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Abstract

We discuss general properties of classical string �eld theories with symmetric vertices in

the context of deformation theory. For a given conformal background there are many string

�eld theories corresponding to di�erent decomposition of moduli space of Riemann surfaces.

It is shown that any classical open string �eld theories on a �xed conformal background

are A1-quasi-isomorphic to each other. This indicates that they have isomorphic moduli

space of classical solutions. The minimal model theorem in A1-algebras plays a key role in

these results. Its natural and geometric realization on formal supermanifolds is also given.

The same results hold for classical closed string �eld theories, whose algebraic structure is

governed by L1-algebras.
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1 Introduction and Summary

The present paper is motivated to make clear the complicated structures of string �eld theories

(SFTs) in terms of homotopy algebras. We assume the existence of well-de�ned SFTs on a

conformal background, and discuss the general properties which they should possess. We show

that any classical open SFTs, which are constructed so as to reproduce the open string correlation

functions on-shell, are quasi-isomorphic to each other. Moreover, when such SFT actions are

given, A1-quasi-isomorphisms between them are constructed. These results guarantee that there

is one-to-one correspondence of the equations of motions corresponding to marginal deformation
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between such family of SFTs on the same conformal background. This gives an answer about

the issue for the relation between SFTs with di�erent decomposition of moduli spaces. These

arguments also give the minimal model theorem in deformation theory a geometric insight.

These arguments are applicable for classical closed SFT similarly, and it can be shown that all

such consistent classical closed SFTs are L1-quasi-isomorphic to each other.

SFT has been investigated as a candidate for string theory which describes nonperturbative

e�ects. SFT gives one of the way which extends on-shell two dimensional string theory to o�-

shell theories. Many Lorentz covariant SFTs have been constructed. The covariant open or

closed SFT with light cone type vertices (HIKKO's SFT)[1], a very simple open SFT which

consists of only a three-point vertex (Witten's open SFT or cubic SFT)[2], and so on. Witten's

SFT can be treated in the context of Batalin-Vilkovisky (BV)-formalism[3]. HIKKO's closed

SFT is also extended to quantum SFT by employing the quantum BV-master equation[4]. The

quantum master equation is moreover applied to construct quantum closed SFT with symmetric

vertices[5]. Though this theory has in�nite sort of vertices of higher punctures and higher genus,

it has a very beautiful algebraic structure. For instance for the classical part, the set of the tree

vertices has the structure of a L1-algebra. Open-closed SFT is also considered in this direction

[6]. The open-closed symmetric vertices have relations from quantum BV-master equation,

where `symmetric' means cyclic for open string punctures and commutative for closed string

punctures. Several subalgebras of subsets of the vertices can be considered : disk (tree) vertices

with punctures only on the boundary, which has the structure of an A1-algebra, sphere vertices

with punctures (an L1-algebra), disk vertices with both open and closed vertex insertions

(though the algebraic structure of which does not have a particular name), all vertices with no

boundaries (the theory of which is the above quantum closed SFT[5]), and so on. Recently a

classical open SFT, which possesses the A1-structure, is constructed explicitly[7] by deforming

the cubic SFT[2].

All the above SFTs satisfy the (classical or quantum) BV-master equation. In constructing

a SFT action, any types of vertices, which are written by the powers of string �elds and their

coeÆcients, are considered and the master equation are used in order to decide the coeÆcients
1. Moreover, in the two-dimensional world sheet picture, the fact that the SFT action satis�es

the BV-master equation corresponds to that the moduli spaces of Riemann surfaces are single-

covered[13]. Hereafter in this paper, we treat only (bosonic) SFTs with the symmetric vertices

and those algebraic structures are discussed.

There have been mainly two issues for the SFTs constructed as above : i) the realiza-

tion about the relation between SFTs constructed by di�erent decomposition of moduli space

of Riemann surfaces on a �xed conformal background ; and ii) the background independence

[14, 15, 16]. In order to assert that the SFT gives an nonperturbative de�nition of string theory

the second issue is necessary. For the �rst issue, it might be believed that the SFTs derived with

di�erent decomposition of the moduli space are physically equivalent in some sense. Indeed in

[17] for quantum closed SFT it is shown that any in�nitesimal variation of the decomposition

leads in�nitesimal �eld rede�nition preserving the SFT actions and the BV-symplectic struc-

1The use of BV-formalism is di�erent from the original use of BV-formalism for gauge theories (see subsection

4.2), but the similar treatment is done for instance for topological theories in super�eld formalisms [8, 9, 10, 11, 12].
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tures. Analogous consequence is expected for open SFTs. In fact in [7] an one parameter family

of the classical open SFT is discussed and the in�nitesimal �eld rede�nition preserving the ac-

tion is found. However the relation between SFTs which di�er �nitely in the decomposition of

the moduli space has not ever been discussed.

Roughly speaking, these issues are equivalent to that of looking for the map between SFTs

preserving the BV-symplectic structures. Restricting the arguments to the classical theory, as

were mentioned above, the classical closed SFT satisfying the classical BV-master equation has

the structure of a L1-algebra, and similarly the classical open SFT has the structure of an A1-

algebra. As will be explained in section 4, the algebraic structure of classical open (resp. closed)

SFT is an A1-algebra (resp. L1-algebra) which possesses the graded cyclic (resp. commutative)

symmetry through the BV-symplectic structure. A1-algebra has appeared for the �rst time in

[18]. It is a deformation of an associative graded algebra with di�erential (DGA), and consists

of a di�erential Q, a product �, and higher products. L1-algebra is its graded commutative-

symmetrized version. It is given as a deformation of a di�erential graded Lie algebra (DGLA),

and consists of a di�erential Q, a Lie bracket [ ; ], and higher brackets[19]. In SFT, Q is the

BRST-operator [20], the product � (resp. the Lie bracket [ ; ] )corresponds to the trivalent

vertex of classical open SFT (resp. classical closed SFT), and higher products (resp. higher

brackets) correspond to higher vertices of classical open (resp. closed) SFT.

In SFT or others, one of the important advantage to �nding out the A1 or L1-structures

is presumably that they have A1 or L1-morphisms which transform an A1 or L1-algebra to

another one. For example, the existence of the deformation quantization[21] on general Poisson

manifolds is proved as a consequence of constructing a L1-morphism between certain two L1-

algebras 2 [22]. Here when a Poisson structure on a manifold M is given, the deformation

quantization on M means that the associative product is constructed as the power expansion

of a deformation parameter ~, the leading term of which is the usual commutative product of

functions on M , and next term of which is the Poisson bracket. The constructed L1-morphism

induces the isomorphism between the cohomologies of these two algebras with respect to the

di�erentials Q. Such morphism is called a quasi-isomorphism. The fact that the above two

algebras are quasi-isomorphic to each other is called formality[22], which has been conjectured

originally in [23]. Moreover when an A1 or L1-algebra is given, one can de�ne its Maurer-

Cartan equation, the solution space of which gives moduli space in the context of deformation

theory. In addition, an A1 or L1-morphism preserves the solution space of the Maurer-Cartan

equations. In the above case of the deformation quantization problem[22], the solution space of

the Maurer-Cartan equation for one side of the two L1-algebras gives the space of the Poisson

structures, and that for another side gives the space of the structures of the associative products.

Therefore constructing the L1-morphism has led the existence of the deformation quantization
3.

2DGLAs are L1-algebras whose higher brackets are set to be zero. In fact, the two L1-algebras considered

in [22] are both DGLAs. The reason that these DGLAs have to be treated in the context of L1-algebras is

that a L1-morphism, which is a nonlinear map between these two DGLAs which preserves the solutions of the

Maurer-Cartan equations, is needed.
3In [24], the L1-morphism de�ned in [22] is explicitly derived as a BV-quantization of Poisson-sigma model
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For classical SFT, the Maurer-Cartan equation is nothing but the equation of motion, and the

A1 or L1-morphisms, which, by de�nition, preserve the Maurer-Cartan equation, correspond

to the �eld transformation. Thus the problem of considering the family of SFTs satisfying the

classical BV-formalism is translated to that of considering the family of A1 or L1-algebras

(with the BV-symplectic structure), and one can employ the A1 or L1-morphisms in order to

realize the relation between two di�erent SFTs in the family. In such reason, we want to �nd A1
or L1-morphisms in various situations in SFT. However unfortunately, in general when any two

A1 or L1-algebras are given, the canonical way of constructing the morphism between them

does not exist, though in the deformation quantization problem, the L1-morphism is exactly

found (from the insight of the two-dimensional topological �eld theory).

Recently there is a development at this point. In [23, 22] the following fact is mentioned :

when an A1 (resp. L1)-algebra H with nonvanishing Q is given, by restricting the algebra to

the kernel (or the cohomology class) of Q, the vector space Hp (with Q = 0) is obtained, and

then there exists an A1 (resp. L1)-structure on H
p (with Q = 0) which is quasi-isomorphic to

the original A1 (L1)-algebra H. This is called minimal model theorem in [23, 22]. Moreover

in [25] the canonical A1-structure on H
p and a canonical A1-quasi-isomorphism from Hp to H

are constructed explicitly using Feynman graphs. The same argument holds for L1-algebra. In

[25] this is applied to the homological mirror conjecture, which states that the derived category

of A1-category [26] in A-model and the derived category of coherent sheaves in B-model are

equivalent[27]. Recently, for example, the minimal theorem is applied in [28, 29, 30] to transform

the topological Chern-Simons SFT action [31] to so-called D-brane superpotential.

However the minimal model theorem is very important not only for topological theories but

for usual SFT, where Q is the BRST-operator and Hp is the physical state space. The fact that

an A1-structure is constructed on Hp means that the two-dimensional string theory has the

structure of an A1-algebra. This statement is essentially already known. In [32] it is described

that the tree closed string theory has the structure of the L1-algebra (and extended this result

to quantum case [33]). The fact holds similar for open string theory and which implies that the

A1-structure of a classical open SFT on a conformal background is A1-quasi-isomorphic to the

A1-structure of the two-dimensional theory.

Using the above argument, we get the results stated at the beginning. We will explain in the

classical open SFT case in the following two reason. First, open SFT has the cyclic symmetry

of its vertices and closed SFT has the graded commutative symmetry, which includes the cyclic

symmetry but is much larger symmetry than it. Therefore essentially we can get the algebraic

structure of closed SFT by graded commutative- symmetrizing the cyclic open string vertices.

Second, since A1-morphisms transform the classical solutions of classical open SFT to those of

another classical open SFT, it may be applicable to the problem of tachyon condensation[34] in

SFT[35, 36], though directly can not as will be commented in Discussions.

This paper is organized as follows.

on a disk. The condition that the morphism is actually a L1-morphism is identi�ed with the Ward identity in

BV-formalism. However the relation between the L1-algebra and BV-formalism is di�erent from that in SFT.

In the former case the BV-bracket corresponds to a Lie bracket in the L1-algebra on one side.
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In section 2, the de�nitions and some known facts about A1-algebras are summarized.

In section 3, the way of constructing consistent SFT which satis�es classical BV-master

equation is reviewed, because the main idea of them is essential for the later arguments. We

give only the formal construction of SFT, and its concrete realization is omitted. For more

details, see for example [5, 7].

In section 4, the algebraic structures of SFT constructed in section 3 are discussed. In

subsection 4.1 it is clari�ed that the algebraic structure of the SFTs, which has cyclic vertices

and satis�es classical BV-master equation, is an A1-algebra with cyclic symmetry through the

BV-symplectic structure. Moreover, we describe that the gauge transformation for the A1-

structure is the gauge transformation of BV-formalism[37, 38, 39] in subsection 4.2. Finally in

subsection 4.3 the notations and de�nitions are summarized for later arguments including those

already used in section 3 and 4. The result in this section might also be known essentially, but

there might not be literatures which gives the similar explanations.

In section 5, the minimal model theorem[25] is introduced and applied to classical open

SFTs. In order to understand its meaning, we demonstrate that it arises from the issue of

�nding the solutions of the Maurer-Cartan equation for an A1-algebra. For the original A1-

algebra, another canonical A1-algebra and an A1-quasi-isomorphism between them are derived

naturally, and they are expressed using some Feynman diagrams. Moreover we give a proof of the

minimal model theorem in this direction. Its geometrical realization on formal noncommutative

supermanifolds is also given. In subsection 5.2, it is clari�ed that the Feynman graph de�ned in

the previous subsection is actually the Feynman graph in SFT. In order to see the propagator

explicitly, we discuss mainly the case of Siegel gauge and clarify that the usual propagator in

SFT can be applied to the procedure in the previous subsection. In subsection 5.3, it is shown

that the canonical A1-algebra generated graphically gives the correlation functions of open

strings (Lem.5.1). Moreover in subsection 5.4 we show that all SFTs on a �xed conformal �eld

theory are quasi-isomorphic to each other(Thm.5.1). This immediately follows from the fact

that any SFT constructed consistently as will be explained in section 3 coincides with the open

string correlation functions on-shell. The quasi-isomorphism is described in terms of Feynman

diagram in SFT, and it gives a �nite �eld transformation on certain subspace. Furthermore, a

boundary SFT like action which is isomorphic to the original SFT action is proposed.

Since all the above arguments are very formal, in section 6 we apply them to the classical

open SFT explicitly constructed in [7]. In [7] an one parameter family of the classical open

SFTs is discussed from the viewpoint of the renormalization group[40], which states that the

variation of the �elds and the coeÆcients of the vertices with respect to the renormalization

scale cancel each other and the action is invariant. The 
ow of the �elds is then derived, which

gives an in�nitesimal �eld rede�nition between the SFTs with di�erent renormalization scales.

After reviewing a part of the arguments in [7], we show that the in�nitesimal �eld rede�nition

gives an A1-isomorphism on the Siegel gauge. Moreover it is observed that the in�nitesimal

version of the �nite A1-quasi-isomorphism discussed in the above section coincides with that

given in [7] on the subspace. Finally various viewpoints in this paper is summarized in this

explicit model.

In Conclusions and Discussions, the issue of the background independence[41, 42] is rear-
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ranged. The tachyonic solution in cubic SFT[35] is also argued from the viewpoint of this paper.

The relation to the boundary SFT[43] and the application to other SFTs are also commented.

In Appendix A, the precise meaning of taking the dual of the A1-algebras is presented.

The correspondence between an A1-algebra and its dual means the correspondence between a

SFT in the operator language and its �eld theory representation, and it is used implicitly in the

body of this paper in order to simplify some explanations. In Appendix A.1, the dual is de�ned

with an inner product, and its graphical explanation is also described. The dual picture is used

in many literatures, but there are less literatures where the explicit relation between them is

presented. In Appendix A.2, A1-algebras are realized geometrically in the dual picture. It will

be seen that those are described in terms of noncommutative formal supermanifolds.

In Appendix B some detail calculations for string vertices are presented.

2 A1-algebra

It is known that classical open (resp. closed) SFTs have the structure of A1-algebras[6, 44,

7] (resp. L1-algebras[5]). Here summarizes some basic facts about A1-algebras ((strong)

homotopy associative algebras). The facts are applicable for L1-algebras ((strong) homotopy

Lie algebras).

A1-algebras are de�ned in terms of coalgebras. As will be de�ned below, for H a graded

vector space, we consider C(H) := �k�1H

k as a coalgebra. In the terminology of SFT, H is

the Hilbert space of string states and the degree (grading) of H is related to the ghost number.

Though coalgebras may be unfamiliar, it seems natural to the many body system (of strings), and

it is useful to control A1- (or L1-)algebras formally very simple. Intuitively, or geometrically,

the dual picture of coalgebras is suitable to realize them. For � 2 H a string �eld of degree zero,

splitting j�i as j�i = jeii�
i where fjeiig are the basis of the string state H and f�ig are the

corresponding supercoordinate 4 , the `dual picture' means the picture on the supercoordinates.

The supercoordinates are the string �elds in SFT. Later we de�ne a `coproduct' on a coalgebra.

The `coproduct' is natural structure for �eld theory because, in the dual picture, it is equivalent

to that the �elds f�ig possesses an associative product as an algebra.

2.1 Coalgebra, coderivation, and cohomomorphism

Since A1- (and L1-) algebras are coalgebras with some additional structures, here introduce it.

De�nition 2.1 (coalgebra, coassociativity) Let C be (generally in�nite dimensional) graded

vector space. When a coproduct 4 : C �! C 
 C is de�ned on C and it is coassociative, i.e.

(4
 1)4 = (1
4)4

then C is called a coalgebra.

4Here `super' means `graded', and `graded' means having degree.
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De�nition 2.2 (coderivation) A linear operator m : C ! C raising the degree of C by one

is called coderivation when

4m = (m
 1)4+ (1
m)4

is satis�ed. Here, for x; y 2 C, the sign is de�ned (1 
 m)(x 
 y) = (�1)x(x 
 m(y)) through

this operation where the x on (�1) denotes the degree of x.

De�nition 2.3 (cohomomorphism) Given two coalgebras C and C 0, an cohomomorphism

(coalgebra homomorphism) F from C to C 0 is a map of degree zero which satis�es the condition

4F = (F 
 F)4 : (2.1)

Remark 2.1 Coassociativity of 4, the condition of coderivations and cohomomorphisms are

equal to that the following diagrams commute

C
4

����! C 
C

4

??y 4
1

??y
C 
 C

1
4
����! C 
 C 
 C

;

C
m

����! C

4

??y 4

??y
C 
C

1
m+m
1
�������! C 
 C

;

C
F

����! C 0

4

??y 4

??y
C 
 C

F
F
����! C 0 
 C 0

:

If the orientation of these map are reversed and the coproduct is replaced by a product, then

the coassociativity, the coderivation, and the cohomomorphism take place to associativity, a

derivation, and a homomorphism of the corresponding algebra, respectively.

Reversing the orientation of the maps corresponds to taking the dual of the coalgebra. The

precise meaning of the dual in the present paper is given in Appendix A.1.

Here, for any graded vector space H, on can consider its tensor coalgebra

C(H) = �k�1H

k

as a coalgebra. Note that C(H) does not contain the summand H
0 = C . In particular, it does

not have a counit.

For this coalgebra, the coassociative coproduct on C(H) is uniquely determined as

4(e1 � � � en) =
n�1X
k=1

(e1 � � � ek)
 (ek+1 � � � en) : (2.2)

The form of the coderivation corresponding to this coproduct is also given as follows : let

fmkgk�1 be the set of multilinear maps of degree one

mk : H
k �! H

e1 
 � � � 
 ek 7! mk(e1 � � � ek)
; (2.3)

and de�ne

mk(e1 � � � en) =

n�kX
p=1

(�1)e1+���+ep�1e1 � � � ep�1mk(ep � � � ep+k�1)ep+k � � � en ; ei 2 H :
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Here e1 + � � � + ep�1 on (�1) denotes the degree of e1 � � � ep�1. The sign factor appears when

mk, which has degree one, passes through the e1 � � � ep�1. Then summing up this mk for k � 1,

m = m1 +m2 +m3 + � � � ; (2.4)

and this m is the coderivative. The coderivative on the coalgebra C(H) is always written in this

form.

Moreover, the form of a cohomomorphism F : C(H)! C(H0) is determined by a collection

of degree zero multilinear maps fn : H
n ! H0(n � 1) which are homogeneous of degree zero

as the following form

F(e1 � � � en) =
X

1�k1<k2���<ki=n

fk1(e1 � � � ek1)
fk2�k1(ek1+1 � � � ek2)
� � �
fn�ki�1(eki�1+1 � � � en) ;

(2.5)

where each f(� � � ) belongs to H0.

2.2 A1-algebra and A1-morphism

De�nition 2.4 (A1-algebra) Let H be a graded vector space and C(H) = �k�1H

k be its

tensor coalgebra. An A1-algebra is a coalgebra C(H) with a coderivation m which satis�es

(m)2 = 0 :

If we act (m)2 = (m1 +m2 + � � � )
2 on e1 � � � en 2 C(H), its image belongs to H
1 � � � � � H
n,

and the condition that the H part of the image equal zero is suÆcient to the condition (m)2 = 0
5. The equation becomesX

k+l=n+1
j=0;��� ;k�1

(�1)e1+���+ejmk(e1; � � � ; ej ;ml(ej+1; � � � ; ej+l); ej+l+1; � � � ; en) = 0 (2.6)

for n � 1, and ei on (�1) denotes the degree of ei.

The �rst three constraints in eq.(2.6) read:

m2
1 = 0 ;

m1(m2(e1; e2)) +m2(m1(e1); e2) + (�1)e1m2(e1;m1(e2)) = 0 ; (2.7)

m2(e1;m2(e2; e3)) +m2(m2(e1; e2); e3)

+m1(m3(e1; e2; e3)) +m3(m1(e1); e2; e3) + (�1)e1m3(e1;m1(e2); e3)

+ (�1)e1+e2m3(e1; e2;m1(e3)) = 0 :

The �rst equation indicates m1 is nilpotent and (H;m1) makes a complex. The second equation

implies di�erential m1 satis�es Leibniz rule for the product m2. The third equation means

product m2 is associative up to the term including m3.

5in the same reason that the di�erential d on di�erential forms or BRST-operator Æ on polynomials of �elds

and ghosts (and anti�elds) is nilpotent.
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Remark 2.2 In the case mn = 0 for n � 3, an A1-algebra reduces to a di�erential graded

(associative) algebra (DGA). The di�erential d and the product � of DGA correspond to m1

and m2, respectively. However, the product � of DGA preserves the degree and m2 in A1-

algebras raises the degree by one. In this reason, when a DGA g is included in an A1-algebra

(H;m), the degree in the A1-algebra is de�ned as the degree of the DGA minus one. Let

s : gk !Hk�1[1] be the inclusion map. The [1] `eats' one degree of H, and the degree of Hk�1[1]

is de�ned as k � 1 through the operation. Then the following diagram commutes

g
k 
 gl

�
����! g

k+l

s

??y s

??y
Hk�1[1]
Hl�1[1]

m2( ; )
����! Hk+l�1[1] :

The degree of Witten's open SFT[2] is usually de�ned as the degree of DGA explained above.

There are many literatures where the degree of A1-algebras are de�ned with the DGA degree.

However, when higher products m3;m4; � � � are introduced, the degree given in (Def.2.2) is

simpler for A1-algebras. In this reason, we use this convention in the present paper. The

precise relation between these two conventions can be found in [45].

