. Then we define the original elastic wave
equation as follows:

Porg u
i := ρ

∂2

∂t2
ui − λgij∇j∇kuk − µgik∇j∇kuj − µgjk∇j∇kui

= ρ
∂2

∂t2
ui − λ∇i∇kuk − µ∇k∇iuk − µ∇k∇kui = f i.

where we denote by gij , all ∇j the Riemannian metric tensor and the
covariant differentiation, respectively.

In this paper, we often omit
∑

by Einstein’s convention.

For this equation, we define another differential equation on M̃
which is a modification on the part of order 0 of Porg:

PR u
i := ρ

∂2

∂t2
ui − (λ+ 2µ)gij∇j∇kuk + µgij∇k∇juk − µgjk∇j∇kui

= ρ
∂2

∂t2
ui − (λ+ 2µ)∇i∇kuk + µ∇k∇iuk − µ∇k∇kui

= Porg u
i + 2µRl

iul = f i,

where Rij is the Ricci tensor.

The modified elastic equation above has a simple form when we
write it in a covariant form; that is, an equation for 1-forms. At
the same time, we extend the equations naturally to equations for
p-differential forms for all p.

Let
∧(p) T ∗M be a vector bundle of p-differential forms onM . Let

E (p)
M be a sheaf of p-forms onM with C∞ coefficients, and Db(p)M a sheaf

of p-currents on M ; that is, p-forms with distribution coefficients. In
this article, we do not mean distributions the dual space of C∞

0 (M).
Our distributions behave as “functions” for coordinate transforma-

tions. Further we define Ẽ (p)
M and D̃b(p)M .

Definition 0.2. We denote by Ẽ (p)
M , D̃b(p)M the sheaves of sections of

E (p)
fM

, Db(p)
fM

which do not include the covariant vector dt . That is,
setting the projection π : Rt ×M →M , we define

Ẽ (p)
M := E (0)

fM
⊗

π−1E(0)
M

π−1E (p)
M , D̃b(p)M := Db(0)

fM
⊗

π−1E(0)
M

π−1E (p)
M .
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For

u =
∑

1≤i1<···<ip≤n
ui1···ip(t, x)dx

i1 ∧ · · · ∧ dxip ∈ D̃b(p)M ,

we define an operator PR for D̃b(p)M on M (1 ≤ p ≤ n − 1), where
the coefficients {ui1···ip} are supposed to be alternating with respect
to (i1 · · · ip).

Definition 0.3. We define sheaf-morphisms PR : D̃b(p)M −→ D̃b(p)M by

PR u := ρ
∂2

∂t2
u+ (λ+ 2µ)dδu+ µδdu.

For p = 1, this equation is the covariant form of PR u
i.

When p = 0 or n, PR u = 0 reduces to a wave equation. Therefore
we suppose 1 ≤ p ≤ n − 1. Here, d, δ are the exterior differential
operator and the associated exterior differential operator on M , re-
spectively.

For u ∈ D̃b(p)M , we define equations MR, MR
1 , MR

2 , MR
0 below:

MR : PR u = 0,

MR

1 :

{
PR u = 0,

du = 0,
⇐⇒

{
(∂2
t + α∆)u = 0,

du = 0,

MR

2 :

{
PR u = 0,

δu = 0,
⇐⇒

{
(∂2
t + β∆)u = 0,

δu = 0,

MR

0 :


PR u = 0,

du = 0,

δu = 0,

⇐⇒


∂2
t u = 0,

du = 0,

δu = 0.

Here, α = (λ + 2µ)/ρ, β = µ/ρ and ∆ = dδ + δd : D̃b(p)M → D̃b(p)M is
the Laplacian on M .

4



Further we define subsheaves Sol(MR; p), Sol(MR
j ; p), (j = 0, 1, 2)

of D̃b(p)M as follows: For NR = MR,MR
j ,

Sol(NR; p) :=
{
u ∈ D̃b(p)M

∣∣∣ u satisfies NR

}
.

Then, we have the theorem below.

Theorem A (Theorem 3.3 ). For any distribution solution u ∈
Sol(MR; p)

∣∣∣
(
◦
t,

◦
x)
, there exist some germs uj ∈ Sol(MR

j ; p)
∣∣∣
(
◦
t,

◦
x)

(j =

1, 2) such that u = u1 + u2.
Furthermore, the equation u = u1 + u2 = 0 implies u1, u2 ∈

Sol(MR
0 ; p)

∣∣∣
(
◦
t,

◦
x)
. Equivalently, we have the following exact sequence:

0 −→ Sol(MR

0 ; p)
F−→ Sol(MR

1 ; p)⊕Sol(MR

2 ; p)
G−→ Sol(MR; p) −→ 0,

where F (U) = U ⊕ (−U), G(U1 ⊕ U2) = U1 + U2.

Let X be an n-dimensional complex manifold with a Hermitian
metric, and

∧(q,r) T ∗X a vector bundle of (q, r)-type differential forms

on X. Let E (q,r)
X be a sheaf of (q, r)-forms on X with C∞ coefficients,

and Db(q,r)X a sheaf of (q, r)-currents on X. Setting X̃ = Rt × X, we

also define Ẽ (q,r)
X , D̃b(q,r)X similarly to Ẽ (p)

M , D̃b(p)M .

Definition 0.4. We define sheaf-morphisms PC, P
∗
C : D̃b(q,r)X −→

D̃b(q,r)X on X̃ which are similar to PR:

PC =
∂2

∂t2
+ α1∂ϑ + α2ϑ∂,

P ∗
C
=
∂2

∂t2
+ α3∂ϑ+ α4ϑ∂,

where α1, α2, α3 and α4 are positive constants. Here, ∂, ∂ are the ex-
terior differential operator, the conjugate exterior differential operator
on X, and ϑ, ϑ are the associated operators of ∂, ∂, respectively.
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For u ∈ D̃b(q,r)X , we define equations MC, MC
1 , MC

2 , MC∗, MC∗
3 , MC∗

4

below:

MC : PC u = 0,

MC

1 :

{
PC u = 0,

∂u = 0,
⇐⇒

{
(∂2
t + α1�)u = 0,

∂u = 0,

MC

2 :

{
PC u = 0,

ϑu = 0,
⇐⇒

{
(∂2
t + α2�)u = 0,

ϑu = 0,

MC∗ : P ∗
C u = 0,

MC∗
3 :

{
P ∗

C
u = 0,

∂u = 0,
⇐⇒

{
(∂2
t + α3�)u = 0,

∂u = 0,

MC∗
4 :

{
P ∗

C
u = 0,

ϑu = 0,
⇐⇒

{
(∂2
t + α4�)u = 0,

ϑu = 0.

Here, � = ∂ϑ + ϑ∂ and � = ∂ϑ + ϑ∂ are the complex Laplace-
Beltrami operators.

Further we define subsheaves Sol(MC; q, r), Sol(MC
j ; q, r) (j =

1, 2), Sol(MC∗; q, r), Sol(MC∗
k ; q, r) (k = 3, 4) of D̃b(q,r)X as follows:

For NC = MC,MC
j , MC∗,MC∗

k ,

Sol(NC; q, r) :=
{
u ∈ D̃b(q,r)M

∣∣∣ u satisfies NC

}
.

Then, we get the following theorems.

Theorem B (Theorem 4.6). For any distribution solution u ∈
Sol(MC; q, r)

∣∣∣
(
◦
t,

◦
z)
, there exist some germs uj ∈ Sol(MC

j ; q, r)
∣∣∣
(
◦
t,

◦
z)

(j = 1, 2) such that u = u1 + u2.

Theorem B′ (Theorem 4.9). For any distribution solution u ∈
Sol(MC∗; q, r)

∣∣∣
(
◦
t,

◦
z)
, there exist some germs uk ∈ Sol(MC∗

k ; q, r)
∣∣∣
(
◦
t,

◦
z)

(k = 3, 4) such that u = u3 + u4.
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Now we assume that X is a Kähler manifold; that is, for the Her-
mitian metric h ,we have the equation d

(∑
hjk(z)dz

j ∧ dzk) = 0, and

we know that hjk can be described as hjk = ∂j∂kφ with a smooth
real function φ locally. Then the following equations for operators on

D̃b(q,r)X are well-known:
� = � = 1

2
∆,

∂ϑ + ϑ∂ = 0, ∂ ϑ+ ϑ ∂ = 0,

∂∂ + ∂∂ = 0, ϑϑ+ ϑϑ = 0.

(0.1)

As for the relationship between the conditions (0.1) and the Kähler
condition, we give a brief introduction and a proof of the equivalency
in Appendix.

Definition 0.5. We define sheaf-morphisms PK : D̃b(q,r)X −→ D̃b(q,r)X

on X̃ by

PK =
∂2

∂t2
+ α1∂ϑ + α2ϑ∂ + α3∂ϑ+ α4ϑ∂.

Here, α1, α2, α3 and α4 are positive constants.

When q, r = 0 or n, PK u = 0 reduces to a wave equation. When
q = 0, n or r = 0, n, PK stands for P ∗

C
or PC , respectively. Therefore,

we suppose 1 ≤ q, r ≤ n− 1.

For u ∈ D̃b(q,r)X , we define equations MK, MK
i (i = 1, 2, 3, 4), MK

jk,

MK

jk0

(
(jk) = (13), (14), (23), (24)

)
below:

MK : PK u = 0,

MK

1 :

{
PK u = 0,

∂u = 0,
MK

2 :

{
PK u = 0,

ϑu = 0,

MK

3 :

{
PK u = 0,

∂u = 0,
MK

4 :

{
PK u = 0,

ϑu = 0,

MK

13 :


PK u = 0,

∂u = 0,

∂u = 0,

⇐⇒


(
∂2
t +

α1 + α3

2
∆
)
u = 0,

∂u = 0,

∂u = 0,
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MK

23 :


PK u = 0,

ϑu = 0,

∂u = 0,

⇐⇒


(
∂2
t +

α2 + α3

2
∆
)
u = 0,

ϑu = 0,

∂u = 0,

MK

14 :


PK u = 0,

∂u = 0,

ϑu = 0,

⇐⇒


(
∂2
t +

α1 + α4

2
∆
)
u = 0,

∂u = 0,

ϑu = 0,

MK

24 :


PK u = 0,

ϑu = 0,

ϑu = 0,

⇐⇒


(
∂2
t +

α2 + α4

2
∆
)
u = 0,

ϑu = 0,

ϑu = 0,

MK

130 :


PK u = 0,

∂u = 0,

∂u = 0,

∆2u = 0,

⇐⇒


∂4
t u = ∆2u = 0,(
∂2
t +

α1 + α3

2
∆
)
u = 0,

∂u = 0,

∂u = 0,

MK

230 :


PK u = 0,

ϑu = 0,

∂u = 0,

∆2u = 0,

⇐⇒


∂4
t u = ∆2u = 0,(
∂2
t +

α2 + α3

2
∆
)
u = 0,

ϑu = 0,

∂u = 0,

MK

140 :


PK u = 0,

∂u = 0,

ϑu = 0,

∆2u = 0,

⇐⇒


∂4
t u = ∆2u = 0,(
∂2
t +

α1 + α4

2
∆
)
u = 0,

∂u = 0,

ϑu = 0,

MK

240 :


PK u = 0,

ϑu = 0,

ϑu = 0,

∆2u = 0,

⇐⇒


∂4
t u = ∆2u = 0,(
∂2
t +

α2 + α4

2
∆
)
u = 0,

ϑu = 0,

ϑu = 0,

Further we define subsheaves Sol(MK; q, r), Sol(MK
i ; q, r)

(
i =

1, 2, 3, 4
)
, Sol(MK

jk; q, r) , Sol(MK
jk0; q, r)

(
(jk) = (13), (23), (14), (24)

)
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of D̃b(q,r)X as the sheaves of D̃b(q,r)X -solutions, respectively.
Then, we have the theorem below.

