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Abstract
We study the scattering theory for the Zakharov equation in three

space dimensions. We show the unique existence of the solution for
this equation which tends to the given free profile with no restriction
on the size of the scattered states and on the support of the Fourier
transform of them. This yields the existence of the pseudo wave op-
erators.

1 Introduction

We study the scattering theory for the Zakharov equation in three space
dimensions: 

 i∂tu+
1

2
∆u = uv,

∂2
t v −∆v = ∆|u|2.

(Z)

Here u and v are Cn-valued and real valued unknown functions of (t, x) ∈
R × R3, respectively. In the present paper, we prove the unique existence of
the solution for the equation (Z) which tends to the given free profile with
no restriction on the size of the scattered states and on the support of the
Fourier transform of them.

A large amount of works has been devoted to the asymptotic behavior
of solutions for the nonlinear Schrödinger equation (see [3, 4, 6, 7, 8, 12, 17,
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20, 21, 22, 23, 24, 32, 34, 35, 37]) and for the nonlinear wave equation (see
[11, 14, 16, 18, 19, 27, 28, 32, 33]). We consider the scattering theory for the
coupled systems of the Schrödinger equation and the second order hyperbolic
equation, in particular, the Klein-Gordon-Schrödinger, Wave-Schrödinger,
Maxwell-Schrödinger and Zakharov equations. In the scattering theory for
the linear Schrödinger equation, (ordinary) wave operators are defined as
follows. Assume that for a solution of the free Schrödinger equation with
given initial data φ, there exists a unique time global solution u for the per-
turbed Schrödinger equation such that u behaves like the given free solution
as t → ∞. (This case is called the short range case, and otherwise we call
the long range case). Then we define a wave operator W+ by the mapping
from φ to u|t=0. In the long range case, ordinary wave operators do not exist
and we have to construct modified wave operators including a suitable phase
correction in their definition. For the nonlinear Schrödinger equation, the
nonlinear wave equation and systems centering on the Schrödinger equation,
we can define the wave operators and introduce the modified wave operators
in the same way (for the nonlinear Schrödinger and wave equation, see the
references mentioned above, and for systems, see [9, 25, 29, 36]).

There exist some results of the scattering theory for nonlinear equa-
tions and systems. Ozawa [23] and Ginibre and Ozawa [6] proved the ex-
istence of modified wave operators in the borderline case for the nonlinear
Schrödinger equation in one space dimension and in two and three space
dimensions, respectively. Those results have been extended to the Klein-
Gordon-Schrödinger equation in two space dimensions by Ozawa and Tsut-
sumi [25] and the author [29], to the Wave-Schrödinger equation in three
space dimensions by Ginibre and Velo [9] and the author [30], to the Maxwell-
Schrödinger equation in three space dimensions by Ginibre and Velo [10],
Tsutsumi [36] and the author [31] and to the Zakharov equation in three
space dimensions by Ozawa and Tsutsumi [26].

The quadratic nonlinearities in the equation (Z) cause the difficulty of
constructing global solution for (Z) and investigating asymptotic behavior
of it. Klainerman [15] introduced the null condition technique to construct
the global existence of small amplitude solution for the wave equation with
quadratic nonlinearity in three space dimensions. We note that the null con-
dition technique is mainly besed on the Lorentz invariance of the equations.
However, since the Schrödinger equation does not have that invariance, we
do not apply the null condition technique to the equation (Z). In this sense,
the Schödinger equation and the wave equation are not compatible.

To overcome this difficulty, in the result for the equation (Z) by Ozawa
and Tsutsumi [26], they assumed either the restriction on the size of the
scattered states or that on the support of the Fourier transform of the scat-
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tered state φ of the Schrödinger part. More precisely, the restriction on the
support of the Fourier transform of φ is as follows: supp φ̂ ⊂ {ξ ∈ R3 : |ξ| ≥
1 + ε} ∪ {ξ ∈ R

3 : |ξ| ≤ 1 − ε} for some ε > 0. Roughly speaking, the
reason why they assumed this condition is as follows. Let u0 and v0 be the
solutions for the free Schrödinger and wave equations, respectively. It is well-
known that ‖u0(t)v0(t)‖L2(R3) = O(t−3/2) if no restriction on the support of
the Fourier transform of data is supposed. When the smallness of the scat-
tered states is not assumed, we have to introduce the function space such
that ‖u(t)−u0(t)‖L2 decay faster than ‖∇(u(t)−u0(t))‖L2 in order to apply
the Cook-Kuroda method. Hence we need good time decay rate of ‖u(t) −
u0(t)‖L2 . Therefore above time decay estimate is not sufficient to prove the
existence of the solution of (Z) which tends to the free profile, and the im-
proved time decay estimate of the interaction term is needed. Their proof
is based on the improved decay estimates of the interaction term which take
account of the difference between the propagation property of the solution to
the Schrödinger and wave equation. The property of finite propagation speed
and the Huygens principle for the three dimensional wave equation imply the
following time decay estimate ‖v0(t)‖L∞(|x|≥(1+ε)t) + ‖v0(t)‖L∞(|x|≤(1−ε)t) =
Oε,N(t−N ), for any ε, N > 0. This yields an improved time decay esti-
mate of the L2-norm of the cross term u0v0, where u0 is the solution of
the free Schrödinger equation, ‖u0(t)v0(t)‖L2(R3) ∼ t−3/2‖φ̂(·/t)v0(t)‖L2(R3) =

t−3/2(‖φ̂(·/t)v0(t)‖L2(|x|≥(1+ε)t)+‖φ̂(·/t)v0(t)‖L2(|x|≤(1−ε)t)) = Oε,N(t−N) as t →
∞ for any N > 0. On the other hand, under the restriction on the size of the
scattered states, they could obtain the same conclusion, because the second
equation (the wave part) of the system (Z) had the second derivative at the
interaction term, which implied the improved time decay rate of that term.