Remark 2.3 We have mentioned in (Rem.2.1) about the dual picture of coalgebras. In this dual

picture, the nilpotent coderivation m is replaced to a di�erential on a formal (noncommutative)

supermanifold. Let � = ei�
i 2 H be an elements of H with supercoordinates f�ig. The degree

of �i is minus the degree of ei so that the degree of � is zero. De�ne

mk(e1; � � � ; ek) = ejc
j
1���k ; cj1���k 2 C : (2.8)

In this representation, mk(�; � � � ;�) = �
 �
@

@�j
cji1���ik�

ik � � ��i1 , and the di�erential Æ in the dual

picture is written as

Æ =

1X
k=1

 �
@

@�j
cji1���ik�

ik � � ��i1 ; (2.9)

where the operation of
 �
@

@�j
� � � is de�ned as (�3�2�1)

 �
@

@�j
cji1���ik�

ik � � ��i1 = �3�2c1i1���ik�
ik � � ��i1+

(�1)e1�3c2i1���ik�
ik � � ��i1�1 + (�1)e1+e2c3i1���ik�

ik � � ��i1�2�1. The sign arises when the Æ with

degree one passes through some elements which have their degree. The consistency of this

operation is explained in Appendix A.1. The condition that Æ is di�erential i.e. (Æ)2 = 0 is equal

to the A1-condition(2.6) rewritten using (2.8). This actually corresponds to the BV-BRST

transformation as will be seen in subsection 4.1. Note that in this paper we denote f�ig as both

�elds and anti�elds in the terminology of the BV-formalism. The geometry on this dual picture

is explained in Appendix A.2.

De�nition 2.5 (A1-morphism) Given two A1 algebras (H;m) and (H0;m0), an A1-morphism

F : (H;m)! (H0;m0) as a cohomomorphism from C(H) to C(H0) satisfying

Fm = m
0F :
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If we act this equation on e1 � � � en 2 C(H) for n � 1, its image belongs to
Pn

n0=1H
0
n

0

, and

picking up the H0
1 part of the equation yieldsX
1�k1<k2���<ki=n

m0i(fk1(e1; � � � ; ek1); fk2�k1(ek1+1; � � � ; ek2) � � � fn�ki�1(eki�1+1; � � � ; en))

=
X

k+l=n+1

k�1X
j=0

(�1)e1+���+ejfk(e1; � � � ; ej ;ml(ej+1; � � � ; ej+l); ej+l+1; � � � ; en) :

(2.10)

The �rst two constraints in (2.10) read:

m01(f1(e1)) = f1(m1(e1)) ;

m02(f1(e1); f1(e2)) = f1(m2(e1; e2))

+m01(f2(e1; e2)) + f2(m1(e1); e2) + (�1)e1f2(e1;m1(e2)) :

In particular, the �rst equation implies f1 induces a degree zero linear map f1� between the

cohomologies Hm1
(H) and Hm0

1
(H0). The dual representation of F will be mentioned in the

next subsection. In SFT this F corresponds to a �eld transformation between two di�erent

SFTs and the condition of the A1-morphism (Def.2.5) indicates that the �eld transformation

F is compatible with the BV-BRST transformations.

De�nition 2.6 (quasi-isomorphism) An A1-morphism F is called a quasi-isomorphism if

f1 is a degree zero isomorphism between the cohomology spaces Hm1
(H) and Hm0

1
(H0).

It is known that if F is quasi-isomorphism, there is a inverse quasi-isomorphism F�1 : (H0;m0)!

(H;m) [23, 22], which will be shown in (Rem.5.4).

2.3 Maurer-Cartan equation

Here we de�ne Maurer-Cartan equations for A1-algebras. It corresponds to the equation of

motions in SFT (eq.(5.1)). Consider formally the following exponential map 6 of � 2 H

e� := 1+�+�
 �+�
�
 �+ � � � : (2.11)

e�� 1 2 C(H) satis�es 4(e��1) = (e�� 1)
 (e�� 1) and such element is called an grouplike

element. If we de�ne

m�(e
�) := m1(�) +m2(�
 �) +m3(�
 �
 �) + � � � ;

then m(e�) = e�m�(e
�) � e�, and m(e�) = 0 is equivalent to m�(e

�) = 0, where 1 is de�ned as

H
m 
 1
H
n = H
(m+n) for m;n � 0 and m+ n � 1. m�(e
�) = 0 is called Maurer-Cartan

equation for A1-algebras. When an A1-algebra is DGA, i.e. m3 = m4 = � � � = 0, its Maurer-

Cartan equation takes the form m1(�) +m2(� 
 �) = 0. It is nothing but the condition of a


at connection.

6Note that this e� does not belong to C(H) because 1 2 H
0. e� � 1 is then an element of C(H). However

as will be seen it is convenient to include 1 for some formulation.
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Now we explain that any A1-morphisms preserve the solution of two Maurer-Cartan equa-

tions. The fact means that the A1-morphisms preserve the equations of motions for SFTs. Let

(H;m) and (H0;m0) be two A1-algebras and F : (H;m) ! (H0;m0) be a A1-morphism. �0 is

constructed from � as the pushforward of F

�0 = F�(�) =
1X
n=1

fn(� � � ��) : (2.12)

Direct calculation using eq.(2.5) then yields that F satis�es

F(e� � 1) = e�
0

� 1 : (2.13)

To show that F preserves the solutions of Maurer-Cartan equations, it is suÆcient to say that

m
0(e�

0
) = 0 if m(e�) = 0, which can be immediately shown because

m
0(e�

0

) = m
0F(e�) = Fm(e�) = 0 :

Remark 2.4 In the dual picture of these coalgebras, for � = ei�
i 2 H and �0 = ei0�

i0 2 H0,

de�ne

fk(e1 � � � ek) = ej0f
j0

1���k ; f j
0

1���k 2 C ; ej0 2 H
0

and eq.(2.12) can be expressed as

�i
0

= f i
0

j �
j + f i

0

j1j2
�j2�j1 + f i

0

j1j2j3
�j3�j2�j1 + � � � :

This can be regarded as a nonlinear coordinate transformation between the two formal noncom-

mutative supermanifolds. This statement is also explained in Appendix A.2. Moreover in this

expression one can easily seen that when the f ij has its inverse, this transformation is locally

di�eomorphism, and the map �0 = F�(�) has its inverse.

Remark 2.5 There are gauge transformations which preserve the Maurer-Cartan equations.

Its in�nitesimal representation is of the form

Æ�� = m�(e
��e�)

where � = ei�
i is a gauge parameter of degree minus one, therefore the degree of �i is minus

the degree of ei minus one. The fact that this transformation preserves the space of the solution

of the Maurer-Cartan equation can be directly checked as

Æ�m�(e
�) = m�(e

�(Æ��)e
�) = m�(e

�
m�(e

��e�)e�) = m�(m(e
��e�)) = 0 :

In the third equality, the Maurer-Cartan equation m�(e
�) = 0 is used. Moreover, if any two A1-

algebras (H;m), (H0;m0) and an A1-morphism F between them are given, then A1-morphism

restricted to the spaces of the solutions of the Maurer-Cartan equations is equivariant under

the gauge transformations on both sides. In other words Æ�0�
0 = F(Æ��) holds on the Maurer-

Cartan equations where �0 is de�ned by F as �0 = F�(e
��e�) := f1(�)+f2(�;�)+f2(�; �)+� � � .

This obeys from the condition of the A1-morphism (Def.2.5)

m
0F(e��e�)jH0
1 = Fm(e

��e�)jH0
1 :
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The space of Maurer-Cartan equation over this gauge action is considered as the moduli space

in the terminology of deformation theory. The above fact then means that the moduli space is

transformed by A1-morphisms. In particular, if the A1-morphism is quasi-isomorphism, the

moduli space is isomorphically transformed by the quasi-isomorphism. This gauge transforma-

tion exactly corresponds to the gauge transformation in SFT as will be explained in subsection

4.2.

3 Moduli space of Riemann surfaces and BV-formalism

In this section, the relevance of BV-formalism in SFT will be reviewed. When SFTs are con-

trolled by BV-formalism, classical open SFTs[6, 44, 7] have A1-structures and classical closed

SFTs[13, 5] have L1-structures. These algebraic structure of SFT is summarized in subsection

4.1 and 4.2. We attempt to explain those as simple as possible, and in order to do so we will

transfer various representations for SFT or A1-algebras to each other. The precise de�nition

and convention used there are summarized in subsection 4.3.

When constructing SFT, the sum of the Feynman graphs of the same topology in the sense

of Riemann surfaces must reproduce the correlation function of corresponding Riemann surface

on-shell. The correlation functions in string theory are calculated by integrating out over the

moduli space of Riemann surfaces. Each vertex in SFT is constructed by integrating out over the

subspace of the moduli space of Riemann surfaces. In order that the Feynman rule reproduces

the correlation function of string theory on-shell, the sum of each Feynman graphs with the

same topology �ll all the moduli space of Riemann surface without crevices and without double

covered. As will be seen below, this condition restricts the way of creating the vertices of

SFT, and produces recursion relations for vertices, which is often called the string factorization

equations[13] (equation (3.8)).

Here we review them brie
y in the case of classical open SFT[6, 7]. The argument is similar

for the classical closed SFT[13, 5].

Let � 2 H be a string �eld. More precisely, � = ei�
i where feig are the basis of the string

Hilbert space H and f�ig are the string �elds. The aim is constructing an open SFT action of

the following form,

S = S0 + V ; S0 :=
1

2
!(�; Q�); V =

X
k�3

Vk ; (3.1)

where S0 is the kinetic term, and Vk is the k-point vertex (the term of k powers of string �elds

�). !( ; ) denotes BPZ-inner product (in CFT). In order for the action S to be consistent for

string theory, the n point amplitude which is calculated by using the Feynman rule with the

action S must reproduce the corresponding n-point correlation function of string theory when

the n external states ei; (n = 1; � � � ; n) are physical, i.e. Qjeii = 0 7. Here we concentrate to

review for classical open SFT, so the n point amplitude which should be considered is the n

7Here we assume for simplicity that the basis ei are taken so that the subbasis of feig span the physical Hilbert

space.
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point tree graph amplitude for open string, and the corresponding correlation function in string

theory is the disk amplitude with n external states on the boundary of the disk. (The arguments

are same for other case like classical and quantum closed SFT[5], quantum open-closed SFT[6]).

LetMn be the compacti�ed moduli space of disk with n punctures. The dimension ofMn

is dimMn = n�3. Suppose that the vertices are now constructed, and consider the n point tree

amplitude. It consists of the sum of every Feynman graph of n point tree graphs. Here n point

tree graphs are the graphs which are produced by connecting the vertices with the propagators

and the topology of which are n point tree graph of open strings. As has been explained brie
y,

in order for the vertices to be made consistently, the sum of this Feynman graphs must reproduce

the single-covered moduli spaceMn

Mn =M
0
n [M

1
n [M

2
n [ � � � ; (3.2)

where MI
n denotes the subspace of the moduli space Mn which corresponds to the Feynman

graphs with I propagators. Now the tree graphs are considered, therefore the number of the

vertices of the n point tree Feynman graphs with I propagators is I + 1. Because

n =
I+1X
m=1

vm � 2I (3.3)

where vm � 3 are the numbers of the external legs of the vertices, � � � in eq.(3.2) does not

continue in�nitely.

1 2
3

4

5

(a) (b)

Figure 1: Consider for example the diagram of the string interaction as Fig.(a). We represent

such diagrams as Fig.(b). The dashed lines denote the propagators. Here the vertices are labeled

by 1 � � � 5. The numbers of legs for the vertices are v1 = 3, v2 = 4, v3 = 5, v4 = 3, v5 = 5. The

number of the propagators equal I = 4: The graph has twelve external legs, and eq.(3.3) holds

because 12 = 3 + 4 + 5 + 3 + 5� 2 � 4.

Let us consider to construct the vertices inductively and suppose that the vertices Vk with

3 � k � n� 1 are constructed in the following form

Vk :=
1

k

Z
M0

k

h
j1���kj�i1 � � � j�ik =:
1

k
hVkjj�i � � � j�i : (3.4)

Here 
 denotes the volume form on the Moduli space Mk. A point on Mk characterizes a

conformal structure of the disk with k punctures at its boundary. The k boundary insertions
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are symmetrized cyclic, i.e. h
j1���k = h
j2���k1. Thus, when ei1 ; � � � ; eik are physical states,

h
j1���kjei1i1 � � � jeikik on a point on Mk is the correlation function of the k-point disk with

corresponding conformal structure, and
R
Mk
h
j1���kjei1i1 � � � jeikik gives the on-shell S-matrix

element. By construction, the dimension which the vertex Vk has is dimM
0
k = k�3 for k � n�1.

Besides,MI
k is the moduli space reproduced by vertices Vv1 ; � � � ;VvI+1 and I propagators. The

vertex Vvm has its dimension of moduli vm�3 and the propagator has the dimension one, which

is the parameter of the length of the evolution of the open string R+ (see Fig.5.(a)). Therefore,

the dimension of MI
k is (v1 � 3) + � � � + (vI+1 � 3) + I = (k + 2I � 3(I + 1)) + I = k � 3

because k + 2I =
PI+1

m=1 vm. Note that the dimension of MI
k is independent of the number of

the propagators I. Thus, the moduli space is decomposed consistently as eq.(3.2) for k � n� 1.

Here we want to determine the decomposition of the moduli spaceMn as in eq.(3.2) in order to

construct the vertex Vn. Mn is of course given, because it is determined only from the Riemann

surface. Alternatively, for I � 1 MI
n are determined by the induction hypothesis, that is, they

are determined by the vertices Vk with k � n� 1 and the propagators. Thus one getsM0
n and

consequently Vn of the form in eq.(3.4).

Next, it will be explained that the SFT action S = S0 + V of which vertices are constructed

as above in eq.(3.4) satis�es the classical master equation (3.11). Let us consider the in�nites-

imal variation of the decomposition of Riemann surfaces. More precisely consider to take the

boundary of each MI
n, and denote the operation as @, and write the integral of 1

n
h
jj�i � � � j�i

overMn as

1

n

Z
Mn

h
jj�i � � � j�i =
1

n

Z
M0

k

h
jj�i � � � j�i+
1

n

Z
M1

k

h
jj�i � � � j�i+ � � � : (3.5)

Taking its boundary yields

0 = @(Vn) +
X

k1+k2=n+2
k1;k2�3

1

2

0
B@

@(Vk1)��(Vk2)

+(Vk1)��@(Vk2)

+(Vk1)@(��)(Vk2)

1
CA+

X
k1+k2+k3=n+4

k1;k2;k3�3

(� � �) + � � � : (3.6)

The �rst equality in the above equation follows from the fact that the left hand side of the

equation (3.5) does not depend on the way of the decomposition of Mn, i.e. @Mn = 0. This

equation exists for n � 3, and the constraint for n = 3; 4 read

n = 3 : 0 = @V3 ; n = 4 : 0 = @V4 + V3@(��)V3 : (3.7)

The �rst equation (n = 3) means M3 has no moduli (a point). As will be clear later, the

vertex Vk+1 corresponds to the A1-structure mk (eq.(4.2) or eq.(4.16)), and the �rst equation

and the second equation corresponds to the second equation and the third equation in eq.(2.7),

respectively. The equation (3.6) is, in fact, equivalent to

0 = @(Vn) +
X

k1+k2=n+2
k1;k2�3

1

2
(Vk1)@(��)(Vk2) ; (3.8)
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which is the �rst term and one of the second term on the right hand side of the identity(3.6).

The reason why these are equivalent is that the other parts of eq.(3.6) cancel by induction.

For example, @(Vk1) ��(Vk2) in the second term cancels with one of the third term (� � � ) of

the form
P

k+l=k1+2
k;l�3

((Vk)@(��)(Vl)) ��(Vk2). The recursion equation (3.8) is called the string

factorization equation[13].

Finally we will rewrite the string factorization equation (3.8) in BV-formalism. The (Vk1)@(��)(Vk2)

means sewing up these vertices with the shortest propagator length, where the corresponding

moduli is a subspace of the boundary ofM1
n which is common with the boundary ofM0

n. This

sewing @(��) is given by the inverse re
ection operator j!i, and as will be clari�ed later in

subsection 4.3, j!i is equivalent to the BV-bracket
 �
@
@�i

!ij
�!
@

@�j
= ( ; ). This leads

(Vk)@(��)(Vl) = Vk

 �
@

@�i
!ij

�!
@

@�j
Vl = (Vk;Vl) : (3.9)

On the other hands, after some calculation in conformal �eld theory one obtains[5, 7]

2@Vn = 2

Z
@M0

n

h
jj�i � � � j�i = 2(S0;Vn) : (3.10)

Rewriting eq.(3.8) with (3.9) and (3.10) for n � 3 and summing up these, we obtain the classical

BV-master equation

(S; S) = 0 : (3.11)

The precise de�nitions for the notation used here are summarized in subsection 4.3. After

preparing those and other identities the recursion relation (3.8) is derived again explicitly in

Appendix B.1. One explicit example of constructing SFT in this procedure will be given in

section 6.

4 A1-structure and BV-formalism

Continuing the argument in the previous section, the relation between an A1-structure and

BV-formalism will be discussed for classical open SFT. In subsection 4.1, it is explained that the

SFT constructed above, which satis�es the BV-master equation (3.11), has an A1-structure.

In subsection 4.2, the BV-gauge transformations for the SFTs are identi�ed with the gauge

transformation for the Maurer-Cartan equations for A1-algebras. Finally in subsection 4.3, the

notation and de�nitions, including those which are used implicitly in the previous section and

this section, are summarized. The relation between the operator language of SFT, A1-language,

and its dual representation is clari�ed and their graphical representation is also presented.

4.1 A1-structure in SFT

Represent the string state as j�i = jeii�
i where feig is the basis of the string Hilbert space

H and �i are its coordinate whose degree is minus the degree of ei, and take a component
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representation of the above constructed SFT action as

Vk =
1

k
hVkjjei1�

i1i � � � jeik�
iki =

1

k
Vi1���ik�

ik � � � �i1

1

2
!(�; Q�) =

1

2
Vi1i2�

i2�i1 :
(4.1)

Moreover we de�ne for k � 2,

cji1���ik := (�1)el!jlVli1���ik : (4.2)

On the other hand, the BV-BRST transformation is de�ned as

Æ = ( ; S) : (4.3)

With this Æ, the classical master equation (3.11) is written as ÆS = 0 and by using the Jacobi

identity of the BV-bracket, Æ2 = ( ; 12 (S; S)) is satis�ed. These facts read that the following three

statements are equivalent : the action S satis�es the BV-master equation (3.11), the action S

is invariant under the BV-BRST transformation (4.3), and the BV-BRST transformation Æ is

nilpotent.

When the action is written with fcji1���ikg de�ned in eq.(4.2), the BV-BRST transformation

becomes

Æ = ( ; S) =

1X
k=1

 �
@

@�j
cji1���ik�

ik � � � �i1 : (4.4)

Because S satis�es the BV-master equation(3.11), this Æ is nilpotent, and the fact means that

fcji1���ikg de�ne an A1-algebra in the dual picture as explained in (Rem.2.1). Note however that

the fcji1���ikg does not only de�ne an A1-structure but has the cyclic structure by lowering the

upper index by the symplectic structure !ij. The algebraic structure of classical open SFT is the

A1-structure with cyclic symmetry through an appropriate inner product, where the symplectic

structure of BV-formalism plays the role of the inner product.

4.2 BV-gauge transformation

The BV-BRST transformation for � is Æ� =
P

k�1mk(�) = m�(e
�). The corresponding gauge

transformation is then written as

Æ�� = m�(e
��e�)

= Q�+m2(�;�) +m2(�; �) +m3(�;�;�) +m3(�; �;�) +m3(�;�; �) + � � � ;
(4.5)

where � = ei�
i is a gauge parameter of degree minus one, therefore the degree of �i is minus the

degree of ei minus one. This is exactly the gauge transformation for Maurer-Cartan equations

given by (Rem.2.5). Therefore if any two SFT action with A1-structures and an A1-morphism

between them are given, the gauge transformations eq.(4.5) on both sides are compatible with the

A1-morphism in the solution spaces of the Maurer-Cartan equations. The gauge transformation

is written as Æ�� = m�(e
�)
 �
@
@�i

�i, and in the language of the component �elds, it is

Æ� =
1X
k=1

 �
@

@�j
cji1���ik

 
�ik � � ��i1

 �
@

@�i
�i

!
:
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The action is invariant under this Æ� because 0 = (S; S)
 �
@
@�i

�i leads Æ�S = 0 8. Thus the gauge

transformation for A1-algebras �t the standard argument of BV-formalism[38, 39]. Moreover,

0 = !kj

�!
@

@�j
(S; S)

 �
@

@�i
�ij @S

@�
=0 (4.6)

indicates that the generator of the gauge transformation is degenerate and the rank of the

Hessian for the quadratic part of the action S0 is less than half of the number of the basis feig

on the space f�j@S
@�

= 0g, though the number of the basis is in�nity. The origin � = 0 is also

the solution for f�j@S
@�

= 0g, and in SFT case eq.(4.6) at the origin is nothing but the condition

(Q)2 = 0. When the ratio of the rank of the Hessian over the number of the basis is just half,

the action is called proper. SFT is just the case. The Hessian at the origin is Vi1i2 in eq.(4.1),

which is determined by Q. (The reducibility of the gauge group of SFT action then comes from

the Virasoro symmetry of Q.) The above arguments lead that the rank of the Hessian is equal

to the rank of unphysical states Hu which generate the gauge transformations. It is much larger

than the rank of physical states Hp, which is the cohomology class with respect to Q. Let Ht

be Q-trivial states then H = Ht [Hu [Hp and rank Hu = rank Ht. From these it can be seen

that actually rank fVi1i2g=rank H = 1
2 . and SFT actions are proper at the origin of H.

Though SFT is treated in the context of the BV-formalism, the use is di�erent from that

in the original context of BV-formalism[37, 38, 39], where beginning with the gauge invariant

action which does not include anti�elds, the terms including anti�elds are added to the original

action so that the action satis�es the master equation and is proper. Restricting the anti�elds to

zero recovers the original action, where the rank of the Hessian is less than the rank of the �elds.

We call it the trivial gauge. The gauge �xing is then performed by shifting the trivial gauge and

restricting the anti�elds so that the rank of the Hessian is equal to the rank of the �elds, i.e. half

of the rank of the total space including anti�elds (H in SFT). In SFT, however, the anti�elds

are originally included in the quadratic term S0 and BV-master equation is used in order to

determine the form of higher vertices. Therefore the trivial gauge �xing can be consistent gauge

�xing in SFT. Actually the quadratic term S0 reads that the rank of the Hessian of the gauge

�xed quadratic part � 1
2rank H at least as perturbation theory around the origin � = 0. This

trivial gauge is called Siegel gauge in SFT and used in more explicit arguments in subsection 5.2

and section 6.

Coming back to the property of the gauge transformation, we mention two remarks about

it. The gauge transformation makes Lie algebra on-shell. In the case of classical closed SFT

(L1-algebra), the fact can be found in [5]. Moreover, if two classical open SFT and the A1-

morphism between them are given, the gauge transformations on both SFTs are compatible with

the A1-morphism on-shell, where on-shell means the solution of the Maurer-Cartan equations.

This fact follows from (Rem.2.5).

