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Abstract

We investigate the structures of crossed products of the Cuntz algebra O, by quasi-free
actions of abelian groups. We completely determine their ideal structures and compute the
strong Connes spectra and K-groups.

1 Introduction

The crossed products of C*-algebras give us plenty of interesting examples, and the struc-
tures of them have been examined by several authors. In [Ki], A. Kishimoto gave a
necessary and sufficient condition that the crossed products by abelian groups become
simple in terms of the strong Connes spectrum. For the case of the crossed products of
Cuntz algebras by so-called quasi-free actions of abelian groups, he gave a condition for
simplicity, which is easy to check. In [KK1] and [KK2|, A. Kishimoto and A. Kumjian
dealt with, among others, the crossed products of Cuntz algebras by quasi-free actions
of the real group R. In our previous papers [Kal], [Ka2], we examined the structures
of crossed products of Cuntz algebras O,, by quasi-free actions of arbitrary locally com-
pact, second countable, abelian groups. The class of our algebras has many examples of
simple stably projectionless C*-algebras as well as AF-algebras and purely infinite C*-
algebras. In [Kal], we completely determined the ideal structures of our algebras, and
gave another proof of A. Kishimoto’s result on the simplicity of them. We also gave a
necessary and sufficient condition that our algebras become primitive, and computed the
Connes spectra and K-groups of our algebras. In [Ka2], we proved that our algebras be-
come AF-embeddable when actions satisfy certain conditions. To the best of the author’s
knowledge, this is the first case to have succeeded in embedding crossed products of purely
infinite C*-algebras into AF-algebras except trivial cases. We also gave a necessary and
sufficient condition that our algebras become simple and purely infinite, and consequently
our algebras are either purely infinite or AF-embeddable when they are simple.

In this paper, we deal with crossed products of the Cuntz algebra O, by quasi-free
actions of arbitrary locally compact, second countable, abelian groups. From section 3
to section 6, we completely determine the ideal structures of such algebras by using the



technique developed in [Kal]. We omit detailed computations if similar computations
have been already done in [Kal]. Readers are referred to [Kal]. In the last section, we
gather some results on crossed products of the Cuntz algebra O.,. Among others, we give
another proof of the determination of the simplicity of the crossed products done by A.
Kishimoto, and we succeed in computing the strong Connes spectra of quasi-free actions
on the Cuntz algebra O.

The crossed products examined in this paper or in [Kal], [Ka2], can be considered
as continuous counterparts of Cuntz-Krieger algebras or graph algebras (cf. [D]). From
this point of view, the crossed products of O, can be considered as graph algebras of
locally finite graphs, and the ones of O, can be considered as graph algebras of graphs
whose vertices emit and receive infinitely many edges. Recently the ideal structures of
graph algebras, which is not necessarily locally finite, were deeply examined in [BHRS]
and [HS]. Compared with row finite case, it is rather difficult to describe ideal structures
of graph algebras which have vertices emitting infinitely many edges. This seems to be
related to the difficulty of examination of the ideal structures of the crossed products of
O compared with the ones of O,, done in [Kal].
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many suggestions. He is also grateful to Iain Raeburn and Wojciech Szymanski for stim-
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2 Preliminaries

The Cuntz algebra O is the universal C*-algebra generated by infinitely many isometries
S1, S, ... satisfying S;S; = 6;;. Forn € Zy :=={1,2,...} and k € N:={0,1,...}, we
define the set W of words in {1,2,... ,n} with length & by W\ = {0} and

WE = L (i1, o, ... ix) | iy € {1,2,... ,n}}

for k> 1. Set W, = U, W and W, = USZ, W For = (i1,4g, . .. ,ig) € Weo, we
denote its length & by |u|, and set S, = 5;,S;, -+ Si, € Ox. Let G be a locally compact
abelian group which satisfies the second axiom of countability and I" be the dual group
of G. We use + for multiplicative operations of abelian groups except for T, which is
the group of the unit circle in the complex plane C. The pairing of ¢ € G and v € I' is
denoted by (t|v) € T.

For w = (wi,ws,...) € ' we define an action o of abelian group G on O, by
a?(S;) = (t|w;)S; for i € Z; and t € G. The action o : G ~ Oy becomes quasi-
free (for a definition of quasi-free actions on Cuntz algebras, see [E]). However, there
exist quasi-free actions of abelian group GG on O, which are not conjugate to o for any
w € ' though we do not deal with such actions. The crossed product Oy X, G has a C*-
subalgebra C1x,+G which is isomorphic to Cy(I"). We consider Cy(I") as a C*-subalgebra
of Oy oXaeG. The Cuntz algebra O, is naturally embedded into the multiplier algebra
M(Oso X G) of Oxo e G. For each = (i, 19, ... ,ix) € Wa, we define an element w,, of
I' by w, = 25:1 w;;. For 7y € T, we define a (reverse) shift automorphism o, : Co(I') —
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Co(T") by (o4, f)(7) = f(v+ ) for f € Co(I'). Once noting that o’ (S,) = (t|w,)S, for
p € Wy, one can easily verify that fS, = S,0,, f for any f € Co(I') C OxXqeG. For a
subset X of a C*-algebra, we denote by span X the linear span of X, and by span X its
closure. We have O X0 G = 5pan{S,fS; | p,v € Wa, f € Co(I)}.