Theorem C (Theorem 4.15). For any distribution solution u ∈
Sol(MK; q, r)

∣∣∣
(
◦
t,

◦
z)
, there exist some germs uij ∈ Sol(MK

ij ; q, r)
∣∣∣
(
◦
t,

◦
z)

((ij) = (13), (23), (14), (24)) such that u = u13 + u23 + u14 + u24.
Further, we find that u = u13 + u23 + u14 + u24 = 0 implies

ujk ∈ Sol(MK

jk0; q, r)
(
(jk) = (13), (23), (14), (24)

)
.

Equivalently, we have the following exact sequence:

0 −→
⊕
(ij)

′Sol(MK

ij0; q, r)

G−→
⊕
(ij)

Sol(MK

ij ; q, r)
H−→ Sol(MK; q, r) −→ 0.

Here,⊕
(ij)

′Sol(MK

ij0; q, r) :=
{
(uij) ∈

⊕
(ij)

Sol(MK

ij0; q, r)
∣∣∣ ∑

(ij)

uij = 0
}
,

G(U13⊕U23⊕U14⊕U24) = U13⊕U23⊕U14⊕U24, H(U13⊕U23⊕U14⊕
U24) = U13 + U23 + U14 + U24.

1 Preparation from Riemannian geome-

try

In this section, we recall some notations and terminologies in Rieman-
nian geometry used in this paper.

We assume that M is oriented. Then, there is a global section Ω
of E (n)

M on M , which never vanishes on M .

Definition 1.1. The inner products 〈·, ·〉 : ∧(1) T ∗
xM ×∧(1) TxM →

R, 〈·, ·〉∗ :
∧(p) T ∗

xM × ∧(p) T ∗
xM → R, are defined as follows. We
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choose a local positive orthonormal system (ω1, · · · , ωn) of C∞ sec-
tions of T ∗M concerning the Riemannian metric; that is, there is a
positive valued C∞ function α such that ω1∧· · ·∧ωn = αΩ > 0. Then
for

σ =
∑

1≤i≤n
σidx

i, τ =
∑

1≤i≤n
τ i∂i ,

we define
〈σ, τ〉 :=

∑
1≤i≤n

σiτ
i,

and for
φ =

∑
1≤i1<···<ip≤n

φi1···ipω
i1 ∧ · · · ∧ ωip,

ψ =
∑

1≤i1<···<ip≤n
ψi1···ipω

i1 ∧ · · · ∧ ωip,

we define

〈φ, ψ〉∗ :=
∑

1≤i1<···<ip≤n
φi1···ipψ

i1···ip

:=
∑

1≤i1<···<ip≤n
1≤j1<···<jp≤n

φi1···ipg
i1j1 · · · gipjpψj1···jp.

Definition 1.2. We denote by d : Db(p)M → Db(p+1)
M the exterior dif-

ferential operator which acts on Db(p)M as a sheaf morphism. Then the
following formulas are well-known:

d(φ±ψ) = dφ±dψ (φ, ψ ∈ Db(p)M ),

d(φ ∧ ψ) = dφ ∧ ψ + (−1)pφ ∧ dψ (φ ∈ Db(p)M , ψ ∈ Db(q)M ),

d(dφ) = 0 (φ ∈ Db(p)M ),

For f ∈ Db(0)M , df :=
∑ ∂f

∂xj
dxj ∈ Db(1)M .

Here 0 ≤ p ≤ n. If p = n, dφ = 0 holds.

Definition 1.3. The isomorphism ∗ :
∧
T ∗M → ∧

T ∗M of vector
bundle is defined below:

∗ :
∧(p) T ∗

xM �→ ∧(n−p) T ∗
xM is a linear map,

∗(ωi1 ∧ · · · ∧ ωip) = (−1)(i1−1)+···+(ip−p)ωj1 ∧ · · · ∧ ωjn−p,

for any permutation (i1, · · · , ip, j1, · · · , jn−p) of (1, · · · , n).
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Here (i1 · · · ip) and (j1 · · · jn−p) are indices satisfying{
(i1 · · · ipj1 · · · jn−p) is a permutation of (1 · · ·n),
1 ≤ i1 < · · · < ip ≤ n, 1 ≤ j1 < · · · < jn−p ≤ n.

Remark 1.4. The definition above does not depend on the choice of
the positive orthonormal system {ω1, · · · , ωn}.
Proposition 1.5. We set φ, ψ ∈ ∧(p) T ∗

xM . Then we obtain
φ ∧ ∗ψ = (∗φ) ∧ ψ = 〈φ, ψ〉∗ ω1 ∧ · · · ∧ ωn,
∗1 = ω1 ∧ · · · ∧ ωn = √

g dx1 ∧ · · · ∧ dxn,
∗φ = (−1)(i1−1)+···+(ip−p)√g gi1j1 · · · gipjpφi1···ip dxj1 ∧ · · · ∧ dxjn−p

∈ ∧(n−p) T ∗
xM.

Here g = det(gkl).

Let U ⊂ M be an open subset. Let α(p) ∈ Db(p)M (U), β(p) ∈ E (p)
M (U)

be sections. We suppose that β(p) has a compact support in U . Then
the following integral is well-defined.

(α(p), β(p)) :=

∫
M

〈α(p), β(p)〉∗ ω1 ∧ · · · ∧ ωn.

Definition 1.6. Let α(p) ∈ Db(p)M , β(p−1) ∈ E (p−1)
M be sections. We

suppose β(p−1) has a compact support. Then the sheaf morphism
δ : Db(p)M → Db(p−1)

M is defined as

(δα(p), β(p−1)) = (α(p), dβ(p−1)).

Hence we have
δ = (−1)n(p−1)+1 ∗ d ∗ .

Definition 1.7. Let Xrs be the sheaf of
⊗r TxM ⊗ ⊗s T ∗

xM-valued
C∞ functions, and Dbrs the sheaf of

⊗r TxM ⊗⊗s T ∗
xM -valued dis-

tributions. Then, the sheaf morphisms ∇ : Xrs → Xrs+1, Dbrs → Dbrs+1
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are defined as follows:

For a(x) ∈ X0
0, we have ∇a(x) = ∂a

∂xj
dxj .

For
∂

∂xj
∈ X1

0, we have ∇
(
∂

∂xj

)
= Γ i

j k

∂

∂xi
⊗ dxk.

For dxj ∈ X0
1, we have ∇ (

dxj
)
= −Γ j

i kdx
i ⊗ dxk.

For e ∈ Xrs, f ∈ Xr
′
s′ , we have ∇(e⊗ f) = (∇e)⊗ f + e⊗∇f.

Here, {
Γ ji k = gjlΓilk = gjl · 1

2

(
∂gil
∂xk

+
∂glk
∂xi

− ∂gki
∂xl

)}
are the Riemann-Christoffel symbols.

Proposition 1.8. We set

e = ej1···jri1···is dx
i1 ⊗ · · · ⊗ dxis ⊗ ∂

∂xj1
⊗ · · · ⊗ ∂

∂xjr
∈ Xrs.

Then we have

∇e =
(
∂ke

j1···jr
i1···is + e

j1···jp−1qjp+1···jr
i1···is Γ

jp
q k − ej1···jri1···ip−1qip+1···isΓ

q
ip k

)
× dxi1 ⊗ · · · ⊗ dxis ⊗ ∂

∂xj1
⊗ · · · ⊗ ∂

∂xjr
⊗ dxk.

Hence we call the following the covariant differentiation :

∇ke =
(
∂ke

j1···jr
i1···is + e

j1···jp−1qjp+1···jr
i1···is Γ

jp
q k − ej1···jri1···ip−1qip+1···isΓ

q
ip k

)
× dxi1 ⊗ · · · ⊗ dxis ⊗ ∂

∂xj1
⊗ · · · ⊗ ∂

∂xjr
.

2 Elastic mechaniques on Riemannian

manifolds

Let M be an n-dimensional Riemannian manifold with metric g. We
consider an elastic body G in M . A motion of G is identified with

12



an open subset G̃ of M̃ with one parameter family of diffeomorphisms
ht(·) (t ∈ R):

hs : G̃ ∩ {t = 0} ∼−→ G̃ ∩ {t = s}.
Then the elastic wave equation for G is formulated as a time devel-
opment equation for small motions of G; that is, ht is close to the
identity map and it is expressed as

hit(x) = xi + ui(x, t)

in a local coordinate system (x1, ..., xn), where u =
∑
ui(x, t)∂i is the

small displacement vector field.
Then, the differential dh of the map h and its dual map dh∗ are

given as follows:

dh : TxM � ξi �−→ ηi = ξj
(
∂hi

∂xj

)
= ξi +

∂ui

∂xj
ξj ∈ Th(x)M,

dh∗ : T ∗
h(x)M � ηi �−→ ξj = ηi

(
∂hi

∂xj

)
= ηj +

∂ui

∂xj
ηi ∈ T ∗

xM.

Let us calculate the difference between the line element of M

ds(x)2 = gij(x) dx
i ⊗ dxj

and its pull-back ∗ds(x)2 by h:

εij(x) dx
i ⊗ dxj :=

1

2

{∗ds(x)2 − ds(x)2
}

=
1

2

{
gkl(h(x))

∂hk

∂xi
∂hl

∂xj
dxi ⊗ dxj − gij(x)dx

i ⊗ dxj
}
.

