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Abstract

We introduce some geometrically invariant systems of dif-
ferential equations on any Riemannian manifolds and also on
any Kéahler manifolds, which are natural extensions of the elas-
tic wave equations on R3. Further we prove the local decompo-
sition theorems of distribution solutions for those systems. In
particular, the solutions of our systems on Kéahler manifolds are
decomposed into 4 solutions with different propagation speeds.

0 Introduction and Results

Introduction

The elastic wave equation on R? is written as follows:

2
Pu := p%u — (A + p)grad div u — pAu

2

= Pt~ (A + 2u)grad div u + p rot rot u = f,



where u is a 3-dimensional vector field of the displacement of an elastic
body, p is the density constant and A, p are the Lamé constants. It is
well-known that any distribution solution v of Pu = 0 is decomposed
into a sum u = wu; + ug of solutions uy, us satisfying the following
additional equations:

rot uy =0, div us = 0.

We call uy, us a longitudinal wave solution and a transverse wave so-
lution, respectively. In a physical generalization of this system of
equations to Riemannian manifolds we replace div ,rot with some
covariant differentiations. However covariant differentiations do not
commute with each other in general.

To begin with, in Chapter 2, we consider the physical generaliza-
tion Py u = 0 of the elastic wave equation on a Riemannian mani-
fold. In Chapter 3, we introduce a new differential equation P, u =0
which is a modification on the lower order term of the original equa-
tion Pye u = 0. Then we show that; the new differential equation
admits a decomposition of any solutions into longitudinal wave so-
lutions and transverse wave solutions. However, the original equa-
tion does not admit any similar decompositions in general. On the
other hand, by its duality, P, and F,,, operate on 1-differential forms.
Through this duality, we can generalize Py and P, to operators on
p-differential forms. In Chapter 4, we deal with the differential equa-
tions Pou = 0, P5u = 0 on complex manifolds and Px uv = 0 on
Kahler manifolds. We show any distribution solutions of the differ-
ential equations P v = 0 and P} v = 0 admit some decompositions
into 2 solutions with different propagation speeds. In the same way,
we also show that any distribution solution of the equation Px u = 0
admits a decomposition into 4 solutions with 4 different propagation
speeds.

Results

Definition 0.1. Let M be an n-dimensional Riemannian manifold
and M = R, x M . Let u = Y u'0; be a contravariant vector field
on M with parameter t; precisely, a contravariant vector field on M
with (dt,u) = 0. We assume the density constant p and the Lame



constants A\, p are positive. Then we define the original elastic wave
equation as follows:

) 02 . ) ) ) )
Pog u' = @u — )\g”Vijuk — ug’ijVku] — ungViju’

2
§2u — AV IV uf — u Vi Viuk — n Vi Vil = f°
where we denote by g;; , all V; the Riemannian metric tensor and the
covariant differentiation, respectively.

In this paper, we often omit »_ by Einstein’s convention.

For this equation, we define another differential equation on M
which is a modification on the part of order 0 of Py:

2
Py ut:

= P@Ui — (A +20)g"V V" + pg" Vi Viu® — pg’ ViV
82
(9t2u — (A +2p) V'V ik 4+ p Vi Vak — pv, Ve

= Lorg u' + 2NRZZU = fiy

where R;; is the Ricci tensor.

The modified elastic equation above has a simple form when we
write it in a covariant form; that is, an equation for 1-forms. At
the same time, we extend the equations naturally to equations for
p-differential forms for all p.

Let /\(p ) T* M be a vector bundle of p-differential forms on M. Let
51(5) be a sheaf of p-forms on M with C'*° coefficients, and Dbg\f}) a sheaf
of p-currents on M; that is, p-forms with distribution coefficients. In
this article, we do not mean distributions the dual space of C§°(M).
Our distributions behave as “functions” for coordinate transforma-
tions. Further we define 5}5) and YA)?)E\Z)

Definition 0.2. We denote by 5}5) , 13?)(3 the sheaves of sections of

5(p ) Db which do not include the covariant vector df . That is,

settmg the projection 7 : R, x M — M, we define

ED =¥ o alel) | Db =DH) w© algl
77_151(2> ﬂ.—lg](g)



For )
u = Z Uiy (t, 2)d™ A N da' € Db]{;,

1<ip < <ip<n

we define an operator Py for ﬁ)g\? on M (1 <p<n-—1), where
the coefficients {u;,..;,} are supposed to be alternating with respect

to (i1 - - -ip).

—~(p) —~(p)

Definition 0.3. We define sheaf-morphisms Py : Db,;, — Db,, by

32
Py u:= Papl + (A +2p)déu + podu.

For p = 1, this equation is the covariant form of Py u’.

When p =0 or n, Py u =0 reduces to a wave equation. Therefore
we suppose 1 < p < n — 1. Here, d,0 are the exterior differential
operator and the associated exterior differential operator on M, re-
spectively.

—~ () .
For v € Db J\Z , we define equations 9%, MY, M5, MG below:

mt . Pru=0,

x| Pru=0, (02 + alA)u =
my -
du =0, du =0,

e Py u=0, (02 + BA)u =
ou =0, ou =0,
P,u=0, 02u = 0,

My : 4§ du=0, < < du=0,
ou =0, ou = 0.

—~ (»)

Here,oz:()\—l—Qu)/p,ﬁ:u/pandA:d(S—i—éd:ﬁ?)( — Db,, is
the Laplacian on M.



Further we define subsheaves Sol(9M%; p), Sol(M;p), (7 =0,1,2)
of ifbg\? as follows: For 91 = 9%, I,

Sol(N™; p) ::{u € 1379;’}) ’ u satisfies ‘ﬁR}.
Then, we have the theorem below.

Theorem A (Theorem 3.3 ). For any distribution solution u €

Sol(IM™; p) 83 there exist some germs u; € Sol(IMN}; p) 2 (7 =
t,x t,x
1,2) such that u = uy + us.
Furthermore, the equation u = u; + uy = 0 implies u,us €

Sol(Myg; p)

6 Equivalently, we have the following exact sequence:
t,x

0 — Sol(ME; p) —— Sol(MY; p) &S0l (M5 p) ~=> Sol(M™; p) — 0,

where F(U) == U@ (—U), G(Ul D Ug) == U1 +U2.

Let X be an n-dimensional complex manifold with a Hermitian
metric, and /\(q’r) T*X a vector bundle of (g, r)-type differential forms
on X. Let 5)(?’” be a sheaf of (¢, r)-forms on X with C* coefficients,
and Db()?’r) a sheaf of (¢, r)-currents on X. Setting X =R, x X, we

also define &' )(?’T), 73?)()?7” similarly to g](\g), 13?)5\2;) .

Definition 0.4. We define sheaf-morphisms P, Pg : ﬁ)g?r) N

YA)?)E?T) on X which are similar to Py:

2

pC = @ + 041(9@ + 042@8,
2
P = Ere) + az0V + a0,

where a1, as, a3 and ay are positive constants. Here, 0, 0 are the ex-
terior differential operator, the conjugate exterior differential operator
on X, and ¢, ¥ are the associated operators of 0, 9, respectively.



—~ () .
For u € Db; ' , we define equations 91°, MY, MG, M, M, MT*

below:

Pcu:

PC u = (8752 + Oéllj)u =0
<~

ou=0 ou =0,

Peu= (02 + ap0)u =0,

_ < § -

Yu=0 Ju =0,

mer PSU—O,

e fg u =0, — (_af + az0)u =0,
3 ou=0 ou =0,

e Pru=0, (02 + ayO)u = 0,
4 Yu =0 Yu =

Here, 0 = 0Y + 90 and O = 99 + 90 are the complex Laplace-
Beltrami operators.
Further we define subsheaves Sol(9M°;q,r), Sol(?ﬁc,q, r) (j =

1,2), Sol(IM*;q,r), Sol(M*;q,r) (k = 3,4) of DbX as follows:
For M = 9, M, M, M,

Sol(N; q,r) ::{u € 23?)531”) ’ u satisfies ‘ﬁc}.