8It holds even if the Poisson structure !ij is non-constant. It follows from the Jacobi identity of !ij and

0 = ((S; S); �i!ij�
j) (See comments in cyclic algebra with BV-Poisson structure in the next subsection).
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4.3 Operator language, A1-algebra, its dual, and their graphical representa-

tion

In this subsection some notation used before and later is summarized. We identify the operator

language and the coalgebraic representation as

jei1i1 � � � jeinin = ei1 
 � � � 
 ein :

This leads, for instance, j�i1 � � � j�in = jei1i1 � � � jeinin�
in � � � �i1 .

� Symplectic form and Poisson structure

First, a (constant) symplectic structure ! : H
H ! C induced from the BPZ-inner product

is de�ned. In the operator language, the symplectic structure is de�ned as

!(ei; ej) := h!j12jeii1jeji2 :

Here the h!j12 is the re
ection operator, which denotes the sewing of the state j i2 at the origin

of the upper half plane with the state j i1 at in�nity on it. De�ne the property of the exchanging

the labels for kets as

h!j21 = �h!j12 ;

and then h!j21jeji2jeii1 = (�1)eiej h!j21jeii1jeji2 = �(�1)eiej h!j12jeii1jeji2. The symplectic

structure is translated into its component expression as

h!j12jeii1jeji2 = !ij ;

and the above calculation reads

!ji = �(�1)
eiej!ij :

Thus ! determines a graded symplectic structure. !ij is by de�nition constant on H, i.e. it

is independent of f�g. Now !ij 6= 0 i� the degree of ei plus the degree of ej is equal to one.

Therefore one always gets (�1)eiej = 1 and then !ji = �!ij. Moreover in this reason the degree

of h!j12 is minus one so that the degree of !ij 2 C has degree zero.

The inverse re
ector is de�ned as the inverse of j!i12

h!j12j!i23 =311 ; (4.7)

where 311 denotes the identity operator which maps from j i1 to j i3. The degree of j!i12 is plus

one. Expand it as

j!i23 = jeji2jeki3!
jk(�1)ek (4.8)

and eq.(4.7) is rewritten as 311 = h!j12jeji2jeki3!
jk(�1)ek = jeki3h!j12jeji2!

jk(�1)ejek . We

then de�ne the dual state as

hekj1 := h!j12jeji2!
jk(�1)ejek : (4.9)

By de�nition, the degree of hekj1 is minus the degree of ek. The equation (4.7) is then expressed

as 311 = jeki3he
kj1. The dual states must have the following inner product

hekj1jeii1 = Æki : (4.10)
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This gives a condition for !jk in eq.(4.9), which is

!ij!
jk = Æki = !kj!ji : (4.11)

Moreover this identity leads

!kj = �(�1)ejek!jk = �!jk ( = �(�1)(ej+1)(ek+1)!jk ) : (4.12)

Using this, one can see from (4.8) that the inverse re
ector is symmetric with respect to the

labels for bras

j!i23 = j!i32 ;

and the dual state (4.9) is rewritten as

hekj1 := !kjh!j01jeji0 : (4.13)

The complete set of 1 is then de�ned by this dual state as

1 = jeiihe
ij : (4.14)

The equations (4.11) and (4.12) indicate that !ij , the inverse of the symplectic structure !ij,

gives a Poisson structure. Explicitly

 �
@

@�i
!ij

�!
@

@�j
=: ( ; )

is the BV-Poisson bracket. This gives the identi�cation of the inverse re
ection operator j!i23
and the BV-bracket assumed in eq.(3.9). Its compatibility with the string vertices will be checked

after introducing the vertices in cyclic algebra with BV-Poisson structure.

The symplectic structure is also expanded with the dual basis as

h!j12 = !ijhe
j j2he

ij1 :

Note that the dual state (4.13) and the inner product (4.10) can be regarded as those used in

Appendix A.1.

� String vertex and A1-structure

The vertex with the operator representation and its component representation were related

in eq.(4.1) as

hVk+1jj�i � � � j�i = hVk+1jjei1i � � � jeik+1i�
ik+1 � � ��i1 = Vi1���ik+1�

ik+1 � � � �i1 ;

where the indices which label the bras and kets are omitted. On the other hand, the A1-

structures in both representations were related by eq.(2.8) as

mk(ei1 ; � � � ; eik) = ejc
j
i1���ik

;

and this fcji1���ikg and fVi1���ik+1g were connected to the component representation by eq.(4.2) as

cji1���ik := (�1)el!jlVli1���ik : (4.15)
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The corresponding one in the operator representation is

hVk+1jj�i � � � j�i = h!j12j�i1jmk(�; � � � ;�)i2 (4.16)

for k � 1 9. Actually, by using eq.(4.15), this identity can be checked

!(�;mk(�)) = !(ei1�
i1 ;mk(ei2�

i2 ; � � � ; eik+1�
ik+1))

= �i1!(ei1 ; ejc
j
i2���ik+1

)�ik+1 � � � �i2

= (�1)ei1!i1jc
j
i2���ik+1

�ik+1 � � � �i2 � �i1

= Vi1���ik+1�
ik+1 � � ��i1 = hVk+1jj�i � � � j�i

where mk(�) := mk(�; � � � ;�). Thus the action can be rewritten in this form,

S =
1

2
!(�; Q�) +

X
k�2

1

k + 1
!(�;mk(�)) : (4.17)

On the other hand, one can de�ne mk by hVk+1j and the inverse re
ector j!i as follows

jmk(�; � � � ;�)i0 = hVk+1j1���k+1j!i01j�i2 � � � j�ik+1 : (4.18)

In fact, the coeÆcient for ej ��
ik � � ��i1 reproduces eq.(4.15), and acting h!ja0j�ia on both sides

of the eq.(4.18) from left reproduces eq.(4.16) using the identity (4.7).

� cyclic algebra with BV-Poisson structure

The vertices 1
k
Vi1���ik�

ik � � ��i1 is cyclic, i.e.

1

k
Vi1���ik�

ik � � ��i1 = (�1)(eik+���+ei2 )ei1
1

k
Vi1���ik�

i1�ik � � ��i2

=
1

k
Vi2���iki1�

i1�ik � � ��i2

This cyclic symmetry is the consequence of the property of trace in the terminology of [2]. The

BV-bracket of two cyclic vertices are then rewritten as the sewing of the vertices

1

k
Vi1���ik�

ik � � � �i1
 �
@

@�i
!ij

�!
@

@�j
1

l
Vj1���jl�

jl � � � �j1

=
1

k
hVkj1���kj�i1 � � � j�ik

 �
@

@�i
!ij

�!
@

@�j
1

l
hVlj10���l0 j�i10 � � � j�il0

= hVkj1���kj�i1 � � � j�ik�1jeiik!
ij(�1)ej hVlj10���l0 jeji10 j�i20 � � � j�il0

= hVkj1���khVlj10���l0 j!ik10(j�i)
n ;

where k + l = n+ 2. This gives the explicit calculation in eq.(3.9). Here (j�i)n are inserted on

the boundary of the disk S1, so the last line of the above equation is also cyclic and the cyclic

vertices close as a Lie algebra with respect to Lie bracket ( ; ). In component language it is of

the form

hVkj1���khVlj10���l0 j!ik10(j�i)
n =

1

n
(hVkj1���khVlj10���l0 j!ik10 jei1i � � � jeini+ cyclic) �in � � ��i1

9The coeÆcient for �ik+1 � � ��i1 reads hVk+1jjei1i � � � jeik+1 i = (�1)ei1 h!j12jei1i1jmk(ei2 ; � � � ; eik+1)i2.
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where cyclic means jei1i � � � jeini is moved cyclic with appropriate sign and each term is summed

up. Using this we can also rewrite the recursion relation directly and arrive at the condition for

the A1-structure(2.6). Furthermore if we de�ne the free tensor algebra of this cyclic algebra, the

BV-bracket ( ; ) then de�nes a Poisson structure on the free tensor algebra. We can also extend

the BV-Poisson structure !ij non-constant as the Poisson structure on a formal noncommutative

supermanifold. However in the present paper we discuss mainly in the case that !ij is constant,

so we want to report the issue separately elsewhere. Some related concepts are found in [46].

Note that hVkj is written as

hVkj = hVkjjei1ihe
i1 j � � � jeikihe

ik j = Vi1���ikhe
ik j � � � hei1 j ;

which is the same form as Vi1���ik�
ik � � ��i1 . Thus the coordinates of the states and the dual

states are identi�ed as a vector space (Appendix A.1). Similarly @
@�i

can be identi�ed with ei.

� other algebraic relations used later

In addition to the BRST charge Q, in section 5 the propagator Q+ which has degree minus one

is introduced. Here the algebraic properties of these operators together with ! are summarized.

We impose the propagator satis�es the following relation

(Q+)2 = 0 ; Q+QQ+ = Q+ : (4.19)

From the properties of the BPZ-inner product, Q and Q+ operate on h!j and j!i as

h!j12Q
(2) = �h!j12Q

(1) ; h!j12(Q
+)(2) = h!j12(Q

+)(1) ; (Q+)(2)j!i12 = (Q+)(1)j!i12
(4.20)

where the indices (1) or (2) denote the bras or kets where the operators act on. The justi�cation

for these relations are clari�ed in subsection 5.2.

By employing the property of Q acting on h!j (4.20), here the orthogonal decomposition

of the inner product ! is examined. Let us de�ne the Hodge-Kodaira decomposition of string

Hilbert space H as

QQu +QuQ+ P p = 1 ; (4.21)

where degree minus one operator Qu is de�ned so that QQu, QuQ and P p are the projections

onto Q-trivial states, unphysical states and physical states, respectively. Here de�ne the space

of physical states as

Hp := P pH : (4.22)

Similarly de�ne the projections onto Q-trivial states and unphysical states as QQu = P t and

QuQ = P u and express the decomposition of H as

Ht := P tH ; Hu := P uH ; H = Ht [Hu [Hp :

There are ambiguities of the choice of Qu. Q-trivial states Ht is unique but Hp is unique up to

the Q-trivial states Ht, and unphysical states Hu is unique up to Q-trivial and physical states

Ht [Hp. Consider the inner product

!ij = !(ei; ej) :
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From the �rst equation in (4.20), we can see the following properties without �xing the ambi-

guities : when ej 2 H
t then !ij = 0 for ei 2 H

t [ Hp, when ej 2 H
t [ Hp then !ij = 0 for

ei 2 H
t. If we denote the block element of matrix f!ijg where ei 2 H

u and ej 2 H
p as !up

and similar for other eight block elements, matrix f!ijg is represented as the left hand side of

eq.(4.23). This implies that by basis transformation corresponding to the ambiguity in Qu the

inner product ! is decomposed as the right hand side

f!ijg =

0
B@!uu !up !ut
!pu !pp !pt
!tu !tp !tt

1
CA =

0
B@!uu !up !ut
!pu !pp 0

!tu 0 0

1
CA �!

0
B@ 0 0 !ut

0 !pp 0

!tu 0 0

1
CA : (4.23)

These orthogonal decomposition of the inner product will be used in subsection 5.3 when on-

shell reduction of SFT is discussed. In closed string case the explicit orthogonal decomposition

for string states is given in Appendix of [15].

� Graphical representation

Here give some graphical representations for those de�ned above. It is helpful to realize

intuitively, and used in subsection 5.3 to simplify the arguments when using the Feynman graphs

of SFT.

Express h!j and j!i as Æ�� and ��Æ, respectively. Moreover, vertices and the A1-structure

are expressed as follows

hVkj = ; mk =k k

.

In coalgebras or the operator representation, the operators act from left and accumulated on

left. According to this order, we de�ne the order of the operation for these graphs from right to

left. The relations between the cyclic vertices and the A1-structure are then represented as

k + 1 =
kk + 1

k =
;

hVk+1j1��� = hVk+1jb���h!j1aj!iab = h!j12jmk( ; � � � ; )i2jmki1 = hVk+1ja���j!i1a

k + 1
=

cji1���ik = (�1)el!jlVli1���ik Vi1���ik+1 = !i1j!
jlVli2���ik+1 = (�1)ei1!i1lc

l
i2���ik+1

where in the second equality in the right hand side, the identity (4.7) is written as

=()
h!j�aj!ia� =�1�

!ij!
jk = Æki .

Note that h!j and j!i correspond to lowering and raising indices with !ij and !ij in their

component language, and which correspond to reversing the outgoing lines in these graphs.
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5 A1-morphism and �eld transformation

For classical open SFT, an A1-morphism corresponds to a �eld transformation and the Maurer-

Cartan equation is the equation of motion of SFT. It has been explained in section 2.3 that

A1-morphisms preserve the Maurer-Cartan equations for A1-algebras. This means that if an

A1-morphism is given, we get a �eld transformation which preserves the equation of motion.

Generally when two A1-algebras are given, it is diÆcult to construct an A1-morphism between

them. However it is known that any A1-algebras (with nonvanishing m1) have a canonical

A1-quasi-isomorphism[22, 23, 25] between the original A1-algebra and another canonical A1-

algebra. The A1-quasi-isomorphism can be constructed in a canonical way in terms of Feynman

graphs[25], and it �ts for SFT very much. Here will explain the way of constructing the canonical

A1-quasi-isomorphism in terms of the Feynman graphs in subsection 5.1, clarify the identi�-

cation between the Feynman graphs and that in SFTs in subsection 5.2. The arguments in

subsection 5.1 is then applied to SFT in subsection 5.3 and we show that the canonical A1-

algebra is nothing but the on-shell S-matrix elements (Lem.5.1). From this result it is shown in

(Thm.5.1) that every SFT constructed as explained in section 3 are quasi-isomorphic, and the

quasi-isomorphism between those can be constructed in subsection 5.4. All the arguments are

applicable also for classical closed SFT i.e. L1-algebras.

5.1 The minimal model theorem

Let (H;m) be an A1-algebra withm1 6= 0. As mentioned above, for any (H;m), a canonical A1-

quasi-isomorphism ~Fp from another canonical A1-algebra (Hp; ~mp) to the A1-algebra (H;m)

exists[25]. This is called minimal model theorem 10.

Here we construct the A1-morphism f ~fpkg and A1-structure f ~m
p
kg with k � 2 naturally as

the problem of �nding the solutions for the equation of motion (Maurer-Cartan equation) for

SFT, and prove that the (Hp; ~mp) and ~F are indeed an A1-algebra and a quasi-isomorphism,

respectively 11. The procedure of �nding the solution is quite natural and standard, and so

similar procedures can be found in various problems. The procedure also relates to the way of

�nding some classical solutions in closed SFT [47, 48] (see the next subsection) or constructing

the tachyon potential[49] (see tachyon condensation in Discussions).

Consider solving the equation of motion for classical open SFT,X
k�1

mk(�) = 0 (5.1)

with m1 = Q. For Q the coboundary operator of complex (H; Q), we give the analogue of the

Hodge-Kodaira decomposition

QQ+ +Q+Q+ P = 1 : (5.2)

In this section for simplicity we assume this identity gives just the the Hodge-Kodaira decom-

position of H, that is, Q+ is the adjoint of Q and P is the projection onto the harmonic form
10This naming has nothing to do with minimal model in the context of two-dimensional �eld theory directly.
11This explanation of the minimal model theorem from the problem of �nding the solutions for the Maurer-

Cartan equation is motivated in the lecture by K. Fukaya at Inst. of Tech. in Tokyo in December, 2000.
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(KerQ) \ (KerQ+). Q+ can be regarded as the propagator for the SFT action and also plays

the role of the gauge �xing. P is related to the projection onto the physical states in SFT, so we

denote Hp := PH in this subsection. These will be clari�ed in the next subsection, where the

condition that QQ+, Q+Q, and P are projections must be relaxed 12. Actually, the condition

can be relaxed later in and after (Def.5.1) and only the identity (5.2) between Q, Q+ and P will

be required.

Since the solutions for eq.(5.1) are preserved under the gauge transformation Æ�� = Q(�) +

m2(�;�) +m2(�; �) + � � � , we will �nd the gauge �xed solutions Q+� = 0. Here we assume

that � is suÆciently `small', then the solution is almost the solution of Q(�) = 0. Express � as

� = �p + �u where �p 2 Hp and �u 2 Q+QH. As will be explained below, �u can be solved

recursively with the power of �p. Because here we regard that �p is `small', one can de�ne a

degree by the power of �p. Substituting � = �p +�u in e.o.m (5.1) leads

Q(�u) +
X
k�2

mk(�
p +�u) = 0 ; (5.3)

and acting Q+ to both sides of this equation yields

�u = �
X
k�2

Q+mk(�
p +�u) : (5.4)

Here we get the �u recursively by eq.(5.4). However not all � = �p +�u expressed in terms of

�p give the solution of eq.(5.1) because eq.(5.4) is derived from Q+ acting eq.(5.1). In order to

�nd �u which is the solution of eq.(5.1), we substitute eq.(5.4) to e.o.m(5.1) once again,

0 = Q(�p +�u) +
X
k�2

mk(�)

= (Q+Q+ P � 1)
X
k�2

mk(�) +
X
k�2

mk(�)

= Q+Q
X
k�2

mk(�) +
X
k�2

Pmk(�)

(5.5)

and we can get a condition (obstruction) for �p. The �rst term in the third line of eq.(5.5)

vanishes due to e.o.m(5.1) because Q
P

k�2mk(�) = �QQ(�) = 0, and the condition for �p is

derived as X
k�2

Pmk(�
p +�u) = 0 : (5.6)

The above �u can be represented recursively in terms of �p by eq.(5.4). This equation can be

regarded as the Maurer-Cartan equation on Hp.

The equation (5.4) can be regarded as a nonlinear map from Hp to H. Here we want to

distinct the element of Hp with that of H, so we rewrite �p 2 Hp as ~�p 2 Hp. If we write the

map de�ned by eq.(5.4) recursively as

� := ~fp1 (
~�p) + ~fp2 (

~�p; ~�p) + ~fp3 (
~�p; ~�p; ~�p) + � � � (5.7)

12In addition we change the de�nition of Hp after this section from Hp := PH to Hp = P pH where P p is

de�ned as the precise projection onto physical states.
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with ~fp1 the identity map (inclusion map), ~fpl (
~�p) is given by connecting tree graphs corre-

sponding to f�Q+mk(� � � )g with all possible combination, summing up these, and picking up

the term involving l powers of ~�p (see (Def.5.1) below). Alternatively eq.(5.6) is also expressed

as an equation for ~�p. It is obtained by substituting eq.(5.4) or eq.(5.7) into eq.(5.6). Let us

de�ne ~mp
l (
~�p); l � 2 as the term involving l powers of ~�p in eq.(5.6). In other words we de�ne

them so that eq.(5.6) is rewritten as X
k�2

~mp
k(
~�p) = 0 : (5.8)

Each ~mp
l (
~�p) for l � 2 is then given in the same way as ~fpl but replacing �Q+ on the last

outgoing line by P . Here denote the structure f ~mp
kgk�2 as ~mp. The equation (5.8) is regarded

as the Maurer-Cartan equation on (Hp; ~mp). Note that as will be proven, the ~mp de�nes an A1-

structure on Hp and the nonlinear map (5.7) de�nes the A1-quasi-isomorphism from (Hp; ~mp)

to (H;m). Thus the canonical A1-algebra (Hp; ~mp) and the A1-quasi-isomorphism ~Fp can

be de�ned naturally in the problem of solving the Maurer-Cartan equations (the problem of

constructing Kuranishi map in mathematical language, see (Rem.5.4)). From SFT point of

view the above result means that if the expectation value of physical states which satis�es

the Maurer-Cartan equation (5.8) is given, the solution of e.o.m for SFT (5.1) is obtained by

the A1-quasi-isomorphism (5.7). This statement will be explained more precisely in the next

subsection.

Mention that as can be seen from eq.(5.5) if we begin with ~� 2 H with Q~� 6= 0 instead

of ~�p, the Maurer-Cartan equation (5.8) may be corrected by adding the term ~m1(~�) with

~m1 := m1 = Q. This case is also considered later (see (Rem.5.1)).

Here summarize the de�nition of the A1-structure and the A1-morphism derived above.

De�nition 5.1 Let (H;m) be an A1-algebra and assume that we have degree minus one op-

erator Q+ and degree zero operator P which satis�es QQ+ + Q+Q + P = 1 on H. Then

another A1-algebra (Hp; ~mp) with Hp := PH and an A1-morphism from (Hp; ~mp) to (H;m)

are constructed. We de�ne those with the following three equivalent expressions :

� ~mp = f ~mp
kgk�2 is given by eq.(5.6) and eq.(5.8) :

(0 =)
X
k�2

Pmk(~�
p + ~�u) =

X
k�2

~mp
k(
~�p) ;

together with eq.(5.4): ~�u = �
P

k�2Q
+mk(~�

p + ~�u) and the A1-morphism ~Fp =

f ~fpkgk�2 is de�ned by eq.(5.4) :

� = ~�p + ~�u = ~�p �
X
k�2

Q+mk(~�
p + ~�u)

= ~�p + ~fp2 (
~�p; ~�p) + ~fp3 (

~�p; ~�p; ~�p) + � � � :

� f ~fpkg are de�ned recursively as

~fpk (
~�p) = �Q+

X
1�k1<k2���<ki=k

mi( ~f
p
k1
(~�p); ~fpk2�k1(

~�p); � � � ; ~fpk�ki�1(
~�p))
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with ~fp1 (
~�p) = ~�p. f ~mp

kgk�2 are then de�ned as

~mp
k(
~�p) =

X
1�k1<k2���<ki=k

Pmi( ~f
p
k1
(~�p); ~fpk2�k1(

~�p); � � � ; ~fpk�ki�1(
~�p)) :

� ~fpl (
~�p) is given by connecting tree graphs f�Q+mk(� � � )g with all possible combination,

summing up these, and picking up the term involving l powers of ~�p. ~mp
l (
~�p) is de�ned

in the same way as ~mp
l but replacing �Q

+ on the last outgoing line by P .

Let Gl be the set of the graphs with l incoming states and an element in it as �l 2 Gl.

For each �l associate the operator ~mp
�l
, which is de�ned by attaching mk to each vertex

with k incoming legs and one outgoing legs, attaching �Q+ to each internal edges, and

connecting them (see (Fig.2)). The derived A1-structure and A1-quasi-isomorphism are

then given as

~mp
l = P

X
�l2Gl

~mp
�l

; ~fpl = �Q+
X
�l2Gl

~mp
�l

: (5.9)

Note that once getting ~mp
k(
~�p) and ~fpk (

~�p), then ~mp
k(e

p
1; � � � ; e

p
k) and

~fpk (e
p
1; � � � ; e

p
k) are imme-

diately obtained by reading the coeÆcient of �k � � ��1, where epi ; i = 1; � � � k are the basis of Hp

and ~�p = epi�
i.