Recently, in [29] and [30], the author has proved the existence of wave op-
erators for the two dimensional Klein-Gordon-Schrödinger equation with the
Yukawa type interaction and of the modified wave operators for the three di-
mensional Wave-Schrödinger equation with same interaction, respectively, for
small scattered states without any restrictions on the support of the Fourier
transform of them. (Since these equations do not have second derivatives at
the interaction terms as the Zakharov equation (Z), the scattering problems
of them are more difficult than that of the Zakharov equation). The proof for
the Klein-Gordon-Schrödinger equation is mainly based on the construction
of suitable second approximations [u2, v2] of the solution to the equation (Z)
so that (i∂t +

1
2
∆)u2 − u0v0 and (∂2

t − ∆ + 1)v2 + |u0|2 decay faster than
u0v0 and −|u0|2 as t → ∞, respectively. This enables us to apply the Cook-
Kuroda method. Here u0 and v0 are the solutions of the free Schrödinger
and Klein-Gordon equations, respectively.
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In this paper, we prove the unique existence of the solution for the equa-
tion (Z) which tends to the given free profile with no restriction on the size
of the scattered states and on the support of the Fourier transform of them.
Our main idea of proof is as follows. Let u0 and v0 be the solutions of the
free Schrödinger and wave equations, respectively. The principal term of our
asymptotic profile is the free profile [u0, v0]. In order to improve time decay
estimate of the interaction term of the Schrödinger part under no restriction
on the size of the scattered states and on the support of the Fourier transform
of them, we construct a suitable second correction term u2 of the asymptotic
profile for the Schrödinger part such that (i∂t +

1
2
∆)u2 − u0v0 decays faster

than u0v0, as in [29, 30, 31] (Section 2.2). Since the time decay rate of the
interaction term for the wave part of the equation (Z) is sufficient for our
problem, the second correction term of the asymptotic profile of the wave
part, which appears in [29, 30, 31], is not needed. Our proof for the existence
argument is based on the energy estimates and the compactness argument.

Before stating our main result, we introduce some notations.

Notations. We use the following symbols:

∂0 = ∂t =
∂

∂t
, ∂j =

∂

∂xj

for j = 1, 2, 3,

∂α = ∂α
x = ∂α1

1 ∂α2
2 ∂α3

3 for a multi-index α = (α1, α2, α3),

∇ = (∂1, ∂2, ∂3), ∆ = ∂2
1 + ∂2

2 + ∂2
3 ,

for t ∈ R and x = (x1, x2, x3) ∈ R3.
Let

Lq ≡ Lq(R3) =

{
ψ : ‖ψ‖Lq =

(∫
R3

|ψ(x)|q dx
)1/q

< ∞
}

for 1 ≤ q < ∞,

L∞ ≡ L∞(R3) = {ψ : ‖ψ‖L∞ = ess. supx∈R3 |ψ(x)| < ∞} .
We denote the L2-scalar product by

(ϕ, ψ) ≡
∫
R3

ϕ(x)ψ(x) dx.

We denote the set of rapidly decreasing functions on R
3 by S. Let S ′ be

the set of tempered distributions on R3. For w ∈ S ′, we denote the Fourier
transform of w by ŵ. For w ∈ L1(Rn), ŵ is represented as

ŵ(ξ) = (2π)−n/2

∫
Rn

w(x)e−ix·ξ dx.
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For s,m ∈ R, we introduce the weighted Sobolev spaces Hs,m correspond-
ing to the Lebesgue space L2 as follows:

Hs,m ≡ {ψ ∈ S ′ : ‖ψ‖Hs,m ≡ ‖(1 + |x|2)m/2(1−∆)s/2ψ‖L2 < ∞}.

We also denote Hs,0 by Hs. For 1 ≤ p ≤ ∞ and a positive integer k, we
define the Sobolev space W k

p corresponding to the Lebesgue space Lp by

W k
p ≡


ψ ∈ Lp : ‖ψ‖W k

p
≡
∑
|α|≤k

‖∂αψ‖Lp < ∞

 .

Note that for a positive integer k, Hk = W k
2 and the norms ‖·‖Hk and ‖·‖W k

2

are equivalent.
For s > 0, we define the homogeneous Sobolev spaces Ḣs by the comple-

tion of S with respect to the norm

‖w‖Ḣs ≡ ‖(−∆)s/2w‖L2. (1.1)

If s < 0, we set
Ḣs ≡ {w ∈ S ′ : (−∆)s/2w ∈ L2}.

Then Ḣs is a Banach space with the norm (1.1) for s > 0. On the other
hand, Ḣs is a semi-normed space with the semi-norm (1.1) for s < 0.