Then, we get the following theorems.

Theorem B (Theorem 4.6). For any distribution solution u €
Sol(IM<; q, ) Y there exist some germs u; € Sol(MF;q,7) | .,

t,z t,z)

(7 =1,2) such that u = uy + us.

Theorem B’ (Theorem 4.9). For any distribution solution u €
Sol(IM*; q,r) 62 there exist some germs w, € Sol(IML*;q, 1) o g

t,z t,z)

(k= 3,4) such that u = uz + uy.



Now we assume that X is a Kéhler manifold; that is, for the Her-
mitian metric k ,we have the equation d (3 hg(2)d2? A dz*) =0, and
we know that hz can be described as h; = 8j5k¢ with a smooth
real function ¢ locally. Then the following equations for operators on

i)vbﬁ?r) are well-known:

D=0=14,
O +90=0, 99+99=0, (0.1)
90 +00=0, Y0+ 99=0.

As for the relationship between the conditions (0.1) and the K&hler
condition, we give a brief introduction and a proof of the equivalency
in Appendix.

Definition 0.5. We define sheaf-morphisms P : i?vbﬁ?r) — lf?vbi?r)

on)?by
2

P, - % + 107 + 00 + s3I + 49D,

Here, a1, as, a3 and a4 are positive constants.

When ¢,r = 0 or n, Px u = 0 reduces to a wave equation. When
qg=0,norr=0,n, P stands for P} or P , respectively. Therefore,
we suppose 1 < qg,r <n—1.

For u € 73?)()?”, we define equations I, M (i = 1,2,3,4), My,
Mo ((k) = (13), (14), (23), (24)) below:

mc . Pcu=0,

P u=0, Pcu=0,
My " ms Q"
ou = 5 7.9’1,6:0,
ms fKu:O’ my Peu=0,
3 ou =0, 4 Ju =0,
Pcu=0, <8§+a1;agﬂ)u:0,
M, Ou =0, = Ou =0,
gu:O, Eu:o,



K .
ms,

K
ms,

K

24 -

Ko
M5 -

K.
Mo -

K.
m140 .

K,
m240 .

Further we define subsheaves Sol(9M*;q,r), Sol(IMS;q,r)

Py u=0,
Ju =0,
kgu 0,
(P u=0,
ou =0,
| Ju =0,
(P u=0,
Ju =0,
[ Ju =0,
(P.u=0,
ou =0,
Ou =0,
[ A%u =0,
(P u =0,
PJu=0,
Ou =0,
[ A%u =0,
(P u =0,
ou =0,
YJu =0,
[ A%u =0,
(P u =0,
Ju =0,
Ju =0,
[ A%u =0,

1,2,3,4),30[(972?k;q,7“

Qg + Oy
2

( <a§+
Ju =0,

| Yu=0,

( Ofu = A*u =0,

(o7 + = ‘gO‘SA)u —0,
ou =0,

[ Ou =0,

[ Ofu = A%u =0,

(o + O‘Q;O‘SA)U —0,
Ju =0,

\gu =0,

((0tu = A%u =0,

(o7 + = ‘g%)u —0,
Oou =0,

[ Yu =0,

((0fu = A%u =0,
<8,52 + OQ;OMA)U
Ju = 0,

=0,

[ Yu =0,

(d

), Sol(Myo;q,7) (k) = (13),(23), (14), (24)



of ﬁ)()?’r) as the sheaves of ﬁ)()?’r)—solutions, respectively.
Then, we have the theorem below.

Theorem C (Theorem 4.15). For any distribution solution u €

Sol(IM*; q,7) Gy there exist some germs w;; € SOl(ngv‘% r)
t

((ij) = (13),(23), (14),(24)) such that u = uy3 + ugz + U14 + Usg.
Further, we find that uw = uy3 + sz + U4 + Uogy = 0 implies

° o
t,z

Ujk € SOl(m;{kO; q, T) ((]k) = (13)7 (23)7 (14)7 (24))

Equivalently, we have the following exact sequence:

O—>@Sol 50,05 T)

= PSol(i5; 4, r) = Sol(M<; g, 1) — 0.
(i7)

Here,
@ Sol(IM UO’ q,7) : { Uij) @Sol w07 T ‘ Zu” = 0}
(i5) (i5) (i5)

GU130 Uy @ U1y B Usy) = Uz ®Uss ®Urs ® Usy, H(U13B U3 U1, B
Uss) = Uiz + Uss + Uy + Usy.

1 Preparation from Riemannian geome-
try

In this section, we recall some notations and terminologies in Rieman-
nian geometry used in this paper.

We assume that M is oriented. Then, there is a global section {2
of £ M on M, which never vanishes on M.

Definition 1.1. The inner products (-,-) : AV T*M x AV T,M —
R, (-, )" : /\(p) T M x /\(p) T:M — R, are defined as follows. We



choose a local positive orthonormal system (w?,---w™) of C* sec-
tions of T*M concerning the Riemannian metric; that is, there is a
positive valued C*° function a such that w! A---Aw™ = af) > 0. Then

for
o= E o;dx’, T= E T'0; |
1<i<n 1<i<n
we define
(o,7) = E o
1<i<n
and for
Z i i
¢: ¢il_”ipwl/\.../\wp’
1<iy <-<ip<n
_ i1 7
Y= E ml...ipw N Aw?,
1<iy <--<ip<n
we define

(@, 0) = D i
1<ip < <ip<n
= Z ¢i1---ipg“]1 e glp]pwjr"jp'

1<iy < -<ip<n
1<j1<<jp<n

Definition 1.2. We denote by d : Dbg\ﬁ) — Dbgﬁﬂ) the exterior dif-

ferential operator which acts on Dbg\ﬁ) as a sheaf morphism. Then the
following formulas are well-known:

(d(p+1) = dp+dy) (6, € DO,

d($ A Y) = dp A+ (—1)P¢ A dip (¢ € DOE), v € DHY),
d(dg) =0 (¢ € DbY)),

For f € Dby}, df == %dﬂ e Db\,

Here 0 < p < n. If p=mn, d¢ = 0 holds.

Definition 1.3. The isomorphism * : AT*M — AT*M of vector
bundle is defined below:

* /\(p) TiM — /\(”*p) TM is a linear map,
#(Wh A Awie) = (=1)OTDFHETRGR AL A i,

for any permutation (i1, - ,ip, j1, -, Jn—p) Of (1,---,n).

10



Here (iy---4,) and (jy - - - jn—p) are indices satisfying

(41 -+ ipJ1 - Jjn—p) is a permutation of (1---n),
1§i1<-~-<2'p§n, 1§j1<-~-<jn,p§n.

Remark 1.4. The definition above does not depend on the choice of
the positive orthonormal system {w!, -+ w"}.

Proposition 1.5. We set ¢, € NP T*M. Then we obtain

BN = (x0) A = (B0} W' A= AW,

*1:w1/\-~-/\w":\/gdxl/\--J\dx",

’h = (_1)("1*1)+"'+(1P*p)\/§ ghit - giingy o dait A - A dadner
e N\" P 1M,

Here g = det(gg).

Let U C M be an open subset. Let a?) € Dbg{})(U), BP e Ef\g)(U)
be sections. We suppose that 5% has a compact support in U. Then
the following integral is well-defined.

(a®) 30 ;:/ (@@ B0V Gl A A,

M

Definition 1.6. Let o® € Db, g0 ¢ €77 be sections. We
suppose 3~V has a compact support. Then the sheaf morphism
0 Dbgﬁ) — Dbg@fl) is defined as

(5a(p)’ﬁ(p—1)) _ (&(p)’ dﬁ(p—l)).