The explicit example is given in (Fig.2). In the order of the graphs in (Fig.2),

~mp
4 (or

~fp4 ) = + + +

+ + +

+ +

+

+

Figure 2: For example ~mp
4 and ~fp4 are given. The large dots represent the vertices fmkg. The

dashed lines denote the propagators and we attach �Q+ on them. The dotted line on each

graph indicates the outgoing external line. We attach P for ~mp
k and �Q+ for ~fpk . For ~mp

4 and
~fp4 , all such graphs with four incoming external states are summed up with weight +1.
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~mp
4(e

p
1; e

p
2; e

p
3; e

p
4) = Pm4(e

p
1; e

p
2; e

p
3; e

p
4) + Pm3(�Q

+m2(e
p
1; e

p
2); e

p
3; e

p
4)

+ Pm3(e
p
1;�Q

+m2(e
p
2; e

p
3); e
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+ Pm2(e
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2;�Q

+m2(e
p
3; e

p
4))) ;

and ~fp4 is obtained similarly but replaced each P on the outgoing line to �Q+.

Remark 5.1 Though an A1-algebra (H
p; ~mp) and anA1-quasi-isomorphismF have been given

here, we can get another A1-algebra. It is obtained by replacing the Hp of (Hp; ~mp) to H. We

denote this A1-algebra by (H; ~m) or simply ~H. The A1-structure ~m is that of (Hp; ~mp), but

it has ~m1 = m1 = Q. (This ~m1 vanishes trivially on Hp so the A1-structure of (Hp; ~mp) is

~mp = f ~mp
kgk�2.) Thus the A1-algebra (H; ~m) is de�ned by (Def.5.1) but relaxing the restriction

~�p 2 Hp as ~� 2 H. ~F := ~Fp = f ~fp1 = Id; ~fpk (k � 2)g then de�nes the A1-quasi-isomorphism

from (H; ~m) to (H;m) 13. Note that this is not only an A1-quasi-isomorphism but also an

A1-isomorphism. The following diagram is obtained

(H; ~m) (H;m)

(Hp; ~mp)

~F

~Fp
P �

where � : Hp ! H is the inclusion map. Explicitly ~mp and ~Fp are given by ~mp = P Æ ~m Æ �

and ~Fp = ~F Æ �. We will consider these two A1-algebras (H
p; ~mp) and (H; ~m) later when an

A1-algebra (H;m) will be given. (H
p; ~mp) is used when a SFT is reduced to its on-shell physics

in subsection 5.3, and (H; ~m) is considered when the ~F is used as a �eld rede�nition between

two SFTs in subsection 5.4 and section 6.

Remark 5.2 Both A1-quasi-isomorphism ~Fp : (Hp; ~mp) ! (H;m) and ~F : (H; ~m) ! (H;m)

have their inverse A1-quasi-isomorphisms. An quasi-inverse ( ~Fp)�1 : (H;m) ! (Hp; ~mp) is

given simply by the projection P

( ~Fp)�1� : H �! Hp

� 7! ~�p = P� :

The inverse ( ~F)�1 : (H;m)! (H; ~m) is obtained by

( ~F)�1� : H �! H

� 7! ~� = �� ~f(�)
13Using them an explicit proof of (Rem.5.4) was presented by M. Akaho at topology seminar in Univ. of Tokyo

in July, 2001.
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where ~� = � + ~f(�) = � � Q+
P

k�2mk(�). This ( ~F)�1� restricted to the solutions for the

Maurer-Cartan equations is nothing but the Kuranishi map.

Remark 5.3 (Geometric realization) The A1-structures m and ~m on H are expressed as

Æ =
 �
@

@�j
cji�

i +
P1

k=2

 �
@

@�j
cji1���ik�

ik � � ��i1 and ~Æ =
 �
@

@ ~�j
~cji
~�i +

P1
k=2

 �
@

@ ~�j
~cji1���ik

~�ik � � � ~�i1 in the dual

picture. The leading coeÆcients of both formal vector �elds are identical cji = ~cji , because

m1 = ~m1 = Q. The A1-quasi-isomorphism ~F gives the coordinate transformation ~F� on H.

Now by the de�nition of ~m, ej~c
j
i1���ik

2 Hp for k � 2 (and ej~c
j
i 2 H

t). Thus the A1-quasi-

isomorphism ~F is constructed so that the coeÆcients ~cji1���ik for k � 2 satis�es ej~c
j
i1���ik

2 Hp.

Then the A1-structure ~m on H can be reduced to the one on Hp. Namely, the minimal model

theorem says geometrically that for any graded vector space H with a formal vector �eld Æ which

satis�es Æ � Æ = 0, there exists a formal coordinate transformation ~F� so that the vector �eldP1
k=2

 �
@

@ ~�j
~cji1���ik

~�ik � � � ~�i1 is along the Hp direction.

In the rest of this subsection, we shall give a proof that (Hp; ~mp) and (H; ~m) are in fact

A1-algebras and ~F (p) (by ~F (p) we denote ~F or ~Fp) is an A1-morphism. The fact that (Hp; ~mp)

is an A1-algebra and ~Fp is an A1-quasi-isomorphism between (Hp; ~mp) to (H;m) immediately

follows from the fact that (H; ~m) is an A1-algebra and ~F is an A1-quasi-isomorphism between

(H; ~m) to (H;m). The former is obtained by restricting the H of (H; ~m) to Hp in the latter case.

Therefore we will prove the latter fact. In order to see this, it is enough to con�rm the following

two fact : m ~F = ~F ~m and (~m)2 = 0 on H. We begin with a proof for the �rst statement. As

has been seen in subsection 2.3, because ~F is the coalgebra homomorphism, ~F(e
~��1) = e��1

holds. Then m ~F(e
~�) =

P
k�1mk(�) + � � � for � � � 2 H


n�2.
P

k�1mk(�) can be rewritten

similarly as eq.(5.5), but now we consider generally when
P

k�1mk(�) is not zero, and the

rewriting leads the following equation,X
k�1

mk(�) =
X
k�1

~mk(~�) +Q+Q
X
k�2

mk(�) : (5.10)

We can show from now that this equation is in fact the H
1 part of the equation m ~F(e
~�) =

~F ~m(e
~�). Note that it is suÆcient for the condition m ~F = ~F ~m (by an inductive argument). By

utilizing the A1-condition for m, the second term on the right hand side of eq.(5.10) becomes

Q+m1

X
k�2

mk(�) = �Q
+
X
l�2

0
@ml(e

�
X
k�1

mk(�)e
�)
���
H
1

1
A :

where jH
1 means picking up the H
1 part from C(H). Thus one gets the following recursive

formula,

m�(e
�) = ~m�(e

~�)�Q+
X
l�2

�
ml(e

�
m�(e

�)e�)jH
1
�
: (5.11)

Since � is represented in the expansion of the power of ~�, the above equation is satis�ed

separately in the homogeneous degree of ~�. Here we argue inductively and suppose that (m ~F �
~F ~m)e

~�jH
1 = 0 is satis�ed at degree (~�)k with 1 � k � n� 1. Then consider the (~�)n parts of
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this equation. The left hand side m�(e
�) involves n powers of ~�, however the m�(e

�) has (~�)k

with k � n � 1 because the summention for l begins at l = 2. By the induction hypothesis,

e�m�(e
�)e� in the second term on the right hand side of the equation (5.11) can be rewritten

when restricted to (~�)n part as

e�m�(e
�)e�jH
l�2;(~�)n = m ~F(e

~�)jH
l�2;(~�)n = ~F ~m(e
~�)jH
l�2;(~�)n

= ~F
�
e
~� ~m�(e

~�)e
~�
� ���
H
l�2;(~�)n

;

where the induction hypothesis is used in the second equality. Now the (~�)n parts of the right

hand side of eq.(5.11) is

~m�(e
~�)j(~�)n �Q+

X
l�2

�
ml

~F
�
e
~� ~m�(e

~�)e
~�
�� ���

H
1;(~�)n
;

which is exactly equal to ~F ~m(e
~�)jH
1;(~�)n . This completes the proof by the induction that

(m ~F � ~F ~m)(e
~�)j(H)
1 = 0 14.

Once getting m ~F = ~F ~m, it is easy to show that ~m de�nes an A1-algebra. As was noted

in (Rem.5.4), ~F has its inverse isomorphism ( ~F)�1. Acting the ( ~F)�1 on the both sides of

m ~F = ~F ~m from left and ~m can be expressed as ~m = ~F�1m ~F . We then get (~m)2 = 0 immediately

from (m)2 = 0. Thus we has concreted the proof of the statements that ~m gives an A1-structure

on (H; ~m) and F is an A1-morphism between (H; ~m) and (H;m). �

Remark 5.4 The fact proved above can be applied to show the following statement. Let (H;m)

and (H0;m0) be two A1-algebras, and let an A1-quasi-isomorphism F from (H;m) to (H0;m0)

is given. Then there exists an inverse A1-quasi-isomorphism (F)�1 : (H0;m0)! (H;m). It can

be now proved easily by applying the above results as follows. First, we can transform both A1-

algebras (H;m) and (H0;m0) to (Hp; ~mp) and (H0p; ~m0
p
) by the canonical A1-quasi-isomorphisms

~Fp and ~F 0
p
in the above procedure. ~Fp and ~F 0

p
have their inverse quasi-isomorphisms, and

the A1-quasi-isomorphism from (Hp; ~mp) to (H0p; ~m0
p
) (?) is then given by the composition

( ~F 0
p
)�1 Æ F Æ ~Fp

(H;m)
F

����! (H0;m0)

~Fp

x?? ~F 0
p

x??
(Hp; ~mp)

(?)
����! (H0p; ~m0

p
)

so that the diagram commutes. Because (the leading of) the quasi-isomorphism (?) is isomor-

phism, (?) has its inverse, and one can obtain an A1-quasi-isomorphism as ~Fp Æ (?)�1 Æ ( ~F 0
p
)�1.

In subsection 5.4 and section 6 the canonical A1-quasi-isomorphism and the canonical A1-

structure are applied to SFT in analogous way, though not precisely the same.

14The coeÆcient of �n � � ��1 of the equation reads the identity (2.10).
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5.2 Minimal model theorem in gauge �xed SFT

In the previous subsection, the analogue of the Hodge-Kodaira decomposition for the string

Hilbert space H was given in eq.(5.2), and an A1-morphism (H; ~m(p)) is constructed using Q+.

We claim that this Q+ is the propagator in SFT. In this subsection we will explain the statement.

Note that this means that the diagrams de�ned in order to construct the A1-morphism ~F (p)

and A1-structure ~m(p) are actually the Feynman diagram in SFT.

In SFT, when one considers a propagator, �rst the action is gauge �xed. The propagator Q+

is then de�ned as the inverse map of Q onto the cokernel of Q on the gauge. This propagator Q+

actually gives the identity (5.2). Indeed de�ne P := 1� fQ;Q+g and the identity is obtained.

Here for simplicity, we will argue the properties of the propagator mainly in the Siegel gauge.

As was mentioned, the string �eld � includes both �elds and anti�elds in the context of BV-

formalism[37, 38, 39]. Let c0 be a degree one operator. In order to express anti�elds explicitly,

only in this subsection we represent the string �eld as � = ei�
i+e�i�

�i for e�i := c0ei and �
�i := ��i.

f�g is the �elds and f��g is the anti�elds. f�eg := fe�ig and feg := feig are the basis of the string

Hilbert space H which does and does not contain c0, respectively. The degree of �
i (resp. �

�i) is

de�ned to be minus the degree of ei (resp. e�i), so that the degree of � is zero. The degree of an-

ti�eld �
�i is de�ned to be minus the degree of the corresponding �eld �i minus one in the context

of BV-formalism. In particular in the usual oscillator representation, let ap be the matter oscil-

lator of degree zero, bq and cr be the ghost oscillator of degree minus one and one, respectively.

Then the `antistate' e�i corresponding to a state ei � a�p1 � � � a�plb�q1 � � � b�qmc�r1 � � � c�rn j0i is

taken to be e�i � a�p1 � � � a�plc0c�q1 � � � c�qmb�r1 � � � b�rn j0i with an appropriate normalization,

where pk;2 Z�0, qk; rk 2 Z>0 and j0i denotes the Fock space vacuum. The degree of the states

are de�ned as the ghost number, that is, the number of c�r (including c0) minus the number

of b�q where the degree of the Fock vacuum j0i is counted here as zero. The degree of e�i is

then minus the degree of ei plus one. Therefore the pair f�g and f��g has consistent degree in

BV-formalism [3] 15.

The Siegel gauge �xing is then b0� = 0, which restricts all the basis of H to the basis feg, in

other words, restrict the space of �elds to �� = 0. Express Q manifestly such as the c0 including

part and b0 including part and the rest part,

Q = c0L0 + b0M + ~Q :

The kinetic term 1
2!(�; Q�)jb0�=0 then reduces to 1

2!(ei�
i; c0L0ej�

j) and the propagator is

de�ned as Q+ = b0
1
L0
, which acts as the inverse of Q on the cokernel of L0 in f�eg. Here de�ne

the projection onto the kernel of L0 in H as P . Q+ is then extended to be the operator on

H, which is written as Q+ = b0
1
L0
(1 � P ). Since Q commutes with Virasoro generators Lm,

in particular with L0, and L0 does not include c0 or b0, L0 commutes with c0L0, b0M and ~Q

independently. Therefore Q+ anticommutes with ~Q, and also does trivially with b0M . Then

fQ;Q+g = fc0L0; b0
1
L0
(1 � P )g = 1 � P , which is the desired form of the identity (5.2). Note

15In [3] the explicit correspondence between the operator description for SFT and BV-formalism for �eld theories

is found.
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that from this explicit form of Q+ one can see that eq.(4.20) holds in the Siegel gauge (see for

example [7]).

More generally, denote the propagator in Schwinger representation with cut-o� � as

Q+ = b0

Z �

0
e��L0d� (5.12)

and we can de�ne the identity (5.2). In this case P which satis�es the identity (5.2) is the

boundary term of Q+

P = e��L0 : (5.13)

The cut-o� � is IR cut-o� in target space theory, but short distance cut-o� in string world

sheet[50, 7].

The ~m in (Rem.5.1) with Q+ such a SFT propagator in fact de�nes an A1-structure. No

modi�cation of the de�nition is needed. The proof that ~m is an A1-structure and A1-quasi-

isomorphic to m requires only the identity (5.2) and the condition that QQ+, Q+Q or P is a

projection is not necessary. The construction of the A1-algebra (H; ~m) is thus considerably

universal concept which is independent of some reguralization scheme. The fact holds true for

~mp, but the story is a little di�erent. Let us introduce Qu of degree minus one and denote the

Hodge-Kodaira decomposition of H as

QQu +QuQ+ P p = 1 : (5.14)

In this expression P t := QQu, P u := QuQ and P p are projections onto null states (Q-trivial

states), unphysical states, physical states, respectively. Here de�ne Hp as physical state space

Hp := P pH : (5.15)

PH is then di�erent from Hp. Especially PH which satis�es QQ+ + Q+Q + P = 1 includes

unphysical states Hu. This makes some trouble when we de�ne the on-shell A1-algebra (H
p; ~mp)

because the image of ~mp
k on (Hp)
k is not guaranteed to belong to Hp. However relating ~mp

to string vertices provides us with the fact that actually (Hp; ~mp) is an A1-algebra. This fact

will be explained in the next subsection and Appendix B.3, where the relation between ~mp and

on-shell string S-matrix elements is examined. Although the reduction to physical states Hp

only has been mentioned above, one can also include the Q-trivial states and de�ne the reduced

A1-structure on H
t [Hp. It will also be explained there.

As was stated in eq.(4.19), we can also see from the above expression of Q+ that (Q+)2 = 0

holds. Q+QQ+ = Q+ holds only when P is a projection. P of the form in eq.(5.13) is not

a projection and spoil the identity. However when some tree amplitudes are calculated with

Feynman diagram in SFT, the P in fQ;Q+g = 1 � P should only contribute to the poles.

When the external states are put so that some propagators get poles, the amplitudes are not

well-de�ned. Therefore we ignore the case and then one may de�ne as fQ;Q+g = 1 between the

vertices. This leads Q+QQ+ = Q+ even when P is not de�ned as a projection. This identity

will not be used in (Lem.5.1),(Thm.5.1) and (Prop.5.1). It is used to rewrite SFT actions by
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�eld rede�nitions in subsection 5.4 and section 6, but they are justi�ed by (Prop.5.1). The origin

of this problem can be found in Appendix B.3.

Thus one can obtain the A1-morphism ~F (p) and A1-structure ~m(p), constructed in the

previous subsection, in the context of SFT in BV-formalism. The A1-morphism constructed

with Q+ = b0
1
L0
(1 � P ) is an A1-morphism from (H(p); ~m(p)) to (H;m). Here on the Siegel

gauge let us give more precise SFT interpretation of this A1-morphism ~F (p) and A1-structure

~m(p) obtained here. It relates to the way of constructing some solutions of the equations of

motions discussed for classical closed (non-polynomial) SFT in [47, 48]. The Maurer-Cartan

equation (5.1) corresponding to the equation of motion for the original SFT restricted on the

Siegel gauge �� = 0 is now written as

c0L0ej�
j + e�i

X
n�2

m
�i
n(ej1�

j1 ; � � � ; ejn�
jn) = 0 ; (5.16)

~Qej�
j + ei

X
n�2

mi
n(ej1�

j1 ; � � � ; ejn�
jn) = 0 ; (5.17)

where m
�i
n(ej1�

j1 ; � � � ; ejn�
jn) means the coeÆcient of e�i for mn(ej1�

j1 ; � � � ; ejn�
jn) and similar

for mi
n. The �rst equation is the equation on f�eg and it is the equation of motion for the Siegel

gauge �xed action. The second one is that on feg and it means that the BRST transformation

of the �eld f�g which satis�es the equation of motion (the �rst equation) is zero on this Siegel

gauge, where the gauge �xed BRST transformation acting on the �elds f�g is de�ned as 16

Ægf = ( ; S)j��=0 =
X
i

 �
@

@�i

�!
@ S

@��i

���
��=0

: (5.18)

One can easily see that eq.(5.17) is nothing but the statement that
�!
@ S

@��i
in the right hand side of

the above equation is equal to zero. On the other hand, there exists the Maurer-Cartan equation

on (Hp; ~mp). To represent the feg part and f�eg part separately similarly as in eq.(5.16) and

(5.17), these are of the form

ep�i

X
n�2

~mp;�i
n (epj1

~�j1 ; � � � ; epjn
~�jn) = 0 ; (5.19)

epi

X
n�2

~mp;i
n (epj1

~�j1 ; � � � ; epjn
~�jn) = 0 (5.20)

on the Siegel gauge. As was explained in subsection 2.3, A1-morphisms preserve the solutions

of Maurer-Cartan equations. Eq.(5.4) reads that the A1-morphism ~Fp is given by �jb0�=0 =

�pjb0�=0 +�ujb0�=0 and

�ujb0�=0 = �
X
k�2

b0
1

L0
(1� P )mk(e

p
j
~�j + eul �

l)

= �
X
k�2

1

L0
(1� P )eim

�i
k(e

p
j
~�j + eul �

l)

(5.21)

16By de�nition (5.18), the gauge �xed BRST-transformation is nilpotent and keeps the action invariant only

up to the (gauge �xed) equation of motion, which are the standard facts in BV-formalism.
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on the Siegel gauge, where epj 2 P pfeg and eul 2 P ufeg. Substituting �ujb0�=0 = eul �
l on the

left hand side of the above equation into the right hand side recursively, we obtain the A1-

morphism ~Fp = f ~fpkgk�2 with
~fpk : (P pfeg)
k ! feg. The fact that ~Fp preserves the Maurer-

Cartan equations is then easily seen because substituting eq.(5.21) into eq.(5.16) and (5.17) leads

eq.(5.19) and (5.20), respectively. Note that the A1-morphism �jb0�=0 = �pjb0�=0+
~f(�pjb0�=0)

given by eq.(5.21) is rewritten as

�jb0�=0 = �pjb0�=0 �
X
k�2

X
i

1

L0
(1� P )ei!(ei;mk(e

p
j
~�j + eul �

l))

= �pjb0�=0 �
X
k�2

X
i

1

L0
(1� P )ei ~Vk+1(ei; e

p
j1
~�j1 ; � � � ; epjk

~�jk)
(5.22)

where ~Vk+1 denotes the tree k + 1 point (o�-shell) correlation function. The second equality is

justi�ed in the next subsection. When �pjb0�=0 satis�es the equation of motion (5.19), eq.(5.22)

gives the solution of eq.(5.16). In fact the A1-morphism restricted on the Siegel gauge (5.21) is

derived by regarding only eq.(5.16) as a Maurer-Cartan equation and applying the arguments in

the previous subsection. The solutions derived in [47, 48] for closed SFT are exactly this �jb0�=0
in eq.(5.22). �pjb0�=0 = epi

~�i express the condensation of marginal operators. In [47, 48] the

zero momentum dilaton condensation is discussed in closed SFT. The condensation of the zero

momentum states corresponding to background g and B is also considered[48]. In both case the

obstruction eq.(5.19) is expected to vanish and all �pjb0�=0 given by eq.(5.22) are the solutions,

but generally there exists the obstruction (5.19). Furthermore, even if in the neighborhood of

the origin the Siegel gauge is consistent in the sense in subsection 4.2, it is not necessarily true

apart the origin. In order for the solutions to be the ones on which the space of the Siegel gauge

condition �� = 0 is transversal to the gauge orbit, one must con�rm that the solution actually

satis�es eq.(5.20). This is equivalent to the condition that on the solution of eq.(5.16) the gauge

�xed BRST-transformation is zero. In tachyon condensation in Discussions, a few comments

about the solution describing the tachyonic vacuum[35] are presented from these viewpoints.

Though in the above argument the Siegel gauge is considered for simplicity, one can take

another gauge for constructing Q+. Generally in the context of BV-formalism the anti�elds are

gauge �xed as �
�i = @	(�)

@�i
, where 	(�) has degree minus one in order for �

�i to have consistent

degree and in this reason is called gauge �xing fermion. In order to keep the gauge �xed kinetic

term quadratic, here we consider the quadratic gauge �xing fermion. It is generally of the form

	(�) = �iMij�
j

where Mij is an appropriate C valued matrix. By this gauge �xing, the anti�eld is restricted to

�
�i =Mij�

j :

The string �eld � is then restricted to �jgf = ei�
i + e�iMij�

j = (ei + e�jMji)�
i. Let S0jgf :=

1
2!(�jgf ; Q�jgf ) be the gauge �xed kinetic term and the propagator Q+ is then de�ned as this

inverse. The most important thing here is that the propagator Q+ with the identity (5.2)

QQ+ +Q+Q+ P = 1 always satis�es

P pP = P p (5.23)
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independent of the choice of the gauge. Note that for (Thm.5.1), only this identity is needed for

Q+. Indeed the P in Siegel gauge (5.13) satis�es this identity, and it is clear that in any other

gauge QQ+ or Q+Q can not detect the physical states similarly as P t = QQu and P u = QuQ.