Let Y and Z be two Banach spaces with the norms ‖ · ‖Y and ‖ · ‖Z ,
respectively. We denote

‖w‖Y ∩Z ≡ ‖w‖Y + ‖w‖Z ,

for w ∈ Y ∩ Z. Then Y ∩ Z is a Banach space with the norm ‖ · ‖Y ∩Z . We
use the following notation:

[z;Y, k](t) ≡ sup
τ≥t

(τk‖z(τ)‖Y ),

for a Y -valued function z of t ∈ R.
We set for t ∈ R,

U(t) ≡ e
it
2

∆, ω ≡ (−∆)1/2,

L ≡ i∂t +
1

2
∆, � ≡ ∂2

t −∆.

We denote various constants by C and so forth. They may differ from
line to line, when it does not cause any confusion.
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Let (φ, ψ0, ψ1) be given scattered states, where φ = (φ(1), φ(2), φ(3)) is
Cn-valued and ψ0 and ψ1 are real valued, and let

u0(t, x) ≡ (U(t)φ)(x), (1.2)

v0(t, x) ≡ ((cosωt)ψ0)(x) + ((ω−1 sinωt)ψ1)(x). (1.3)

The functions u0 and v0 are unique solutions of the Cauchy problems for the
free Schrödinger equation 

 i∂tu+
1

2
∆u = 0,

u(0, x) = φ(x),

and for the free wave equation{
∂2

t v −∆v = 0,

v(0, x) = ψ0(x), ∂tv(0, x) = ψ1(x),

respectively.

Our main result is as follows.

Theorem. Assume that φ ∈ H6,9, ψ0 ∈ H3 ∩ Ḣ−2, xω−1ψ0 ∈ L2, ω−2ψ0 ∈
W 7

1 , ψ1 ∈ H2 ∩ Ḣ−3, xω−2ψ1 ∈ L2 and ω−2ψ0 ∈ W 6
1 . Then there exists

a constant T > 0 such that the equation (Z) has a unique solution [u, v]
satisfying

u ∈ C([T,∞);H3), (1.4)

v ∈ C([T,∞);H2), (1.5)

∂tv ∈ C([T,∞);H1 ∩ Ḣ−1), (1.6)

sup
t≥T

(t5/4‖u(t)− u0(t)‖L2 + t‖u(s)− u0(t)‖Ḣ1∩Ḣ3) < ∞, (1.7)

sup
t≥T

[t{‖v(t)− v0(t)‖H2 + ‖∂tv(t)− ∂tv0(t)‖H1∩Ḣ−1}] < ∞. (1.8)

A similar result holds for negative time.

Remark 1.1. The assumptions ψ0 ∈ Ḣ−2 and ψ1 ∈ Ḣ−3 in Theorem implies
that the their Fourier transforms ψ̂0 and ψ̂1 vanish at the origin.

The constant T which appears in Theorem depends only on

η ≡‖φ‖H6,9 + ‖ψ0‖H3 + ‖ψ0‖Ḣ−2 + ‖xω−1ψ0‖L2 + ‖ω−2ψ0‖W 7
1

+ ‖ψ1‖H2 + ‖ψ1‖Ḣ−3 + ‖xω−2ψ1‖L2 + ‖ω−2ψ1‖W 6
1
.

(1.9)

In Theorem, we do not restrict the size of η.
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Let V be the set of all scattered states (φ, ψ0, ψ1) satisfying the assump-
tions of Theorem.

The following corollary is an immediate consequence of Theorem.

Corollary. For the equation (Z), the pseudo wave operator W+ : (φ, ψ0, ψ1) �→
(u(T ), v(T ), ∂tv(T )) is well-defined on V, where [u, v] is the solution to the
equation (Z) obtained in Theorem and T is a constant which appears in The-
orem. Similarly the modified wave operator W− for negative time is also
well-defined on V.

Remark 1.2. The Zakharov equation (Z) is invariant under the translation
in the time variable t. Translating the solution [u, v] obtained in Theorem in
t by T , we see that for any initial data (φ̃, ψ̃0, ψ̃1) belonging to the range of
W+, there exists a unique global solution [u, v] such that

u ∈ C([0,∞);H3),

v ∈ C([0,∞);H2),

∂tv ∈ C([0,∞);H1 ∩ Ḣ−1),

where W+ is defined in Corollary. We note that it is not clear what initial
data belong to the range of W+.

Outline of this paper is as follows. We prove the statement for positive
time in Theorem. The statement for negative time is proved in the same
way. In Sections 2, we construct a suitable asymptotic profile and derive the
estimate of each term of it. In Section 3, we prove Theorem by the energy
estimates. Hereafter we always assume that the space dimension is three.

2 Preliminaries

2.1 The Principal Term of the Asymptotic profiles

In this section, we study time decay estimates of the solutions for the free
Schrödinger and Klein-Gordon equations, which are the principal part of the
asymptotic profile. We introduce the asymptotics of the solution for the free
Schrödinger equation and time decay estimates of it.

The time decay estimates of the free solutions u0 and v0, which is defined
in (1.2) and (1.3), respectively, are well-known (see, e.g., Section 2 in Ozawa
and Tsutsumi [26]):
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Lemma 2.1. Let k be a non-negative integer. There exists a constant C > 0
such that for t ≥ 1, ∑

|α|+2j≤k

‖∂α
x∂

j
t u0(t)‖L2 ≤ C‖φ‖Hk ,

∑
|α|+2j≤k

‖∂α
x∂

j
t u0(t)‖L∞ ≤ C‖φ‖W k

1
t−3/2,

∑
|α|+2j≤k

‖∂α
x∂

j
t u0(t)‖L∞ ≤ C‖φ‖Hk,2t−3/2,

∑
|α|+j≤k

‖∂α
x∂

j
t v0(t)‖L2 ≤ C(‖ψ0‖Hk + ‖ψ1‖Hk−1 + ‖ψ1‖Ḣ−1),

∑
|α|+j≤k

‖∂α
x∂

j
t v0(t)‖L∞ ≤ C(‖ψ0‖W k+2

1
+ ‖ψ1‖W k+1

1
)t−1.