Hence we have
§=(=1)"" Dy g

Definition 1.7. Let X be the sheaf of @ " T,M @ @’ T M-valued
C® functions, and DV’ the sheaf of Q" T, M @ @’ T M-valued dis-

tributions. Then, the sheaf morphisms V : X| — X, Db, — Db,

11



are defined as follows:

( da
For a(z) € XY, we have Va(z) = %dl']
For % € X, we have (i) = k@xl ® da*.
For dz’ € XY, we have  V (da?) = —I% da’ ® da*.

| For e € X7, f € X7}, we have V(e® f)=(Ve)®@ f+e@ V.

Here,

v L (0gu | Ogie  Ogi
I =gl =gt = v
{ A (8x’“ * ozt Ox!

are the Riemann-Christoffel symbols.

Proposition 1.8. We set

; 0
]1 ]r i1 ls ) e
e=¢, ;d" @ - @dr* ® pyes ® -

Then we have

Ji-jr J1-Jp—14jp+1--Jr Jp _ JJigr q
Ve = (akeh “is + 611 “Us F eil"'ip—lqip-‘rl'"is]—;‘p k:)
. ) 0
X dr'" ® -+ ®dx . = ® dz*.
Ozt 81‘ v

Hence we call the following the covariant differentiation :

J1gr JiJp—1qip+1--Jr Jp J1gr q
vke - <ak€“ s + 611 “is F - eil---ip_lqip+1---isl—;p k)
) ) 0 0
XAr" Q- Qdr*" Q —— Q- ® —.
Ozt oxir

2 Elastic mechaniques on Riemannian
manifolds

Let M be an n-dimensional Riemannian manifold with metric g. We
consider an elastic body G in M. A motion of G is identified with

12



an open subset G of M with one parameter family of diffeomorphisms
he() (t € R): N _
he : GN{t=0} — GN{t=s}

Then the elastic wave equation for G is formulated as a time devel-
opment equation for small motions of G; that is, h; is close to the
identity map and it is expressed as

hi(z) = 2" + u'(z,t)

in a local coordinate system (z',...,2"), where u = Y u(z,t)0; is the
small displacement vector field.

Then, the differential dh of the map A and its dual map dh* are
given as follows:

4 . . [ Oht o out
T M 3 € = (T5) =€+ 56 € T,

O :77j+%77i6T;M.

Let us calculate the difference between the line element of M

N oh' ou’
ds(x)* = gi;(x) da’ @ da?

and its pull-back *ds(z)? by h:

i(7) do' ® do = % {*dS(x)Q - d3<$)2}

1 Oh* On

=3 {gkl(h(f)) o @dxi ® dr! — gij(z)da’ @ dxj} .

Here ¢;; is called the strain tensor. By ignoring the non-linear terms
of u™, Jpu™, Ou™, we have

1
LY (IkmOu™ + grmiOku™ + u" O gr) -

On Riemannian spaces, equations

Vit = OmGri — Ly Gin — LGt = 0

13



hold, so we have

1
€kl = 3 {9em O™ + gruOpu™ + ™ (L1 Gin + L)
1
=5 {9km (O™ +u"I77) + g (Opu™ +u™ 1) }

1
=3 (GrmViu™ + g Viu™) . (2.1)

In physics, we assume that the stress tensor o7¢ has a linear rela-
tionship with the strain tensor at each point. Hence there exists the
elastic coefficient tensor E’#* such that

Ji -

V9
As a physical assumption for E¥* we have the equations:
Eijkl — Ejikl — Ezylk

In particular, it is well-known that the elastic coefficient tensor of an
isotropic elastic body has the following form:

EUH = Agiigh 1 g gt 4 gl gi*, (2.3)

where A and p are the two Lame constants. Therefore, from (2.1),
(2.2) and (2.3), we get

O'ji
N
-~ o N 1

= (A" g" + g™ g’ + nug"g’) (ngkvzum + ngzvkum)

= NV + pg?' Vit + pgt Vi (2.4)

— E”klékl

Hence the equation of power-balance between the stress of the elastic
body and the external force is written as follows:

df? s
= 745,

where df" is the external force vector for the surface element dS;.

14



In order to introduce the elastic wave equation, we consider a small
neighborhood V' of a point x in M, whose boundary is given by a
smooth closed surface S. Then the equation of motion for this small
part V' of the elastic body is written as below:

a2ui / ] O.ji
p =— [ df' =— ds;
/V ot s svVg
oJ?
= [V av.
%)
Here dV = /g da' - - - da* with /g = /det(gi). We divide both sides

by the volume |V| and shrink V to {«}. Then from (2.4), we have the
elastic equation on Riemannian manifolds:

0%u ot
= ()
= Ag"V; Vb + ug ViVt + pg* VvVl (2.5)

3 Decomposition of modified elastic wave
equations on Riemannian manifolds
We set v = (A +2u)/p, B = p/p. Then, we have the next lemmas.

Lemma 3.1. For any u € Sol(IMM%;p) and the variety

Voim U {t2im0) | = g = 0}

k=1,2

—U{t$75 ’T —crg(x )fz‘ﬁjzo},

k=1,2
we have WF(u) C Vi, where ¢; = a, ¢y = 3.

Proof. The symbol of the second-order operator p~! Py (t,z,d;, ;) at
];t = (905, €) € T*M is defined as a linear operator

_ ° ®) ., (®)
oa(p ' Py )(pt) : /\ TeM — /\ oM

15



given by the following:

o2(p" Py ) (pt)U

) ) (p) :
where we consider the coeflicients of U € /\ g T*M as constants in a
X

local coordinate system. Here [x,&] = 2;€;. We suppose (;, €) # (0,0).
Therefore we get

o2(p~ Py ) (pt)U =09(92 + ad + B8d)U
= —7°U + (=1)"" Va(E A (x(E A D))
+ (=1)"B((EA(ENT))).

Here € := > ¢&;da?. Let w = (w1, -+ ,wy) be a positive orthonormal
system at To M satisfying wy; = £/|¢]. We set U = Uy + Uy where

U, = ZUHWI, U, = ZUwa, then we get é/\ U =0, é/\ xUy =
el 1¢1
0.Therefore we have

*(EAREAT)) = #(EA*(|€] D Unrwn Awh))

1¢1
= (_1)np‘é’2U27
EN(R(EN*U) = (1" V¢,
02(p7 P )(pt)U = (=72 + al€)Uy + (=72 + BIE)) .

Thus we find that oy(p ™' Py )(];t) has 2 eigenvalues (—72 + a€]?),

(=72 +B|€[?), and their multiplicities are ,_1C,_1, n_1C,, respectively.
Hence we get

det(02(p™ Pr ) (pt)) = (=7 + )10 (=72 4+ BIEP) 1.

If o2(p~' Py )(pt) is an isomorphism, pt does not belong to the
characteristic variety of Pyu = 0. Therefore, for a characteristic point

16



pt, we have det(oa(p™ Py )(515)) = 0. Hence,

WF(u) C Vi = U {(t 7, §) ‘ T —ck|§|2—0}

k=1,2

—U{tm7§ ‘7’ — g (x )f,{j:()}.

k=1,2
[ |

Lemma 3.2. For a germ u € 13?)5\3) at (; z), we assume WF(u)
7 (;,a%;idt). Then, there erxists a germ w € 15?)5\4) at (t ), which

satisfies Aw = u and WF(w) Z (t,x, +dt).

Proof. For a differential form u = > uy(t,x)dz’, we write Au =
S {Pyx(z,0;)uk(t,z) }da’. Alis an elliptic operator on Dbgf/)[). There-

fore, in a neighborhood of (%, 9%) € M x M, there exist integral kernels
{Gkr(z,y)} k1, which satisfy

{Z Pix(r,0,)Grr(x,y) =051 - 6(x — y),
WF(Grr) c{(z,y:6,m) |2 =y, & = —n}.

Here, 071, is a Kronecker’s delta. Hence,

w= ([ Grate e pv)dy) st

satisfies Aw = u at (;,%) and WF(w) Z (;, z; £dt). Here ) € C5°(M)
has a compact support in a small neighborhood of z and P(y) =1
near . |

Then, we get the following theorem.

Theorem 3.3. For any distribution solution u € Sol(9M*;p)

(td)
there exist some germs u; € Sol(IMF;p) 82 (j = 1,2) such that
t,x

U = Uy + Us.