In addition (Q+)2 = 0 holds, and Q+QQ+ = Q+ is assumed as argued above on the Siegel

gauge.

We will see in the next subsection that in any gauge as far as the identity (5.23) holds (H; ~mp)

de�nes an A1-algebra. In addition we will propose there that for general con�guration of �elds

of �jgf one may choose the appropriate gauge �xing and construct the A1-morphism.

5.3 On-shell reduction of classical SFT

In subsection 5.1, the A1-structure (Hp; ~mp) naturally induced from the A1-algebra (H;m)

was given. At the same time, an A1-morphism ~Fp from A1-algebra (Hp; ~mp) to (H;m) was

constructed. Here let (H;m) be the A1-algebra which de�nes a classical open SFT action

S(�). Then by comparing the construction of SFT in section 3 and the construction of the A1-

structure (Hp; ~mp) in subsection 5.1, we can see that the n-point vertex de�ned by A1-structure

~mp is nothing but the tree level n-point correlation function of open string(Lem.5.1). (Thm.5.1)

in the next subsection immediately follows from this fact.

Here will explain the fact. Because the construction of SFT as in section 3 guarantees

that the scattering amplitudes of the SFT with A1-structure (H;m) computed by the Feyn-

man rule reproduce the correlation function of open string on-shell, what should be shown

is that the scattering amplitudes of the SFT computed by the Feynman rule coincides with

� 1
n
!(epi1 ; ~m

p
n�1(e

p
i2
; � � � ; epin)) where e

p
i1
; � � � ; epin 2 H

p are the external states of the amplitude.

The n-point amplitude is computed with the Feynman rules as follows. Formally, when a

SFT action S = S0 + V is given, the scattering amplitudes are computed with the partition

function of SFT,

Z =

Z
D�e�S =

Z
D�

 
1X
k=1

1

k!
(�V3 � V4 � � � � )

k

!
e�S0 : (5.24)

In the second equality, e�V = e�(V3+V4+��� ) is expanded as a perturbation. Represent the vertex

Vk as Vk =
1
k
hVkjj�i1 � � � j�ik. Fixing a gauge, constructing the propagator in the gauge, and its

contraction between any two vertices hVv1 j and hVv2 j are described as

hVv1 jhVv2 jQ
+j!iab (5.25)

where j!iab is the inverse re
ection operator (4.7), and the indices a; b denote that the propagator

connects the a-th legs of the vertices hVv1 j with the b-th legs of the vertices for 1 � a � v1 and

1 � b � v2. Since the value of eq.(5.25) does not rely on whether Q+ operates on the ket j ia or

on the ket j ib, the index for Q
+ is omitted. The Feynman rule is then de�ned by the usual Wick

contraction using eq.(5.25) 17. We are interested in tree amputated amplitudes. When the tree

17Concerning the relation between this Feynman rule of the world sheet picture and the one of component �eld

theory picture, the reference [3] also provides us with useful information.
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n-point amplitude with the external propagators is de�ned in the path integral form, the Wick

contraction with the propagators can be divided into two processes : the contraction between

the n external states and the vertices, and the contraction between the vertices. Performing the

latter process leads some function of n powers of �. Here de�ne it as

�
1

n
h ~Vnjj�i � � � j�i = �

1

n
~Vn(�; � � � ;�) : (5.26)

The former process, contracting the � in ~Vn(�; � � � ;�) with n external �elds, �nishes the cal-

culation of the amplitude. Instead, the coeÆcient of �in � � ��i1 for eq.(5.26) reads

�
1

n
h ~Vnjjei1i � � � jeini = �

1

n
~Vi1���in ; (5.27)

the amputated n-point amplitude with external states ei1 � � � ein . Restricting the external states

to physical states leads the on-shell n-point amplitude and express it as

�
1

n
h ~Vnjje

p
i1
i � � � jepini = �

1

n
~Vpi1���in : (5.28)

We can also include the Q-trivial states for the external states but the on-shell amplitudes vanish

even if one of the external states is Q-trivial. To avoid to increase the notation, here we argue

in the case of physical state space Hp only.

More precisely, when computing the Feynman diagram we should comment about the gauge

�xing . Generally let O(�n) be any operators of (�)n powers, then its expectation value is

calculated as

hO(�n)i �

Z
D� O(�n)e�S

���
gf
=

Z
D�gf O(�

n
gf )e

�
P

k�3
1

k
Vk(�gf ;��� ;�gf )e�S0jgf (5.29)

where jgf denotes a gauge �xing discussed in the previous subsection, �gf denotes the gauge

�xed �, and S0jgf means S0 but � in S0 is replaced by �gf . The propagator Q+ is derived

from this gauge �xed kinetic term S0jgf . The expectation value hO(�n)i does not depend on the

gauge �xing only when O(�n) is a gauge invariant operator. The amputated n point amplitudes

� 1
n
~Vi1���in generally depend on the gauge. It is calculated by using the propagator Q+, which

depends on the choice of the gauge. As will be seen, the vertex ~Vi1���in relates to the A1-structure

~m, which implies that the set of the vertices satis�es BV-master equation with an appropriate

symplectic structure ~!. Here in any gauge we can de�ne an A1-structure. Thus there are

the ambiguities of the gauge choice when constructing the A1-structure ~m. Mathematically

the propagator is related to a homotopy operator. It is interesting that the ambiguities of

homotopy operators are physically those of the propagators through the choice of the gauge,

and are those of constructing higher vertices ~V which satis�es BV-master equation. However

from the expression in eq.(5.29), it is natural that the vertices ~Vk(�; � � � ;�) is de�ned such

that its value on �jgf is ~Vk(�gf ; � � � ;�gf ) calculated by the propagator with the gauge jgf . We

then propose this de�nition for the A1-structure ~m (and an A1-quasi-isomorphism ~F which

induces the transformation from the original A1-structure m to ~m), though later arguments do

not depend on this choice. Any way, the on-shell amplitudes � 1
n
~Vpi1���in is gauge invariant and is
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independent of the choice of the gauge. In this subsection the arguments are restricted to the

on-shell physics and it is shown below that ~Vpi1���in de�nes the A1-structure ~mp. Hereafter in

this paper jgh is omitted.

By construction, eq.(5.26), (5.27) or (5.28) are de�ned as the sum of Feynman diagrams

which is related to �n�1 2 Gn�1 in (Def.5.1). Here will show that the on-shell n-point amplitudes

coincide with the amplitudes de�ned by ~mp
n�1. In order to see that, the following two statements

must be con�rmed : each Feynman graph in eq.(5.28) coincides with some ~m�n�1 , and all the

weight of these Feynman graphs are one because ~mn�1 is constructed by summing over each

~m�n�1 with weight one. We shall con�rm these two statements at the same time below.

As argued in section 3, when the number of the propagators in one of these Feynman graphs

is I, the number of the vertices is I + 1, and we have an identity n =
PI+1

m=1 vm � 2I, where vm
is the number of the legs of the vertex. Because the tree diagrams are considered, there are not

more than one propagator between any two vertices. Each term of eq.(5.26) corresponding to

each Feynman graph is then represented as

(sym: fac:)
�1

v1
hVv1 j � � �

�1

vI+1
hVvI+1 j (Q

+j!i)I(j�i)n (5.30)

where (sym: fac:) means the symmetric factor appearing if vi = vj for any i 6= j. Such factor

comes from the coeÆcient of the Taylor expansion of e�Vvm in eq.(5.24). Both Q+j!i and � have

degree zero, so eq.(5.30) does not depend on the order of them. Each Q+j!i connects any two

external states of any two di�erent vertices to each other. The simplest term is that of I = 0,

which is � 1
n
hVnj(j�i)

n. Therefore it is clear that h ~V p
n j = hVnj + � � � where � � � are the terms of

I � 1. Note that h ~Vnj is cyclic-symmetrized by construction. Therefore for each term choose

epi1 from (�)n, assign epi2 � � � e
p
in
to the rest (�)n�1 with cyclic order, and the on-shell amplitude

eq.(5.28) with external states epi1 ; � � � ; e
p
in

is obtained by summing over all these graphs and

dividing by n. This n is represented explicitly in the expression (5.26),(5.27) and (5.28). Let us

concentrate on one of such n point tree Feynman graph. We choose epi1 as the end points of the

graph and introduce an orientation on the edge of the graphs as follows. Let the vertex one of

whose external states is epi1 be hVv1 j. On the edge between vertex hVv1 j and epi1 , we introduce

the orientation from hVv1 j to epi1
18. Other edges connected to hVv1 j are ordered so that the

orientations on them 
ow into hVv1 j. We write the edge connected to epi1 on the left hand side

and the others on the right hand side of the vertex hVv1 j keeping its cyclic order (see the second

step of an example in (Fig.3)). Some of the edges written on the right hand side connect to

other vertices. We write the edges of those vertices, except the edge connecting to hVv1 j, on the

right hand side of those vertices keeping its cyclic order, and the orientations are ordered so that

the 
ow of each edge is from right to left. Repeating this, we get a tree graph. An example of

the Feynman graph in (Fig.1) in section 3 is �gured in (Fig.3). The above procedure gives the

one-to-one correspondence between the n-point tree graphs of with external states �xed and the

tree graphs �n�1 2 Gn�1 de�ned in (Def.5.1). The value corresponding to the Feynman graph

18An edge corresponds to a propagator Q+j!iab. The j!iab is symmetric with respect to the label a; b and

eq.(5.25) does not rely on whether Q+ operates on j ia or on j ib. Therefore this orientation of the edges does not

have any physical meaning.
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Figure 3: The graph on the left hand side is rewritten as the one on the right hand side

through introducing the orientation on each edges and enjoying the graphical representations

in subsection 4.3. Here on the left hand side, we adjust the outgoing legs of vertices to the top

by employing the cyclic symmetry of the vertices. In this process for each vertex vm number of

graphs are identi�ed, and the factor 1
vm

in front of hVvm j cancels. e
p
i2
; � � � ; epi12 is assigned to the

rest edges in cyclic order.

is expressed in terms of hV j, Q+ and j!i as in eq.(5.30), but we can rather express in terms of

mk, Q
+ and j!i. It can be done using the relations in subsection 4.3 such as

hVk+1j j!i = mk : (5.31)

The contribution of a graph �n�1 to ~Vpi1���in in eq.(5.28) is then evaluated as

�(sym:fac:) �
1

v1 � � � vI+1
(�1)I(�1)I+1!(epi1 ; ~m

p
�n�1

(epi2 ; � � � ; e
p
in
)) ; (5.32)

where (�1)I+1 comes from the vertices and (�1)I appears because Q+ in eq.(5.30) is replaced to

�Q+ and the above equation includes I number of propagators Q+. In practice, let us evaluate

the value corresponding to the graph �11 in (Fig.3). It is

�

�
1

2

1

2

�
(�1)4(�1)5

3 � 4 � 5 � 3 � 5
hV3jhV4jhV5jhV3jhV5jQ

+j!i(12)Q
+j!i(23)Q

+j!i(34)Q
+j!i(35)je

p
i1
i � � � jepi12i

=

�
1

2

1

2

�
1

3 � 4 � 5 � 3 � 5
�

!(ei1 ;m2(�Q
+m3(e

p
i2
;�Q+m4(e

p
i3
;�Q+m2(e

p
i4
; epi5);�Q

+m4(e
p
i6
; epi7 ; e

p
i8
; epi9); e

p
i10
); epi11); e

p
i12
)

=:

�
1

2

1

2

�
1

3 � 4 � 5 � 3 � 5
!(epi1 ; ~m

p
�11

(epi2 ; � � � ; e
p
i12
)) :

On the �rst line of the above equation the vertices are labeled as 1 � � � 5 in the order, and the

indices (ab) for a; b = 1 � � � 5 denote that the propagator contracts vertices a with b.
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On the other hand, the n point vertex given by ~mp is

!(epi1 ; ~m
p
n�1(e

p
i2
; � � � ; epin)) =

X
�n�12Gn�1

!(epi1 ; P ~mp
�n�1

(epi2 ; � � � ; e
p
in
)) :

The rest of the proof is then to con�rm that the Feynman rule gives the contribution of a graph

�n�1 to ~Vpi1���in is !(epi1 ; ~m
p
�n�1

(epi2 ; � � � ; e
p
in
)) with weight +1 for each �n�1 2 Gn�1. First, the

factor 1
vm

in front of hVvm j cancels because choosing one outgoing edges from vm legs creates

the factor vm as stated in (Fig.3). Next, if the graph includes k vertices with the same vm,

the exchanging of the vertices creates the factor k!, which cancels with the symmetric factor

(sym:fac:). Thus for each graph �n�1 the same weight +1 is obtained and one can get

~Vpi1���in = !(epi1 ;
X

�n�12Gn�1

~mp
�n�1

(epi2 ; � � � ; e
p
in
)) : (5.33)

Here we claim that the above relation can also be written as

~Vpi1���in = !(epi1 ; ~m
p
n�1(e

p
i2
; � � � ; epin)) : (5.34)

It is guaranteed if P would be the projection onto physical states, but as was seen in the previous

subsection, it fails. However the claim still holds. It follows from the existence of the orthogonal

decomposition (4.23) and P pP = P p (eq.(5.23)). �

Lemma 5.1 (Hp; ~mp) de�nes the A1-algebra of string S-matrix elements on Hp, and the co-

homomorphism ~Fp de�ned in (Def.5.1) is the A1-quasi-isomorphism between the A1-algebras

(Hp; ~mp) and (H;m).

proof. The relation between ~mp and the string S-matrix elements was given in (5.34). However

it is necessary to show that ~mp actually de�nes an A1-structure on physical states Hp. Because

P and P p are di�erent, if we use ~mp naively as an A1-structure, the image of ~mp
k does not

possibly belong to Hp, and if we de�ne the A1-structure on H
p as the image of ~mp

k is projected

onto Hp, it is not guaranteed that it de�nes an A1-condition (2.6). However fortunately it can

be shown that

~mp
n�1(e

p
i2
; � � � ; epin) 2 H

t [Hp

for any epi 2 H
p. The proof is given in Appendix B.3. As was mentioned, in addition to epi 2 H

p,

any Q-trivial states can be included and the same result is obtained. The structure ~mp de�nes

the A1-structure on on-shell states Ht [ Hp. Furthermore as is shown in Appendix B.3, the

A1-structure can be reduced on Hp. We denote the A1-algebra by (Hp; ~mp). The following

diagram is then obtained as the modi�ed version in (Rem.5.1)
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(H; ~m) (H;m)

(Ht [Hp; ~mp)

~F

~Fp

P t + P p

P p

(Hp; ~mp)

�

�

~Fp

where ~m and ~F are strictly the same ones in (Rem.5.1), and � : Hp !Ht [Hp, � : Ht [Hp ! H

are the inclusion maps. � : Hp !Ht[Hp is extended to an A1-quasi-isomorphism F � = ff �kgk�1
as f �1 = � and f �2 = f �3 = � � � = 0. We represent F � simply as �. Similarly � : Ht [ Hp ! H,

P p and P t + P p are regarded as A1-quasi-isomorphisms. The A1-structure ~mp on Ht [ Hp

and Hp are then given by the composition (P t + P p) Æ ~m Æ � and P p Æ ~m Æ � Æ �, respectively.

The A1-quasi-isomorphisms ~Fp : (Ht [Hp; ~mp)! (H;m) and ~Fp : (Hp; ~mp)! (H;m) are also

given as ~Fp = ~F Æ � and ~Fp = ~F Æ � Æ �, respectively. ~F and these two ~Fp also have the inverse

A1-quasi-isomorphism similarly as (Rem.5.4).

As will be seen, when the A1-structure is applied together with the symplectic structure,

the symplectic structure on the A1-algebra (Ht [ Hp; ~mp) is degenerate and the A1-algebra

(Hp; ~mp) is more convenient. �

We have been seen that there exists an A1-structure (Hp; ~mp) on physical states Hp (or

on on-shell Hilbert space Ht [ Hp ) and the n-point amplitudes de�ned by ~mp coincides with

the on-shell n-point tree amplitudes of open strings. The fact that the n point correlation

functions in two-dimensional theory possess the A1-structure are essentially already known. It

is described in [32] that the S2 tree amplitudes for closed strings has a L1-structure, where the

external states are restricted to physical states and therefore it has vanishing Q. This implies

that the tree level closed string free energy satis�es the classical BV-master equation. The result

is extended to quantum closed string, and it is shown that the free energy which consists of the

closed string loop amplitudes satis�es the quantum BV-master equation[33] 19. Moreover, in [5],

for classical closed SFT the M0
k ! Mk limits are considered, and it is shown that restricting

the external states to physical states yields the L1-structure found in [32]. The open string

version of this L1-structure is nothing but the A1-structure ~mp considered in this paper (and

reviewed in Appendix B.2). What is obtained newly from the above result is that the A1-

algebras associated with SFTs and the A1-algebra of two-dimensional theory are connected

by an A1-morphism, which preserves the equation of motions, and the explicit form of the

A1-morphism are realized with such a familiar language of the Feynman graph.

5.4 Field transformation between family of classical SFTs

In section 3 we construct SFTs and which are de�ned more precisely in subsection 4.3. As

their propagator we consider the one which satis�es eq.(5.23). For the family of those well-

19In [32, 33] these structures are derived in the context of 2D-string theory, i.e. the dimension of the target

space is two. However they are in fact the general structures of the string world sheet.
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de�ned SFTs, (Lem.5.1) leads the main claim of the present paper (Thm.5.1) described below.

In this subsection after proving it, we show that they preserve the value of the actions in

a certain subspace of H using (Prop.5.1) presented later. The �eld transformations induce

one-to-one correspondence of moduli spaces of classical solutions between such SFTs in the

context of deformation theory. We will explain that the classical solutions are regarded as those

corresponding to marginal deformations. Finally in this subsection a boundary SFT like action

corresponding to the A1-algebra (H; ~m) de�ned in (Rem.5.1) is proposed.

Theorem 5.1 All the well-de�ned classical SFTs which are constructed on a �xed conformal

�eld theory are quasi-isomorphic to each other.

proof. As was explained in section 3, when the decomposition of the moduli space of Riemann

surfaces is given, then the vertices of SFT are determined, i.e. SFT action is determined. Di�er-

ent decompositions of moduli space lead di�erent SFTs. By construction the Feynman graphs

for those SFTs should reproduce the string correlation functions on-shell. Here let S(�), S0(�0)

be such two SFT actions and (H;m), (H;m0) be the corresponding A1-algebras. (Lem.5.1)

states that the set of the on-shell string correlation functions de�nes an A1-algebra (Hp; ~mp)

and the A1-algebras of SFTs (H;m), (H;m
0) are A1-quasi-isomorphic to (Hp; ~mp). Thus the

A1-quasi-isomorphism ~Fp from (Hp; ~mp) to (H;m) and ~F 0
p
from (Hp; ~mp) to (H;m0) exist. Note

that on a �xed conformal background any such A1-algebras of SFTs are A1-quasi-isomorphic

to the same A1-algebra (Hp; ~mp). The composition ~F 0
p
Æ ( ~Fp)�1 then de�nes the A1-quasi-

isomorphism from (H;m0) to (H;m). This map is in fact a quasi-isomorphism because the

inverse of quasi-isomorphism is a quasi-isomorphism and the composition of quasi-isomorphisms

is a quasi-isomorphism. �

This result indicates that the equations of motions for any classical SFTs constructed

from the same on-shell S-matrix elements are transformed to each other by the above quasi-

isomorphism ~F 0
p
Æ ( ~Fp)�1. However the quasi-isomorphism is not an isomorphism, it does not

guarantee that there exists a �eld rede�nition between them which preserves the value of the

actions. In contrast, any di�eomorphisms F on H which preserve the value of the actions of the

form

�0 = F�(�) = f1(�) + f2(�;�) + � � � (5.35)

are A1-isomorphisms, by de�ning the symplectic structures on S(�) and S0(�0) so that the

di�eomorphism F� preserves these symplectic structures[44]. The statement that F preserves

the values of the actions is, in other words, that F satis�es S(�) = F�S0(�0) := S0(F�(�)).

The SFTs, which are characterized by the pair (S(�); !), are called equivalent when the SFTs

are connected by such a di�eomorphism preserving the action and the symplectic structures[41].

The fact that the di�eomorphism which connects equivalent SFTs is an A1-morphism is clearly

understood in the dual (component �eld) picture as follows. Express two string �elds as � = ei�
i

and �0 = e0i�
0i, and acting

 �
@
@�i

!ij
�!
@

@�j
on the identity S(�) = S0(F�(�)) leads

 �
@

@�i
!ij

�!
@

@�j
S(�) =

 �
@

@�i
!ij

�!
@

@�j
S0(F�(�)) :
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The left hand sides is exactly Æ : the dual description of the A1-coderivative in eq.(2.9). The

right hand side is rewritten as

 �
@

@�0k
�0k
 �
@

@�i
!ij

�!
@ �0l

@�j

�!
@

@�0l
S0(�0) :

Thus, if F preserves the symplectic structure or equivalently the Poisson structure is preserved

F�!0
kl
=

�0k
 �
@

@�i
!ij

�!
@ �0l

@�j
; (5.36)

it is clear that the right hand side gives Æ0 =
 �
@

@�0k
!0kl

�!
@

@�0l
S0(�0) = ( ; S0(�0)). To summarize

and extend the above arguments, one can obtain the following fact :

Proposition 5.1 When a cohomomorphism F of the form in eq.(5.35) between two actions

S(�) and S0(�0) and two symplectic structures which are preserved by the cohomomorphism F

are given, then the following two statements are equivalent :

� F is an A1-morphism.

� F preserves the value of the action, that is, S(�) = F�S0(�0).

This equivalence follows from the fact that the symplectic structures on both sides are non-

degenerate. Note that here f1 may not be an isomorphism. (Prop.5.1) is well-de�ned and holds

for general symplectic structures on H which depend on f�g. Because in this paper mainly

we deal with the constant symplectic structures associated with the BPZ-inner product, we

avoid the explanation of the issue in this paper (see cyclic algebra with BV-Poisson structure in

subsection 4.3). Of course when considering the graded commutative �elds such as U(1) gauge

�elds, the symplectic structure is that on supermanifold[51] and is known to be well-de�ned.