2.2 The Second Correction Term of the Asymptotic
Profile for the Schrödinger Part

According to Lemma 2.1, ‖u0(t)v0(t)‖L2 = O(t−3/2). This time decay esti-
mate is not sufficient to prove Theorem directly with no restriction on the
size of the scattered states. To overcome this difficulty, we construct the
second correction term u2 of the asymptotic profile of the Schrödinger part
such that (∂t +

1
2
∆)u2 − u0v0 decays faster than u0v0 as t → ∞.

We construct the second correction u2 of the form

u2(t, x) = u0(t, x)V (t, x), (2.1)

where
V (t, x) = ((cosωt)Q0)(x) + ((ω−1 sinωt)Q1)(x). (2.2)

We determine functions Q0 and Q1 of x ∈ R3. We first note the following
identity:

L(wz) = w
1

2
∆z + zLw +

1

t

(
−i

3∑
k=1

(Jkw)(∂kz) + iwPz

)
(2.3)

for a C3-valued function w and a real valued function z, where

Jk ≡ xk + it∂k (k = 1, 2, 3), J ≡ (J1, J2, J3),

P ≡ t∂t + x · ∇.
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It is well-known that if w and z solve the free Schrödinger and wave equations,
then so do Jkw Pz because JL − LJ = 0 and �P = (P + 2)�. Noting this
fact and putting w = u0 and z = V , we expect that the most slowly decaying
part of Lu2 is (1/2)u0∆V . Now we set

Q0(x) ≡ −2(−∆)−1ψ0(x) = −2ω−2ψ0(x), (2.4)

Q1(x) ≡ −2(−∆)−1ψ1(x) = −2ω−2ψ1(x), (2.5)

so that the equality
1

2
u0∆V = u0v0

holds. Then it is expected that Lu2−u0v0 decays faster than u0v0 as t → ∞.
From the equality (2.3), we have

Lu2 − u0v0 =
1

t

(
−i

3∑
k=1

(Jku0)(∂kV ) + iu0PV

)
. (2.6)

Remark 2.1. It is well known that

Jku0(t, ·) = Jk(t)U(t)φ = U(t)(Mxk
φ) (k = 1, 2, 3),

PV (t, ·) = (cosωt)(Mx · ∇Q0) + (ω−1 sinωt)((1 +Mx · ∇)Q1),

where Mxk
and Mx are the maltiplication operators by the function xk and

x, respectively.

The time decay estimates of u2 and Lu2 − u0v0 are as follows.

Lemma 2.2. There exists a constant C > 0 such that for t ≥ 1,

2∑
j=0

‖∂j
tu2(t)‖H4−j ≤ Cη2t−3/2,

2∑
j=0

‖∂j
tu2(t)‖W 4−j ≤ Cη2t−5/2,

‖Lu2(t)− u0(t)v0(t)‖H3 + ‖∂t(Lu2(t)− u0(t)v0(t))‖H1 ≤ Cη2t−5/2,

where η > 0 is defined in (1.9).

Noting Lemmas 2.1, Remark 2.1 and the equality (2.6), we can prove this
lemma exactly in the same way as in the proof of Lemma 3.3 in [30].
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3 Proof of Theorem

In this section, we prove Theorem for positive time. The statement for
negative time in Theorem is proved in the same way. Throughout this section,
we always assume that the assumptions of Theorem are satisfied.

Let u0 and v0 be the functions defined in (1.2) and (1.3), respectively, and
let u2 be the function defined by (2.1), (2.2), (2.4) and (2.5). We consider
the following final value problem:

 i∂tF +
1

2
∆F = FG+ Fv0 + hG + f,

∂2
t G−∆G = ∆|F |2 + 2Re∆(Fh) + g

(3.1)

with the condition{
‖F (t)‖H3 → 0, as t → ∞,

‖G(t)‖H2 + ‖∂tG(t)‖H1 + ‖∂tG(t)‖Ḣ−1 → 0, as t → ∞,
(3.2)

where

h ≡ u0 + u2,

f ≡hv0 − Lu2

=u2v0 − (Lu2 − u0v0),

g ≡∆|h|2
=∆|u0 + u2|2.

Remark 3.1. If we put F = u− h = u− u0 − u2 and G = v − v0, then the
system (Z) is equivalent to the system (3.1). Hence we solve the equation
(3.1) instead of the equation (Z)

From Lemmas 2.1, 2.2, Hölder’s inequality and the Sobolev embedding
theorem, we have the time decay estimates for the interaction terms.

Lemma 3.1. There exists a constant C > 0 such that for t ≥ 1,

‖f(t)‖H3 + ‖∂tf(t)‖H1 ≤ C(η2 + η3)t−5/2,
2∑

j=0

‖∂j
t g(t)‖H2−j ≤ C(η2 + η4)t−7/2,

‖ω−1g(t)‖L2 ≤ C(η2 + η4)t−5/2,

where η > 0 is defined in (1.9).
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Now we prove Theorem. The proof of the existence argument in Theorem
is based on the energy estimates for the equation (3.1) and the compactness
argument. Since that of the uniqueness argument is easy (see Ozawa [23]
and Ozawa and Tsutsumi [25]), we omit the detailed proof of it.