17



Furthermore, the equation u = u; + uy = 0 implies uy,us €
Sol(My;p) | .. . Equivalent saying, we have the following exact se-
t,x
quence: (t:e)

0 — Sol(IME: p) -5 Sol(MF: p) S0l (ME: p) - Sol (M*; p) — 0,
where F(U) =U & (-U), G(U; ® Uy) = Uy + Us.

Proof. For u € ﬁ)(ﬁ)

62y we suppose 1, Uy are of the form;
t,x

Uy = 0v, U = u — Ov.

—~ (p+1
Here v € Dbi\T :

2y Hence we have only to impose the following
t,x

conditions on v:

Py (6v) =0,
d(u — év) =0,
dv = 0.

Since the equation Py (dv) = (02 + 8dd) dv = 6 (87 + SA) v holds,
it is sufficient to impose the conditions below:

02v + fAv =0, 0?v = —fdu,
dov = du, = Av = du,
dv =0, dv = 0.

JFrom Lemma 3.1 and Lemma 3.2, we have a w satisfying Aw = u

and WF(w) # (;, ; 4dt). Then it is sufficient to impose the following
equations on v:

02 (v — dw) = —d(fu + tw),
A(v — dw) =0,
d(v —dw) = 0.

Therefore we can take v as follows:
t S
v—dw = —d% ds% <ﬁu(7’, x) + 0, 2w(T, x))dr.
t t
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Then uy satisfies the following wave equation:

2

P@W + fAuy = 0.

Hence u € Sol(9M*™; p)

., can be decomposed as a sum u = uy + ua,

t, )

where u; € Sol(IM; p) ’(O : (7=1,2).
t,x

When u = u; + us = 0 holds, the equations du; = 0 and duy = 0
imply uy, uy € Sol(IM; p)

o
t,2)

Therefore we have an exact sequence

0 — Sol(My; p) — Sol(IMT; p) BSol(My; p) — Sol(MM™; p) — 0.
|

Remark 3.4. For the case p = 1, the contravariant form of this de-

. . S~
composition means the decomposition u* = uj + u4 € Db, satisfying
the conditions as follows:

VZ- uli = O, V’ﬂgj — Vqui =0.

Remark 3.5. In Einstein spaces satisfying R;; = Ag;;, a distribution
solution u of P, u = 0 has a similar decomposition u = u; + us.
However, if M is not an Einstein space, a distribution solution u of
Pyrg u = 0 does not necessarily admit any decomposition of solutions
above.

4 Decomposition of modified elastic wave
equations on complex manifolds

We extend the results on a Riemannian manifold to ones in a complex
manifold X with a Hermitian metric h. Firstly, we recall operators on
complex manifolds.
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Definition 4.1. We denote by 8 : Db¢" — Db the exterior
differential operator which acts on Dbg?’T) as a sheaf morphism and

9 : DB — DY the conjugate exterior differential operator.
For a section

I _ _ 1 Z‘q =7 —=Jr ( 7T)
= 05,7, dz" A+ NdZ NdZP N NdET o of Db,
the following formulas are well-known:
(do = (0+0)9,
(9¢ i i =3 =] (g+1,r)
0¢p :Wdz ANdz" A NdZ NdF A - AN dET € Dby,
3 J— a¢ =k Z‘1 % _jl _jr (q7T+1)
0 = _— dz" Ndz" N--- Ndz" NdZ" N --- NdZ" € Dby )
\ 0z

Definition 4.2. The linear operator * on X induces isomorphisms
AT X — A" TD T X of vector bundle. Hence we have sheaf-
morphisms * : Dbg?’r) — Dbg?ﬂ’nfq) on X as follows: For

V=15 w Aw! € DB,

we have
nl- AN (n—r,n—q)
*w_(S([ 5 3¢ IC) V7w’ ANw € Dby ;
where {w!,--- ,w"} is a local orthonormal system of C*° sections

of T*X concerning the Hermitian metric and I¢ := {1,--- ,n}\I.

Here §(-) = =+1 is the signature of the permutation (177010) of
(1...nT...ﬁ)'

Let U C X be an open subset. Let a9 = a5 w! AW’ €
DY (U), B = 35 W Aw! € ELT(U) be sections. We suppose
that 3@") has a compact support in U. Then the following integral is
well-defined.

(&(Q7r)’ ﬂ(qu)) = / <a(q7r)’ﬂ(qu)>* (.Ul A A wn AN wl A A wn’
X

where, (a(®") Z&U B,
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Definition 4.3. Let a(@”) € Db g1 ¢ g8 and ylar—D) ¢
5)(;1’“” be sections. We suppose $@~17) and +@"=1) have compact
supports. Then sheaf morphisms ¥ : Dbg?’T) — Db()?_l’r) and 9 :
Db — DL are defined as

(5@(%@7 5(61—117“)) — (a(‘Iﬂ“)’ aﬁ(q—ln“))7
(ﬁa(q,r)ﬁ(w—l)) — (a(q,T)’g/y(q,r—l))‘

Further they satisfy the following equations:

§ =9+,
T — 0
¥ = —x%x0x*.

Then, we get the lemmas below.

Lemma 4.4. For any u € Sol(IM°; q,r) and the variety

Vo= J {t5m0) | - alc? = 0}

k=1,2

U {0 |7 - aniiz)6G =0,

k=1,2

we have WF (u) C Vi, where (7, () is identified with the real cotangent
vector Tdt + 2Re((dz).

Pmof The symbol of the second-order operator P (t, z,0;,0.,0.) at
pt (2 Q) € T*X is defined as a linear operator

o (@r) ., (@)
oo (P )pt): [\ TEX — N\ TEX

given by the following:

03(Pe ) (p)U

)\hm %e ,\¢(2Re[z,2]+t?)PC (;,2,375,32,@) (e)\i(QRe[z,Z]+t79)U) ’
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. . (gr) .
where we consider the coefficients of U € /\ T*X as constants in a
z

local coordinate system. Here, [z, (] = %(,. We suppose (70', ¢) # (0,0).
Therefore we get

03(Pe ) (pt)U = 05(02 + 0,00 + as00)U
= 72U — a1 (EA (x(EA*U)))
—a(x(EN*(EAD))).

Here = := > (jdz?. Let w = (w1, ,w,) be an orthonormal system
of Tr X satisfying w; = Z/|Z|. When we set U = U; + Uy where

Uy =) Uygw' A&, Uy = Uyyw' AW, we get ZAU; =0, EA
el 1¢1
*Us = 0. Therefore we have

(EA+(EA0)) =+(EA (B Uyy wr w' £3))
1¢1

X {*<§ A Z Uprg w”* A w{lvf}c) }
1¢1
= _’E|2U2a
EA*EA*U) = —|Z)°Uy,
oo(Po ) (pt)U = (=72 + an|Z|)U; + (=72 + | Z|*) Us.
Thus we find that oy (P )(];t) has 2 eigenvalues (—72+aq|Z|?), (—72+

as|=]?), and their multiplicities are ,_1Cy_1 - nCr, n_1Cy - nCy, TESpEC-
tively. Hence we get

det(o(Pe )(pt)) = (=72 + an|E[2)m1Com1mCr (72 4 g |S[2)n1CanCr,

If o9(Pc )(];t) is an isomorphism, ];t does not belong to the char-

acteristic variety of P, u = 0. Therefore, for a characteristic point pt,
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we have det(og(Pe )(1;)15)) = 0. Hence,

WF(u) C Ve = U {(t,z;T, C) ‘ % — ai|C]? = O}

k=1,2

= U {(t,z;T, C) ‘ 2 — ozkhij(z)@(_j = O}.
k=12

Lemma 4.5. For a germ u € 13%;”) at (;,g), we assume WF(u) Z
(g, 2, 4dt). Then, there exists a germ w € 23?&”) at (27;); which
satisfies Ow = u and WF(w) # (;, 2, +dt).