Here we come back to the physical consequence of (Thm.5.1). We de�ne the action ~S(~�p)

on the A1-algebra (Hp; ~mp) by summing up 1
n
~Vpn(~�p; � � � ; ~�p) in eq.(5.26) as

~S(~�p) =
X
k�2

1

k + 1
!(~�p; ~mp

k(
~�p)) : (5.37)

Now we have an A1-quasi-isomorphism ~F 0
p
Æ ( ~Fp)�1 between (H;m) and (H;m0). Though it

has not assumed in the proof of (Thm.5.1), the ~Fp and ~F 0
p
preserve the value of the actions,

that is, the A1-quasi-isomorphism ~Fp satis�es

~S(~�p) = ( ~Fp)�S(�) = S(( ~Fp)�(~�
p)) (5.38)

and similar for ~F 0
p
. This fact yields that, on the subspace of H which is the image of ~Fp from

(Hp; ~mp), any actions S(�) are preserved. Eq.(5.38) follows from (Prop.5.1) and the fact that

the ~Fp preserves the symplectic structures. Let !ij be the symplectic structures on (H;m).

Each term in ~S(~�p) was made of the A1-structure ~mp
k as

1
k+1!(

~�p; ~mk(~�
p)), so the symplectic
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structure on (Hp; ~mp) is !ij restricted on Hp � H. On the other hand, de�ne ~!p
ij as a symplectic

structure on (Hp; ~mp) which is preserved under the transformation ~Fp. ~!p = ( ~Fp)�! is written

as 20

~!p
ij =

�!
@ �k

@ ~�p;i
!kl

�l
 �
@

@ ~�p;j
= (�1)e

p
i !

 �!
@

@ ~�p;i
�;�

 �
@

@ ~�p;j

!
:

Here we choose the basis so that the inner product ! is decomposed orthogonally as in eq.(4.23).

Since � = ~�p �Q+
P

k�2mk(�) and the image of Q+ vanishes in the symplectic inner product

in the right hand side of the above equation by using eq.(4.20), the right hand side becomes

(�1)e
p
i !(

�!
@

@ ~�p;i
~�p; ~�p

 �
@

@ ~�p;j
) = !ij. Thus the ~!p

ij coincides with the !ij restricted on Hp, the map

~Fp from ~S(~�p) to S(�) preserves the symplectic structures, and (Prop.5.1) leads that eq.(5.38)

holds 21.

Although the proof of eq.(5.38) has been concreted, it is interesting to observe S(( ~Fp)�(�))

directly by substituting � = ~Fp
� (~�

p) in S(�)

S(( ~Fp)�(�)) =
1

2
!
�
~fp(~�p); Q ~fp(~�p)

�
+
X
k�2

1

k + 1
!
�
~�p + ~fp(~�p);mk(~�

p + ~fp(~�p))
�

(5.39)

and check that S(( ~Fp)�(�)) in fact coincides with ~S(~�p). The equation (5.39) is written as

the power series of ~�p and let us observe the (~�p)n parts of eq.(5.39) for n � 3. For n = 3

the �rst term in the right hand side of this equation drops out and it can be seen clearly that

S(( ~Fp)�(�))j(~�p)
3 = 1
3!(

~�p; ~mp
2(
~�p; ~�p)). Generally both �rst and second term contribute.

Using ~mp
�k

in (Def.5.1), the contributions of the �rst and second terms to the terms of n powers

of ~�p are X
�k1�2;�k2�2;k1+k2=n

�
1

2
!( ~mp

�k1
(~�p);�Q+ ~mp

�k2
(~�p)) (5.40)

and

nX
l�3

1

l

X
�k1�1;��� ;�kl�1;

k1+���+kl=n

!
�
�Q+ ~mp

�k1
(~�p);ml�1(�Q

+ ~mp
�k2

(~�p); � � � ;�Q+ ~mp
�kl

(~�p))
�
; (5.41)

respectively. In eq.(5.40) Q+QQ+ = Q+ is used. Here in eq.(5.41) we denoted ~�p by�Q+ ~mp
�1
(~�p).

In the expression where the cyclicity of vertices fml�1g are emphasized, eq.(5.40) and (5.41) are

20The equation below is actually equivalent to eq.(5.36). The equivalence follows from !ij!
jk = Æki and

~!p
ij ~!

p;jk = Æki . The argument is well-de�ned even for the non-constant symplectic structure.
21In the proof the appropriate basis is chosen, but it can also be seen that the result is independent of the

choice because !ij restricted on Hp is independent of it.
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graphically pictured as

�k2�k1 �k1

�k2

�k3

�kl

�
P

� (sym:fac:)
Pn

l�3

P
� (sym:fac:)+

,

where �k denotes that ~mp
�k
(~�p) is in this place. The summations

P
� in the �rst and second

term are the summations for �ki 's in eq.(5.40) and (5.41), respectively. The (sym:fac:) in the

�rst and second term are the symmetric factors with respect to the �ki 's. When �ki 6= �kj
for any i 6= j, then (sym:fac:) = 1. In the �rst term when �k1 = �k2 then (sym:fac:) = 1

2 ,

and in the second term when �ki = �kj for all 1 � i; j � l then (sym:fac:) = 1
l
. These

factor comes from the coeÆcients in eq.(5.40) and (5.41). Each term contributes to the term

!(~�p; ~mp
�n�1

(~�p; � � � ; ~�p)) for some �n�1. Here �x the tree graph �n�1 and treat it as a cyclic

graph, i.e. a outgoing leg and n� 1 incoming legs are not distinguished and the graphs which

coincides with each other by moving cyclic are identi�ed. Denote it by �cycn�1 and let us observe

the coeÆcient of !(~�p; ~mp

�cycn�1
(~�p; � � � ; ~�p)) from the above two contributions. As was seen in

(a) (b)

Figure 4: Suppose that �cycn�1 is the graph (a). For each vertex � in (a) eq.(5.41) contributes

and for each propagator (dashed line) in (a) eq.(5.41) contributes. The term corresponding to

the vertex surrounded by the circle of dotted line has (sym:fac:) = 1
3 . On the other hand,

consider the case when �cycn�1 is the graph in (b). This is the exceptional case. The graph has

(sym:fac:) = 1
2 with respect to the propagator marked by the circle.

section 3 and the previous subsection, if �cycn�1 has I propagators, it contains I + 1 vertices. We

label the vertices in �cycn�1 as vi; i = 1; � � � ; I+1 and the propagators as j = 1; � � � ; I. Without an

exceptional case explained later, the �rst terms contribute for each propagators j in �cycn�1 and the

second terms contribute for each vertex vi in �
cyc
n�1. The coeÆcient for !(~�p; ~mp

�cycn�1

(~�p; � � � ; ~�p))

is then

�
IX

j=1

(sym:fac:)j +
I+1X
i=1

(sym:fac:)vi : (5.42)

Note that if (sym:fac:)vi 6= 1 for certain i, then (sym:fac:)vi0 = 1 for all i0 6= i (this fact can

be read easily from the graph). In the same way if (sym:fac:)j = 1
2 for certain j, then the

other (sym:fac:)j0 is equal to one. Thus in the case when (sym:fac:)j = 1 for all propagators

43



j, eq.(5.42) becomes �I +
PI+1

i=1 (sym:fac:)vi = (sym:fac:)�cycn�1
where (sym:fac:)�cycn�1

denotes

the cyclic symmetric factor for �cycn�1 which, if not equal to one, comes from (sym:fac:)vi for

certain i. The case when (sym:fac:)j =
1
2 for certain j is the exceptional case mentioned above

(see for example the graph (b) in (Fig.4)), and the coeÆcient for !(~�p; ~mp

�cycn�1
(~�p; � � � ; ~�p)) is

not given by eq.(5.42). In this case I + 1 is even and the graph �cycn�1 is symmetric with respect

to the propagator j, so the overcounting must be divided in eq.(5.42). The coeÆcient is then

�1
2(I � 1) � 1

2 +
1
2 (I + 1) because in this case (sym:fac:)vi = 1 for all i. This is equal to 1

2 ,

which is exactly the cyclic symmetric factor for �cycn�1 also in this case. From the above result,

eq.(5.39) is rewritten as

S(( ~Fp)�(�)) =
X

n�3;�cycn�1

(sym:fac:)�cycn�1
!(~�p; ~mp

�cycn�1
(~�p; � � � ; ~�p)) (5.43)

where the summation for �cycn�1 runs over the �n�1's which are identi�ed by the cyclic symmetry.

Therefore re-symmetrizing the sum reproduces the desired form of the action (5.37). It is

interesting and worth emphasizing that for each edge of �cycn�1 the �rst term (5.40) contributes,

for each vertex of �cycn�1 the second term (5.41) contributes, and the overcounting of the graphs

are just canceled. �

The action ~S(~�p) is an e�ective action in the following sense. ~S(~�p) is obtained by substi-

tuting � = ~Fp(~�p) into S(�) as explained above. When we express � = �p + �u where �p

and �u denotes the physical and unphysical modes of �, respectively, the substituting means

�p = ~�p and �u = f(~�p). As is seen from eq.(5.4), the latter is nothing but the equation of

motion for �u. Moreover ~S(~�p) is related to S(�) by integrating out �u at tree level through a

gauge �xing as Z
D�ue�S(�) = e�

~S(~�p) : (5.44)

In this sense the action ~S(~�p) is an e�ective action.

Here we clarify the properties of the solutions of the equations of motions. As was explained in

subsection 2.3, because the A1-morphism preserves the solutions of Maurer-Cartan equations,

there is one-to-one correspondence between the set of the equations of motions for di�erent

SFTs on the same conformal background. However in the context of deformation theory, the

solution for the Maurer-Cartan equation are assumed to be of the form � = �~�p + O(�2) for

� a `small' formal deformation parameter. The argument in subsection 5.1 is just the case

where the small parameter is thought to be included in ~�p. Such solutions are expressed as

� = ~Fp
� (~�

p) where ~�p is a solution for the Maurer-Cartan equation ~mp
�(e

~�p
) = 0. The solutions

can be regarded as those corresponding to the marginal deformation as will be explained below.

In�nitesimally around the origin of (Hp; ~mp) the Maurer-Cartan equation is the quadratic form

~mp
2(
~�; ~�) � 0 and generally the path of the solutions which 
ows from the origin exists 22.

Consider the continuous deformation of the solutions on this path. Near the origin ~�p = 0

i.e. � = 0, the equation of motion is Q� = 0 so the solution is the one corresponding to the

marginal deformation. Note that at the origin the value of the action S(�) is zero. Since the

22Such path exists if the Hessian has the eigenvalues of opposite sign with respect to the states fepi g.
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continuous family of the solutions which connects to the origin is now considered, S(�) is kept

to be zero. Next, apart from the origin, we consider the physics around a solution �bg on the

path. Expanding the action S(�) around �bg, another action S0(�0) := S(�bg +�0) is obtained

where � = �bg + �0 and �0 2 H0 : the string Hilbert space on another conformal background.

As will be explained later in Discussions about the background independence, S0(�0) also has

an A1-structure. Here represent the kinetic term of S0(�0) as

S0(�0) =
1

2
!0(�0; Q0�0) + � � � :

The in�nitesimal deformation along the path from �bg 2 H then corresponds to the solution of

Q0�0 = 0 on H0 because S0(�0) � 1
2!
0(�0; Q0�0) = 0. Assuming the background independence

of the action S(�), Q0 is regarded as the BRST operator on another conformal background (up

to the isomorphism of the vector space H0), and therefore the in�nitesimal deformation on the

path can be regarded as the marginal deformation even if �nitely apart from the origin.

In the above arguments we obtained a quasi-isomorphism ~Fp and discussed various meaning

it has. However some additional input (from world sheet picture) may derive more strong

results. For instance in [17] it is shown that for closed SFT the in�nitesimal variation of the way

of the decomposition of the moduli space leads the in�nitesimal �eld rede�nition preserving the

value of the actions and the BV-symplectic structures. Similarly for an one parameter family of

classical open SFTs, the in�nitesimal �eld rede�nition preserving the actions is found[7], which

is discussed in the next section. If one wishes to �nd a �eld rede�nition preserving the value of

the action, we must consider an isomorphism instead of the quasi-isomorphism ~Fp. From the

general arguments in this paper, there exists only one candidate for the isomorphism, which is

the A1-isomorphism ~F : (H; ~m)! (H;m). However when any two actions S(�) and S0(�0) on

the same conformal background are given, generally ~F�S(�) and ~F 0
�
S0(�0), both of which are

the functional of ~�, do not coincide o�-shell. Therefore we cannot apply the isomorphism ~F in

order to construct a �eld rede�nition preserving the value of the action. Only on-shell ~F�S(�)

and ~F 0
�
S0(�0) coincide and the above argument has held.

Finally we comment about the SFT action ~F�S(�), which is the one obtained by substituting

the �eld rede�nition � = ~F(~�) into the original SFT action S(�). The form of the action is

derived directly in the same way as ~S(~�p) = ( ~Fp)�S(�)

~S(~�) := ~F�S(�) =
1

2
!(~�; Q~�) +

X
k�2

1

k + 1
!(~�; ~mcyc

k (~�))

� !(Q+Q~�;
X
k�2

~mcyc
k (~�)) :

(5.45)

Note that Q+Q~� is almost equal to P u ~�. ~mcyc
k denotes the one which is obtained by removing

P on the outgoing line of ~mk de�ned in (Def.5.1) and (Rem.5.1). ~mcyc
k =

P
�k2Gk

~m�k and

P ~mcyc
k = ~mk holds. Note that these f ~mcyc

k gk�2 with ~mcyc
1 := Q do not de�ne an A1-structure.

Instead, ~V( ; � � � ; ) = !( ; ~mcyc
k ( ; � � � ; )) has the cyclic symmetry similarly as mk or ~mp

k does.

The second term is derived in the same way as the on-shell action ~S(~�p) in eq.(5.37). Here

in addition the kinetic term and the third term appear. These vanish when ~� is restricted to
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~�p 2 Hp, so it can be seen that ~F�S(�) reduces to ~S(~�p) on-shell. Both the kinetic term and

the third term in the right hand side of eq.(5.45) come from the kinetic term of the action S(�),

which vanish in eq.(5.39) because the �elds ~�p is restricted on-shell.

Thus we get an o�-shell action which coincides with the string S-matrix elements on-shell.

On this action, we de�ne the symplectic structure ~!, which is di�erent from !, so that the

A1-isomorphism ~F from (H; ~m; ~!) to (H;m; !) preserves the symplectic structures. This ~! is

written as

~!ij =

�!
@ �k

@ ~�i
!kl

�l
 �
@

@ ~�j
= (�1)ei!

 �!
@

@ ~�i
�;�

 �
@

@ ~�j

!
; (5.46)

which coincides with !ij when ei; ej are restricted on-shell, but generally di�erent from !ij
o�-shell. Thus ~! is a �eld dependent symplectic form. By (Prop.5.1),

~Æ =

 �
@

@ ~�i
~!ij

�!
@

@ ~�j
~S(~�))

coincides with the dual of the A1-structure ~m. Moreover the fact that this ~Æ de�nes an A1-

structure on (H; ~m) implies that the action ~S(~�) satis�es the BV-master equation with respect

to the symplectic structure ~!. Consequently, an action ~S(~�), which coincides with the string

correlation functions on-shell and satis�es the BV-master equation, is obtained. In this sense,

this action ~S(~�) can be regarded as one de�nition of boundary SFT[43] on the neighborhood of

the origin of two-dimensional theory space H. It is interesting that, although rather formally,

the action ~S(~�) is related to the original open classical SFT action by the �eld rede�nition ~F .

This ~F is nothing but the coordinate transformation on a formal noncommutative supermanifold

in (Rem.5.3). See also boundary string �eld theory in Discussions.

6 RG-
ow and Field rede�nition

In this section we discuss the arguments in subsection 5.4 on a more explicit description of SFT

: the classical open SFT discussed in [7].

The most explicit way of creating a SFT action is based on the variation of the cut-o� length

of the propagator as in [13, 52, 50] for closed SFT, and in [6, 7] for open SFT. The cut-o� of the

propagator can be regarded as an UV-reguralization on target space, and the variation of the cut-

o� length has been discussed in these literatures in the context of Polchinski's renormalization

group[40]. One can consider the one parameter family of SFTs in this procedure. Let � be

the cut-o� length of the propagator and S(�� ; �) be the SFT action in this scale. This �

parameterizes an one parameter family of SFT S(�� ; �). The action S(�� ; �) is �-dependent

in two means : explicit �-dependence of Vi1���in or equivalently m (and !ij), and �-dependence

through the �-dependence of �� . In classical SFT case, the renormalization group 
ow is then

de�ned so that the total �-dependence of S(�� ; �) cancels

0 =
d

d�
S(�� ; �) =

@S(�� ; �)

@�
+
@��

@�

@S(�� ; �)

@��
: (6.1)
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Here we concentrate on the classical open SFT which possesses an A1-structure[7]. In [7] the

in�nitesimal �eld rede�nition @��

@�
which satis�es the above equation is derived (eq.(6.4)). We

restrict the arguments on the Siegel gauge in this section. First in (Def.6.1) we de�ne the A1-

structure explicitly. In (Prop.6.1) it is shown that this �eld rede�nition is an A1-isomorphism

on the Siegel gauge. Next the action S(�� ; �) are transformed to another action ( ~F�)�S(�� ; �)

by the A1-isomorphism ~F� and its properties are observed. The action ( ~F�)�S(�� ; �) is the

one which coincides with the string S-matrix on-shell (5.45). Using this, it is shown that on

the subspace of H which is the image of ( ~F�)p from (Hp; ~m�;p), the �nite �eld rede�nition
~F�0;p Æ ( ~F�;p)�1 from S(�� ; �) to S(��0 ; � 0) reduces to the above A1-isomorphism when its

in�nitesimal limit is taken. Finally various pictures are summarized on this explicit model.

We begin with a brief review of the construction of one parameter family of classical open

SFT[7, 6]. It is argued in [7] very clear. The main idea was explained in section 3, but this

procedure relies on the fact that all moduli space of disks with n punctures can be reproduced

by connecting Witten's type trivalent vertex[2] with propagators. We simply represent the

propagator Q+ in the Siegel gauge : b0� = 0 as b0
1
L0

since the arguments in this section do not

depend on the detail. In the Schwinger representation it is

b0
1

L0
= b0

Z 1
0

e��L0 : (6.2)

One can interpret e��L0 as the evolution operator for the open string. The width of the propa-

gator is set to be � (Fig.5.(a).). When cutting-o� the propagator with length 2�, the length of

the propagator � runs from � = 2� to � =1. Therefore the subspace of moduli space, which has

been reproduced by connecting trivalent vertices with the propagator with length 0 � � � 2�

in 2� = 0 (no-cut-o�) theory, can not be reproduced by the trivalent vertices in the theory of

cut-o� length 2�. Such diagram must be add to the SFT action as higher vertices. Vertices in

the 2� cut-o� theory are constructed recursively in this way. By construction, the width of the

external legs of n point vertex with n � 3 are of course �.

�

�

�

(a) propagator. (b) trivalent vertex with strip.

Figure 5: (a). � runs between 0 � � � 1 in Witten's cubic open SFT. When Cutting-o�

the propagator with length 2�, � runs from 2� to 1. The moduli which is not reproduced

by connecting Witten's trivalent vertices with such propagators equal to the moduli which is

not reproduced by connecting the modi�ed trivalent vertices (b) with the usual propagator

(0 � � � 1).

Cutting-o� the propagator with length 2� can be replaced by sewing the strip with width �
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and length � to all external legs of the vertices. Such trivalent vertex is pictured in (Fig.5.(b).)

for example. It is carried out by attaching the evolution operator e��L0 to each external legs.

Then the length of the propagator � runs from � = 0 to � = 1 and the modi�cation for the

propagator does not need.

Let m� be the A1-structure corresponding to the vertices in the 2�-cut-o� theory. The

A1-structure for Witten's cubic SFT is described as m0 = fm0
1 = Q;m0

2;m
0
3 = m0

4 = � � � = 0g.

Recalling the arguments in subsection 5.2 and 5.3 yields that m� is given essentially as ~m by

replacing Q+ and P in the de�nition of ~m(p) in (Def.5.1) to Q�;+ and P � de�ned below in the

context of the present paper. Here explicitly present it as follows.

De�nition 6.1 (A1-structure m
�) De�ne Q�;+ := b0

R 2�
0 e��L0d� and P � := e�2�L0 . These

satisfy the following identity

fQ;Q�;+g+ P � = 1 :

Let us de�ne as an intermediate step ff
~�
kg and fm

~�
kgk�2 recursively by

f
~�
k (�

~�) := �Q�;+
X

1�k1<k2=k

m0
2(f

~�
k1
(�

~�); f
~�
k2�k1

(�
~�))

with f
~�
1 (�

~�) = �
~� and

m
~�
k(�

~�) :=
X

1�k1<k2=k

P �m0
2(f

~�
k1
(�

~�); f
~�
k2�k1

(�
~�)) :

for k � 2. By shifting the �eld as �
~� = e��L0�� , the A1-structure m

� is de�ned as

m�
k(�

�) := e�L0m
~�
k(e
��L0��)

= e��L0
X

1�k1<k2=k

m0
2(f

~�
k1
(e��L0��); f

~�
k2�k1

(e��L0��)) :
(6.3)

The fact that actually m� de�nes an A1-structure follows from this construction and the fact

that m0 de�nes an A1-structure. The fact that the vertices have cyclic symmetry is also clear

by construction.

For example when k = 2, the three point vertex m�
2 is e��L0m0

2(e
��L0 ; e��L0 ), which is

just the one in (Fig.5.(b)). For any n � 3, one can see that m�
n includes n � 3 propagators

all of which have length 0 � � � 2�. They cannot be reproduced by connecting lower vertices

m�
k (k � n� 1) with the propagators.

In this situation, the 
ow of �� which satis�es eq.(6.1) is de�ned in [7] as

@��

@�
= b0

X
k�2

m�
k(�

�) (6.4)

in the Siegel gauge. The fact that this in�nitesimal �eld rede�nition preserves the value of the

actions can be checked directly by substituting this into eq.(6.1) because now the variation of

m�
k with respect to � is derived directly by the explicit construction of m� in (Def.6.1).
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Proposition 6.1 This �eld rede�nition (6.4) is an A1-isomorphism on the Siegel gauge.

