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Abstract. We consider an inverse source problem of determining the shape
and location of inhomogeneity in a Neumann boundary value problem for an
elliptic equation

−∆u+ χDu = 0 in Ω and
∂u

∂ν
= g on ∂Ω,

where D ⊂ Ω and χD is the characteristic function of a subdomain D. For
the determination of D, we measure Dirichlet data u on ∂Ω. We prove the
uniqueness in this inverse problem within some classes of subdomains of Ω .
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1. Introduction and Main Results

In this paper, we consider an inverse problem arising in the determination

of transistor contact resistivity and contact window location of planar electronic

devices. For the physical interpretation, see [4], [15], [16]. We are interested in the

inverse problem of recovering an unknown contact subdomain D from a single

boundary measurement of the voltage potential. More precisely, let Ω ⊂ R
n,

n = 2 or 3, be a bounded domain with C2 boundary and D be a subdomain

compactly contained in Ω with Lipschitz boundary ∂D. Let g be a given applied

current on ∂Ω. Then the corresponding electric potential u satisfies the Neumann

boundary value problem :{
−∆u + χDu = 0 in Ω

∂u
∂ν

= g on ∂Ω,
(1.1)
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where χD is the characteristic function of D and ν is the unit outward normal

vector to ∂Ω. Since, for given domain D and g ∈ H− 1
2 (∂Ω), there exists a unique

solution u ∈ H1(Ω) of (1.1), the Neumann-to-Dirichlet map ΛD : H− 1
2 (∂Ω) →

H
1
2 (∂Ω) can be defined by

ΛD(g) := u|∂Ω. (1.2)

The inverse problem is to identify the unknown domain D by a single boundary

measurement (g,ΛD(g)) on ∂Ω.

There are extensive studies for the determination of contact resistivity in both

mathematical and engineering fields (e.g., [4], [14], [15], [16]). In particular,

a uniqueness result within a one-parameter monotone family from a one-point

boundary measurement of the potential is obtained in [4]. Moreover [14] pro-

vides a global uniqueness result within the class of two- or three- dimensional

balls from a single boundary measurement. On the other hand, there are many

inverse problems similar to our problem. For example, inverse problems of the

determination of the potential q in the Schrödinger equation −∆u+ qu = 0 in Ω

have been studied in [1], [2], [6], [7]. The inverse conductivity problem, which is

the determination of the coefficient γ in the equation ∇·(γ∇u) = 0 in Ω, is also a

related significant problem (e.g., [3], [8], [11], [12], [13], [18]). As for monographs

concerning inverse problem, see [9], [10].

Our purpose in this paper is to prove the uniqueness for the inverse problem

where we are required to determine an unknown domain D by a single boundary

measurement (g,ΛD(g)). To our knowledge, the uniqueness result [14] in the

ball case is the latest one, and the general uniqueness by a single boundary

measurement is still open.
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We will prove the global uniqueness within two classes S and T of subdomains

of Ω which are defined as follows : Let A and B be any domains in R
n, n = 2 or

3. For a unit vector a and t ∈ R, let us set

La
t [A,B] := {x ∈ A ∪ B | x · a = t},

Ua
t− [A,B] := {x ∈ A ∪ B | x · a < t},

Ua
t+ [A,B] := {x ∈ A ∪ B | x · a > t},

where the notation “ · ” denotes the inner product in R
n.

Let S be a class of simply connected subdomains of Ω with C2 boundary so

that for any A,B ∈ S, A 
= B implies that either one is contained in the other,

or there exist a unit vector a and a real number t such that

A \B ⊂ Ua
t− [A,B] and B \A ⊂ Ua

t+ [A,B].

Example 1 : As S, we can take the class of all balls contained in Ω.

Example 2 : The class of convex subdomains of Ω of which any two distinct

elements A, B satisfy

either i)A ⊂ B or B ⊂ A
or ii)A \B and B \ A are non-empty and simply connected.

Next let T be a class of simply connected subdomains of Ω with C2 boundary

so that for any A,B ∈ T , A 
= B implies that either one is contained in the other,

or there exist unit vectors a, b and t1, t2, s1, s2 ∈ R with t1 < t2 and s1 < s2

such that

A \B ⊂ Ua
t1− ∪ Ua

t2+ and B \ A ⊂ Ua
t1+ ∩ Ua

t2−, (1.3)

and

A \B ⊂ U b
s1

+ ∩ U b
s2

− and B \ A ⊂ U b
s1

− ∪ U b
s2

+ . (1.4)
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The class of ellipses with common center in R
n contained in Ω is one example of

T .

