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Abstract. In this paper, we discuss the two dimensional inverse problem of

determining the anisotropic conductivity from the Dirichlet to Neumann map.

The global conformal uniqueness is proved. The key of the proof is the global

uniqueness result for the inverse problem of determining the convection terms

from the Dirichlet to Neumann map.

1. Introduction

Suppose that 
 is a simply connected domain in R2 with the Lipschitz boundary

@
. Let W 1;p(
), W 2;p(
) denote the usual Sobolev spaces for p > 2 and C�(@
),

C1;�(@
) denote the H�older continuous space on @
 with � = p�2
p

([17]).

We consider the following Dirichlet problem for the time independent electrical

potential u = u(x1; x2):8>>><
>>>:
r � (�ru) =P2

j;k=1
@
@xj

�
�jk @u

@xk

�
= 0 in 


u = f on @
:

(1.1)
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where f(x) 2 C1;�(@
), �(x) = (�jk(x)) 2 W 1;p(
) ( p > 2) is a positive-de�nite

symmetric matrix and there exists a constant c > 0 such that

 � (� ) � c j j2 for  = ( 1;  2) 2 R2:(1.2)

By the theory of the generalized analytic functions and complex partial di�eren-

tial equations ([17], [18]), we know that there exists a unique solution u 2 W 2;p(
).

Therefore we can de�ne the Dirichlet to Neumann map �� by

�� : C1;�(@
) �! C�(@
)

f �!
2X

j;k=1

�j�
jk @u

@xk
(1.3)

where � = (�1; �2) is the outer unit normal to @
.

The inverse problem we discuss in this paper is determination of the conductivity

matrix � from the Dirichlet to Neumann map.

It is well known that the isotropic conductivity can be determined by the Dirich-

let to Neumann map when dimension is greater than 2 (e.g. [8], [15]). Moreover we

can refer to Isakov [7]. However, an anisotropic conductivity can not be uniquely

determined by the Dirichlet to Neumann map since a di�eomorphism �xing points

on the boundary will not change the Dirichlet to Neumann map. There are pa-

pers establishing the uniqueness modulo di�eomorphism in determining anisotropic

conductivity: [11] in the two dimensional case and [9], [10], [14], [16]. Since this

uniqueness contains a di�eomorphism which is �xed on the boundary, there are

still unknown factors which can not be determined uniquely by the Dirichlet to

Neumann map. For example, such uniqueness modulo di�eomorphism does not

give answers when we want to determine a scalar factor function provided that

anisotropic conductivity is known up to such an unknown factor. More precisely,
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by [11], [14], we know that there exists a di�eomorphism 	 such that �1 = 	 � �2.

However, to authors' knowledge, it is di�cult to obtain the global uniqueness result

from this equality. Because we can only obtain a nonlinear equation whose solution

seems di�cult.

The uniqueness in determining such a factor is called conformal uniqueness. In

[10] and [14], some conformal uniqueness results are proved under some analytic or

smallness assumptions for anisotropic conductivity. In this paper, we will prove the

global conformal uniqueness in two dimensions for the conductivity inW 1;p(
)(p >

2). Our class of the conductivity is more general than in [10], [14]. The key of our

proof is the global uniqueness for the inverse problem of determining the convection

terms from the Dirichlet to Neumann map which is proved in [3], [4] by the inverse

scattering method for �rst order elliptic systems.

This paper is organized as:

� Section 2: Main result

� Section 3: Proof of the main results

� Section 4: Conclusion and remarks

2. Main results

Suppose that p > 2 and �0 2W 1;p(
) is a positive symmetric matrix and satis�es

 � (�0(x) ) � c0j j2 for  = ( 1;  2) 2 R2; x 2 
(2.1)

for some constant c0 > 0.

Let R0 be a positive constant such that


 � BR0
2

(0) �
�
(x1; x2) jx21 + x22 <

R20
4

�
:
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Without loss of generality, we assume that �0 can extended to BR0
(0) such that

�0 2 W 1;p(BR0
(0)) and (2.1) still holds for x 2 BR0

(0)(e.g Chapter VI, x3 in [13]).

Throughout this paper, we �x �0.

For the conductivity equation

r � (�ru) = 0;(2.2)

we look for the conductivity � in the admissible set

F =
�
� j� = ��0; � 2 W 1;p(
); � > c1

	
(2.3)

where c1 > 0 is a �xed constant.