Proof of Theorem. To solve the final value problem (3.1)–(3.2), we consider
the final value problem of the following regularized equation:



i∂tFa,b +
1

2
∆Fa,b =(1 + bt)−5ρa ∗ [(ρa ∗ Fa,b)(ρa ∗Ga,b)

+ (ρa ∗ Fa,b)(ρa ∗ v0) + (ρa ∗ h)(ρa ∗Ga,b)

+ ρa ∗ f ],
∂2

t Ga,b −∆Ga,b =(1 + bt)−5ρa ∗ [∆|ρa ∗ Fa,b|2
+ 2Re∆((ρa ∗ F )(ρa ∗ h)) + ρa ∗ g]

(3.3)

with the condition{
‖Fa,b(t)‖H3 → 0, as t → ∞,

‖Ga,b(t)‖H2 + ‖∂tGa,b(t)‖H1 + ‖∂tGa,b(t)‖Ḣ−1 → 0, as t → ∞ (3.4)

for 0 < a < 1 and 0 < b < 1. Here ρa(x) = a−3ρ(x/a) for ρ ∈ C∞
0 (R3) such

that ‖ρ‖L1 = 1 and ρ(x) = ρ(−x).
Using the contraction mapping principle, we easily see that for any 0 <

a, b < 1, there exists a constant T̃a,b > 0 such that the equation (3.3) has a
unique solution [Fa,b, Ga,b] satisfying

Fa,b ∈
∞⋂

j=1

C2([T̃a,b,∞);Hj), (3.5)

Ga,b ∈
∞⋂

j=1

C2([T̃a,b,∞);Hj), (3.6)

∂tGa,b ∈ C([T̃a,b,∞); Ḣj), (3.7)

sup
t≥T̃a,b


(1 + bt)4

∑
|α|+2j≤3

‖∂α
x∂

j
tFa,b(t)‖L2


 < ∞, (3.8)

sup
t≥T̃a,b


(1 + bt)4


 ∑

|α|+j≤2

‖∂α
x∂

j
tGa,b(t)‖L2 + ‖∂tGa,b(t)‖Ḣ−1




 < ∞. (3.9)

Since the initial value problem of the equation (3.3) is time globally solvable,
we can extend the above solution [Fa,b, Ga,b] to the time interval [0,∞). We
note that we do not assume the smallness of η.
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We set

Xa,b(t) ≡[Fa,b;L
2, 5/4](t) + [∇ · Fa,b;L

2, 1](t)

+ [∆Fa,b;L
2, 1](t) + [∇ ·∆Fa,b;L

2, 1](t)

+ [Ga,b;L
2, 1](t) + [∇Ga,b;L

2, 1](t)

+ [∆Ga,b;L
2, 1](t) + [∂tGa,b; Ḣ

−1, 1](t)

+ [∂tGa,b;L
2, 1](t) + [∇∂tGa,b;L

2, 1](t).

(3.10)

In order to to estimate Xa,b(t) independent of a and b, we have to derive the
various a priori estimates of Fa,b and Ga,b independent of a and b. Since the
detail proof for the equation (3.3) is rather complicated and the regularizing
factors ρa∗ and (1 + bt)−5 cause no trouble, we discribe only the formal
caluculations for the equation (3.1).

Let T > 0 be a constant determined later, and let [F,G] be the solution
for the equation (3.1) on [T,∞), which are smooth and decay rapidly enough
as t → ∞. For t ≥ T , we put

X(t) ≡[F ;L2, 5/4](t) + [∇ · F ;L2, 1](t)

+ [∆F ;L2, 1](t) + [∇ ·∆F ;L2, 1](t)

+ [G;L2, 1](t) + [∇G;L2, 1](t) + [∆G;L2, 1](t)

+ [∂tG; Ḣ−1, 1](t) + [∂tG;L2, 1](t) + [∇∂tG;L2, 1](t).

To estimate X(t), we derive the various a priori estimates for F and G.
Hereafter we assume t ≥ T .

We begin with the L2-norm of F . Recalling the equation

1

2

d

dt
‖F (t)‖2

L2 = Im(h(t)G(t)− f(t), F (t))

(see, e.g., the equation (3.23) in Ozawa and Tsutsumi [26]), integrating this
equality and using Hölder’s inequality, Lemmas 2.1, 2.2 and 3.1, we obtain

‖F (t)‖2
L2 ≤C

∫ ∞

t

(‖h(s)‖L∞‖G(s)‖L2‖F (s)‖L2 + ‖f(s)‖L2‖F (s)‖L2) ds

≤C

∫ ∞

t

[(η + η2)s−15/4[G;L2, 1](t)[F ;L2, 5/4](t)

+ (η + η3)s−15/4[F ;L2, 5/4](t)] ds

≤C(η + η3)t−11/4(1 + [G;L2, 1](t))[F ;L2, 5/4](t).

Therefore there exists a constant M1(η) > 0 such that for t ≥ T ,

[F ;L2, 5/4](t) ≤M1(η)T
−1/4(1 + [G;L2, 1](t))

≤M1(η)T
−1/4(1 +X(t)).