Proof. For uw =" u;7(t,z)dz? A dz*, we write
Ou = Z{PJK(Z, 92,0 )ugr(t,z) bdz" A dz".

(] is an elliptic operator on Db()?’r). Therefore, in a neighborhood of

(2,2) € X x X, there exist integral kernels {G (2, 2')}as, which
satisfy

ZPJK(Za827a_z)GKM(Z, Z’)
=d;m - 0(Rez —Rez') - §(Imz — Im 2'),
WF(Gxr) C{(z,z’;{dz + (dz + ('dZ + ('d) ’ 2=2,(= —C’}.

Here, 0 is a Kronecker’s delta. Hence,
w = Z(/ Grum(z, 2 uyg(t, 2)(2)d(Re 2')d(Im z'))de A dzt
satisfies Jw = u at (;, z) and WF(w) # (;, 2, +dt). Here ¢ € CF(X)

has a compact support in a small neighborhood of > and W(z') =1
near 2. |

Then, we get the following theorem.
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Theorem 4.6. For any distribution solution u € Sol(9MC; q,r)

o 2
t,2)

there exist some germs u; € Sol(IMY;q,7) 2 (7 = 1,2) such that
t,z

U = Uy + Us.

—~(¢7)

Proof. For u € Dby

62’ we suppose u1, us are of the form;
t,z

uy = 0v, Uy =u— Ov.

—~(q—1,r
Here v € Dbﬁ? :

62 Hence we have only to impose the following
t,z

conditions on v:

P. (0v) =0,
I(u—Ov) =0,
Jv = 0.

Since the equation Py (9v) = (97 + 0190) v = 9 (82 + cy0)v = 0
holds, it is sufficient to impose the conditions below:

8?1) + aOv =0, 8?1) = —ayu,
90v = Ju, = Ov = Ju,
Jv =0, Jv = 0.

JFrom Lemma 4.4 and Lemma 4.5, we have a w satisfying Ow = u

and WF(w) Z (;, z;#+dt). Then it is sufficient to impose the following
equations on v:

0% (v — Jw) = =V (ayu + P*w),
O(v — Jw) =0,
I(v —Jw) = 0.

Therefore we can take v as follows:

t s
v —Jw = —5% ds[ <a1u(7, 2) 4 02w (T, z))dr.
¢ ¢

Then u, satisfies the following wave equation:
32

@Ul + C(lljul =0.
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Hence u € Sol(IM°; q,r) can be decomposed as a sum u = uq +us,

(t.2)

where u; € Sol(M5;q,7) 2 (7=1,2). [ |
t,z

In the same way, we obtain the following similar lemmas and theo-
rems as adjoint versions of Lemma 4.4, Lemma 4.5, and Theorem 4.6.
We omit the proofs because the arguments go in a similar way.

Lemma 4.7. For any u € Sol(I°*;q,r) and the variety

ve = {tsm0 | 7 —ad? =0}

k=3,4

= U { (t,z;7,C) ’ 7 —Oékhij(z)@{_j: 0}7

k=3,4

we have WF (u) C VZ, where (T, () is identified with the real cotangent
vector Tdt + 2Re((dz).

Lemma 4.8. For a germ u € Db (t 2), we assume WF(u) 3
(t, 2, 4dt). Then, there exists a germ w € Db;“ﬂ) at ( 2), which
satisfies Jw = u and WF(w) Z (;, Z; dt).

Theorem 4.9. For any distribution solution u € Sol(9M°*; q, 1) Y

t,z

. (k= 3,4) such that

there exist some germs u, € Sol(IMT*;q,r) 9
2

U = U3 + Uy.

Now we assume that X is a Kéahler manifold. For the sheaf-
morphisms Py , we have the following lemmas.

Lemma 4.10. For any u € Sol(9M*; q,r) and the variety

o= U {#am0|02- ke =0)}
- U {(t, 27, Q) )(72 — Beh” (2)GiG; = 0) }’

k=1,2,3,4
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we have WFE(u) C Vi, where 81 = g +ag, fa = ag+as, O3 = a1+ ay,
By = as + ay and (7,() is identified with the real cotangent vector
Tdt + 2Re((dz).

Proof. Similarly to Lemma 4.4, we get the symbol of the second-order
operator

oo ( P )(];t)U =05(0? + 0100 + 90 + 300 + a90)U
=— O2U—oz1<E/\ <>x< <§/\ *U)))
* <§/\*<E/\U)>>
)

Here = := > (jdz?. Let w = (w1, -+ ,w,) be an orthonormal system
of Tr X satisfying wy = Z/|=|. We set U = Uy + Us + Us + Uy where
1el,1e] 1¢1,1e]
Us= Y Upyw' Aw’, U= Y Uy’ ro
1el,1¢J 1¢1,1¢J
Then we get
EAU; =0, =AU, =0,
ZAU, =0, ZA*U, = 0.
E/\U3:0, E/\*U4—O,
= A xUs = 0, = A KU, =
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Therefore we have

% <§/\ *(E/\U))
= *(E/\ *(!E\(Z(ij, + Uygwr Aw! /\wJ)>)

1¢1
= _|E|2(Uv2 + U4)7

) = —|E2(U, + Uy),
A *(E/\ U>> = —|Z|A(Us + Uy),
) = —|E2(U; + Us).

(P )V = > (= 7+ =P Ui

k=1,2,3,4

Thus we find that o9(Px )(515) has 4 eigenvalues —72 4 |2 (k =
1,2,3,4), and their multiplicities are 7, respectively. Here v; =
n—qu—l : n—lCT—17 Y2 = n—qu : TL—lOT—17 V3 = n—qu—l . n—loru and
Y4 = n-1Cq - n—1C,. Hence we get

Tk

det (oo (Px )(pot)) = H < — 724 5k:|5|2)
k=1

If 09(Px )(pt) is an isomorphism, pt does not belong to the char-
acteristic variety of Py u = 0. Therefore, for a characteristic point pt,
we have det(o9(Px )(pt)) = 0. Hence,

WFu) c V= | {(t,z;f, <) ](72 — Brl¢l* = 0)}

k=1,2,3,4

= U {5700 -ai:G =0) }.

k=1,2,3,4
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Lemma 4.11. For any germ u € Sol(IM*; q,r) 63 there exist some
t,z

germs u; € Sol(IMMS; q,7) (7 = 1,2) such that u = uy + us.

J

%0
t,z
—~— (q7)

Proof. For u € Dby

62’ we suppose ug, us are of the form;
t,z

uy = vy, Uy = u— Ovy.

—~(q—1,r
Here v; € Dbg? :

conditions on v;:

sy Hence we have only to impose the following
t,z

PK (8@1) = O,
E(U - 81}1) = 0,
51)1 =0

Since the equation
pK (82}1) = (3? + 04165 + C(ggﬁ + C(4195) (91)1
=0 (6? + 041|:| + C(ggﬁ + C(4195) v = 0

holds, it is sufficient to impose the conditions below:

<8t2 + a0+ a300 + 044195) v =0, Piv = —apu,
I(u— Ovy) =0, = { Oy = du,
Juy =0, Jv; = 0.

JFrom Lemma 4.10 and Lemma 4.5, we have a w satisfying Lw = u
and WF (w) ¥ (t, 2; £dt). Then, when we put

v —Jw =:p, —afu—17 Piw=:1,

and use [J = [, it is sufficient to impose the following equations on ¢:

( P o :<8t2 +043519+044195><p = 1),
Dy =0,
| Jo =0,
( <3t2+(044—a3)795>@:¢,
94 Op =0,
\ P = 0.
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Setting F := {L.D € YA)?);”)

.. O =0,00 = 0}, we note that

t,z)

JO(F) C F, (90)*F = 0.

Since ¢ € F and WF () & (2, Z; +dt), then we can take ¢ as follows:

t S
cp:[ ds% P(s', 2)ds
¢ ¢
t s s’ T
+(043—a4)% ds% ds’% dT% YO (', 2)dr'.
¢ 7 7 7

Hence u € Sol(IM*;q,r) can be decomposed into a sum u =

(t.2)

uy + ug, where u; € Sol(M; q,7)

j=12). |

(t.2) (

By the proof above, we get the following more precise form of wuy,
Ua.