Now we can state our main result:

Theorem 2.1. Suppose that �j 2 F , j = 1; 2. If the Dirichlet to Neumann maps

��j , j = 1; 2, satisfy

��1 = ��2 ;(2.4)

then we have

�1(x) = �2(x); x 2 
:(2.5)

Remark 2.2. If we take the 2� 2 identity matrix as �0, then the result in Theorem

2.1 coincides with the global uniqueness proved in [2], [11].

3. Proof of the main result

3.1. Some Lemmas. For the proof of the main result, we need the following global

uniqueness results for determining the convection coe�cients from the Dirichlet to

Neumann map.
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Let us recall that p > 2 and � = p�2
p
. We set b(x) = (b1(x); b2(x)) 2 Lp(
) �

Lp(
). The Dirichlet to Neumann map can be de�ned as

e�b : C
1;�(@
) �! C�(@
)

f �! @v

@�
j@
(3.1)

where v 2W 2;p(
) is the solution of the following Dirichlet problem:

8>>><
>>>:
�v + b � rv = 0 in 


v = f on @
:

Lemma 3.1. Suppose that bj 2 Lp(
) � Lp(
), j = 1; 2. If e�b1 = e�b2 , then we

have

b1(x) = b2(x); x 2 
:

The proof of this lemma is based on the theory of generalized analytic function

and the inverse scattering method for the �rst order elliptic systems. The readers

can �nd the proof in [3], [4].

Henceforth we identify x = (x1; x2) with z = x1 + ix2 2 C. Moreover we set

@�z =
1
2
( @
@x1

+ i @
@x2

) and @z =
1
2
( @
@x1

� i @
@x2

).

Next we state a result about the quasi-confomal mapping which we will use later.

Lemma 3.2. Suppose that q 2 C�(R2) \ Lp0(R2) with 0 < p0 < 2 and satis�es

kqkL1 � q0 < 1(3.2)

where q0 > 0 is a constant.
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Then there is a homeomorphism solution � = �(z) of the following Beltrami

system

@z� � q@z� = 0;(3.3)

which satis�es � � z 2 C1;�(R2).

Moreover, if q 2W 1;p(
), then � 2W 2;p(
).

This lemma can be found in Chapter II, x5 in [17].

3.2. Uniqueness of the boundary value of �. There are several ways for prov-

ing the uniqueness of the boundary value of � ([1], [6], [8], [12]). Here we follow

the approach by singular solutions in [1].

Lemma 3.3. Suppose that �j = �j�0 2 F , j = 1; 2. If the Dirichlet to Neumann

maps ��j , j = 1; 2, satisfy

��1 = ��2 ;

then we have

�1(x) = �2(x); x 2 @
:

Proof. Without of loss generality, we extend �j from 
 to BR0
(0) such that �j 2

W 1;p(BR0
(0)). This is possible since 
 is a simply connected domain with Lipschitz

boundary @
(e.g. [13]).

Let uj 2W 2;p(
), j = 1; 2 be the solution of

8>>><
>>>:
r � (�jruj) = 0 in 


uj = �j on @
:
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Then we have

Z



ru1 � (�2ru2)dx =

Z
@


�1��2�2dsZ



ru2 � (�1ru1)dx =

Z
@


�2��1�1ds:

Since �j , j = 1; 2, are the symmetric matrices and ��j , j = 1; 2, are self-adjoint,

by ��1 = ��2 , we obtain that

Z



ru1 � ((�2 � �1)ru2) dx = 0:(3.4)

Assume that �1 6= �2. Then there exists a point x� 2 @
 such that

� = j�1(x�)� �2(x
�)j 6= 0:

Without loss of generality, we assume that � = �1(x
�) � �2(x

�). Since �j 2

W 1;p(
) ,! C�(
), there exists " > 0 such that

�1(x)� �2(x) >
�

2
; x 2 B"(x

�) \ 
(3.5)

where B"(x
�) = fx 2 R2 j jx� x�j < "g.

We de�ne a vector e� at x�, which is non-tangential to @
, such that x� �

x� + �e� 2 BR0
(0) n
 for � 2 (0; �0). Here �0 > 0 is a constant.

It is easy to verify that there exists a constant c2 > 0 such that

�

c2
� jx� � x� j � c2�:(3.6)

By the result in [1] (Theorem 1.1), there exists �j 2 C�(@
) such that the

solutions uj , j = 1; 2 of the problem (1.1) corresponding to �j = �j�0 can be

expressed as

uj(x) = ln jJ(x� x� )j+ wj(x); x 2 BR0
(0) n fx�g(3.7)
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and

jrwj(x)j � Cjx� x� j��1; x 2 BR0
(0) n fx�g(3.8)

where J = (�0(x
� ))�

1

2 is a symmetric matrix and C > 0 is independent of x� .