Here εij is called the strain tensor. By ignoring the non-linear terms
of um, ∂ku

m, ∂lu
m, we have

εkl =
1

2
(gkm∂lu

m + gml∂ku
m + um∂mgkl) .

On Riemannian spaces, equations

∇mgkl = ∂mgkl − Γ nmlgkn − Γ nmkgnl = 0

13



hold, so we have

εkl =
1

2
{gkm∂lum + gml∂ku

m + um(Γ nmlgkn + Γ nmkgnl)}

=
1

2
{gkm(∂lum + unΓmnl ) + gml(∂ku

m + unΓmnk)}

=
1

2
(gkm∇lum + gml∇kum) . (2.1)

In physics, we assume that the stress tensor σji has a linear rela-
tionship with the strain tensor at each point. Hence there exists the
elastic coefficient tensor Ejilk such that

σji√
g
= Ejilkεkl. (2.2)

As a physical assumption for Eijkl, we have the equations:

Eijkl = Ejikl = Eijlk.

In particular, it is well-known that the elastic coefficient tensor of an
isotropic elastic body has the following form:

Eijkl = λgijgkl + µgikgjl + µgilgjk, (2.3)

where λ and µ are the two Láme constants. Therefore, from (2.1),
(2.2) and (2.3), we get

σji√
g
= Eijklεkl

= (λgijgkl + µgikgjl + µgilgjk)

(
1

2
gmk∇lum +

1

2
gml∇kum

)
= λgij∇lul + µgjl∇lui + µgil∇luj. (2.4)

Hence the equation of power-balance between the stress of the elastic
body and the external force is written as follows:

df i =
σji√
g
dSj,

where df i is the external force vector for the surface element dSj .

14



In order to introduce the elastic wave equation, we consider a small
neighborhood V of a point x in M , whose boundary is given by a
smooth closed surface S. Then the equation of motion for this small
part V of the elastic body is written as below:∫

V

ρ
∂2ui

∂t2
dV = −

∫
S

df i = −
∫
S

σji√
g
dSj

=

∫
V

∇j
(
σji√
g

)
dV.

Here dV =
√
g dx1 · · · dxk with √g =

√
det(gkl). We divide both sides

by the volume |V | and shrink V to {x}. Then from (2.4), we have the
elastic equation on Riemannian manifolds:

ρ
∂2ui

∂t2
= ∇j

(
σji√
g

)
= λgij∇j∇kuk + µgjk∇j∇kui + µgik∇j∇kuj. (2.5)

3 Decomposition of modified elastic wave

equations on Riemannian manifolds

We set α = (λ+ 2µ)/ρ, β = µ/ρ. Then, we have the next lemmas.

Lemma 3.1. For any u ∈ Sol(MR; p) and the variety

VR :=
⋃
k=1,2

{
(t, x; τ, ξ)

∣∣∣ τ 2 − ck|ξ|2 = 0
}

=
⋃
k=1,2

{
(t, x; τ, ξ)

∣∣∣ τ 2 − ckg
ij(x)ξiξj = 0

}
,

we have WF(u) ⊂ VR, where c1 = α, c2 = β.

Proof. The symbol of the second-order operator ρ−1PR (t, x, ∂t, ∂x) at
◦
pt = (

◦
x;

◦
ξ) ∈ T ∗M is defined as a linear operator

σ2(ρ
−1PR )(

◦
pt) :

∧(p)
T ∗

◦
x
M →

∧(p)
T ∗

◦
x
M

15



given by the following:

σ2(ρ
−1PR )(

◦
pt)U

:= lim
λ→∞

1

λ2
e−λi([x,

◦
ξ]+t

◦
τ)ρ−1PR (

◦
t,

◦
x, ∂t, ∂x)

(
eλi([x,

◦
ξ]+t

◦
τ)U

)
,

where we consider the coefficients of U ∈
∧(p)

T ∗
◦
x
M as constants in a

local coordinate system. Here [x,
◦
ξ] = xl

◦
ξl. We suppose (

◦
τ ,

◦
ξ) �= (0, 0).

Therefore we get

σ2(ρ
−1PR )(

◦
pt)U =σ2(∂

2
t + αdδ + βδd)U

=− ◦
τ 2U + (−1)n(p−1)α(ξ̃ ∧ (∗(ξ̃ ∧ ∗U)))

+ (−1)npβ(∗(ξ̃ ∧ ∗(ξ̃ ∧ U))).

Here ξ̃ :=
∑ ◦
ξjdx

j. Let ω = (ω1, · · · , ωn) be a positive orthonormal
system at T ∗

◦
x
M satisfying ω1 = ξ̃/|ξ̃|. We set U = U1 + U2 where

U1 =
∑
1∈I

U1Iω
I , U2 =

∑
1/∈I

U2Iω
I , then we get ξ̃ ∧ U1 = 0, ξ̃ ∧ ∗U2 =

0.Therefore we have

∗(ξ̃ ∧ ∗(ξ̃ ∧ U)) = ∗(ξ̃ ∧ ∗(|ξ̃|
∑
1/∈I

U2Iω1 ∧ ωI))

= (−1)np|ξ̃|2U2,

ξ̃ ∧ (∗(ξ̃ ∧ ∗U) = (−1)n(p−1)|ξ̃|2U1,

σ2(ρ
−1PR )(

◦
pt)U = (−◦

τ 2 + α|ξ̃|2)U1 + (−◦
τ 2 + β|ξ̃|2)U2.

Thus we find that σ2(ρ
−1PR )(

◦
pt) has 2 eigenvalues (−◦

τ 2 + α|ξ̃|2),
(−◦
τ 2+β|ξ̃|2), and their multiplicities are n−1Cp−1, n−1Cp, respectively.

Hence we get

det(σ2(ρ
−1PR )(

◦
pt)) = (−◦

τ 2 + α|ξ̃|2)n−1Cp−1(−◦
τ 2 + β|ξ̃|2)n−1Cp.

If σ2(ρ
−1PR )(

◦
pt) is an isomorphism,

◦
pt does not belong to the

characteristic variety of PRu = 0. Therefore, for a characteristic point

16



◦
pt, we have det(σ2(ρ

−1PR )(
◦
pt)) = 0. Hence,

WF(u) ⊂ VR =
⋃
k=1,2

{
(t, x; τ, ξ)

∣∣∣ τ 2 − ck|ξ|2 = 0
}

=
⋃
k=1,2

{
(t, x; τ, ξ)

∣∣∣ τ 2 − ckg
ij(x)ξiξj = 0

}
.

�

Lemma 3.2. For a germ u ∈ D̃b(p)M at (
◦
t,

◦
x), we assume WF(u)

�� (
◦
t,

◦
x;±dt). Then, there exists a germ w ∈ D̃b(p)M at (

◦
t,

◦
x), which

satisfies ∆w = u and WF(w) �� (
◦
t,

◦
x;±dt).

Proof. For a differential form u =
∑
uJ(t, x)dx

J , we write ∆u =∑{
PJK(x, ∂x)uK(t, x)

}
dxJ . ∆ is an elliptic operator on Db(p)M . There-

fore, in a neighborhood of (
◦
x,

◦
x) ∈ M×M , there exist integral kernels

{GKL(x, y)}KL, which satisfy{∑
PJK(x, ∂x)GKL(x, y) = δJ,L · δ(x− y),

WF(GKL) ⊂
{
(x, y; ξ, η)

∣∣ x = y, ξ = −η}.
Here, δJ,L is a Kronecker’s delta. Hence,

w ≡
∑(∫

GKL(x, y)uL(t, y)ψ(y)dy
)
dxK

satisfies ∆w = u at (
◦
t,

◦
x) and WF(w) �� (

◦
t,

◦
x;±dt). Here ψ ∈ C∞

0 (M)

has a compact support in a small neighborhood of
◦
x and ψ(y) ≡ 1

near
◦
x. �

Then, we get the following theorem.

Theorem 3.3. For any distribution solution u ∈ Sol(MR; p)
∣∣∣
(
◦
t,

◦
x)
,

there exist some germs uj ∈ Sol(MR
j ; p)

∣∣∣
(
◦
t,

◦
x)

(j = 1, 2) such that

u = u1 + u2.
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Furthermore, the equation u = u1 + u2 = 0 implies u1, u2 ∈
Sol(MR

0 ; p)
∣∣∣
(
◦
t,

◦
x)
. Equivalent saying, we have the following exact se-

quence:

0 −→ Sol(MR

0 ; p)
F−→ Sol(MR

1 ; p)⊕Sol(MR

2 ; p)
G−→ Sol(MR; p) −→ 0,

where F (U) = U ⊕ (−U), G(U1 ⊕ U2) = U1 + U2.

Proof. For u ∈ D̃b(p)M
∣∣∣
(
◦
t,

◦
x)
, we suppose u1, u2 are of the form;

u2 = δv, u1 = u− δv.

Here v ∈ D̃b(p+1)

M

∣∣∣
(
◦
t,

◦
x)
. Hence we have only to impose the following

conditions on v: 
PR (δv) = 0,

d(u− δv) = 0,

dv = 0.

Since the equation PR (δv) = (∂2
t + βδd) δv = δ (∂2

t + β∆) v holds,
it is sufficient to impose the conditions below:

∂2
t v + β∆v = 0,

dδv = du,

dv = 0,

⇐⇒


∂2
t v = −βdu,
∆v = du,

dv = 0.

¿From Lemma 3.1 and Lemma 3.2, we have a w satisfying ∆w = u

and WF(w) �� (
◦
t,

◦
x;±dt). Then it is sufficient to impose the following

equations on v: 
∂2
t (v − dw) = −d(βu+ ∂2

tw),

∆(v − dw) = 0,

d(v − dw) = 0.

Therefore we can take v as follows:

v − dw = −d
∫ t

◦
t

ds

∫ s

◦
t

(
βu(τ, x) + ∂t

2w(τ, x)
)
dτ.
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Then u2 satisfies the following wave equation:

ρ
∂2

∂t2
u2 + β∆u2 = 0.

Hence u ∈ Sol(MR; p)
∣∣∣
(
◦
t,

◦
x)

can be decomposed as a sum u = u1 + u2,

where uj ∈ Sol(MR
j ; p)

∣∣∣
(
◦
t,

◦
x)

(j=1,2).

When u = u1 + u2 = 0 holds, the equations δu1 = 0 and du2 = 0

imply u1, u2 ∈ Sol(MR
0 ; p)

∣∣∣
(
◦
t,

◦
x)
.

Therefore we have an exact sequence

0 −→ Sol(MR

0 ; p) −→ Sol(MR

1 ; p)⊕Sol(MR

2 ; p) −→ Sol(MR; p) −→ 0.