The �eld rede�nition (6.4) is de�ned only on the Siegel gauge b0�
� = 0. Therefore this propo-

sition claims, in other words, that this �eld rede�nition can be extended to the in�nitesimal

neighborhood of the submanifold b0�
� = 0 so that the derivative with respect to �� can be de-

�ned.

proof. Now the symplectic structure for S(�� ; �) is ! and is independent of �. Because this �eld

rede�nition @��

@�
preserves the value of the action, by (Prop.5.1) it is suÆcient for the proof to

show that the �eld rede�nition preserves the symplectic form !. Let us consider the in�nitesimal

�eld transformation FÆ� de�ned by � as follows

(FÆ�)�a(��
0

) := a(��) + Æ�a(�
�)

:= a(��) + (a(��); �(��)) ;
(6.5)

where a(��) is a functions of �� and �(��) is a in�nitesimal function of �� which determines

the in�nitesimal transformation. ( ; ) is the BV-Poisson structure with respect to !. Such

in�nitesimal transformation is called canonical transformation of (BV-)symplectic structure and

is applied to the in�nitesimal �eld rede�nition in closed SFT in [17]. This transformation

preserves the Poisson structure, that is,

(a(��); b(��)) + Æ�(a(�
�); b(��)) = (a(��) + Æ�a(�

�); b(��) + Æ�b(�
�)) (6.6)

up to (�)2. It immediately follows from the Jacobi identity of ( ; ). Now ( ; ) is de�ned on

the theory with parameter �. On the other hand, if the symplectic structure ( ; )�0 on the

theory with parameter � 0 is de�ned so that FÆ� preserves the symplectic structures, we have the

following identity

(FÆ�)�(a(��
0

); b(��
0

))�0 = ((FÆ�)�a(��
0

); (FÆ�)�b(��
0

)) : (6.7)

The right hand side exactly coincides with the right hand side in eq.(6.6), therefore the symplectic

structure ( ; )�0 induced by the transformation FÆ� is determined by the equality between the

left hand sides in eq.(6.6) and eq.(6.7). When we set a(��
0
) = ��

0;i and b(��
0
) = ��

0;j, the

equality becomes

(FÆ�)�!�0;ij = !ij + Æ�!
ij

where !�0;ij denotes the Poisson tensor of ( ; )�0 . This equality implies that if !ij is constant,

!�0;ij is equal to !ij. Thus it is shown that the constant symplectic structure !ij is preserved

under the in�nitesimal �eld rede�nition of the form in eq.(6.5). Here the �eld rede�nition @��

@�

can be rewritten in the form (6.5) as �(��) = !(�� ; b0
P

k�2m
�
k(�

�)). In fact on the Siegel

gauge,

(�� ; �)jb0��=0 = b0
X
k�2

m�
k(�

�)jb0��=0

holds. This completes the proof of (Prop.6.1). �
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Next let us observe the action ( ~F�)�S(�). As was seen in eq.(5.45), it is of the form

~S(~��) := ( ~F�)�S(�� ; �) =
1

2
!(~�� ; Q~��) +

X
k�2

1

k + 1
!(~�� ; ~m�;cyc

k (~��))

� !(Q+Q~�� ;
X
k�2

~m�;cyc
k (~��)) ;

(6.8)

where ~m�;cyc
k is the one related to m�

k as in eq.(5.45). At the same time we have the �eld

rede�nition �� = ~F�
� (~�

�) = ~�� + ~f �(~�). By construction, comparing with ~m0;cyc, ~m�;cyc
k has its

external legs of length �, which indicates

~m�;cyc
k ( ; � � � ; ) = e��L0 ~m0;cyc

k (e��L0 ; � � � ; e��L0 ) :

In the same way the following relation between ~f �k with di�erent k holds,

~f �k ( ; � � � ; ) = e��L0 ~f0k (e
��L0 ; � � � ; e��L0 ) ;

where we used the Q+ = b0
1
L0

on the outgoing states of ~f �k and e��L0 commute.

�

�

Figure 6: ~m�;cyc
4 is �gured. The interior of the circle denotes that all tree �ve point Feynman

graphs are summed up and which means that the integral runs the whole moduli space M5.

Comparing to ~m0;cyc
4 the additional strips with length � are attached.

Let us restrict the external states ~� to ~�p 2 Hp. In this case ~m�;cyc
k and ~f �k are replaced

by ~m�;p
k and ~f �;pk . Then ~m�;p

k coincides with ~m0;p
k because e��L0 = 1 on ~�p. Thus the on-shell

e�ective action ~S(~��;p) := ( ~F�;p)�S(��) is independent of �. On the other hand, the situation

is not the same for ~f �k , because the outgoing states of f �k do not belong to Hp but the image of

Q+. The outgoing legs has its length � and then the propagator acts on it. The facts leads

~f �;pk = e��L0 ~f0;pk : (6.9)

Note that ~f0;pk has no �-dependence. We can then consider the in�nitesimal variation of the �eld

rede�nition �� = ~��;p + ~f �;p(~�p),

@��

@�
= �L0e

��L0 ~f0;p(~�0;p)

= �L0
~f �;p(~��;p)
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where ~f �;p(~��;p) =
P

k�2
~f �;pk (~��;p). By de�nition, one can rewrite ~f �;pk (~��;p) as

~f �;p(~��;p) = �Q+
X
k�2

m�
k(�

�)

where �� in the right hand side is the image of ~F�;p
� from ~�p 2 Hp. Recalling Q+ = b0

1
L0
, the

in�nitesimal �eld rede�nition is derived as

@��

@�
= b0

X
k�2

m�
k(�

�) ;

which exactly coincides with the renormalization group 
ow (6.4). The �nite �eld rede�nition

from S(�� ; �) to S(��0 ; � 0) on this subspace is given by

��0 = �� + e��
0L0f �

0

(�0;�0)� e��L0f �
0

(�0;�)

= �� + b0

Z �0��

0
e��L0d�

X
k�2

m�
k(�

�) :

Finally the various SFT action obtained here and their relation between each other are sum-

marized. (H;m0) is the cubic open SFT. On the horizontal line the one parameter family of

(H;m0) (H;m�) (H;m�0) (H1;m1)

(H; ~m�0)

(H; ~m�)

~F�

~F�0

SFT (H;m�) is de�ned and there exists the in�nitesimal �eld rede�nition on it. This �eld redef-

inition preserves the A1-structure i.e. the BRST-symmetry on the Siegel gauge, and formally

by integrating it there exists a �eld rede�nition between any two SFTs on this one parameter

family. Alternatively, for each (H;m�) there exists an equivalent SFT (H; ~m�). These are related

to each other by ~F� . The �eld transformations on the horizontal line and ~F� are compatible.

When (H; ~m�) is restricted to physical states, the reduced theory does not depend on � and

coincides with (Hp; ~mp). In this subspace the composition ~F�0;p Æ ( ~F�)�1 de�nes the �nite �eld

transformation between (H;m�) and (H;m�0). Its in�nitesimal version actually coincides with

the �eld rede�nition given in [7].

Note that in the limit � ! 1, each vertex of the action on (H;m1) has the whole moduli

and it coincides with the correlation function itself. (H;m1) then coincides with (H; ~m1) and

its restriction onto the physical state space Hp is just (H; ~mp). This is the open string version of

the argument given in [5], where the L1-structure of closed SFT is reduced to the L1-structure

in string world sheet theory[32, 33]. This argument is reviewed in Appendix B.2.

Thus we have two one parameter families of SFT (H;m�) and (H; ~m�). The 
ow on (H;m�)

is discussed from the viewpoint of the renormalization group in [7]. The 
ow on (H; ~m�) might

also be interpreted as the renormalization 
ow of boundary SFT.
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7 Conclusions and Discussions

We discussed classical open SFTs with cyclic vertices and argued that what extent their structure

is governed by their general properties. These SFTs have the structure of A1-algebras, and it

is shown that the A1-algebras of them are A1-quasi-isomorphic to the A1-algebra of on-shell

S-matrix elements. Moreover applying this, it is shown that any such SFTs which di�er in

the decomposition of moduli space are A1-quasi-isomorphic to each other. This implies that

between any such SFTs there is one-to-one correspondence of the solutions of the equations

of motions which describe marginal deformations. In subspaces which relate to physical state

spaceHp the �nite �eld transformation between two SFTs are described in terms of the Feynman

graph.

We discuss the above arguments explicitly on the one parameter family of classical open SFTs

on the Siegel gauge. On this one parameter family, there exists a �eld rede�nition preserving the

value of the actions. We showed that the in�nitesimal �eld rede�nition is an A1-isomorphism.

It was observed that the in�nitesimal version of the above �nite �eld transformation in the

subspace coincides with the A1-isomorphism preserving the actions.

Through the explanation of the above statements, various expressions for A1-algebras of

SFTs are used and their relations were summarized. The sign attending on the degree (ghost

number) is uniformed self-consistently. The relation to the conventional de�nition of the sign

is not denoted explicitly in this paper, but one can easily obtain the relation by comparing

the two de�nitions of A1-algebras the elements of which have their degree di�er by one (see

(Rem.2.2) and, for example, [45]. Essentially the relation can be read from the relation between

the convention in �rst half and the latter half of [7]. ).

The problem of taking dual of coalgebras has some subtlety when the graded vector space is

in�nite dimensional. SFT is just the case. However SFTs are �eld theories. Therefore as far as

assuming that the SFT is well-de�ned as �eld theory the dual of the coalgebras should be able to

be taken. Moreover the dual language is introduced in the present paper only for intuitive and

geometric understanding. All the arguments on the dual are rearranged in coalgebra language

and then hold even in the model where the decomposition of �elds and basis is diÆcult.

The convergence was not discussed. The �nite �eld rede�nitions or the solutions for the

Maurer-Cartan equations for SFTs, which are formally preserved under the �eld rede�nitions,

are de�ned by polynomials of in�nite powers. Of course many of the arguments in this paper

make sense as formal power series. For instance each coeÆcient of the Maurer-Cartan equations

for the canonical A1-algebra de�nes each on-shell S-matrix element. However, it should be

checked that when the solutions converge, etc. . Their seems no ways to con�rm the convergences

instead of doing some numerical analysis explicitly. However, the �nite �eld rede�nitions and

the equations of motions are de�ned by the Feynman graph of SFT. Therefore the problem

of the convergences relates to the problem of the original SFT itself. Looking for some `good'

model on a conformal background might be a good issue. Alternatively, one can also argue these

on an appropriate subspace, due to, for instance, the momentum conservation of the vertices.

Therefore we think that some well-de�ned �eld rede�nitions or the solutions of the equations of

motions are obtained in the subspace. One such example will be commented below in tachyon
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condensation in Discussions.

We ends with presenting the following related topics or future directions.

� the background independence.

SFTs have mainly two directions of deformations : changing the decomposition of moduli

space of Riemann surfaces as discussed in this paper, and transferring to other backgrounds.

The issue of the background independence can be treated in the category of weak A1-algebras

as follows. Consider two points x and y on CFT theory space. x and y denote two conformal

backgrounds. Let Hx and Hy be two string Hilbert spaces on the conformal backgrounds and

let �x 2 Hx and �y 2 Hy be the string �elds. Generally the �eld transformation Fy is of the

form

�y := Fy;�(�x) = �bg + F�(�x) = �bg + f1(�x) + f2(�x;�x) + � � � ;

where �bg = ei�
i
bg denotes a background in Hy. Only the degree zero part of �i

bg can be

nonzero, because the vacuum expectation value of the action should belong to R. The case

�bg = 0 reduces to the problem on the same conformal background.

If a SFT gives a background independent formulation of string theory, each solution �bg of the

equation of motion for the SFT Sy(�y) onHy describes a conformal background. Moreover S(�)

re-expanded around the equation of motion �bg should de�ne a SFT action on the conformal

background of Hx.

Let Sx(�x) be a SFT action on Hx. Suppose that these two actions Sy(�y) and Sx(�x)

satisfy the BV-master equations on their conformal backgrounds. Then if there exists Fy which

preserves the symplectic structures and satis�es F�ySy(�y) = Sy(Fy;�(�x)) = Sx(�x), the action

Sy(�y) is certainly background independent.

Here let us express this Fy as the composition F�y = F� Æ F�bg where

�y = Fbg;�(�
0) = �bg +�0 ; �0 = F�(�x) :

By Fbg the SFT Sy(�y) on Hy is transformed to a SFT on Hx which is regarded as a SFT

on the conformal background corresponds to �bg. It is known that when the �bg denotes an

equation of motion for Sy(�y) the action expanded around �bg, F
�
bgSy(�y) = Sy(�bg +�0), also

has an A1-structure[53] with symplectic structure unchanged. It is explained in weak A1 in

Appendix A.2 in the dual picture. Denote by my an A1-structure on �y 2 Hy, de�ne Fbg as a

cohomomorphism, and the induced A1-structure m
0 on Hx is given by (A.23) 23

m
0 = my Æ Fbg : (7.1)

Generally this induced A1-structure m
0 is not quasi-isomorphic to the original one, since m01 =:

Q0, and especially its cohomology class, is changed.

Next we consider the �eld rede�nition

F�(�x) = f1(�x) + f2(�x;�x) + � � � : (7.2)

23These arguments are treated on the category of weak A1-algebras. Actually when �bg does not satisfy the

equation of motion, m0 in eq.(7.1) de�nes a weak A1-structure on Hx.
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In order for �bg 2 Hy describes the conformal background x, f1 should be an isomorphism. We

use this f in order for the kinetic term of Sy(�bg + �0) to coincides with that of Sx(�x). Note

that by (Prop.5.1) as far as F preserves the symplectic structures, F is an A1-isomorphism

between two A1-algebras.

Locally Hy can be regarded as a �ber on y, and the total space can be viewed as a vector

bundle. In [41] for classical closed SFT the in�nitesimal background independence is proved

by utilizing the CFT theory space connection [54] (and the argument is extended for quantum

closed SFT in [42]). Here the `in�nitesimal' means that the two conformal backgrounds which

relate to each other by in�nitesimal marginal deformation are considered. In this case �y��x is

in�nitesimal and the in�nitesimal deformation of f1 corresponds to the connection on the vector

bundle. f2; f3; � � � preserving the symplectic structures are constructed in [41].

Generally it is diÆcult to construct ffkgk�2. Then giving up constructing ffkgk�2 and one

can consider the reduction of the shifted action Sy(�bg + f1(�
00)) � Sy(�bg) to \minimal" as

in section 5. By construction the shifted action satis�es the BV-master equation. Therefore if

the corresponding \minimal" action coincides with the on-shell S-matrix elements, the shifted

action might be regarded as the SFT action on x, and the action Sy(�y) is background indepen-

dent. This argument is an reformulation of the arguments in [15], where in�nitesimal marginal

deformation �bg is discussed.

� tachyon condensation. The solution describing the tachyonic nonperturbative vacuum in

cubic open SFT[35] is one of the solution of the e.o.m (5.16) with the condition (5.17). The issue

can be viewed as a toy model for applying the argument in the present paper, but a modi�cation

is needed.

Consider the tachyonic solution in the Siegel gauge. Since we are interested in the Lorentz

invariant solution with twist symmetry, the solution is non-zero only for even level scalar �elds

which is constant in space-time. Each corresponding state is then not physical state because

for the basis corresponding to constant (zero-momentum) �elds, the eigenvalues of L0 for the

base of level 0, 2, 4 � � � are �1, 1, 3, � � � , respectively. The �eld corresponding to the level

zero state is the constant tachyon �eld, and we denote it by t. In order to obtain the tachyonic

solution for t and the value of the action at the solution, the tachyon e�ective potential V (t)

has been needed. Its equation of motion is @
@t
V (t) = 0. We want to relate V (t) with ~S(~�p) in

eq.(5.37) and @
@t
V (t) = 0 with

P
k�2 ~m

p(~�p) = 0 (5.8) : the Maurer-Cartan equation on Hp.

Other �elds corresponding to the states of level 2; 4; � � � have been expressed as the power series

of the tachyon �eld t. It is regarded as the �eld rede�nition ~Fp from (Hp; ~mp) to (H;m), that is,

we want to regard the tachyon �eld as ~�p 2 Hp and other �elds as ~�u = f(~�p) 2 Hu. However

a modi�cation is needed because the tachyon is not physical and the tachyonic solution can not

be obtained by marginal deformation. We then modify the de�nition of P , which was essentially

the projection onto the physical state. Let the new P be the projection onto the tachyon t.

The P in the propagator Q+ = b0
1
L0
(1 � P ) is also replaced to this P . Then beginning with

the equations (5.16) and (5.17) with m3 = m4 = � � � = 0, the �eld rede�nition ~Fp and the

Maurer-Cartan equations (5.19) and (5.20) with P replaced are obtained. Then the solution of

eq.(5.19) is the one we are looking for. The corresponding e�ective potential is exactly what is
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mentioned in [55] and presented explicitly using Feynman graphs in [49]. However in order that

the solution is well-de�ned on the Siegel gauge, it should be BRST-invariant. In [56] it is checked

in level (2; 6) approximation with good agreement. The condition is nothing but eq.(5.20) with

replaced P . By discussing the issue from this viewpoints, some symmetry around this tachyon

e�ective potential can be seen and it might give some insight also for the problem of the exact

solution and the physics around it.

� boundary string �eld theory.

In subsection 5.4 and section 6 a boundary SFT like action is obtained in eq.(5.45) and

(6.8). Each vertex in the action coincides with the string correlation function on-shell, and is

extended o�-shell in the similar notion as [57]. The action relates to the original SFT action by

a �nite �eld rede�nition constructed by the Feynman graphs of SFT and satis�es the classical

BV-master equation. The �eld rede�nition can be realized as the coordinate transformation on

a formal noncommutative supermanifold in (Rem.5.3). However no relation to other literature

has been clari�ed. The property of the BV-BRST transformation ~Æ and the symplectic form ~!

should be investigated further. This argument is rather formal but the de�nition of boundary

SFT[43] is also formal, so relating it to the ordinary SFT might help us to realize the structure

of boundary SFT.

Note that action ~S(~�) reproduces the string S-matrix on-shell even if it is treated as the

fundamental action of �eld theory. Since in eq.(5.45) Q+Q~� is almost P u ~�, let us identify it

with unphysical �elds. The action ~S(~�) then does not contain the terms which is linear for

unphysical �elds. Therefore when computing the on-shell amplitudes the exchanging diagrams

do not appear and they indeed coincide with the on-shell string S-matrices.

� other SFT. In this paper we deal with the classical open SFT and its A1-structure. The

argument holds true also for the classical closed SFT, because by commutative-symmetrizing the

arguments on A1-structures reduce to L1-algebras and it is known that the classical closed SFT

is described by L1-algebras[5]. (The de�nition of the symplectic structure etc. in subsection

4.3 is necessarily modi�ed. ) In other case, like quantum closed, classical and quantum open

closed case, the algebraic structures are governed by the BV-algebra in any case. However in

order to extend the use of the quasi-isomorphism in the minimal model theorem in these case,

it is necessary to re�ne the algebraic structure in more detail. Such study might makes clear

the general structure of these SFTs. Some study for the algebraic structure of quantum closed

SFT are found in [42, 58, 59].
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A Dual description of homotopy algebras

We shall give the dual description of A1-algebras. In this picture, A1-algebras are understood

more geometrically. The de�nition of the dual of a coalgebra in the present paper is given in

subsection A.1, and its geometrical point of view is explained in subsection A.2, where we deal

with a formal noncommutative supermanifold. These arguments hold similarly for L1-algebras.

A.1 The de�nition of the dual of a coalgebra

Let H be a graded vector space, and C(H) := �1n=1 (H

n) be its tensor algebra. The basis of H

is denoted by feig, and here we de�ne the dual basis of ei1 � � � eik 2 H

k with an inner product

as follows. At �rst, denote the dual basis of feig by fe
ig, and de�ne an inner product between

H and H� as

heijeji = Æij : (A.1)

We represent an elements of C(H) as g =
P1

k=1 g
ik���i1ei1 � � � eik , and an element of C(H)�, the

dual of C(H) as a =
P1

k=1 ai1���ike
ik � � � ei1 . Generalizing the above inner product between H

and H� (A.1), here the inner product between C(H) and C(H)� is de�ned as

heik � � � ei1 jej1 � � � ejli = �i1���ikj1���jl
; (A.2)

where �i1���ikj1���jl
equal zero for k 6= l, and if k = l, �i1���ikj1���jk

= Æi1j1 � � � Æ
ik
jk
. Moreover, for a1; � � � ; an 2

C(H)� and g1; � � � ; gn 2 C(H), the inner product of n-tensor is given by

ha1 
 � � � 
 anjg1 
 � � � 
 gni = ha1jg1i � � � hanjgni :

Now we have obtained the inner product between C(H) and its dual C(H)�, we will translate

operations on C(H) into those on C(H)�. For the coproducts 4 on C(H), the product m on

C(H)� is de�ned as

hm(a
 b)jgi = ha
 bj4gi ; (A.3)

the derivation Æ corresponding to the coderivation m is de�ned as

hÆ(a)jgi = hajm(g)i ; (A.4)

and homomorphism f corresponds to the cohomomorphism F from C(H) to another tensor

algebra C(H0) is determined as

hf(a)jgi = hajF(g)i : (A.5)

Because g 2 C(H) and a 2 C(H0)�, the homomorphism f is a map from C(H0)� to C(H)�.

Therefore f can be regarded as F� : the pullback of F . Here we write the elements of C(H) on

the left hand side and the elements of C(H)� on the right hand side. The operations on C(H0)

or C(H0)� are distinguished by attaching 0 to them. The above de�nitions of the operations on

C(H)� translate various conditions for the operations on C(H) into those on C(H)� as follows.

The coassociativity of 4 is equivalent to the associativity of m :

hm(m(a
 b)
 c)jgi = ha
 b
 cj(4
 1)4(g)i

=
hm(a
m(b
 c))jgi = ha
 b
 cj(1 
4)4gi

: (A.6)
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The condition that m is the coderivation is translated into the Leibniz rule for Æ :

hÆ �m(a
 b)jgi = ha
 bj4 �m(g)i

=
hm(Æ 
 1+ 1
 Æ)(a 
 b)jgi = ha
 bj(m
 1+ 1
m)4gi

: (A.7)

The condition that F : C(H) ! C(H0) is a cohomomorphism is rewritten as the one that

f : C(H0)� ! C(H)� is a homomorphism :

hf �m0(a
 b)jgi = ha
 bj40 � F(g)i

=
hm(f(a)
 f(b))jgi = ha
 bj(F 
 F)4gi

: (A.8)

(H;m) is an A1-algebra means that (C(H)�; Æ) is a complex on the dual :

0 = hÆ � Æ(a)jgi = hajm �m(g)i = 0 : (A.9)

Finally the condition that F is an A1-morphism is tranlated into the equivariance of f :

hÆ � f(a)jgi = hajF �m(g)i

=
hf � Æ0(a)jgi = hajm0 � F(g)i

: (A.10)

The above statement will be realized with some graphs 24. In the above explanation, the

elements of C(H) are written in the left hand side of the inner products (ket), and the elements

of the dual algebra C(H)� are in the right hand side (bra). Here, for the algebra on the left

hand side, we represent the product m, the derivation Æ, and the homomorphism f as m =��,

Æ = � Æ�, f = � f �. According to the operations of the algebra from left, the lines of the

graphs are connected to the right direction. In other words, the operations on the algebra

C(H�) in the left hand side from left yields the 
ow from the left to the right on the lines of the

graphs. Next, for the coalgebra C(H) in the right hand side, we represent the coproduct 4, the

coderivation m, and the cohomomorphism F as 4 =��, m = �m�, F = �F �, and de�ne the

orientation of the operation from the right to the left on the lines of the graphs. Lastly, in order

to distinguish the left and right in the inner products, we introduce h j i between the algebra

C(H) and the coalgebra C(H)�.