Lemma 4.12. Let u = uy + us be a decomposition. We can write uq,
uo in the preceding lemma as follows:

Uy = 6/01, Ug = 51)27
N(qflvr) N(qul,’l") . .
where v; € Dby Y vy € Dby 2 satisfying WE(v;) #
t,z t,z

(;, Z +dt) (j =1,2) and the equations

{ O2v; + oy Ovy + azdVv; + aydov, = 0, (4.1)

8?1}2 + OéQDUQ + 0635191}2 + OZ41951)2 = 0.

Proof. We define D; ' := fgt dt, fgl dty - - -fotl‘l dt;. Putting v; = Jw +

t
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D% + (a3 — ag)WOD; "), we calculate the difference:

Us =U— U = u— Ouy
= 90w — D; 200 + (g — a3)90D; 0
= 90w — (D;? — (o — a3)00D; ") 09 (—aqu — Prw)
= Jow
— (D;% = (s — a3)00D; ) (90(aru + Piw) + (o — aq)90u)
= @8(11} — (D;? = (o4 — a3)90D; ) (aou + Pgw)) :

Hence, we can get

v = ﬁ(w — (D;? = (a4 — a3)90D; ) (au + ngw)> ,

Vg = 8<w — (D;? = (s — a3)09D; ) (anu + Pgw)) :
In particular, WF(v;) =% (;,g;idt) (j = 1,2). The first equation
of (4.1) is already obtained in the proof of Lemma 4.11. The second

equation of (4.1) is also obtained in a similar way as follows: Set
® = vy — Qw. Then @ satisfies

<8f + (g — 043)195><P =V = —0(au + Piw),

0@ =0,
0P = 0.
Hence,
P:o =1, P} vy = —an0u,
(o =0, & ¢ vy = Ou,
0P =0, Ovy = 0.

Thus we obtain
(Pg + Oég[l)’l)g = 0.
This is just the second equation of (4.1). [

Then we have the following lemma.
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Lemma 4.13. For any germ u; = Jvy € Sol(IMY;q,r) 2 with a
t,z
r)

v € 7%;717 2 satisfying (4.1) and WF (v,) # (2,2; +dt), there
t,z

exist some germs uy; € Sol(MY;q,7) | . : (j = 3,4) such that u; =
t,z

Uu13 + U14.

Proof. For u; = ov; € ﬁ)ﬁ?r)

(o O), we Ssuppose Uiz, U4 are of the
t,z

form; B B B
U3 = 88\/, U1g = U1 — 88\/ = 8(1}1 — 8\/)
Here V € lf)vbﬁg_l’r_l) 6’ Hence we have only to impose the following
t,z

conditions on V: B
Py (00V) =0,
19<U1 - BV) = 0,
IV = 0.

Since the equation

Pc(00V) = (97 + 0100 + a290 + 309 + ay99) 0OV
=090 (0f + acn0+ a30) V = 85(8,52 + (a1 + ag)ﬁ)v

holds, it is sufficient to impose the conditions below:

<(9tQ + (041 + C(g)ﬁ)V = 0, <3t2 + (041 + Odg)ﬁ)V = 0,
I(vy — V) =0, ¢ OV = Yy,
9V =0, 9V = 0.

;From Lemma 4.10 and Lemma 4.8, we have a w satisfying Ow’ = v,

and WF(w') Z (2, Z;+dt). Then it is sufficient to impose the following
equations on V:

GR(V — ) = —0 (o + ag)or + D).
BV — o) = 0,
YV —du') =0.
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Therefore we get
V —dw = —9D;? <(a1 + az)vi(t, 2) + 02w (¢, z)) (4.2)

Indeed the O-closedness of right side of (4.2) follows from (4.1). Hence
uy € Sol(M;q,71)

., can be decomposed as a sum u; = w33 + U4,
(t,2)

where uy; € Sol(IMY}; q,7)

%o (j:374> .
(t:2)
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In the same way, we obtain the following similar lemma as adjoint
version of Lemma 4.13. We omit the proof because the arguments go
in a similar way.

Lemma 4.14. For any germ uy = Jvy € Sol(MK; q,r) g with a
t,z
)

— 1,r o o
vy € Dbﬁ?+ ¢ satisfying (4.1) and WF(vy) & (t,z;£dt), there
t

o
z

exist some germs ug, € Sol(IMy;q,r) ¢ (k = 3,4) such that us =
t

o
72)

U3 + Uy-

Then we have the following theorem.

Theorem 4.15. For any distribution solution u € Sol(IM*; q, 1)

4o (@) = (13).03)
(14), (24)) such that u = U3 + Ugz + Ugg + Usy.
Further, we find that u = uq3 + sz + U4 + Usg = 0 implies

Ujk € SOl(mI‘(IcO; q, T) ((]k) = (13)7 (23)7 (14)7 (24))

J

there exist some germs u;j € Sol(ﬂﬁ%;q,r)

Equivalently, we have the following exact sequence:
/
0— @ Sol(M50:q,7)
(27)

- @PSol(M;q,7) L Sol(MS; 4,7) — 0.

(5)
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Here,
@ Sol(M505q,7) { wij) @Sol 100 d ’ Zuu = O}
(i9) (i7) (i5)

GUi3® Uy @U@ Usy) = U3 B Uz ® Uy @ Uy, H(U13B Uszs & U1, B
Usy) = Uy + Usg + Upy + Usy.

Proof. By virtue of Lemma 4.11, 4.12, 4.13 and 4.14, we find that
u € Sol(IM¥; q,r)

2 is decomposed as a sum u© = U3+ U3+ U4+ Uy

t,z
(g %) ((27]) = (17 3)7 (27 3)7 (174)7 (274>)'
When u = w3+ w93 +u14+ugy = 0 is holds, we set w = w13+ ug3 =

by using u;; € Sol(M; q,7)

—U14 — Usgq. Then w satisfies Ow = 0, Jw = 0. Hence we have
Aw = 20w = 0, and so Auy3 = —Augs. By a similar argument we
obtain A%u;3 = 0. Therefore we have u3 € Sol(M5; ¢, 7) 62 In a
t,z
similar way we conclude that
ujk € Sol(Mo5q,7)  ((jk) = (23), (14), (24)).
This completes the proof of Theorem 4.15. |

Example 4.16 We assume X = C2. Then, X is a Kahler manifold
with the complex Euclidean metric. We find a solution u € Db Dy, of

the form with ¢ = (idz! + (odz? where ({1, &) € C2\{0} ;
u(t, z) = U(t)e=¢+79).
Then,
Peu=U"+ (a1 — ) (A <* (CA *U)) + ay|¢|PU
+ (a3 —ay) CA <* (¢A *U)> + au|¢|PU = 0.
We put

U(t) = e1(t) CAT+ea(t) (AT +eslt) CHAT+ea(t) (HAT
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where ¢+ = (ydz! — (,dz?, || = |¢*]| hold. Then, we get
(e + (o + ag)lcler )¢ AT+ (€ + (0 +an)lclPea ) AT
<cf3’ + (g + 043)\4“]203)& AC+ (cﬁl' + (ag + 044)](’\204>CL AT =0.