Throughout this paper, we assume that g ∈ C0,α(∂Ω) for some 0 < α < 1,

g ≥ 0 and g 
≡ 0 on ∂Ω. Then the maximum principle and Hopf’s lemma (e.g.,

[5]) imply that

u(x) ≥ 0 for all x ∈ Ω. (1.5)

Also it is well known (e.g., [17]) that

u ∈ C1,α(Ω) for some 0 < α < 1 (1.6)

and

u is analytic in Ω \ ∂D. (1.7)

Now we are ready to state our main results.

Theorem 1.1. Suppose that D1, D2 belong to the family S and Ω \ (D1 ∪D2) is

connected. If ΛD1(g) = ΛD2(g), then D1 = D2.

Theorem 1.2. Suppose that D1, D2 belong to the family T and Ω \ (D1 ∪D2)

is connected. If ΛD1(g) = ΛD2(g), then D1 = D2.

Before proving these theorems in Section 3, we will make some preliminary

discussion for the one-dimensional case, which is motivating for the proofs.

2. One-Dimensional Case

We consider the one-dimensional case. Let Ω = (0, L) be a bounded open

interval in R and let D1 = (a1, a2), D2 = (b1, b2) be open subintervals compactly

contained in Ω with a1 ≤ b1. Let uj, j = 1, 2, be the solution of the second order
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ordinary differential equation :{
−u′′

j + χDj
uj = 0 in Ω

u′
j(0) = d0 and u′

j(L) = dL.
(2.1)

To guarantee the non-negative of solutions uj, we assume that d0 < 0 and dL > 0.

Then we can show the uniqueness in the one-dimensional case : If u1(0) = u2(0)

and u1(L) = u2(L), then D1 = D2. We want to prove this uniqueness by an

argument which is extended to the two- or three-dimensional case in Section 3.

Suppose that D1 
= D2. We should consider two cases :

Case 1. either D1 ⊂ D2 or D2 ⊂ D1

Case 2. there exists x ∈ Ω such that

∅ 
= D1 \D2 ⊂ (0, x) and ∅ 
= D2 \D1 ⊂ (x, L).

In Case 1, the result in [4] already yields the uniqueness. Hence we exclusively

discuss Case 2. Let us define y := u1 − u2 in Ω. Since y′′ = 0 in (0, a1) and

y(0) = y′(0) = 0, the function y must be identically zero in (0, a1). Therefore y

satisfies the nonhomogeneous equation :

y′′ = u1χD1\D2
+ yχD1∩D2 in (a1, x), (2.2)

y(a1) = y′(a1) = 0. (2.3)

By setting z := min{a2, x}, the equation (2.2) can be converted into

y′′ = y + u2χD1\D2
in (a1, z), (2.4)

y′′ = 0 in (z, x). (2.5)

The solution y of the nonhomogeneous equation (2.4) with boundary data (2.3)

has the form

y(t) =

∫ t

a1

sinh(t− s)u2(s)χD1\D2
(s)ds in (a1, z). (2.6)
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By differentiating (2.6), we have

y′(t) =
∫ t

a1

cosh(t− s)u2(s)χD1\D2
(s)ds in (a1, z). (2.7)

Since u2 
≡ 0 is non-negative and D1 \D2 
= ∅, it follows from (2.6) and (2.7) that

y(z) > 0 and y′(z) > 0. (2.8)

Furthermore by (2.5) and (2.8), we can find that

y(x) > 0. (2.9)

On the other hand, y also satisfies the following nonhomogeneous equation{
y′′ = −u2χD2\D1

+ yχD1∩D2 in (x, b2),

y(b2) = y′(b2) = 0.
(2.10)

Solving the equation (2.10) in the same way, we can obtain

y(x) < 0. (2.11)

Hence a contradiction occurs and we can conclude that D1 = D2. �

This one-dimensional case justifies the necessity of the introduction of classes

such as S and T . The set La
t [A,B] plays the corresponding role in the two- or

three- dimensional case as the real number x in Case 2.

3. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Let uj, j = 1, 2, be the solution of (1.1)

corresponding to the domain Dj . By (1.5), u1 and u2 are non-negative functions
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on Ω. Let us define y := u1 − u2 in Ω. Then the function y satisfies

∆y = 0 in Ω \ (D1 ∪D2), (3.1)

∆y = u1 ≥ 0 in D1 \D2, (3.2)

∆y = −u2 ≤ 0 in D2 \D1, (3.3)

∆y = y in D1 ∩D2, (3.4)

and y =
∂y

∂ν
= 0 on ∂Ω. (3.5)

(3.6)

Since y is harmonic in Ω \ (D1 ∪D2) and y = ∂y
∂ν

= 0 on ∂Ω, the unique continu-

ation implies that

y = 0 in Ω \ (D1 ∪D2) and y = ∇y = 0 on ∂(D1 ∪D2).

We will show that the domains D1 and D2 coincide by contradiction. Suppose

that D1 
= D2. By [4], we see that the monotone case can not occur. Since D1

and D2 belong to the family S, we may assume that there exist a unit vector a0

and a real number t0 such that

D1 \D2 ⊂ Ua0

t0−[D1, D2] and D2 \D1 ⊂ Ua0

t0+ [D1, D2]. (3.7)

For the simplicity of notations, La0
t [D1, D2], U

a0

t− [D1, D2], and Ua0

t+ [D1, D2] are

denoted by La0
t , Ua0

t− , and Ua0

t+ , respectively. For any t ∈ R, let us define two

functions

φ(t) :=

∫
L

a0
t

ydσ and vt(x) = t− a0 · x, (3.8)

where the surface La0
t is oriented so that the orientation is the same as in (3.9).

Note that the function vt is harmonic in R
n and positive in Ua0

t− . It follows from
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Green’s second identity that∫
U

a0
t−

(∆y)vtdx =

∫
∂U

a0
t−

(
∂y

∂ν
vt − y

∂vt

∂ν
)dσ, (3.9)

where ν is the outward unit vector normal to ∂Ua0

t− . Since y = ∇y = 0 on

∂(D1 ∪D2) and vt = 0, ∂vt

∂ν
= −1 on La0

t , we have∫
∂U

a0
t−

(
∂y

∂ν
vt − y

∂vt

∂ν
)dσ = φ(t). (3.10)

Therefore, by (3.9) and (3.10), we obtain

φ(t) =
∫

U
a0
t−
(∆y)vtdx

=
∫

U
a0
t−\D2

u1vtdx+
∫

U
a0
t−∩D1∩D2

yvtdx−
∫

U
a0
t−\D1

u2vtdx

=
∫

U
a0
t−\D2

(u1 − u2)vtdx+
∫

U
a0
t−\D2

u2vtdx +
∫

U
a0
t−∩D1∩D2

yvtdx

+
∫

U
a0
t−\D1

(u1 − u2)vtdx−
∫

U
a0
t−\D1

u1vtdx

=
∫

U
a0
t−
yvtdx+

∫
U

a0
t−\D2

u2vtdx−
∫

U
a0
t−\D1

u1vtdx.

(3.11)

Moreover, the differentiation of the equation (3.11) with respect to the variable

t yields

φ′(t) =
∫

U
a0
t−

ydx+

∫
U

a0
t−\D2

u2dx−
∫

U
a0
t−\D1

u1dx. (3.12)

Let tm := sup{t ∈ R | Ua0

t− = ∅} and tM := inf{t ∈ R | Ua0

t+ = ∅}. Since∫
U

a0
t−
ydx =

∫ t

tm
(
∫

L
a0
s
ydσ)ds =

∫ t

tm
φ(s)ds, we can write φ′(t) as follows :

φ′(t) =
∫ t

tm

φ(s)ds +

∫
U

a0
t−\D2

u2dx−
∫

U
a0
t−\D1

u1dx. (3.13)

Differentating the equation (3.13) with respect to the variable t, we obtain

φ′′(t) = φ(t) +

∫
L

a0
t \D2

u2dσ −
∫

L
a0
t \D1

u1dσ. (3.14)

Since Ua0

t− \ D1 = ∅ for any t ∈ (tm, t0), by (3.13), the function φ satisfies the

nonhomogeneous differential equation{
φ′′ = φ+ r in (tm, t0)

φ(tm) = φ′(tm) = 0,
(3.15)
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where r(t) =
∫

L
a0
t \D2

u2dσ. By solving the equation (3.15), the solution φ is given

by

φ(t) =

∫ t

tm

sinh(t− s)r(s)ds in (tm, t0). (3.16)

Since r is non-negative and not identically zero, it follows from (3.16) that

φ(t0) > 0.