�

Remark 3.4. For the case p = 1, the contravariant form of this de-

composition means the decomposition ui = ui1 + ui2 ∈ D̃b10 satisfying
the conditions as follows:

∇i u1
i = 0, ∇iu2

j −∇ju2
i = 0.

Remark 3.5. In Einstein spaces satisfying Rij = λgij, a distribution
solution u of Porg u = 0 has a similar decomposition u = u1 + u2.
However, if M is not an Einstein space, a distribution solution u of
Porg u = 0 does not necessarily admit any decomposition of solutions
above.

4 Decomposition of modified elastic wave

equations on complex manifolds

We extend the results on a Riemannian manifold to ones in a complex
manifold X with a Hermitian metric h. Firstly, we recall operators on
complex manifolds.
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Definition 4.1. We denote by ∂ : Db(q,r)X → Db(q+1,r)
X the exterior

differential operator which acts on Db(q,r)X as a sheaf morphism and

∂ : Db(q,r)X → Db(q,r+1)
X the conjugate exterior differential operator.

For a section

φ = φi1···iqj1···jr dz
i1 ∧ · · · ∧ dziq ∧ dzj1 ∧ · · · ∧ dzjr of Db(q,r)X ,

the following formulas are well-known:

dφ = (∂ + ∂)φ,

∂φ =
∂φ

∂zk
dzk ∧ dzi1 ∧ · · · ∧ dziq ∧ dzj1 ∧ · · · ∧ dzjr ∈ Db(q+1,r)

X ,

∂φ =
∂φ

∂zk
dzk ∧ dzi1 ∧ · · · ∧ dziq ∧ dzj1 ∧ · · · ∧ dzjr ∈ Db(q,r+1)

X .

Definition 4.2. The linear operator ∗ on X induces isomorphisms∧(q,r) T ∗X −→ ∧(n−r,n−q) T ∗X of vector bundle. Hence we have sheaf-

morphisms ∗ : Db(q,r)X −→ Db(n−r,n−q)X on X as follows: For

ψ = ψIJ ω
I ∧ ωJ ∈ Db(q,r)X ,

we have

∗ψ = δ

(
1 · · ·n1 · · ·n
I J J

C
IC

)
ψIJ ω

JC ∧ ωIC ∈ Db(n−r,n−q)X ,

where {ω1, · · · , ωn} is a local orthonormal system of C∞ sections
of T ∗X concerning the Hermitian metric and IC := {1, · · · , n}\I.
Here δ(·) = ±1 is the signature of the permutation (IJ J

C
IC) of

(1 · · ·n1 · · ·n).

Let U ⊂ X be an open subset. Let α(q,r) = αIJ ωI ∧ ωJ ∈
Db(q,r)X (U), β(q,r) = βIJ ω

I ∧ ωJ ∈ E (q,r)
X (U) be sections. We suppose

that β(q,r) has a compact support in U . Then the following integral is
well-defined.

(α(q,r), β(q,r)) :=

∫
X

〈α(q,r), β(q,r)〉∗ ω1 ∧ · · · ∧ ωn ∧ ω1 ∧ · · · ∧ ωn,

where, 〈α(q,r), β(q,r)〉∗ =
∑
I,J

αIJ β
IJ .
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Definition 4.3. Let α(q,r) ∈ Db(q,r)X , β(q−1,r) ∈ E (q−1,r)
X , and γ(q,r−1) ∈

E (q,r−1)
X be sections. We suppose β(q−1,r) and γ(q,r−1) have compact

supports. Then sheaf morphisms ϑ : Db(q,r)X → Db(q−1,r)
X and ϑ :

Db(q,r)X → Db(q,r−1)
X are defined as

(ϑα(q,r), β(q−1,r)) = (α(q,r), ∂β(q−1,r)),

(ϑα(q,r), γ(q,r−1)) = (α(q,r), ∂γ(q,r−1)).

Further they satisfy the following equations:
δ = ϑ+ ϑ,

ϑ = − ∗ ∂∗,
ϑ = − ∗ ∂ ∗ .

Then, we get the lemmas below.

Lemma 4.4. For any u ∈ Sol(MC; q, r) and the variety

VC :=
⋃
k=1,2

{
(t, z; τ, ζ)

∣∣∣ τ 2 − αk|ζ |2 = 0
}

=
⋃
k=1,2

{
(t, z; τ, ζ)

∣∣∣ τ 2 − αkh
ij(z)ζiζj = 0

}
,

we have WF(u) ⊂ VC, where (τ, ζ) is identified with the real cotangent
vector τdt + 2Re(ζdz).

Proof. The symbol of the second-order operator PC (t, z, ∂t, ∂z, ∂z) at
◦
pt = (

◦
z;

◦
ζ) ∈ T ∗X is defined as a linear operator

σ2(PC )(
◦
pt) :

∧(q,r)
T ∗

◦
z
X →

∧(q,r)
T ∗

◦
z
X

given by the following:

σ2(PC )(
◦
pt)U

:= lim
λ→∞

1

λ2
e−λi(2Re[z,

◦
ζ]+t

◦
τ)PC (

◦
t,

◦
z, ∂t, ∂z, ∂z)

(
eλi(2Re[z,

◦
ζ]+t

◦
τ)U

)
,
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where we consider the coefficients of U ∈
∧(q,r)

T ∗
◦
z
X as constants in a

local coordinate system. Here, [z,
◦
ζ] = zl

◦
ζ l. We suppose (

◦
τ ,

◦
ζ) �= (0, 0).

Therefore we get

σ2(PC )(
◦
pt)U = σ2(∂

2
t + α1∂ϑ + α2ϑ∂)U

= −◦
τ 2U − α1(Ξ ∧ (∗(Ξ ∧ ∗U)))

− α2(∗(Ξ ∧ ∗(Ξ ∧ U))).

Here Ξ :=
∑ ◦
ζjdz

j . Let ω = (ω1, · · · , ωn) be an orthonormal system
of T ∗

◦
z
X satisfying ω1 = Ξ/|Ξ|. When we set U = U1 + U2 where

U1 =
∑
1∈I

U1IJω
I ∧ ωJ , U2 =

∑
1/∈I

U2IJω
I ∧ ωJ , we get Ξ ∧ U1 = 0, Ξ ∧

∗U2 = 0. Therefore we have

∗
(
Ξ ∧ ∗(Ξ ∧ U))

= ∗
(
Ξ ∧ ∗(|Ξ|∑

1/∈I
U2IJ ω1 ∧ ωI ∧ ωJ

))
= δ

(
1 · · ·n1 · · ·n
I J J

C
IC

)
|Ξ|

×
{
∗
(
Ξ ∧

∑
1/∈I

U2IJ ω
JC ∧ ω{1,I}C

)}
= −|Ξ|2U2,

Ξ ∧ (∗(Ξ ∧ ∗U) = −|Ξ|2U1,

σ2(PC )(
◦
pt)U = (−◦

τ 2 + α1|Ξ|2)U1 + (−◦
τ 2 + α2|Ξ|2)U2.

Thus we find that σ2(PC )(
◦
pt) has 2 eigenvalues (−◦

τ 2+α1|Ξ|2), (−◦
τ 2+

α2|Ξ|2), and their multiplicities are n−1Cq−1 · nCr, n−1Cq · nCr, respec-
tively. Hence we get

det(σ2(PC )(
◦
pt)) = (−◦

τ 2 + α1|Ξ|2)n−1Cq−1·nCr(−◦
τ 2 + α2|Ξ|2)n−1Cq·nCr .

If σ2(PC )(
◦
pt) is an isomorphism,

◦
pt does not belong to the char-

acteristic variety of PC u = 0. Therefore, for a characteristic point
◦
pt,
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we have det(σ2(PC )(
◦
pt)) = 0. Hence,

WF(u) ⊂ VC =
⋃
k=1,2

{
(t, z; τ, ζ)

∣∣∣ τ 2 − αk|ζ |2 = 0
}

=
⋃
k=1,2

{
(t, z; τ, ζ)

∣∣∣ τ 2 − αkh
ij(z)ζiζj = 0

}
.

�

Lemma 4.5. For a germ u ∈ D̃b(q,r)X at (
◦
t,

◦
z), we assume WF(u) ��

(
◦
t,

◦
z; ±dt). Then, there exists a germ w ∈ D̃b(q,r)X at (

◦
t,

◦
z), which

satisfies �w = u and WF(w) �� (
◦
t,

◦
z;±dt).

Proof. For u =
∑
uJL(t, z)dz

J ∧ dzL, we write

�u =
∑{

PJK(z, ∂z , ∂z)uKL(t, z)
}
dzJ ∧ dzL.

� is an elliptic operator on Db(q,r)X . Therefore, in a neighborhood of

(
◦
z,

◦
z) ∈ X × X, there exist integral kernels {GKM(z, z′)}KM , which

satisfy∑
PJK(z, ∂z , ∂z)GKM(z, z′)

= δJ,M · δ(Re z − Re z′) · δ(Im z − Im z′),

WF(GKM) ⊂{
(z, z′; ζdz + ζdz + ζ ′dz′ + ζ ′dz′)

∣∣ z = z′, ζ = −ζ ′}.
Here, δJ,M is a Kronecker’s delta. Hence,

w ≡
∑(∫

GKM(z, z′)uML(t, z
′)ψ(z′)d(Re z′)d(Im z′)

)
dzK ∧ dzL

satisfies �w = u at (
◦
t,

◦
z) and WF(w) �� (

◦
t,

◦
z;±dt). Here ψ ∈ C∞

0 (X)

has a compact support in a small neighborhood of
◦
z and ψ(z′) ≡ 1

near
◦
z. �

Then, we get the following theorem.
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Theorem 4.6. For any distribution solution u ∈ Sol(MC; q, r)
∣∣∣
(
◦
t,

◦
z)
,

there exist some germs uj ∈ Sol(MC
j ; q, r)

∣∣∣
(
◦
t,

◦
z)

(j = 1, 2) such that

u = u1 + u2.

Proof. For u ∈ D̃b(q,r)X

∣∣∣
(
◦
t,

◦
z)
, we suppose u1, u2 are of the form;

u1 = ∂v, u2 = u− ∂v.

Here v ∈ D̃b(q−1,r)

X

∣∣∣
(
◦
t,

◦
z)
. Hence we have only to impose the following

conditions on v: 
PC (∂v) = 0,

ϑ(u− ∂v) = 0,

ϑv = 0.

Since the equation PC (∂v) =
(
∂2
t + α1∂ϑ

)
∂v = ∂ (∂2

t + α1�) v = 0
holds, it is sufficient to impose the conditions below:

∂2
t v + α1�v = 0,

ϑ∂v = ϑu,

ϑv = 0,

⇐⇒


∂2
t v = −α1ϑu,

�v = ϑu,

ϑv = 0.