Hence, we obtain

a(t) = Afyexp (ivor + as|C|t) + A exp (—ivar + as|([t)
o (t) = Afyexp (ivor + aulC|t) + Ay exp (—ivar + au|[t)
cs(t) = Az exp (ivas + as|C|t) + Az exp (—ivas + as|([t)
ca(t) = Ay exp (ivas + aulC|t) + Ay exp (—ivas + au|[t) -
Since
U(0) =(Af; + A) CATH (AT + A7) (AT
+ (A% + A%) CHACH (AS 4+ A5) CHA Zl,
0 _
5V (0) =ivar + as|Cl(Afz — Ap3) CAC
+ivar Faalcl (A — Au) AT
+ivas + ag|C[(Af; — Az) CHAC
+ivag + ag|C](AF, — Ay) ¢ A Zla
we get

e (0O).¢n Q" (HU0),CAQ"
e 2|¢J* 2/ar + aslCl
- _ U, Q) o (2U(0),¢ A C)*
13 2K’4 QMKP )
e _WO.CATY (GUO)L.CATY
14 2|<-|4 QMK—P )
4 _ UO.CAT) L GUO) ATy
14 2K’4 QMKF) )

34



o _ WO, AD" L (BUO).¢H ALy
23 = -1 )

2|¢|* 2y/as + as|C?
{U0),¢ A (FU(0),¢E A"

=T Y S m v awlP
i UO.¢ATY (BUO).¢E AT
ST 2Jas T aalCP
4 WO.C AT GUO.C ATy

2‘C’4 T 2\/062+Oé4’C‘5
A Appendix

As an appendix, we give a brief introduction to Kahler manifolds.
Further we give a proof of the equivalency of the conditions (0.1) and
the Kéhler condition in A2 and A3.

A1l. The Kahler condition on Hermitian manifolds

Let X be an n-dimensional Hermitian manifold. Taking a holomorphic
local coordinates (2!, -+, 2"), we define a positive definite Hermitian
matrix hz(2) = (0.5, 0.k). , when (-, -) is the Hermitian metric. Then
the (1, 1)-form

® = hg dz/ NdZ

does not depend on the choice of the coordinates.

Definition A.1. We call a Hermitian manifold (X, k) a Kéhler man-
ifold when the condition

dd =0 (A.1)

is satisfied. We call (A.1) a Kahler condition.

Proposition A.2. In order that (A.1) holds, it is necessary and suffi-
cient that there exists a real-valued C* function ¢ satisfying ® = 00y
locally.
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Proof. The Kihler condition (A.1) is equivalent to 9® = 0 and 9P =
0. Hence we obtain
Ohg  Oly; 0 Ohgz  Ohg

= = — v = 0.
OzF 0zt ’ ozt 07

Because of the equation g(hi; dz’) = 0 for any i, there exist C*
functions f; satisfying
Of;

o0z

from the Dolbeault lemma.
On the other hand, by the equation

_ahﬁ ahki_ 0 (3fz‘ asz)

0k 07 07 \ 0z 0z
we find that
of  Of
R

are holomorphic functions. Because of the equation
d(Fy d2* A d2F) = 0(Fy, d2' A d2F) =0,
there exist holomorphic functions F; satisfying

_OF,  0OF

"=k o
from the complex version of the de Rham theorem. By the equation

ofi —F) _ O(fi — )
ozk ozt 7

there exist a C'™° function ¢ satisfying

_ Oy
07
from the Dolbeault lemma. Therefore we obtain

. 2

i o\ ki) T 90

fi- F

Because h; = h -, we can replace ¢ by its real part. |

it
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To explain the meaning of d® = 0, we introduce the canonical
connection D induced by ®. Let 207 e a sheaf of RUIT.X ®

(s:t)
/\(S’t) T X-valued C* functions.

¢ o) _, x(10)

Definition A.3. A holomorphic connection D : % (s+1,0) is

defined as follows:
Fora € £ f € %8}%),), we have D(a A f) =(0a) A f
+(—=1)**'a A Df.

To find the holomorphic connection induced by the Hermitian met-

ric, we put
0 ;0 k
D(azj) w]k%@)dz.
Since D induced by ® satisfy the following commutative diagram:
0 ®

1,0 — 0,1
X{0) 2 5 ——  hydete &Y

° g

Ohy;
(1,0) = (1 1)
%(10)9%]“82 ® dz* 0 82’“ LdZb A dz 65

we get i
wjik = h“ﬁkhﬂ .

Hence we have

0 b\ 0
D(oﬂﬁ):(@—}-wiﬂka) m@dz

By the canonical duality between 0,; and dz7, D induces a holomorphic
connection on the cotangent bundle. Indeed we have

D (dzj) = —wijkdzi ® dz*.
Then, if this D is compatible with the exterior differential (torsion-free
condition), we must impose the condition D(dz’) = 0 in /\(2’0) T X,
that is, ' '

W' = wy'; -

This condition is just the Kahler condition.
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Proposition A.4. The Kdhler condition is equivalent to the condi-
tion that the holomorphic connection induced by the Hermitian metric
18 torsion-free.

Now we consider the difference between the Riemannian connection
V and the holomorphic connection D.

Let X® be the underlying real manifold of X. Then a complex
vector £70,; € TX corresponds to the real vector Re(£70,;) € TX®.
We define the induced Riemannian metric as

j 1 .
(Re(€70.5),Re(n*0.1)), = 5 Re(&/7hg).

By expanding the Riemannian metric to the Hermitian inner product
on C ®@r TX®, we get

(05,0, )r = higs (s, Oz )R = iz, (0.3, 0=r)r = 0.
Then we have the following well-known fact.
Proposition A.5. Let 'V be the induced Riemannian connection. By

calculating V(0/0x) and V(0/0y) (z = x+iy), we obtain the following

ETPTESSION:

9\ _,a ahﬂ k 9
V(a—) = O g

L[ 7(0hy Ohy 0
Ui (Qua Tty g g O
+2[ (829 62’“) © ®8z’

ozF o7 0z
- (Ohgz  Ohg 0
li k _ gk =k
+h (8zj 94 )dz ® fz"] .

In particular, if V(0/0.;) does not include (0/0zi) components, X sat-
i1sfies the Kahler condition. Further the canonical holomorphic connec-
tion and the induced Riemannian connection coincide with each other.
In other words, the induced Riemannian connection preserves the com-
plex structure if and only if X is a Kdahler manifold.
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A2. Equations on Kahler manifolds

In this section we prove the commutativity or anti-commutativity of
operators on Kahler manifolds. To begin with, we introduce another
important operator on a Kéhler manifold.

Definition A.6. Let ® = h;(z)dz" A dZ’ be the Hermitian metric
form. Then we can define the sheaf morphism

DA 5)(?”) > f(z) — ®(2) A f(2) € 5)(?+1’r+1).

Indeed, ® A - is a differential operator of order 0. Hence we can also
define the adjoint operator A(®) of PA- with respect to the inner prod-

ucts in £ and £¢77Y. That is, for f € £ and g € £¢
with compact support we have

(A@)f, g9)=(f, PAg).

A(®) is also a differential operator of order 0.

Proposition A.7. We have the following equations for differential
operators:

A(P)0 — 0A(P) = -1, (A.2)
A(®)D — DA(P) = 0. (A.3)
We prove this proposition at the end of this section. Once we

admit these equations, we can easily prove the commutativity and the
anticommutativity for the operators.

Theorem A.8. The operators 0, 0, ¥, ¥, O, O satisfy the following
equations:

00 +00=0, V9 +399=0.

D +90=0, d9+90=0,

0-0-14,
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Proof. The first equation follows directly from the definitions of 9, 0.
Further, the second equation is just the adjoint of the first equation.
The third and the fourth equation follow directly from the previous
proposition:

00 + 00 = D(OA(®) — A(P)D) + (DA(®) — A($)d)d = 0.

Moreover, we also have the following equations:

0 =00 + 00 = dA(®)D — aaA( ) + A(®)20 — JA(®)D,
T =00 + 90 = DOA(D) — DA(D)D + DA(D)D — A(D)d0.

Therefore we have

O— 0= A(®)(90 + 99) — (90 + 00)A(®) =0 — 0 =

Y

and
A=d§+0d=(0+0)(J+9)+ (5+19)( + 0)
=0+ 0+ (09 +90) + (0 9+ 9 9) =20 = 2.
This completes the proof. |

The remaining problem is to prove Proposition A.7. The following
proposition is very useful for the proof of Proposition A.7.