On the other hand, we can argue similarly in Ua0

t+0
, and we obtain that φ(t0) < 0

by ∆y = −u2 < 0 in D2 \D1. Hence a contradiction occurs and it leads to the

conclusion that D1 = D2. �

Proof of Theorem 1.2. We continue to use notations in the proof of

Theorem 1.1. Suppose that D1 
= D2. Due to [4], we can consider only the

non-monotone case, i.e., D1 \D2 
= ∅ and D2 \D1 
= ∅. Let uj, j = 1, 2, be the

solution of (1.1) corresponding to the domain Dj. Without loss of generality, we

may assume that ∫
D1\D2

u2dx−
∫

D2\D1

u1dx ≥ 0. (3.17)

Under (3.17), we will use only the condition (1.3). More precisely, since D1 and

D2 belong to T , there exist a unit vector a0 and two real numbers t1, t2 with

t1 < t2 such that

D1 \D2 ⊂ Ua0

t1− ∪ Ua0

t2+ (3.18)

and

D2 \D1 ⊂ Ua0

t1+ ∩ Ua0

t2−. (3.19)

Let tm := sup{t ∈ R | Ua0

t− = ∅} and tM := inf{t ∈ R | Ua0

t+ = ∅}. Note that

tm < t1 < t2 < tM . As in the proof of Theorem 1.1, let y := u1−u2 on Ω. Setting

φ(t) :=
∫

L
a0
t
ydσ and vt(x) = t−a0 ·x, t ∈ R, we can obtain two equations similar
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to (3.11) and (3.13)

φ(t) =

∫
U

a0
t−

yvtdx +

∫
U

a0
t−\D2

u2vtdx−
∫

U
a0
t−\D1

u1vtdx (3.20)

and

φ′(t) =
∫ t

tm

φ(s)ds +

∫
U

a0
t−\D2

u2dx−
∫

U
a0
t−\D1

u1dx. (3.21)

We can find from the proof of Theorem 1.1 that φ is a strictly increasing and

positive function on (tm, t1], and a strictly decreasing and positive one on [t2, tM).

If φ is nonnegative on (t1, t2), then, by noting that Ua0

t−M
\ D2 = D1 \ D2 and

Ua0

t−M
\D1 = D2 \D1, the assumption (3.17) and the equation (3.21) imply that

φ′(tM) > 0, (3.22)

which is impossible. Therefore there exists a real number t∗ ∈ (t1, t2) such that

φ(t∗) < 0 and φ′(t∗) = 0. Since Ua0

t− \ D2 = Ua0

t1− \ D2 for any t ∈ [t1, t2], it

follows that
∫

U
a0
t−\D2

u2dx is constant on [t1, t2]. Therefore, we have that for any

t ∈ (t∗, t2)

φ′(t)
=

∫ t∗
tm
φ(s)ds +

∫ t

t∗ φ(s)ds+
∫

U
a0
t∗−

\D2
u2dx−

∫
U

a0

t−∗
\D1

u1dx−
∫
(U

a0
t−\Ua0

t−∗
)\D1

u1dx

= φ′(t∗) +
∫ t

t∗ φ(s)ds−
∫
(U

a0
t−\Ua0

t
−∗

)\D1
u1dx

=
∫ t

t∗ φ(s)ds−
∫
(U

a0
t−\Ua0

t−∗
)\D1

u1dx.

(3.23)

By using (3.23), we can prove that

φ(t2) < 0. (3.24)

This is a contradiction to φ(t2) > 0 and we can conclude that D1 = D2. In fact,

assume contrarily that φ(t2) ≥ 0. Setting η := inf{t ∈ (t∗, t2] | φ(t) ≥ 0}, we

have t∗ < η ≤ t2, φ(t) < 0 for any t ∈ (t∗, η) and φ(η) = 0. By the equation

(3.23), we have that φ′ is a decreasing function on (t∗, η). Since φ′(t∗) = 0, we
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obtain

φ′(t) < 0 for any t ∈ (t∗, η), (3.25)

which implies that φ(η) < φ(t∗) < 0, which is a contradiction to φ(η) = 0 and

proves our claim (3.24). �
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