(3.11)
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We next estimate the L2-norm of ∇ · F , G and ω−1∂tG. Noting the
equation

‖∇F (t)‖2
L2 + ‖G(t)‖2

L2 + ‖∂tG(t)‖2
Ḣ−1

=− (F (t)G(t), F (t))− (F (t)v0(t), F (t))

+ 2Re[−(h(t)G(t), F (t)) + (f(t), F (t))]

+

∫ ∞

t

[−(F (t)v0(t), F (t)) + 2Re{−(h(s)G(s), F (s))

+ (∂sf(s), F (s))− (F (s)v0(s), ∂sG(s))}
− (ω−1g(s), ω−1∂sG(s))] ds,

(see the equation (3.29) in Ozawa and Tsutsumi [26]), and using the Hölder
and Gagliardo-Nirenberg inequalities, Lemmas 2.1, 2.2 and 3.1, we obtain

‖∇F (t)‖2
L2 + ‖G(t)‖2

L2 + ‖∂tG(t)‖2
Ḣ−1

≤C(‖F (t)‖1/2
L2 ‖∇ · F (t)‖3/2

L2 ‖G(t)‖L2 + ‖F (t)‖2
L2‖v0(t)‖L∞

+ ‖h(t)‖L∞‖F (t)‖L2‖G(t)‖L2 + ‖f(t)‖L2‖F (t)‖L2‖G(t)‖L2)

+ C

∫ ∞

t

[‖F (s)‖2
L2‖v0(s)‖L∞ + ‖h(s)‖L∞‖F (s)‖L2‖G(s)‖L2

+ ‖∂sf(s)‖L2‖F (s)‖L2 + ‖h(t)‖L∞‖F (t)‖L2‖∂sG(s)‖L2}
+ ‖g(s)‖Ḣ−1‖∂sG(s)‖Ḣ−1 ] ds

≤C(t−25/8[F ;L2, 5/4](t)1/2[∇ · F ;L2, 1](t)3/2[G;L2, 1](t)

+ ηt−5/2[F ;L2, 5/4](t)2 + (η + η2)t−11/4[F ;L2, 5/4](t)[G;L2, 1](t)

+ (η2 + η3)t−11/4[F ;L2, 5/4](t)

+ (η + η2)t−11/4[F ;L2, 5/4](t)[∂tG;L2, 1](t)

+ (η + η3)t−5/2[∂tG; Ḣ−1, 1](t)).

Therefore there exists a constant M2(η) > 0 such that for t ≥ T ,

[∇ · F ;L2,1](t)2 + [G;L2, 1](t)2 + [∂tG; Ḣ−1, 1](t)2

≤M2(η)T
−1/2(X(t)3 +X(t)2 +X(t)).

(3.12)
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We evaluate the L2-norm of ∆F , ∇G and ∂tG. We note the equality

‖∆F (t)‖2
L2 + ‖∇G(t)‖2

L2 + ‖∂tG(t)‖2
L2

=4Re[(F (t)G(t), F (t)) + (F (t)v0(t),∆F (t))

+ (h(t)G(t),∆F (t))− (f(t),∆F (t))]

+ 4

∫ ∞

t

[
Im{(F (s)G(s)2,∆F (s)) + (F (s)v0(s)G(s),∆F (s))

+ (h(s)G(s)2,∆F (s))− (G(s)f(s),∆F (s))

+ (F (s)v0(s)G(s),∆F (s)) + (F (s)v0(s)
2,∆F (s))

− (G(s)f(s),∆F (s))}
+Re

{
(F (s)∂sv0(s),∆F (s)) + (h(s)∂sG(s),∆F (s))

+ (∂sh(s)G(s),∆F (s))− (∂sf(s),∆F (s))

+ (∆(F (s) · h(s)), ∂sG(s))

+
3∑

j=1

(∂sG(s)∇F (j)(s),∇F (j)(s)) +
1

2
(g(s), ∂sG(s))

}]
ds,

(3.13)

where F (j) is the j-th component of F for j = 1, 2, 3 (see the equation
(3.37) in Ozawa and Tsutsumi [26]). We show only the estimates of several
typical terms in the right hand side of the equation (3.13). By the Hölder
and Gagliardo-Nirenberg inequalities, Lemmas 2.1, 2.2 and 3.1, we have the
following estimates:∫ ∞

t

|(F (s)G(s)2,∆F (s))| ds

≤
∫ ∞

t

‖G(s)‖2
L6‖F (s)‖L6‖∆F (s)‖L2 ds

≤C

∫ ∞

t

‖∇G(s)‖2
L2‖F (s)‖1/2

L2 ‖∆F (s)‖3/2

L2 ds

≤C

∫ ∞

t

s−25/8 ds[F ;L2, 5/4](t)1/2[∆F ;L2, 1](t)3/2[∇G;L2, 1](t)2

≤Ct−17/8[F ;L2, 5/4](t)1/2[∆F ;L2, 1](t)3/2[∇G;L2, 1](t)2,
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3∑
j=1

∫ ∞

t

|(∂sG(s)∇F (j)(s),∇F (j)(s))| ds

≤
3∑

j=1

∫ ∞

t

‖∂sG(s)‖L2‖∇F (j)(s)‖2
L4 ds

≤C

∫ ∞

t

‖∂sG(s)‖L2‖F (s)‖1/4
L2 ‖∆F (s)‖7/4

L2 ds

≤C

∫ ∞

t

s−49/16 ds[F ;L2, 5/4](t)1/4[∆F ;L2, 1](t)7/4[∂tG;L2, 1](t)

≤Ct−33/16[F ;L2, 5/4](t)1/4[∆F ;L2, 1](t)7/4[∂tG;L2, 1](t),∫ ∞

t

|(g(s), ∂sG(s))| ds ≤
∫ ∞

t

‖g(s)‖L2‖∂sG(s)‖L2 ds

≤C(η2 + η4)

∫ ∞

t

s−9/2 ds[∂tG;L2, 1](t)

≤C(η2 + η4)t−7/2[∂tG;L2, 1](t).