¿From Lemma 4.4 and Lemma 4.5, we have a w satisfying �w = u

and WF(w) �� (
◦
t,

◦
z;±dt). Then it is sufficient to impose the following

equations on v: 
∂2
t (v − ϑw) = −ϑ(α1u+ ∂2

tw),

�(v − ϑw) = 0,

ϑ(v − ϑw) = 0.

Therefore we can take v as follows:

v − ϑw = −ϑ
∫ t

◦
t

ds

∫ s

◦
t

(
α1u(τ, z) + ∂t

2w(τ, z)
)
dτ.

Then u1 satisfies the following wave equation:

∂2

∂t2
u1 + α1�u1 = 0.
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Hence u ∈ Sol(MC; q, r)
∣∣∣
(
◦
t,

◦
z)
can be decomposed as a sum u = u1+u2,

where uj ∈ Sol(MC
j ; q, r)

∣∣∣
(
◦
t,

◦
z)

(j=1,2). �

In the same way, we obtain the following similar lemmas and theo-
rems as adjoint versions of Lemma 4.4, Lemma 4.5, and Theorem 4.6.
We omit the proofs because the arguments go in a similar way.

Lemma 4.7. For any u ∈ Sol(MC∗; q, r) and the variety

V ∗
C :=

⋃
k=3,4

{
(t, z; τ, ζ)

∣∣∣ τ 2 − αk|ζ |2 = 0
}

=
⋃
k=3,4

{
(t, z; τ, ζ)

∣∣∣ τ 2 − αkh
ij(z)ζiζj = 0

}
,

we have WF(u) ⊂ V ∗
C
, where (τ, ζ) is identified with the real cotangent

vector τdt + 2Re(ζdz).

Lemma 4.8. For a germ u ∈ D̃b(q,r)X at (
◦
t,

◦
z), we assume WF(u) ��

(
◦
t,

◦
z; ±dt). Then, there exists a germ w ∈ D̃b(q,r)X at (

◦
t,

◦
z), which

satisfies �w = u and WF(w) �� (
◦
t,

◦
z;±dt).

Theorem 4.9. For any distribution solution u ∈ Sol(MC∗; q, r)
∣∣∣
(
◦
t,

◦
z)
,

there exist some germs uk ∈ Sol(MC∗
k ; q, r)

∣∣∣
(
◦
t,

◦
z)

(k = 3, 4) such that

u = u3 + u4.

Now we assume that X is a Kähler manifold. For the sheaf-
morphisms PK , we have the following lemmas.

Lemma 4.10. For any u ∈ Sol(MK; q, r) and the variety

VK :=
⋃

k=1,2,3,4

{
(t, z; τ, ζ)

∣∣∣(τ 2 − βk|ζ |2 = 0
)}

=
⋃

k=1,2,3,4

{
(t, z; τ, ζ)

∣∣∣(τ 2 − βkh
ij(z)ζiζj = 0

)}
,
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we have WF(u) ⊂ VK, where β1 = α1+α3, β2 = α2+α3, β3 = α1+α4,
β4 = α2 + α4 and (τ, ζ) is identified with the real cotangent vector
τdt+ 2Re(ζdz).

Proof. Similarly to Lemma 4.4, we get the symbol of the second-order
operator

σ2(PK )(
◦
pt)U =σ2(∂

2
t + α1∂ϑ + α2ϑ∂ + α3∂ϑ+ α4ϑ∂)U

=− ◦
τ 2U − α1

(
Ξ ∧

(
∗
(
Ξ ∧ ∗U

)))
− α2

(
∗
(
Ξ ∧ ∗

(
Ξ ∧ U

)))
− α3

(
Ξ ∧

(
∗
(
Ξ ∧ ∗U

)))
− α4

(
∗
(
Ξ ∧ ∗

(
Ξ ∧ U

)))
.

Here Ξ :=
∑ ◦
ζjdz

j . Let ω = (ω1, · · · , ωn) be an orthonormal system
of T ∗

◦
z
X satisfying ω1 = Ξ/|Ξ|. We set U = U1 + U2 + U3 + U4 where

U1 =
∑

1∈I,1∈J
U1IJω

I ∧ ωJ , U2 =
∑

1/∈I,1∈J
U2IJω

I ∧ ωJ ,

U3 =
∑

1∈I,1/∈J
U3IJω

I ∧ ωJ , U4 =
∑

1/∈I,1/∈J
U4IJω

I ∧ ωJ .

Then we get {
Ξ ∧ U1 = 0,

Ξ ∧ U1 = 0,

{
Ξ ∧ U2 = 0,

Ξ ∧ ∗U2 = 0.{
Ξ ∧ U3 = 0,

Ξ ∧ ∗U3 = 0,

{
Ξ ∧ ∗U4 = 0,

Ξ ∧ ∗U4 = 0.
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Therefore we have

∗
(
Ξ ∧ ∗

(
Ξ ∧ U

))
= ∗

(
Ξ ∧ ∗

(
|Ξ|

(∑
1/∈I

(U2IJ + U4IJ)ω1 ∧ ωI ∧ ωJ
)))

= −|Ξ|2(U2 + U4),

Ξ ∧
(
∗
(
Ξ ∧ ∗U

))
= −|Ξ|2(U1 + U3),

∗
(
Ξ ∧ ∗

(
Ξ ∧ U

))
= −|Ξ|2(U3 + U4),

Ξ ∧
(
∗
(
Ξ ∧ ∗U

))
= −|Ξ|2(U1 + U2).

Hence,

σ2(PK )(
◦
pt)U =

∑
k=1,2,3,4

(
− ◦
τ 2 + βk|Ξ|2

)
Uk.

Thus we find that σ2(PK )(
◦
pt) has 4 eigenvalues −◦

τ 2 + βk|Ξ|2 (k =
1, 2, 3, 4), and their multiplicities are γk, respectively. Here γ1 =

n−1Cq−1 · n−1Cr−1, γ2 = n−1Cq · n−1Cr−1, γ3 = n−1Cq−1 · n−1Cr, and
γ4 = n−1Cq · n−1Cr. Hence we get

det(σ2(PK )(
◦
pt)) =

4∏
k=1

(
− ◦
τ 2 + βk|Ξ|2

)γk

.

If σ2(PK )(
◦
pt) is an isomorphism,

◦
pt does not belong to the char-

acteristic variety of PK u = 0. Therefore, for a characteristic point
◦
pt,

we have det(σ2(PK )(
◦
pt)) = 0. Hence,

WF(u) ⊂ VK =
⋃

k=1,2,3,4

{
(t, z; τ, ζ)

∣∣∣(τ 2 − βk|ζ |2 = 0
)}

=
⋃

k=1,2,3,4

{
(t, z; τ, ζ)

∣∣∣(τ 2 − βkh
ij(z)ζiζj = 0

)}
.

�
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Lemma 4.11. For any germ u ∈ Sol(MK; q, r)
∣∣∣
(
◦
t,

◦
z)
, there exist some

germs uj ∈ Sol(MK
j ; q, r)

∣∣∣
(
◦
t,

◦
z)

(j = 1, 2) such that u = u1 + u2.

Proof. For u ∈ D̃b(q,r)X

∣∣∣
(
◦
t,

◦
z)
, we suppose u1, u2 are of the form;

u1 = ∂v1, u2 = u− ∂v1.

Here v1 ∈ D̃b(q−1,r)

X

∣∣∣
(
◦
t,

◦
z)
. Hence we have only to impose the following

conditions on v1: 
PK (∂v1) = 0,

ϑ(u− ∂v1) = 0,

ϑv1 = 0.

Since the equation

PK (∂v1) =
(
∂2
t + α1∂ϑ + α3∂ϑ+ α4ϑ∂

)
∂v1

= ∂
(
∂2
t + α1� + α3∂ϑ+ α4ϑ∂

)
v1 = 0

holds, it is sufficient to impose the conditions below:
(
∂2
t + α1� + α3∂ϑ+ α4ϑ∂

)
v1 = 0,

ϑ(u− ∂v1) = 0,

ϑv1 = 0,

⇐⇒


P ∗

C v1 = −α1ϑu,

�v1 = ϑu,

ϑv1 = 0.

¿From Lemma 4.10 and Lemma 4.5, we have a w satisfying �w = u

and WF(w) �� (
◦
t,

◦
z;±dt). Then, when we put

v1 − ϑw =: ϕ, −α1ϑu− ϑ P ∗
C
w =: ψ,

and use � = �, it is sufficient to impose the following equations on ϕ:
P ∗

C
ϕ =

(
∂2
t + α3∂ϑ+ α4ϑ∂

)
ϕ = ψ,

�ϕ = 0,

ϑϕ = 0,

⇐⇒


(
∂2
t + (α4 − α3)ϑ∂

)
ϕ = ψ,

�ϕ = 0,

ϑϕ = 0.
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Setting F :=
{
Ψ ∈ D̃b(q,r)X

∣∣∣
(
◦
t,

◦
z)

; �Ψ = 0, ϑΨ = 0
}
, we note that

ϑ∂(F) ⊂ F , (ϑ∂)2F = 0.

Since ψ ∈ F and WF(ψ) �� (
◦
t,

◦
z;±dt), then we can take ϕ as follows:

ϕ =

∫ t

◦
t

ds

∫ s

◦
t

ψ(s′, z)ds′

+ (α3 − α4)

∫ t

◦
t

ds

∫ s

◦
t

ds′
∫ s′

◦
t

dτ

∫ τ

◦
t

ϑ∂ψ(τ ′, z)dτ ′.

Hence u ∈ Sol(MK; q, r)
∣∣∣
(
◦
t,

◦
z)

can be decomposed into a sum u =

u1 + u2, where uj ∈ Sol(MK
j ; q, r)

∣∣∣
(
◦
t,

◦
z)

(j=1,2). �

By the proof above, we get the following more precise form of u1,
u2.

Lemma 4.12. Let u = u1 + u2 be a decomposition. We can write u1,
u2 in the preceding lemma as follows:

u1 = ∂v1, u2 = ϑv2,

where v1 ∈ D̃b(q−1,r)

X

∣∣∣
(
◦
t,

◦
z)
, v2 ∈ D̃b(q+1,r)

X

∣∣∣
(
◦
t,

◦
z)
satisfying WF(vj) ��

(
◦
t,

◦
z;±dt) (j = 1, 2) and the equations{

∂2
t v1 + α1�v1 + α3∂ϑv1 + α4ϑ∂v1 = 0,

∂2
t v2 + α2�v2 + α3∂ϑv2 + α4ϑ∂v2 = 0.