Let 0 < c2 � <
"
2
and U = B"(x

�) \ 
.

By (2.1), it can be veri�ed directly that there exists a constant c3 > 0 such that

Z
U

r ln jJ(x � x� )j � ((�1 � �2)�0r ln jJ(x � x� )j) dx �
Z
U

c3dx

jx� x� j2

where 0 < � < �0 and c3 is independent of x
� .

Then, by (3.5) and (3.7), we have

c3

Z
U

dx

jx� x� j2 �
Z
U

r ln jJ(x� x� )j � (�1 � �2)�0r ln jJ(x � x� )jdx

�
����
Z
U

ru1 � ((�1 � �2)�0ru2) dx
����

+

����
Z
U

rw1 � ((�1 � �2)�0ru2) dx
����

+

����
Z
U

ru1 � ((�1 � �2)�0rw2) dx
����

+

����
Z
U

rw1 � ((�1 � �2)�0rw2) dx
���� :

By (3.4), we have

Z
U

ru1 � ((�1 � �2)�0ru2) dx = �
Z

nU

ru1 � ((�1 � �2)�0ru2) dx:

Noting that jx� x�j > "
2
for x 2 
 n U , we can obtain the estimate

����
Z
U

ru1 � ((�1 � �2)�0ru2) dx
���� � C0;(3.9)

where C0 > 0 is a constant which depends on ", �0, �j , j = 1; 2 and @
, but is

independent of � .



A GLOBAL CONFORMAL UNIQUENESS 9

By (3.8), we have that

����
Z
U

rw1 � ((�1 � �2)�0ru2) dx
���� � C 0

1

Z
jx�x�j<"

jx� x� j��2dx(3.10)

� C1;

where C 0
1 > 0 and C1 > 0 are constants which depend on ", �0, �j , j = 1; 2 and

@
, but is independent of � .

By a similar argument, we have

����
Z
U

ru1 � ((�1 � �2)�0rw2) dx
���� � C2(3.11)

and

����
Z
U

rw1 � ((�1 � �2)�0rw2) dx
���� � C3;(3.12)

where C2 > 0, C3 > 0 are constants which depend on ", �0, �j , j = 1; 2 and @
,

but are independent of � .

Combining (3.9) { (3.12), we can obtain that

Z
U

dx

jx� x� j2 �
1

c4
(C0 + C1 + C2 + C3):(3.13)

It is easy to verify that

Z
U

dx

jx� x� j2 �!1 as � ! 0+:

This is a contradiction to (3.13) since the right hand of (3.13) is independent of � .

Therefore we have �1(x
�) = �2(x

�). The proof is complete.
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3.3. Transform the di�erential equation to the canonical form. For apply-

ing Lemma 3.1, we will transform the elliptic equation

r � (��0ru) = 0(3.14)

to an elliptic equation whose principal part is the Laplace operator.

We set

q(z) =
�110 �p

H + i�120

i�120 � �110 �p
H

(3.15)

where H(z) = �110 (z)�220 (z)� �120 (z)�210 (z) and z = x1 + ix2 2 
.

By (2.1), it is easy to verify that there exists a constant 0 < q0 < 1 such that

jqj � q0 < 1:(3.16)

Since W 1;p(
) ,! C�(
), we can extend q to eq in the whole complex plane such

that

eq(z) = q(z); z 2 


and

jeq(z)j � q0 < 1; eq 2 C�
0 (R2);

where C�
0 (R2) denotes the space of H�older continuous functions with compact sup-

ports in R2.

Now we consider the homeomorphism solution � = �(z) of the Beltrami equation:

@�z� � eq@z� = 0:(3.17)

By Lemma 3.2, we know that there exists a unique homeomorphism solution

�(z) such that �(z)� z 2 C1;�(R2) and � 2 W 2;p(
) since q 2W 1;p(
).
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We denote e
 = �(
). Then e
 is a simply bounded domain in the �-plane with

the Lipschitz boundary boundary @e
.
Let � = �1 + i�2. Since � is a homeomorphism, we can consider the following

coordinate transform:

8>>><
>>>:
�1 = �1(x1; x2)

�2 = �2(x1; x2):

By direct calculations and �j = �j�0, j = 1; 2, we see that the elliptic equation

(2.2) with � = �j�0 can be transformed to

��vj + bj � r�vj = 0 in e
;(3.18)

where we set vj(�1(x1; x2); �2(x1; x2)) = uj(x1; x2) and J = @�1
@x1

@�2
@x2

� @�1
@x2

@�2
@x1

6= 0,

bj = (bj1; b
j
2), j = 1; 2. Here

b
j
1 =

J

4
p
H

(rx � (�j�0rx�1))

b
j
2 =

J

4
p
H

(rx � (�j�0rx�2)) :

For the details of this transform, we can refer to [17], Chapter II, x7.