Since the rest terms in the right hand side of the equality (3.13) can be
evaluated in the same way as above, there exists a constant M3(η) > 0 such
that for t ≥ T ,

‖∆F (t)‖2
L2 + ‖∇G(t)‖2

L2 + ‖∂tG(t)‖2
L2

≤M3(η)t
−33/16(X(t) +X(t)2 +X(t)3 +X(t)4).

This implies that for t ≥ T ,

[∆F ;L2, 1](t)2 + [∇G;L2, 1](t)2 + [∂tG;L2, 1](t)2

≤M3(η)T
−1/16(X(t) +X(t)2 +X(t)3 +X(t)4).

(3.14)

Finally, we evaluate the L2-norm of∇·∆F , ∆G and ∇∂tG. The following
equality holds:

−1

4
(‖∇ ·∆F (t)‖2

L2 + ‖∆G(t)‖2
L2 + ‖∇∂tG(t)‖2

L2)

=
3∑

j=1

[
Re{−(F (j)(t)G(t),∇∆F (j)(t))

− (∇F (j)(t)G(t),∇∆F (j)(t))− (∇F (j)(t)v0(t),∇∆F (j)(t))

− (h(j)(t)∇G(t),∇∆F (j)(t))− (∇h(j)(t)G(t),∇∆F (j)(t))

+ (∇f (j)(t),∇∆F (j)(t))}
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+

∫ ∞

t

[Re{(F (j)(s)∇∂tG(s),∇∆F (j)(s))

+ (∇F (j)(s)∂tG(s),∇∆F (j)(s)) + (F (j)(s)∇∂sv0(s),∇∆F (j)(s))

+ (∇F (j)(s)∂sv0(s),∇∆F (j)(s)) + (h(j)(s)∇∂tG(s),∇∆F (j)(s))

+ (∂sh
(j)(s)∇G(s),∇∆F (j)(s)) + (∇h(j)(s)∂tG(s),∇∆F (j)(s))

+ (∇∂sh
(j)(s)G(s),∇∆F (j)(s))− (∇∂sf

(j)(s),∇∆F (j)(s))

− (F (j)(s)∇∂sG(s),∇∆F (j)(s))− (∇F (j)(s)∆F (j)(s),∇∂sG(s))

− 2(∆F (j)(s)∇F (j)(s),∇∂sG(s)) + (∇∆(F (j)(s)h(j)(s)),∇∂sG(s))}
+ Im{−(∆F (j)(s)∇G(s),∇∆F (j)(s))

+ (F (j)(s)G(s)∇G(s),∇∆F (j)(s)) + (F (j)(s)∇G(s)v0(s),∇∆F (j)(s))

+ (h(j)(s)G(s)∇G(s),∇∆F (j)(s))− (f (j)(s)∇G(s),∇∆F (j)(s))

+ (G(s)∇(F (j)(s)G(s)),∇∆F (j)(s)) + (G(s)∇(F (j)(s)v0(s)),∇∆F (j)(s))

+ (G(s)∇(h(j)(s)G(s)),∇∆F (j)(s))− (∇f (j)(s)G(s),∇∆F (j)(s))

− (∆F (j)(s)∇v0(s),∇∆F (j)(s)) + (F (j)(s)G(s)∇v0(s),∇∆F (j)(s))

+ (F (j)(s)v0(s)∇v0(s),∇∆F (j)(s)) + (h(j)(s)G(s)∇v0(s),∇∆F (j)(s))

− (h(j)(s)∇G(s),∇∆F (j)(s)) + (∇(F (j)(s)G(s))v0(s),∇∆F (j)(s))

+ (∇(F (j)(s)v0(s))v0(s),∇∆F (j)(s)) + (∇(h(j)(s)G(s))v0(s),∇∆F (j)(s))

+ (∇f (j)(s)v0(s),∇∆F (j)(s))}] ds
]

+
1

2

∫ ∞

t

(∇g(s),∇∂sG(s)) ds,

(3.15)

where f (j) and h(j) are the j-th components of f and h,respectively, (see the
equations (3.42) and (3.43) in Ozawa and Tsutsumi [26]). We show only
the estimates of several typical terms in the right hand side of the equation
(3.15). By the Hölder and Gagliardo-Nirenberg inequalities, Lemmas 2.1, 2.2
and 3.1, we have the following estimates:

3∑
j=1

∫ ∞

t

|(F (j)(s)∇∂sG(s),∇∆F (j)(s))| ds

≤
∫ ∞

t

‖F (s)‖L∞‖∇ ·∆F (s)‖L2‖∇∂sG(s)‖L2 ds

≤C

∫ ∞

t

‖F (s)‖H2‖∇ ·∆F (s)‖L2‖∇∂sG(s)‖L2 ds
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≤C