Proposition A.9. For any point p on a Kdhler manifold X we can
take a coordinate system around p (an adapted coordinate system at
p) satisfying the following 2 conditions:

(1) z'(p) =---=2"(p) =0,

(2) hiz(2) = 6i; + O(|z]?); that is,

hZ;(O) = (Sij and 8ZhZ3(O) = aghﬁ(()) = O.

Proof. By using a suitable complex linear transformation, we can take
a complex coordinate system (21, ..., z,) around p such that

2p)=-=2"(p) =0, hyj=0dy.



Consider the Taylor expansion of h;;(z) at z = 0 as follows:
hij(2) = 85 + Cigrz" + CjanZ" + O(J2]*),

where {Cjjx;4,j,k = 1,...,n} are some complex constants. Then the
Kéhler condition at p induces the following identities:

Consider the following coordinate change around w = 0 :
g L ik (
2 =w —§ZC’Z~jkww (7=1,...,n).
ik

Then we have the following under the equations (A.4):

0zt 07 -
hii(z(w))awa o (03 + Cijrw® + Cjip® + O(lw]?))
1 k! 1; K
X 6ia — O(Mkw _;_Ok ia0 +O(|w|2))
_ Cajrn@™ + Cnjp™

X ((55

g 2
= das + O(Jw?).

+0(uP))

Counsider the difference
B = A(®)0 — 0A(®) + 9

in the equation (A.2). Then, B is a differential operator of order at
most 1. Hence in order to prove B = 0, we have only to show that all
the coefficients of B vanish at any given point p. Further, it is clear
that the value of every coefficient of B at a given point p is determined
only by

hiz(p), (9hi3(p)/azk, (9hi3(p)/8§k.

On the other hand, under the adapted coordinate system at p, h; is
approximately identified with C™ up to the first order at p. Hence we
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have only to prove Proposition A.7 for X = C" with the Euclidean
metric. From now on we set X = C"™ and

O(z) =Y dz ndZ.

Let us prove the equations (A.2) and (A.3). Since (A.3) is the complex
conjugate to (A.2), we have only to prove (A.2). Further, taking the
operator conjugate, the equation (A.2) is equivalent to the following:

Af =OA@f) =D (@A) Vfe&d (A.5)

Let f =Y fr7d2" Adz’ be any (g, r)-form with C*-coefficients. Then
we have

_ of -
T )icr = - 30 LT,

el 8
\ \Y

((b /\ f)HZ = Z(_]‘)q+a+ﬂ5ho¢,eﬂfh1. o hq+121. ' .ZT+1'
a8

Here, |K| = q— 1,|H| = q+ 1,|L] = r+ 1 and hy - * - hyyy =
hy-+ha—1hay1 - hei1. Therefore, for |I| =¢q,|L| =7+ 1

(@AW =@ AS)) 7
af. ! v (P A f)
_ _\lHa-ltatBs s’ laly T e E s
Z( 1) 5“! A5 o0z° + Z o0zs

a,B,s s

a B
v v
— Z(_l)ﬁ-a—&-ﬂd Y, afsjl. il e
terth o0z*
v
frs -
Sy, 2
5.5 &

a7ﬂ7s

Ofsineis s
2 : gta+l+85. s bl ey
+ b (_1) 5Za,€ﬂ azs
) 78
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B
\%

_ Z(_l)q+1+,@ aff?l' l (gf)i‘
g

oz
This completes the proof of Proposition A.7.

A3. Necessity conditions of Kahler manifolds
Conversely, we show that the conditions (0,1) imply the Kéhler con-

dition.

Theorem A.10. If O = O as operators on 8)((1’1) on a Hermitian
manifold X, then X is a Kdahler manifold.

Proof. We fix any point p on X. Then by using a suitable complex lin-
ear transformation we can take a local holomorphic coordinate system
(21, ..., 2") around p satisfying the following:

{z%p) = =2"(p) =0,

hi;(2) = 055 4+ wijiz' + W 2 + O(|2]?).
Then we get

Whz) =G —wrd =W 2+ O(J2]?),
det(hje) =1+ wje' +@5 2+ O(|2]?),
|det(hx)| =1+ w2 + @55 2+ O(]2)?).

Let f = fid2' NdZ and g = g;dz" A dZ be C* (1,1)-forms with
compact supports. Therefore we have

(V0f,9) = (0f,g)

. / 0f;5 (3%6) (BFR™ — BRE) RO | det (R, )| dz™ A dz Y

0zF \ 0z
9 (0f; 17 i il kay 7, 87 1
— _/ﬁ (875 (R*'hi — R R* )hﬁfydet(h**)\) | det (P )|~ Ga5 V.
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Here, {all} = {1,2,--- ,n}, dV = |det(h,.)| dz1®" Adz . Hence we
have

(@01 51

9 (0f; 17 i il kay 7 87 -
=~ (azlj (R R — Bitp* )hﬂfydet(h**)y) | det(ha )|t

Taking the values at z = 0, we obtain the following:

3 0 (0f; 11 ia il kay 1,87
(00f)op = —5 (az,j (hFR'™ — hitpRe) | det(h**)|)

Pl Pl 0fz __ Ofz __0fz __ 0f3
T 005 gz T MTgor Tk T Wi a T Wk
Of; __0f; __0f.3 015

+ Wik 82’“ Wil o — Wkl 52! + Wkkl A 50
Pl Pla Ofig 0tz
— = (g — ) (2 —
0zF0z 0240z 0z 0z
afz,@ afa] afk;
v T Wajk E :
0z 0z 0z
On the other hand, let f = f;;dz' Adz’ and g = g;dz’ be C*°(1, 1)-
and C*°(0,1)-forms with compact supports, respectively. Then we
have

+ (wiak wkaz)

(@f,9) = (f,09) = / f WRI* (g l) | det(ha)| dzt A dz
= [ Vet (e deth.)) g5 av:

Therefore,
0
iB a—l

Consequently we obtain the following:

(Pf)5 = = det(hus) | iz (£ det(hao)])

0 0 .
(0015 =~ (10t @WWWM%MD

0 of; iy jk
= —a— (hl a 5 + | det( **)| lhgﬁfzka = (hlh]k|det<h**)|>> .
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Taking the values at z = 0 again, we get

5 O fs Ofz Ofz Ofy — 9f;p
(09f)o5 = — 6,20‘8; + Wiia a_lﬁ will87§ + Woki pp le Whki pp 5
+ Copjnf 7

Here C,pjir are some constants which are independent of f and df.
Therefore we have the following equalities at z =0 :

(Of)ag = (09f) 05 + (90f) 45

T kg + (W — Wllz‘)W + (Wjak — Wkaj)@
__ 0 Oz
+ w,@jk B k + Wiia =1 a_l + Caﬂjkf]k
Since O is the complex conjugate to [J, we also have
_ *f.3 0f.3 Of .
(Uf)az = ~ ok a_ﬂ (win — wui)gf + (wigk — wkﬁj)g,j
s Of.;
+Wajka—zjk tWis g+ Cookif i
When the equation
0=(0Of-0f)us
_ Ofap of; of,
= (W — WZ“)W + (@ak — Wiaj) 5 2 4 (@ — D) =L o
afaﬁ afai‘ af i3
= (Wi — wur) = — (Wi — wkﬁj)gkj — (Wagk — ija)a—;k

+ (Cagjt — Caki) f17
holds, for any given pu, v,k € {1,...,n} we can choose f such that
0f5(0)/02" = 6400k, 0f15(0)/0Z" =0,  fir(0) =0,
and we have
0 = (Wt — @) I + (@ran = Dpaw) O + (Dprp — Wans) O

If we choose a = v and (3 # Kk, then we see that

Wrp — Wurp = 0
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holds for any 3, k, u with 3 # k. Further if we take u = k # 3, we have
Warr —Wrrp = 0 (not the summation in k) for any § # x. Consequently
we get

wijk = wgyi for any 4, j, k.

This is equivalent to the Kéahler condition at p. That is, d®(p) = 0.
Since p is an arbitrary point of X, so X is a Kahler manifold. |
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