Now we can complete the proof of Theorem 2.1:

Proof of Theorem 2.1:

First we note that the coordinate transform �j = �j(x1; x2), j = 1; 2, is indepen-

dent of �k, k = 1; 2. For j = 1; 2, we consider the following Dirichlet problem

8>>><
>>>:
��vj + bj � r�vj = 0 in e

vj = f on @e
:

(3.19)
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Then we have that uj(x1; x2) = vj(�1(x1; x2); �2(x1; x2)) is the solution of the

following problem

8>>><
>>>:
r � (�j�0ruj) = 0 in 


uj = � on @


where �(x1; x2) = f(�1(x1; x2); �2(x1; x2)).

Since ��1 = ��2 , by Lemma 3.3, we have

2X
j;k=1

�j�
jk
1

@

@xk
(u1 � u2) = 0 on @
;

with which we combine u1 = u2 on @
 to obtain

rxu1 = rxu2 on @
:

Therefore we can obtain that

@v1

@e�� =
@v2

@e�� on @e
(3.20)

where e�� is the outer unit normal to @e
.
The equality (3.20) means that the Dirichlet to Neumann map e�b1 and e�b2 ,

which are de�ned by (3.1) with b = bj , j = 1; 2, satisfy

e�b1 = e�b2 :

By Lemma 3.1, we can conclude that

J

4
p
H

(rx � (�1�0rx�1)) =
J

4
p
H

(rx � (�2�0rx�1)) in e

J

4
p
H

(rx � (�1�0rx�2)) =
J

4
p
H

(rx � (�2�0rx�2)) in e
:
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Hence

rx � ((�1 � �2)�0rx�1) = 0 in 
(3.21)

rx � ((�1 � �2)�0rx�2) = 0 in 
:(3.22)

We set �� = �1 � �2. Then we can rewrite (3.21) and (3.22) as

r(��) � (�0r�1) + ��r � (�0r�1) = 0 in 
(3.23)

r(��) � (�0r�2) + ��r � (�0r�2) = 0 in 
:(3.24)

Since �0 is a symmetric positive matrix and r�1, r�2 are linearly independent,

from (3.23) and (3.24), we can have

r(��) + ��D = 0; in 
(3.25)

where D = D(x) is a vector which depends on �j and �0.

By Lemma 3.3, we have

(��)(x) = 0; for x 2 @
:

Therefore �� satis�es the �rst order partial di�erential equation (3.25) with zero

boundary condition. By the uniqueness of the boundary value problem for (3.25),

we obtain that

��(x) = �1(x)� �2(x) = 0; x 2 
:(3.26)

The proof is complete.
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4. Conclusion and remarks

We discuss the global uniqueness for the inverse problem of determining the

anisotropic conductivity from the Dirichlet to Neumann map. The key of our proof

is the global uniqueness for the inverse problem of determining the convection term

in an elliptic partial di�erential equation by the Dirichlet to Neumann map. The

quasi-conformal map is also used to transform the conductivity equation to an

elliptic equation whose principal part is the Laplace operator. We do not need the

smallness assumption or analytic assumption on the conductivity.

It is well known that the anisotropic conductivity can not be uniquely determined

by the Dirichlet to Neumann map. For establishing the uniqueness, we have to

restrict the class in which we want to �nd the conductivity. This is the reason why

we discuss this conformal uniqueness.

Next we give several remarks about our results and ways.

Remark 4.1. It is also possible to de�ne the Dirichlet to Neumann �� fromH
1

2 (@
)

to H� 1

2 (@
) ([12]) and to discuss the conformal uniqueness.

Remark 4.2. By the techniques in [3], [4], it is possible to prove the conditional

stability for the inverse problem which we discuss in this paper. From [5], we

know that this kind conditional stability is very important for guaranteeing stable

numerical reconstruction algorithm based on the Tikhonov regularization.
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