∫ ∞

t

(‖F (s)‖L2 + ‖F (s)‖1/3

L2 ‖∇ ·∆F (s)‖2/3

L2 )‖∇ ·∆F (s)‖L2‖∇∂sG(s)‖L2 ds

≤C

∫ ∞

t

s−37/12 ds[F ;L2, 5/4](t)1/3[∇ ·∆F ;L2, 1](t)5/3[∇∂sG;L2, 1](t)

≤Ct−25/12[F ;L2, 5/4](t)1/3[∇ ·∆F ;L2, 1](t)5/3[∇∂sG;L2, 1](t),

3∑
j=1

∫ ∞

t

|(∆F (j)(s)∇G(s),∇∆F (j)(s))| ds

≤
∫ ∞

t

‖∆F (s)‖L3‖∇ ·∆F (s)‖L2‖∇G(s)‖L6 ds

≤C

∫ ∞

t

‖ω5/2F (s)‖L2‖∇ ·∆F (s)‖L2‖∆G(s)‖L2 ds

≤C

∫ ∞

t

‖F (s)‖1/6
L2 ‖∇ ·∆F (s)‖11/6

L2 ‖∆G(s)‖L2 ds

≤C

∫ ∞

t

s−73/24 ds[F ;L2, 5/4](t)1/6[∇ ·∆F ;L2, 1](t)11/6[∆G;L2, 1](t)

≤Ct−49/24[F ;L2, 5/4](t)1/6[∇ ·∆F ;L2, 1](t)11/6[∆G;L2, 1](t),

3∑
j=1

∫ ∞

t

|(∆F (j)(s)∇v0(s),∇∆F (j)(s))| ds

≤
∫ ∞

t

‖∇v0(s)‖L∞‖∆F (s)‖L2‖∇ ·∆F (s)‖L2 ds

≤C

∫ ∞

t

‖∇v0(s)‖L∞‖F (s)‖1/3
L2 ‖∇ ·∆F (s)‖5/3

L2 ds

≤Cη

∫ ∞

t

s−49/12 ds[F ;L2, 5/4](t)1/3[∇ ·∆F ;L2, 1](t)5/3[∆G;L2, 1](t)

≤Cηt−49/24[F ;L2, 5/4](t)1/3[∇ ·∆F ;L2, 1](t)5/3[∆G;L2, 1](t).

Since the rest terms in the right hand side of the equality (3.15) can be
evaluated in the same way as above, there exists a constant M4(η) > 0 such
that for t ≥ T ,

‖∇ ·∆F (t)‖2
L2 + ‖∆G(t)‖2

L2 + ‖∇∂tG(t)‖2
L2

≤M4(η)t
−49/24(X(t) +X(t)2 +X(t)3 +X(t)4).

This implies that for t ≥ T ,

[∇ ·∆F ;L2, 1](t)2 + [∆G;L2, 1](t)2 + [∇∂tG;L2, 1](t)2

≤M4(η)T
−1/24(X(t) +X(t)2 +X(t)3 +X(t)4).

(3.16)

17



Combining with the estimates (3.11), (3.12), (3.14) and (3.16), we see
that there exists a constant M0(η) > 0 such that for t ≥ T ,

X(t) ≤ M0(η)T
−1/24(1 +X(t) +X(t)2 +X(t)3). (3.17)

The above proof of (3.17) is rather formal. But exactly in the same way as
above, we can show that there exists a constant M(η) > 0 independent of a
and b such that for t ≥ T ,

Xa,b(t) ≤ M(η)T−1/24(1 +Xa,b(t) +Xa,b(t)
2 +Xa,b(t)

3), (3.18)

where Xa,b is defined in (3.10). According to (3.5)–(3.9), Xa,b(t) → 0 as
t → ∞. Therefore it follows from the estimate (3.18) that if Tη > 0 is
sufficiently large, there exists a constant Lη > 0 independent of a and b such
that for any t ≥ Tη,

Xa,b(t) ≤ Lη. (3.19)

Here we note that the constants Tη and Lη depend only on η, and that
the estimate (3.19) is independent of a and b. The estimate (3.19) and the
standerd compactness argument show that there exists a solution [F,G] of
the equation (3.1) such that

F ∈ C([Tη,∞);H3),

G ∈ C([Tη,∞);H2),

∂tG ∈ C([Tη,∞);H1 ∩ Ḣ−1),

sup
t≥Tη

(t5/4‖F (t)‖L2 + t‖F (t)‖Ḣ1∩Ḣ3) ≤ Lη,

sup
t≥Tη

[t{‖G(t)‖H2 + ‖∂tG(t)‖H1∩Ḣ−1}] ≤ Lη.

According to Remark 3.1 and Lemma 2.2, this implies the existence of a
solution [u, v] for the equation (Z) satisfying the conditions (1.4)–(1.8).

It remains only to prove the uniqueness. If Tη > 0 is sufficiently large, we
can prove the uniqueness of the solution [u, v] for the equation (Z) satisfying
the conditions (1.4)–(1.8). (For detailed proof of this, see Ozawa [23] and
Ozawa and Tsutsumi [25]). This completes the proof of Theorem. �

Acknowledgments. The author would like to express his deep gratitude
to Professor Yoshio Tsutsumi for his helpful comments and encouragement.
He would like to thank Professors Shu Nakamura and Kenji Yajima for their
constant encouragement.

18



References
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