The de�nition of the algebra C(H)� dual to the coalgebra C(H) (A.3)(A.4)(A.5) are written

graphically as follows : The graphs in both sides of the equations represent the C valued inner

products. The arrow on the dashed line in (Fig.7) denotes the orientation of the operations in

both sides. The m is de�ned so that the inner product is invariant when the j on the right hand

side of (Fig.7) is moved to the left. Then the �� is m on the left of j, and it becomes 4 on

the right of j. Similarly, in (Fig.8), the � Æ� on the left of j becomes �m� on the right and

the �m� is � Æ� when is transferred to the left. The situation is similar for � f � and �F �

(Fig.9).

24The graphs used below is di�erent from that in the body of this paper. In fact, a line denotes the 
ow of an

element of H in the body of this paper, but the line used below denotes an element of C(H).
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a

b

g

a

b

g

j jhm(a
 b) gi ha
 b 4gi

Figure 7: hm(a
 b)jgi = ha
 bj4gi eq.(A.3)

a g a gÆ m

Figure 8: hÆ(a)jgi = hajm(g)i eq.(A.4)

By the bene�t of the above rewriting, the following facts can be understood naturally with

these graphs : the equivalence between that m is a coderivative and that the Æ is a derivative

(A.7), the one between that the F is a cohomomorphism and that the f is a homomorphism (A.8),

the one between that the (H;m) is an A1-algebra and that the (C(H)�; Æ) is a complex(A.9),

and the one between the F is an A1-morphism and that the f is Æ-equivariant (A.10). For

instance, eq.(A.8) is shown as (Fig.10).

A.2 The geometry on C(H)� : formal noncommutative supermanifold

In this subsection, we represent explicitly m, Æ and f , which correspond to 4, m and F , re-

spectively, and realize them geometrically on the algebra C(H)� dual to the C(H). For the

coassociative coproduct

4(e1 � � � en) =
n�1X
k=1

(e1 � � � ek)
 (ek+1 � � � en) ;

the corresponding associative product m de�ned in eq.(A.3) are written as

m((eik � � � ei1)
 (ejl � � � ej1)) = ejl � � � ej1eik � � � ei1 : (A.11)

For a =
P1

k=1 ai1���ike
ik � � � ei1 and b =

P1
l=1 bj1���jle

jl � � � ej1 , m(a
 b) becomes

m((

1X
k=1

ai1���ike
ik � � � ei1)
 (

1X
l=1

bj1���jle
jl � � � ej1)) =

X
n

(a � b)m1���mne
mn � � � em1

(a � b)m1���mn =

n�1X
p=1

�
i1���ipj1���jn�p
m1���mn ai1���ipbj1���jn�p :

It is easily seen that by the above de�nition of m, (a � b)m1���mn = hm(a 
 b)jem1
� � � emni =

ha
 bj4(em1
� � � emn)i holds.

58



a g a gf F

Figure 9: hf(a)jgi = hajF(g)i eq.(A.5)
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Figure 10: hf �m(a
 b)jgi = hm(f(a)
 f(b))jgi eq.(A.8)

a; b 2 C(H)� can be regarded as the polynomial functions on the graded vector space H.

Consider � = ei�
i 2 H. �i is a coordinate of H, and its degree is set to be minus the degree of

ei in order for � to have its degree zero. f�ig is isomorphic to H�, and so it is identi�ed with

H�. Actually, introduce a natural pairing ( ) between H and H� 25, and one can de�ne a(�) as

a(�) :=

1X
k=1

ai1���ik(e
ik(�)) � � � (ei1(�)) =

1X
k=1

ai1���ik�
ik � � � �i1 :

This a(�) 2 C(H)� is nothing but a polynomial function on the graded vector space H because

f�ig is the coordinate on H. The pair of the graded vector space and the algebra of formal

power series of the coordinates on the graded vector space is called as formal supermanifold[8,

22]. In this case a(� = 0) = 0 for any a 2 C(H)�, and the coordinates are associative but

noncommutative, so this is a formal noncommutative pointed supermanifold. We can translate

L1-algebras in the language of the formal supermanifold, too. In this situation the coordinates

are graded commutative which re
ects the cocommutativity of the L1-algebra, and we get a

formal (commutative) pointed supermanifold.

25The inner product is the same type that is de�ned in eq.(A.1) and di�erent from that in eq.(A.2).
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Remark A.1 Note that the product (A.11) is de�ned so as to satisfy the following compatibility

4(�
n) =
Pn

k=1(�

k)
 (�
n�k)

= =
4(ei1 � � � ein)�

in � � � �i1
Pn�1

k=1(ei1 � � � eik)�
ik � � ��i1 
 (eik+1 � � � ein)�

in � � ��ik+1 :

(A.12)

Recall that 4(ei1 � � � ein) =
Pn

k=1(ei1 � � � eik)
 (eik+1 � � � ein). Here we identify �i and ei. Then

the equality between the two terms in the second line in eq.(A.12) means that the operation

of �i' in the tensor coalgebra C(H) are de�ned by eq.(A.11). Thus the coalgebra C(H) can be

de�ned as a coalgebra of C(H)�-module.

� coderivation

Next, for a coderivation m = m1 +m2 + � � � ,

mk(e1 � � � en) =

n�kX
p=1

(�1)e1+���+epe1 � � � ep�1mk(ep � � � ep+k�1)ep+k � � � en ; ei 2 H ; (A.13)

we construct Æ which corresponds to m. By the de�nition of Æ (A.4), one sees that a derivation

corresponding to the coderivative may be constructed separately for k. Express mk : H
k ! H

as

mk(ei1 � � � eik) = ejc
j
i1���ik

(A.14)

and Æk : C(H)
� ! C(H)�,

Æk =

 �
@

@�j
cji1���ik�

ik � � ��i1

is a derivation. Here we identify the coordinate f�ig withH� and replace ei to �i. The derivation

Æ is constructed as Æ = Æ1+ Æ2+ � � � . It is regarded as an (odd) formal vector �eld on the formal

noncommutative pointed supermanifold. Note that the condition that mk is a coderivation is

replaced to that Æk satis�es the Leibniz rule on the polynomials of �i's. Moreover, as will be

seen explicitly, Æ2 = 0 holds i� m de�ne an A1-algebra. The formal manifold with such Æ is

called Q-manifold in [8] 26.

Remark A.2 The operation of mk is compatible with the decomposition of the supercoordinates

in the following sense. Here compute mk(�

n) in two ways. One way is acting mk after rewriting

�
n = (ei1 � � � ein)�
in � � ��i1 and we get the result in eq.(A.13) as the coeÆcient of �in � � ��i1 .

Another way is computing mk(�

n) as

mk(�

n) =

n�kX
p=1

�
pmk(�)�

n�k�p

=
n�kX
p=1

(�1)ei1+���+eip1 (ei1 � � � eip�1)mk(eip � � � eip+k�1
)(eip+k

� � � ein)�
in � � ��i1 ;

(A.15)

26This Q does not correspond to the BRST operator Q in the body of this paper but Æ : the BRST-generator

in gauge theory. Æ in this paper is written as Q in [8].
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and picking up the coeÆcient of �in � � ��i1 . One can see that this leads the same results as in

(A.13) and these arguments are compatible. In the second equality of eq.(A.15), one gets the

sign (�1)ei1+���+eip1 because �i1 ; � � � ; �ip�1 pass through mk which has degree one.

Remark A.3 When m satis�es m � m = 0, we have relations between mk, Rewriting mk using

eq.(A.14) yields relations between cji1���ik . On the other hand, in the dual language, the condition

m �m = 0 is Æ � Æ = 0. Calculating Æ � Æ and concentrating on the term of n powers of �i leads

X
k+l=n+1

Æk � Æl =

  �
@

@�i
cii1���ik�

ik � � � �i1

!  �
@

@�j
cjj1���jl�

jl � � ��j1

=

 �
@

@�i

X
k+l=n+1

kX
m=1

(�1)ei1+���+eim�1 cii1���ikc
im
j1���jl

�ik � � � �im+1
�
�jl � � ��j1

�
�im�1 � � ��i1 :

The coeÆcient of �n � � ��1 then reads

0 =
X

k+l=n+1
m=0;��� ;k�1

(�1)e1+���+emci1���m;im;m+l+1���nc
im
m+1���m+l : (A.16)

This is exactly the relation m �m = 0 (or eq.(2.6)) rewritten with fcii1���ikg.

� cohomomorphism

In the terminology of the formal supermanifold, a homomorphism corresponding to a co-

homomorphism F are constructed as follows. Let H;H0 be two graded vector space and

Fn : H
n �! H0. A cohomomorphism F from C(H) to C(H0) is now given by

F = F1 + F2 + F3 + � � � ; F l : C(H) �! H0

l

F l(e1 � � � en) =
X

n1;��� ;nl�1
n1+���+nl=n

fn1(e1 � � � en1)
 � � � 
 fnl(en�nl+1 � � � en) : (A.17)

Now we express fn as

fn(ei1 � � � ein) = ej0f
j0

i1���in
:

The homomorphism f gives the pullback from C(H0)�, the formal power series ring on H0,

C(H)�. In this reason we can write as f = F�. Let f�ig and f�i
0
g be the coordinates on

H and H0, respectively, and take an element of C(H0)� :a(�0) :=
P1

k=1 ai1���ik�
i0k � � ��i

0
1 . Then

f : C(H0)� ! C(H)� is induced from F� :

F� : H ! H0

� 7! �0 = F�(�)
; �j

0

= F j0

� (�) = f j
0

i �
i+ f j

0

i1i2
�i2�i1 + � � �+ f j

0

i1���in
�in � � ��i1 + � � �

(A.18)

as f(a(�0)) = a(F�(�)). One can see that the cohomomorphism F is, in the dual geometric

picture, a nonlinear map F� from a formal supermanifold H to H0 preserving the origin.

� A1-morphism

The condition that this F is an A1-morphism is equivalent to the statement that this map

F� between two formal supermanifolds is compatible with the action of Æ and Æ0 on both sides,

61



i.e. F� is a morphism between Q-manifolds. For any a(�0) 2 C(H0)�, the condition is

fÆ0(a(�0)) = Æfa(�0) ; (A.19)

and is written explicitly as

f

 
a(�0)

 �
@

@�j0
cj
0

(�0)

!
= a(F�(�))

 �
@

@�j
cj(�)

where we expressed Æ =
 �
@

@�j
cj(�). Because a(F�(�))

 �
@

@�j
cj(�) = f

�
a(�0)

 �
@

@�j
0

�
�j
0 �
@

@�j
cj(�) in the

right hand side, we get

f
�
cj
0

(�0)
�
=

�j
0 �
@

@�j
cj(�) : (A.20)

We can see that when Æ and f are given and f has its inverse, then Æ0 is induced as cj
0
(�0) =

f�1
�
�j
0 �
@

@�j
cj(�)

�
.

� weak A1

Let us add the term
 �
@

@�j
cj to Æ where cj is a constant and write it as Æw. Explicitly Æw is of

the form

Æw =

 �
@

@�j
cj +

 �
@

@�j
cj(�) =

1X
k=0

 �
@

@�j
cji1���ik�

ik � � ��i1 :

Acting it on C(H)� yields constant term generally. Thus let us enlarge C(H)� as C(H)�w, which

denotes the space of C(H)� plus constant, i.e. C(H)�w = C � C(H)�. C(H)�w is regarded as the

space of functions on H which do not vanish at the origin generally. Similarly consider the map

fw : C(H0)�w ! C(H)�w induced from Fw;� de�ned as

�j
0

= F j0

w;�(�) = f j
0

+ f j
0

i �
i + f j

0

i1i2
�i2�i1 + � � �+ f j

0

i1���in
�in � � ��i1 + � � �

where f j
0
2 C . It can be seen that this map does not preserve the origin. In this extended

situation, we can again consider the following conditions

Æw � Æw = 0 (A.21)

fwÆ
0
w = Æwfw : (A.22)

The condition (A.21) and (A.22) are dual version of the de�nition of weak A1-algebras and

weak A1-morphisms, respectively.

Let us consider a weak A1-isomorphism of the form

�j
0

= F j0

w;�(�) = f j
0

+ f j
0

i �
i ;

where f j
0
2 C and f j

0

i has its inverse. For simplicity let f j
0

i = Æj
0

i . The weak A1 version of

eq.(A.20) then becomes

cjw(�
i) = c0w(f

i + �i) :

62



The weak A1-structure Æw on C(H)� is naturally induced from Æ0w on C(H0)� by fw. Note that

when Æ0w de�nes strictly an A1-structure, that is, the constant part c
0
w vanishes, and f i is the

solution of the Maurer-Cartan equation on C(H0)�, then cjw 2 C vanishes and the induced Æw
is also an A1-algebra. Express the coalgebra representation corresponding to Æw and Æ0w as mw

and m0w, respectively, and mw is given by

mw(e
�) = m

0
w(e

�bg+�) (A.23)

where �bg = eif
i. Note that since f j

0
2 C , the corresponding ei has degree zero.

B Some relations on vertices in SFT

In this section some properties of vertices in SFT are derived using identities and notations in

the body of this paper.

B.1 The recursion relation

In section 3 it was explained that in order for the Feynman rule to reproduce the single covered

moduli spaces of Riemann surfaces, the vertices in SFT must satisfy the string factorization

equations (3.8),

0 = @(Vn) +
X

k1+k2=n+2
k1;k2�3

1

2
(Vk1)@(��)(Vk2) : (B.1)

Here let us de�ne the (o�-shell) n point tree amplitude using that de�ned in eq.(5.26) as

1

n

Z
Mn

h
j(j~�i)n :=
1

n
~Vn(~�) =

1

n
h ~Vnj(j�i)

n : (B.2)

In this subsection we shall derive the recursion relation (B.1) or equivalently the classical master

equation by employing only the following two relations :

0 =

Z
@Mn

h
j(j~�i)n = @(h ~Vnj)(~�)
n ; (B.3)

where @(h ~Vnj1���n) = h ~Vnj1���k���n
Pn

k=1Q
(k) and

fQ;Q+g = 1� P � 1 : (B.4)

The �rst equality in eq.(B.3) follows from @Mn = 0. As argued in subsection 5.2, the P in

eq.(B.4) just contribute to the poles in eq.(B.2). Thus when the external states ~� are set so that

the propagators in h ~Vnj have the pole, eq.(B.3) itself is not well de�ned. Therefore including this

case we de�ne fQ;Q+g = 1 between vertices fhVkjg. Originally the recursion relations (B.1) are

de�ned as the relations between (the subspaces of) the moduli spaces. The problem here arises

from attaching the value h ~Vnj 2 (H�)
n to each the moduli spaceMn.
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Expanding eq.(B.3) with respect to the number of the propagators Q+ leads

@(hVnj) +
X

k1+k2=n+2
k1;k2�3

1

2
@(hVk1 jhVk2 j �Q+j!i)jQ�i(j�i)n�1 + � � � : (B.5)

The origin of the minus in front of Q+ can be found by recalling the calculation using Feynman

diagram in subsection 5.3. Each of the second term is rewritten as

@(hVk1 jhVk2 j �Q+j!i) = (@hVk1 j)hVk2 j �Q+j!i

+ hVk1 j(@hVk2 j) �Q+j!i

� hVk1 jhVk2 j fQ;�Q
+gj!i

and the identity (B.4) leads the third term is hVk1 jhVk2 j j!i. As was explained in section 3,

eq.(B.5) is equivalent to

@(hVnj) +
X

k1+k2=n+2
k1;k2�3

1

2
hVk1 jhVk2 j j!i = 0 :

Thus the recursion relation (3.8) is derived. This identity can be rewritten as

(S0;Vn) +
X

k1+k2=n+2
k1;k2�3

1

2
(Vk;Vl) = 0

and summing up this equation for n � 3 leads the classical BV-master equation (3.11).

B.2 On-shell reduction of the vertices I

Let us consider the M0
n ! Mn limit for each vertex as was mentioned in subsection 5.3 and

restrict their external states on-shell. This should give the on-shell string correlation functions.

In [5] such arguments are given in order to derive the L1-structure for string world sheet theory

found in [32, 33]. Here it is reviewed in open string case and derive the on-shell A1-structure

from the A1-structure of string �eld vertices.

In order for hVnj to cover the whole moduliMn of dimMn = n� 3,

X
k1+k2=n+2
k1;k2�3

1

2
hVk1 jhVk2 j �Q+j!i

must cover the subspace of Mn whose dimension is less than n � 3. Because the sum of the

dimensions of the moduli spaces corresponding to hVk1 j and hVk2 j is (k1 � 3) + (k2 � 3) = n� 4,

the propagator Q+ must not create one more dimension. Consequently, each vertex has in�nite

length strips for their external states. A1-structure m
�!1 in section 6 is just the case and the

vertex Vn = !(�;m1n�1(�; � � � ;�)) is the string correlation function when the external states

are strictly restricted on-shell (or on physical states).
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Now Vn is of the form Vn =
R
Mn
h
j(j�i)n and @Mn = 0, the recursion relation (B.1) is

saturated separately as

@(hVnj) = 0 ;
X

k1+k2=n+2
k1;k2�3

1

2
hVk1 jhVk2 jj!i = 0 : (B.6)

The second identity is just the condition of A1-structures with Q = 0. By employing the �rst

identity, it is reduced to on-shell A1-structure as follows.

From eq.(4.8) and (4.18) the relation between A1-structure mn�1 and Vn can be read as

mn�1(ei2 ; � � � ; ein) = (�1)ekej!
jkVn(ek; ei2 ; � � � ; ein) : (B.7)

Here we restrict the external states as ei2 ; � � � ; ein 2 H
p [Ht. Choosing the orthogonal basis as

in eq.(4.23), mn�1 is then decomposed as

mn�1(ei2 ; � � � ; ein) = (�1)ekP pej!
jkVn(P

pek; ei2 ; � � � ; ein)

+ (�1)ekP tej!
jkVn(P

uek; ei2 ; � � � ; ein)

+ (�1)ekP uej!
jkVn(P

tek; ei2 ; � � � ; ein) :

(B.8)

The term on the third line vanishes due to the �rst identity in eq.(B.6). Because P tek is Q-exact,

write this as P tek = Q(Quek), and

Vn(Q(Q
uek); ei2 ; � � � ; ein) = 0 (B.9)

follows from (@Vn)(Q
uek; ei2 ; � � � ; ein) = 0. The fact that eq.(B.9) is hold is an expected result

since the string correlation function vanishes even if one Q-trivial external state is included.

Thus it is shown that

mn�1(ei2 ; � � � ; ein) 2 H
p [Ht (B.10)

for any ei2 ; � � � ; ein 2 H
p [Ht and the A1-structure mn�1 can be reduced on-shell Hp [Ht.

Furthermore one can see that even if one of the external states eik for 2 � k � n belongs to

Ht, Vn(P
pek; ei2 ; � � � ; ein) vanishes in the same reason as above and only the term on the �rst

line in eq.(B.8) survives.

On the other hand, the A1-condition corresponding to the second identity in eq.(B.6) is

eq.(2.6) with Q = 0 :X
k+l=n+1; k;l�2

j=0;��� ;k�1

(�1)e1+���+ejmk(e1; � � � ; ej ;ml(ej+1; � � � ; ej+l); ej+l+1; � � � ; en) = 0 (B.11)

with k = k1 � 1 and l = k2 � 1. Acting P p on left and restricting the external states e1; � � � ; en
on physical states Hp then leadsX
k+l=n+1; k;l�2

j=0;��� ;k�1

(�1)e
p
1
+���+epjP pmk(e

p
1; � � � ; e

p
j ; P

pml(e
p
j+1; � � � ; e

p
j+l); e

p
j+l+1; � � � ; e

p
n) = 0 (B.12)
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The reason why ml can be replaced by P pml is that the contribution of P tml(e
p
j+1; � � � ; e

p
j+l) to

mk( ; � � � ; ) necessarily belongs to Ht as was stated above and is projected out by P p acting in

front of mk.

This concretes the proof that the A1-structure of string vertices can be reduced to the

A1-structure fP
pmkgk�2 in string world sheet theory.

B.3 On-shell reduction of the vertices II

In this subsection it will be shown that ~mp de�ned in (Def.5.1) indeed de�ne an A1-structure on-

shell and it can be reduced to an A1-structure on physical state space Hp, which was postponed

in (Lem.5.1).

The ~mp de�nes the on-shell S-matrix elements and the corresponding vertices ~Vpn satis�es

@(h ~V p
n j) = 0 because of @Mn = 0 similarly as the �rst identity in eq.(B.6). Thus the proof is

almost the same as that in the above subsection. Replacing mn�1 in the previous subsection by

~mp
n�1 in subsection 5.3 and repeating the argument from eq.(B.7) to eq.(B.12) give us the proof.

Only one di�erent point is that ~mp
n in (Def.5.1) contains P and the identity corresponding to

eq.(B.7) is

~mp
n�1(e

p
i2
; � � � ; epin) = (�1)ekPej!

jk ~Vn(ek; e
p
i2
; � � � ; epin)

where the external states epi2 ; � � � ; e
p
in

are now restricted on physical state space Hp. In the

orthogonal basis, this decompose as

~mp
n�1(e

p
i2
; � � � ; epin) = (�1)ekPP pej!

jk ~Vn(P
pek; e

p
i2
; � � � ; epin)

+ (�1)ekPP tej!
jk ~Vn(P

uek; e
p
i2
; � � � ; epin)

+ (�1)ekPP uej!
jk ~Vn(P

tek; e
p
i2
; � � � ; epin)

and the term in the third line of the above equation vanishes for the same reason as in eq.(B.8).

Here recall that PP p = P p and note that the identity QQ+ + Q+Q + P = 1 leads Q and P

commute to each another. The above equation is then rewritten as

~mp
n�1(e

p
i2
; � � � ; epin) = (�1)ekP pej!

jk ~Vn(P
pek; e

p
i2
; � � � ; epin)

+ (�1)ekQ(PQuej)!
jk ~Vn(P

uek; e
p
i2
; � � � ; epin)

(B.13)

where in the second line PP t = PQQu = QPQu is used. Thus it has been shown that the image

of ~mp indeed belongs to on-shell Hp [ Ht similarly as the previous subsection. It is easily seen

that this result does not change when the elements in Ht are included as the external states.

Furthermore, because the term in the second line in eq.(B.13) belong to Ht, the above ~mp
n�1

can be reduced to the A1-structure on H
p similarly as in eq.(B.12). Let � : Hp ! Hp [ Ht be

the inclusion map and the reduced A1-structure is given as

P p Æ ~mp Æ � ;

where P p and � is extended naturally as A1-morphisms. This is equal to P p
m derived in

eq.(B.12). The reduced A1-algebra is denoted as (Hp; ~mp) again to avoid increasing notations.

Thus we complete the proof that ~mp de�nes an A1-structure on physical states Hp.
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