(4.1)

Proof. We define D−l
t :=

∫ t
◦
t
dt1

∫ t1
◦
t
dt2 · · ·

∫ tl−1
◦
t

dtl. Putting v1 = ϑw +
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D−2
t ψ + (α3 − α4)ϑ∂D

−4
t ψ, we calculate the difference:

u2 ≡ u− u1 = u− ∂v1

= ϑ∂w −D−2
t ∂ψ + (α4 − α3)ϑ∂D

−4
t ∂ψ

= ϑ∂w − (
D−2
t − (α4 − α3)ϑ∂D

−4
t

)
∂ϑ(−α1u− P ∗

C
w)

= ϑ∂w

− (
D−2
t − (α4 − α3)ϑ∂D

−4
t

)(
ϑ∂(α1u+ P ∗

C
w) + (α2 − α1)ϑ∂u

)
= ϑ∂

(
w − (

D−2
t − (α4 − α3)ϑ∂D

−4
t

)
(α2u+ P ∗

C
w)

)
.

Hence, we can get

v1 = ϑ
(
w − (

D−2
t − (α4 − α3)ϑ∂D

−4
t

)
(α1u+ P ∗

Cw)
)
,

v2 = ∂
(
w − (

D−2
t − (α4 − α3)ϑ∂D

−4
t

)
(α2u+ P ∗

C
w)

)
.

In particular, WF(vj) =�� (
◦
t,

◦
z;±dt) (j = 1, 2). The first equation

of (4.1) is already obtained in the proof of Lemma 4.11. The second
equation of (4.1) is also obtained in a similar way as follows: Set
Φ = v2 − ∂w. Then Φ satisfies

(
∂2
t + (α4 − α3)ϑ∂

)
Φ = Ψ := −∂(α2u+ P ∗

C
w),

�Φ = 0,

∂Φ = 0.

Hence, 
P ∗

C
Φ = Ψ,

�Φ = 0,

∂Φ = 0,

⇐⇒


P ∗

C
v2 = −α2∂u,

�v2 = ∂u,

∂v2 = 0.

Thus we obtain
(P ∗

C + α2�)v2 = 0.

This is just the second equation of (4.1). �

Then we have the following lemma.
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Lemma 4.13. For any germ u1 = ∂v1 ∈ Sol(MK
1 ; q, r)

∣∣∣
(
◦
t,

◦
z)
with a

v1 ∈ D̃b(q−1,r)

X

∣∣∣
(
◦
t,

◦
z)
satisfying (4.1) and WF(v1) �� (

◦
t,

◦
z;±dt), there

exist some germs u1j ∈ Sol(MK
1j ; q, r)

∣∣∣
(
◦
t,

◦
z)

(j = 3, 4) such that u1 =

u13 + u14.

Proof. For u1 = ∂v1 ∈ D̃b(q,r)X

∣∣∣
(
◦
t,

◦
z)
, we suppose u13, u14 are of the

form;
u13 = ∂∂V, u14 = u1 − ∂∂V = ∂(v1 − ∂V ).

Here V ∈ D̃b(q−1,r−1)

X

∣∣∣
(
◦
t,

◦
z)
. Hence we have only to impose the following

conditions on V : 
PK(∂∂V ) = 0,

ϑ(v1 − ∂V ) = 0,

ϑV = 0.

Since the equation

PK(∂∂V ) =
(
∂2
t + α1∂ϑ+ α2ϑ∂ + α3∂ϑ+ α4ϑ∂

)
∂∂V

= ∂∂
(
∂2
t + α1� + α3�

)
V = ∂∂

(
∂2
t + (α1 + α3)�

)
V

holds, it is sufficient to impose the conditions below:
(
∂2
t + (α1 + α3)�

)
V = 0,

ϑ(v1 − ∂V ) = 0,

ϑV = 0,

⇐⇒


(
∂2
t + (α1 + α3)�

)
V = 0,

�V = ϑv1,

ϑV = 0.

¿From Lemma 4.10 and Lemma 4.8, we have a w satisfying �w′ = v1

and WF(w′) �� (
◦
t,

◦
z;±dt). Then it is sufficient to impose the following

equations on V :
∂2
t (V − ϑw′) = −ϑ

(
(α1 + α3)v1 + ∂2

tw
′
)
,

�(V − ϑw′) = 0,

ϑ(V − ϑw′) = 0.
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Therefore we get

V − ϑw′ = −ϑD−2
t

(
(α1 + α3)v1(t, z) + ∂t

2w′(t, z)
)
. (4.2)

Indeed the �-closedness of right side of (4.2) follows from (4.1). Hence

u1 ∈ Sol(MK
1 ; q, r)

∣∣∣
(
◦
t,

◦
z)

can be decomposed as a sum u1 = u13 + u14,

where u1j ∈ Sol(MK
1j ; q, r)

∣∣∣
(
◦
t,

◦
z)

(j=3,4). �

In the same way, we obtain the following similar lemma as adjoint
version of Lemma 4.13. We omit the proof because the arguments go
in a similar way.

Lemma 4.14. For any germ u2 = ϑv2 ∈ Sol(MK
2 ; q, r)

∣∣∣
(
◦
t,

◦
z)
with a

v2 ∈ D̃b(q+1,r)

X

∣∣∣
(
◦
t,

◦
z)
satisfying (4.1) and WF(v2) �� (

◦
t,

◦
z;±dt), there

exist some germs u2k ∈ Sol(MK

2k; q, r)
∣∣∣
(
◦
t,

◦
z)

(k = 3, 4) such that u2 =

u23 + u24.

Then we have the following theorem.

Theorem 4.15. For any distribution solution u ∈ Sol(MK; q, r)
∣∣∣
(
◦
t,

◦
z)
,

there exist some germs uij ∈ Sol(MK
ij ; q, r)

∣∣∣
(
◦
t,

◦
z)

(
(ij) = (13), (23),

(14), (24)
)
such that u = u13 + u23 + u14 + u24.

Further, we find that u = u13 + u23 + u14 + u24 = 0 implies

ujk ∈ Sol(MK

jk0; q, r)
(
(jk) = (13), (23), (14), (24)

)
.

Equivalently, we have the following exact sequence:

0 −→
⊕
(ij)

′Sol(MK

ij0; q, r)

G−→
⊕
(ij)

Sol(MK

ij ; q, r)
H−→ Sol(MK; q, r) −→ 0.
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Here,⊕
(ij)

′Sol(MK

ij0; q, r) :=
{
(uij) ∈

⊕
(ij)

Sol(MK

ij0; q, r)
∣∣∣ ∑

(ij)

uij = 0
}
,

G(U13⊕U23⊕U14⊕U24) = U13⊕U23⊕U14⊕U24, H(U13⊕U23⊕U14⊕
U24) = U13 + U23 + U14 + U24.

Proof. By virtue of Lemma 4.11, 4.12, 4.13 and 4.14, we find that

u ∈ Sol(MK; q, r)
∣∣∣
(
◦
t,

◦
z)
is decomposed as a sum u = u13+u23+u14+u24

by using uij ∈ Sol(MK
ij ; q, r)

∣∣∣
(
◦
t,

◦
z)

(
(i, j) = (1, 3), (2, 3), (1, 4), (2, 4)

)
.

When u = u13+u23+u14+u24 = 0 is holds, we set w = u13+u23 =
−u14 − u24. Then w satisfies ∂w = 0, ϑw = 0. Hence we have
∆w = 2�w = 0, and so ∆u13 = −∆u23. By a similar argument we

obtain ∆2u13 = 0. Therefore we have u13 ∈ Sol(MK
130; q, r)

∣∣∣
(
◦
t,

◦
z)

. In a

similar way we conclude that

ujk ∈ Sol(MK

jk0; q, r)
(
(jk) = (23), (14), (24)

)
.

This completes the proof of Theorem 4.15. �

Example 4.16 We assume X = C2. Then, X is a Kähler manifold

with the complex Euclidean metric. We find a solution u ∈ D̃b(1,1)X of
the form with ζ ≡ ζ1dz

1 + ζ2dz
2 where (ζ1, ζ2) ∈ C

2\{0} ;

u(t, z) = U(t)ei(z·ζ+z·ζ).

Then,

PK u = U ′′ + (α1 − α2) ζ ∧
(
∗ (ζ ∧ ∗U))

+ α2|ζ |2U
+ (α3 − α4) ζ ∧

(
∗ (ζ ∧ ∗U))

+ α4|ζ |2U = 0.

We put

U(t) = c1(t) ζ ∧ ζ + c2(t) ζ ∧ ζ⊥ + c3(t) ζ
⊥ ∧ ζ + c4(t) ζ

⊥ ∧ ζ⊥,
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where ζ⊥ = ζ2dz
1 − ζ1dz

2, |ζ | = |ζ⊥| hold. Then, we get(
c′′1 + (α1 + α3)|ζ |2c1

)
ζ ∧ ζ +

(
c′′2 + (α1 + α4)|ζ |2c2

)
ζ ∧ ζ⊥(

c′′3 + (α2 + α3)|ζ |2c3
)
ζ⊥ ∧ ζ +

(
c′′4 + (α2 + α4)|ζ |2c4

)
ζ⊥ ∧ ζ⊥ = 0.

Hence, we obtain

c1(t) = A+
13 exp

(
i
√
α1 + α3|ζ |t

)
+ A−

13 exp
(−i√α1 + α3|ζ |t

)
,

c2(t) = A+
14 exp

(
i
√
α1 + α4|ζ |t

)
+ A−

14 exp
(−i√α1 + α4|ζ |t

)
,

c3(t) = A+
23 exp

(
i
√
α2 + α3|ζ |t

)
+ A−

23 exp
(−i√α2 + α3|ζ |t

)
,

c4(t) = A+
24 exp

(
i
√
α2 + α4|ζ |t

)
+ A−

24 exp
(−i√α2 + α4|ζ |t

)
.

Since

U(0) =(A+
13 + A−

13) ζ ∧ ζ + (A+
14 + A−

14) ζ ∧ ζ
⊥

+ (A+
23 + A−

23) ζ
⊥ ∧ ζ + (A+

24 + A−
24) ζ

⊥ ∧ ζ⊥,
∂

∂t
U(0) =i

√
α1 + α3|ζ |(A+

13 −A−
13) ζ ∧ ζ

+ i
√
α1 + α4|ζ |(A+

14 −A−
14) ζ ∧ ζ

⊥

+ i
√
α2 + α3|ζ |(A+

23 −A−
23) ζ

⊥ ∧ ζ
+ i

√
α2 + α4|ζ |(A+

24 −A−
24) ζ

⊥ ∧ ζ⊥,

we get

A+
13 =

〈U(0), ζ ∧ ζ〉∗
2|ζ |4 − i

〈 ∂
∂t
U(0), ζ ∧ ζ〉∗

2
√
α1 + α3|ζ |5 ,

A−
13 =

〈U(0), ζ ∧ ζ〉∗
2|ζ |4 + i

〈 ∂
∂t
U(0), ζ ∧ ζ〉∗

2
√
α1 + α3|ζ |5 ,

A+
14 =

〈U(0), ζ ∧ ζ⊥〉∗
2|ζ |4 − i

〈 ∂
∂t
U(0), ζ ∧ ζ⊥〉∗

2
√
α1 + α4|ζ |5 ,

A−
14 =

〈U(0), ζ ∧ ζ⊥〉∗
2|ζ |4 + i

〈 ∂
∂t
U(0), ζ ∧ ζ⊥〉∗

2
√
α1 + α4|ζ |5 ,

34



A+
23 =

〈U(0), ζ⊥ ∧ ζ〉∗
2|ζ |4 − i

〈 ∂
∂t
U(0), ζ⊥ ∧ ζ〉∗

2
√
α2 + α3|ζ |5 ,

A−
23 =

〈U(0), ζ⊥ ∧ ζ〉∗
2|ζ |4 + i

〈 ∂
∂t
U(0), ζ⊥ ∧ ζ〉∗

2
√
α2 + α3|ζ |5 ,

A+
24 =

〈U(0), ζ⊥ ∧ ζ⊥〉∗
2|ζ |4 − i

〈 ∂
∂t
U(0), ζ⊥ ∧ ζ⊥〉∗
2
√
α2 + α4|ζ |5 ,

A−
24 =

〈U(0), ζ⊥ ∧ ζ⊥〉∗
2|ζ |4 + i

〈 ∂
∂t
U(0), ζ⊥ ∧ ζ⊥〉∗
2
√
α2 + α4|ζ |5 .

A Appendix

As an appendix, we give a brief introduction to Kähler manifolds.
Further we give a proof of the equivalency of the conditions (0.1) and
the Kähler condition in A2 and A3.

A1. The Kähler condition on Hermitian manifolds

LetX be an n-dimensional Hermitian manifold. Taking a holomorphic
local coordinates (z1, · · · , zn), we define a positive definite Hermitian
matrix hjk(z) = 〈∂zj , ∂zk〉z , when 〈·, ·〉 is the Hermitian metric. Then
the (1, 1)-form

Φ = hjk dz
j ∧ dzk

does not depend on the choice of the coordinates.

Definition A.1. We call a Hermitian manifold (X, h) a Kähler man-
ifold when the condition

dΦ = 0 (A.1)

is satisfied. We call (A.1) a Kähler condition.

Proposition A.2. In order that (A.1) holds, it is necessary and suffi-
cient that there exists a real-valued C∞ function ϕ satisfying Φ = ∂∂ϕ
locally.
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Proof. The Kähler condition (A.1) is equivalent to ∂Φ = 0 and ∂Φ =
0. Hence we obtain

∂hij
∂zk

− ∂hkj
∂zi

= 0,
∂hij
∂zk

− ∂hik
∂zj

= 0.

Because of the equation ∂(hij dz
j) = 0 for any i, there exist C∞

functions fi satisfying

hij =
∂fi
∂zj

from the Dolbeault lemma.
On the other hand, by the equation

0 =
∂hij
∂zk

− ∂hkj
∂zi

=
∂

∂zj

(
∂fi
∂zk

− ∂fk
∂zi

)
,

we find that
∂fi
∂zk

− ∂fk
∂zi

=: Fik

are holomorphic functions. Because of the equation

d(Fik dz
i ∧ dzk) = ∂(Fik dz

i ∧ dzk) = 0,

there exist holomorphic functions Fi satisfying

Fik =
∂Fi
∂zk

− ∂Fk
∂zi

from the complex version of the de Rham theorem. By the equation

∂(fi − Fi)

∂zk
=
∂(fk − Fk)

∂zi
,

there exist a C∞ function ϕ satisfying

fi − Fi =
∂ϕ

∂zi

from the Dolbeault lemma. Therefore we obtain

hij =
∂fi
∂zj

=
∂

∂zj

(
Fi +

∂ϕ

∂zi

)
=

∂2ϕ

∂zj∂zi
.

Because hij = hji , we can replace ϕ by its real part. �
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To explain the meaning of dΦ = 0, we introduce the canonical
connection D induced by Φ. Let X

(q,r)
(s,t) be a sheaf of

⊗(q,r) TzX ⊗∧(s,t) T ∗
zX-valued C∞ functions.

Definition A.3. A holomorphic connection D : X
(1,0)
(s,t) → X

(1,0)
(s+1,t) is

defined as follows:

For a ∈ E (s,t), f ∈ X
(1,0)
(s′,t′), we have D(a ∧ f) =(∂a) ∧ f

+(−1)s+ta ∧ Df.

To find the holomorphic connection induced by the Hermitian met-
ric, we put

D
(
∂

∂zj

)
= ω i

j k

∂

∂zi
⊗ dzk.

Since D induced by Φ satisfy the following commutative diagram:

X
(1,0)
(0,0) �

∂

∂zj
Φ−−−→ hjl dz

l ∈ E (0,1)
X

D
" "∂

X
(1,0)
(1,0) � ω i

j k

∂

∂zi
⊗ dzk −−−→

Φ

∂hjl
∂zk

dzk ∧ dzl ∈ E (1,1)
X ,

we get

ω i
j k = hil∂khjl .

Hence we have

D
(
αj

∂

∂zj

)
=

(
∂αj

∂zk
+ ω j

i kα
i

)
∂

∂zj
⊗ dzk.

By the canonical duality between ∂zj and dzj , D induces a holomorphic
connection on the cotangent bundle. Indeed we have

D (
dzj

)
= −ω j

i kdz
i ⊗ dzk.

Then, if this D is compatible with the exterior differential (torsion-free

condition), we must impose the condition D(dzj) = 0 in
∧(2,0) T ∗X;

that is,
ω j
i k = ω j

k i .

This condition is just the Kähler condition.
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Proposition A.4. The Kähler condition is equivalent to the condi-
tion that the holomorphic connection induced by the Hermitian metric
is torsion-free.

Now we consider the difference between the Riemannian connection
∇ and the holomorphic connection D.

Let XR be the underlying real manifold of X. Then a complex
vector ξj∂zj ∈ TX corresponds to the real vector Re(ξj∂zj ) ∈ TXR.
We define the induced Riemannian metric as〈

Re(ξj∂zj ),Re(ηk∂zk)
〉
R
:=

1

2
Re(ξjηkhjk).

By expanding the Riemannian metric to the Hermitian inner product
on C ⊗R TX

R, we get

〈∂zj , ∂zk〉R = hjk, 〈∂zj , ∂zk〉R = hkj, 〈∂zj , ∂zk〉R = 0.

Then we have the following well-known fact.

Proposition A.5. Let ∇ be the induced Riemannian connection. By
calculating ∇(∂/∂x) and ∇(∂/∂y) (z = x+iy), we obtain the following
expression:

∇
(
∂

∂zj

)
=hil

∂hjl
∂zk

dzk ⊗ ∂

∂zi

+
1

2

[
hil

(
∂hkl
∂zj

− ∂hjl
∂zk

)
dzk ⊗ ∂

∂zi

+ hil
(
∂hjl
∂zk

− ∂hjk
∂zl

)
dzk ⊗ ∂

∂zi

+ hli
(
∂hlk
∂zj

− ∂hjk
∂zl

)
dzk ⊗ ∂

∂zi

]
.

In particular, if ∇(∂/∂zj ) does not include (∂/∂zi) components, X sat-
isfies the Kähler condition. Further the canonical holomorphic connec-
tion and the induced Riemannian connection coincide with each other.
In other words, the induced Riemannian connection preserves the com-
plex structure if and only if X is a Kähler manifold.
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A2. Equations on Kähler manifolds

In this section we prove the commutativity or anti-commutativity of
operators on Kähler manifolds. To begin with, we introduce another
important operator on a Kähler manifold.

Definition A.6. Let Φ = hij(z)dz
i ∧ dzj be the Hermitian metric

form. Then we can define the sheaf morphism

Φ ∧ · : E (q,r)
X � f(z) �→ Φ(z) ∧ f(z) ∈ E (q+1,r+1)

X .

Indeed, Φ ∧ · is a differential operator of order 0. Hence we can also
define the adjoint operator A(Φ) of Φ∧· with respect to the inner prod-

ucts in E (q,r)
X and E (q−1,r−1)

X . That is, for f ∈ E (q,r)
X and g ∈ E (q−1,r−1)

X

with compact support we have

(A(Φ)f, g) = (f, Φ ∧ g).

A(Φ) is also a differential operator of order 0.

Proposition A.7. We have the following equations for differential
operators:

A(Φ)∂ − ∂A(Φ) = −ϑ, (A.2)

A(Φ)∂ − ∂A(Φ) = ϑ. (A.3)

We prove this proposition at the end of this section. Once we
admit these equations, we can easily prove the commutativity and the
anticommutativity for the operators.

Theorem A.8. The operators ∂, ∂, ϑ, ϑ, �, � satisfy the following
equations: 

∂∂ + ∂∂ = 0, ϑϑ+ ϑϑ = 0.

∂ϑ + ϑ∂ = 0, ∂ ϑ+ ϑ ∂ = 0,

� = � = 1
2
∆,
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Proof. The first equation follows directly from the definitions of ∂, ∂.
Further, the second equation is just the adjoint of the first equation.
The third and the fourth equation follow directly from the previous
proposition:

∂ϑ + ϑ∂ = ∂(∂A(Φ) −A(Φ)∂) + (∂A(Φ)− A(Φ)∂)∂ = 0.

Moreover, we also have the following equations:

� = ∂ϑ + ϑ∂ = ∂A(Φ)∂ − ∂∂A(Φ) + A(Φ)∂∂ − ∂A(Φ)∂,

� = ∂ϑ+ ϑ∂ = ∂∂A(Φ) − ∂A(Φ)∂ + ∂A(Φ)∂ − A(Φ)∂∂.

Therefore we have

� − � = A(Φ)(∂∂ + ∂∂)− (∂∂ + ∂∂)A(Φ) = 0− 0 = 0,

and

∆ = dδ + δd = (∂ + ∂)(ϑ+ ϑ) + (ϑ+ ϑ)(∂ + ∂)

= � + � + (∂ϑ+ ϑ∂) + (∂ ϑ+ ϑ ∂) = 2� = 2�.

This completes the proof. �

The remaining problem is to prove Proposition A.7. The following
proposition is very useful for the proof of Proposition A.7.

Proposition A.9. For any point p on a Kähler manifold X we can
take a coordinate system around p (an adapted coordinate system at
p) satisfying the following 2 conditions:
(1) z1(p) = · · · = zn(p) = 0,
(2) hij(z) = δij +O(|z|2); that is,

hij(0) = δij and ∂zhij(0) = ∂z̄hij(0) = 0.

Proof. By using a suitable complex linear transformation, we can take
a complex coordinate system (z1, ..., zn) around p such that

z1(p) = · · · = zn(p) = 0, hij̄ = δij .
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Consider the Taylor expansion of hij̄(z) at z = 0 as follows:

hij̄(z) = δij + Cijkz
k + C̄jikz̄

k +O(|z|2),

where {Cijk; i, j, k = 1, ..., n} are some complex constants. Then the
Kähler condition at p induces the following identities:

Cijk = Ckji (∀ i, j, k). (A.4)

Consider the following coordinate change around w = 0 :

zj = wj − 1

2

∑
i,k

Cijkw
iwk (j = 1, ..., n).

Then we have the following under the equations (A.4):

hij̄(z(w))
∂zi

∂wα
∂z̄j

∂w̄β
=

(
δij + Cijkw

k + C̄jikw̄
k +O(|w|2))

×
(
δiα − Cαik′w

k′ + Ck′iαw
k′

2
+O(|w|2)

)
×

(
δjβ − C̄βjk′′w̄

k′′ + C̄k′′jβw̄
k′′

2
+O(|w|2)

)
= δαβ +O(|w|2).

�

Consider the difference

B = A(Φ)∂ − ∂A(Φ) + ϑ

in the equation (A.2). Then, B is a differential operator of order at
most 1. Hence in order to prove B = 0, we have only to show that all
the coefficients of B vanish at any given point p. Further, it is clear
that the value of every coefficient of B at a given point p is determined
only by

hij(p), ∂hij(p)/∂z
k, ∂hij(p)/∂z

k.

On the other hand, under the adapted coordinate system at p, hij is
approximately identified with Cn up to the first order at p. Hence we
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have only to prove Proposition A.7 for X = Cn with the Euclidean
metric. From now on we set X = Cn and

Φ(z) =
∑

dzj ∧ dzj .

Let us prove the equations (A.2) and (A.3). Since (A.3) is the complex
conjugate to (A.2), we have only to prove (A.2). Further, taking the
operator conjugate, the equation (A.2) is equivalent to the following:

∂f = Φ ∧ (ϑf)− ϑ(Φ ∧ f) ∀f ∈ E (q,r)
X . (A.5)

Let f =
∑
fIJdz

I ∧dzJ be any (q, r)-form with C∞-coefficients. Then
we have

(ϑf)KJ = −
∑
s

∂fsKJ
∂zs

,

(Φ ∧ f)HL =
∑
α,β

(−1)q+α+βδhα,'βfh1

α∨· · · hq+1 '1

β∨· · · 'r+1
.

Here, |K| = q − 1, |H | = q + 1, |L| = r + 1 and h1 ·
α
∨· · hr+1 =

h1 · · ·hα−1hα+1 · · ·hr+1. Therefore, for |I| = q, |L| = r + 1(
Φ ∧ (ϑf)− ϑ(Φ ∧ f))

IL

=
∑
α,β,s

(−1)1+q−1+α+βδiα,'β
∂fsi1

α∨· · · iq '1
β∨· · · 'r+1

∂zs
+

∑
s

∂(Φ ∧ f)sIL
∂zs

=
∑
α,β,s

(−1)q+α+βδiα,'β
∂fsi1

α∨· · · iq '1
β∨· · · 'r+1

∂zs

+
∑
β,s

(−1)q+1+βδs,'β
∂fI '1

β∨· · · 'r+1

∂zs

+
∑
α,β,s

(−1)q+α+1+βδiα,'β
∂fsi1

α∨· · · iq '1
β∨· · · 'r+1

∂zs
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=
∑
β

(−1)q+1+β
∂fI '1

β∨· · · 'r+1

∂z'β
= (∂f)IL.

This completes the proof of Proposition A.7.

A3. Necessity conditions of Kähler manifolds

Conversely, we show that the conditions (0,1) imply the Kähler con-
dition.

Theorem A.10. If � = � as operators on E (1,1)
X on a Hermitian

manifold X, then X is a Kähler manifold.

Proof. We fix any point p on X. Then by using a suitable complex lin-
ear transformation we can take a local holomorphic coordinate system
(z1, ..., zn) around p satisfying the following:{

z1(p) = · · · = zn(p) = 0,

hij(z) = δij + ωijlz
l + ωjil z

l +O(|z|2).

Then we get
hjk(z) = δjk − ωkjlz

l − ωjkl z
l +O(|z|2),

det(hjk) = 1 + ωjjlz
l + ωjjl z

l +O(|z|2),
| det(hjk)| = 1 + ωjjlz

l + ωjjl z
l +O(|z|2).

Let f = fij̄dz
i ∧ dz̄j and g = gij̄dz

i ∧ dz̄j be C∞ (1, 1)-forms with
compact supports. Therefore we have

(ϑ∂f, g) = (∂f, ∂g)

=

∫
∂fij
∂zk

(
∂gαβ
∂zl

)
(hklhiα − hilhkα)hβj| det(h∗∗)| dz{all} ∧ dz {all}

=−
∫

∂

∂zl

(
∂fij
∂zk

(hklhiα − hilhkα)hβj| det(h∗∗)|
)
| det(h∗∗)|−1gαβ dV.
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Here, {all} = {1, 2, · · · , n}, dV = | det(h∗∗)| dz{all}∧dz {all}. Hence we
have

(ϑ∂f)ijh
iαhβj

= − ∂

∂zl

(
∂fij
∂zk

(hklhiα − hilhkα)hβj | det(h∗∗)|
)
| det(h∗∗)|−1.

Taking the values at z = 0, we obtain the following:

(ϑ∂f)αβ = − ∂

∂z l

(
∂fij
∂zk

(hklhiα − hilhkα)hβj| det(h∗∗)|
)

= − ∂2fαβ
∂zk∂zk

+
∂2fiβ
∂zα∂zi

+ ωkll
∂fαβ
∂zk

+ ωiαk
∂fiβ
∂zk

− ωill
∂fiβ
∂zα

− ωkαl
∂flβ
∂zk

+ ωβjk
∂fαj
∂zk

− ωβjl
∂flj
∂zα

− ωkkl
∂fαβ
∂zl

+ ωkkl
∂flβ
∂zα

= − ∂2fαβ
∂zk∂zk

+
∂2fiβ
∂zα∂zi

+ (ωllk − ωkll)

(
∂fkβ
∂zα

− ∂fαβ
∂zk

)
+ (ωiαk − ωkαi)

∂fiβ
∂zk

+ ωβjk

(
∂fαj
∂zk

− ∂fkj
∂zα

)
.

On the other hand, let f = fij̄dz
i∧dz̄j and g = gj̄dz̄

j be C∞(1, 1)-
and C∞(0, 1)-forms with compact supports, respectively. Then we
have

(ϑf, g) = (f, ∂g) =

∫
fik h

ilhjk
(
∂gj
∂zl

)
| det(h∗∗)| dz{all} ∧ dz {all}

= −
∫

| det(h∗∗)|−1 ∂

∂zl

(
fikh

ilhjk| det(h∗∗)|
)
gj dV.

Therefore,

(ϑf)β = −| det(h∗∗)|−1hjβ
∂

∂zl

(
fikh

ilhjk| det(h∗∗)|
)
.

Consequently we obtain the following:

(∂ϑf)αβ = − ∂

∂zα

(
| det(h∗∗)|−1hjβ

∂

∂zl

(
fikh

ilhjk| det(h∗∗)|
))

= − ∂

∂zα

(
hil
∂fiβ
∂zl

+ | det(h∗∗)|−1hjβfik
∂

∂zl

(
hilhjk| det(h∗∗)|

))
.
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Taking the values at z = 0 again, we get

(∂ϑf)αβ =− ∂2fiβ
∂zα∂zi

+ ωliα
∂fiβ
∂zl

+ ωill
∂fiβ
∂zα

+ ωβki
∂fik
∂zα

− ωkki
∂fiβ
∂zα

+ Cαβjkfjk.

Here Cαβjk are some constants which are independent of f and df .
Therefore we have the following equalities at z = 0 :

(�f)αβ = (∂ϑf)αβ + (ϑ∂f)αβ

= − ∂2fαβ
∂zk∂zk

+ (ωill − ωlli)
∂fαβ
∂zi

+ (ωjαk − ωkαj)
∂fjβ
∂zk

+ ωβjk
∂fαj
∂zk

+ ωliα
∂fiβ
∂zl

+ Cαβjkfjk.

Since � is the complex conjugate to �, we also have

(�f)αβ = − ∂2fαβ
∂zk∂zk

+ (ωill − ωlli)
∂fαβ
∂zi

+ (ωjβk − ωkβj)
∂fαj
∂zk

+ ωαjk
∂fjβ
∂zk

+ ωliβ
∂fαi
∂zl

+ Cβαkjfjk.

When the equation

0 = (�f − �f)αβ

= (ωill − ωlli)
∂fαβ
∂zi

+ (ωjαk − ωkαj)
∂fjβ
∂zk

+ (ωβjk − ωkjβ)
∂fαj
∂zk

− (ωill − ωlli)
∂fαβ
∂zi

− (ωjβk − ωkβj)
∂fαj
∂zk

− (ωαjk − ωkjα)
∂fjβ
∂zk

+ (Cαβjk − Cβαkj)fjk

holds, for any given µ, ν, κ ∈ {1, ..., n} we can choose f such that

∂fjk(0)/∂z
i = δiµδjνδkκ, ∂fj′k′(0)/∂z

i′ = 0, fj′′k′′(0) = 0,

and we have

0 = (ωµll − ωllµ)δανδβκ + (ωναµ − ωµαν)δβκ + (ωβκµ − ωµκβ)δαν .

If we choose α = ν and β �= κ, then we see that

ωβκµ − ωµκβ = 0
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holds for any β, κ, µ with β �= κ. Further if we take µ = κ �= β, we have
ωβκκ−ωκκβ = 0 (not the summation in κ) for any β �= κ. Consequently
we get

ωijk = ωkji for any i, j, k.

This is equivalent to the Kähler condition at p. That is, dΦ(p) = 0.
Since p is an arbitrary point of X, so X is a Kähler manifold. �
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