We denote by M, the C*-algebra of £ x k matrices for k = 1,2,..., and by K the
C*-algebra of compact operators of the infinite dimensional separable Hilbert space.

3 Gauge invariant ideals

In this section, we determine all the ideals which are globally invariant under the gauge
action. Here an ideal means a closed two-sided ideal, and the gauge action § : T ~
O X G is defined by Bi(S,.fS5) = tH=WIS, £S* for p,v € Wa, f € Co(I') and t € T.

For a positive integer n, we define a projection p, by p, = 1 — > | S;S;. We set
po = 1. Since p, commutes with Cy(T"), p,Co(T") is a C*-subalgebra of Oy, X 4G, which
is isomorphic to Cy(I").

Definition 3.1 Let I be an ideal of the crossed product O, X, G. For each n € N, we
define the closed subset X\™ of ' by

X}n) ={yel'| f(y)=0forall f e Cy) with p,f € I}.
Set X; = X\, X = >, X" and denote by X; the pair (X, X\*”) of subsets of T

In other words, X I(") is determined by pnCo(F\X}n)) = INp,Cy(I"). One can easily see
that X}?%IQ = I(?) UX}? for any n € N, hence Xp,nr, = X1, UX7,, X}fz)b = X}fo) UXSO)
and that [, C I, implies XI(?) D X};L) for any n € N, hence implies X;, D X, XI(TO) D

XI(;X)). For n € N, the set X\™ can be described only in terms of X; and X'°.

Lemma 3.2 For an ideal I of Oy X oG, we have

XM =xu | (X +w),
i=n+1

for any n € N.

Proof. Let y be an element of X; and i be a positive integer grater than n. Take f € Cy(I)
with p,f € I. Since
SipnfSi = 5 [Si = 5/ Siow,f = 0w, [,

we have o, f € I N Cy(I"). Since v € X, we have o, f(7) = 0. Hence f(y+w;) =0 for
any f € Cy(T') with p,f € I. Tt implies v + w; € XI("). Thus X}n) D X; + w; for any
i >n. Forn < m, we have X\ 5 X{™ because pppm = pm. Therefore X\™ > X,
Thus X 5 X™) Ui (X7 + wi).

Conversely, take v ¢ X° U U2, (X1 +w;). Since v ¢ X' we can find a positive

integer m so that v ¢ X\™. When m < n, we see that v ¢ X\™. We will show v ¢ X" in
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the case m > n. Since 7y ¢ X}m), there exists f € Cy(I") such that p,, f € I and f(vy) # 0.
For each i = n+ 1,n+2,... ,m, there exists f; € Cyo(I') N [ such that fi(y —w;) # 0
because v ¢ X; +w;. Set g = f[[", .1 0w, fi. We have g(7) # 0 and

1=n+1 1=n-+1

Therefore v ¢ X™. Thus we have X\™ = X Ui (X1 + wi). |

Definition 3.3 A subset X of I' is called w-invariantif X is a closed set with X +w; C X
for any » € Z,. For an w-invariant set X, we define a closed set Hx by

HX_X\U (X +w;) U mUX+wZ

n=1i=n

Note that Hx is a closed subset of X.

Definition 3.4 A pair X = (X, X*) of subsets of I is called w-invariant if X is an
w-invariant set, and X is a closed set satisfying Hy C X*° C X.

Proposition 3.5 For any ideal I of the crossed product Oy X oG, the pair )N(I 15 w-
mvariant.

Proof. By Lemma 3.2, we have X; = XI(OO) U U2 (X1 + w;). From this, we see that
X7 is w-invariant and that X; \ ;2 (X7 +w;) C XI(OO) C X;. By Lemma 3.2, we have
Uis, (X +w;) C X}n) = X}n). Hence 2, U2, (X +wi) C N2, X}n) = X}OO). Therefore
we get HXCX}OO)CXI. 1

We will show that for an w-invariant pair X , there exists a gauge invariant ideal [
such that X; = X (Proposition 3.9).

Lemma 3.6 Let X = (X, X)) be an w-invariant pair. Forn € N, set X = Xy
U1 (X +w;). Then we have the following.

(i) X™ s closed for all n € N.

(i) X X0 = (P, X0,

(ili) For0<n<m, X = XMy (X + w).
)

(iv) For a positive integer n,

x=J (X(”)eru)uﬁ( U (qu)).

HEW,, F=1 N Lep®

Proof.



(i) Take v € X™ for a posmve integer n. If U N X #£ () for all neighborhood U of
7, then v € X(*®) ¢ X™ because X is closed. Otherwise, we can find a positive
integer iy grater than n with U N (X + w;,) # 0 for any neighborhood U of ~. If
there exists ¢ such that iy = ¢ eventually, then v € X +w; C X () hecause X + w;
is closed. If there are no such 4, then we can see that v € | J;2, (X + w;) for any m
with m > n. Hence v € Hy € X ¢ X™_ Thus we have proved that v € X™),
from which it follows that X is closed.

(ii) Since X \ U2, (X +w;) € X C X, we have X = X(©. We see that

ﬁXW:ﬁ(X(m)u G (X—i—wz) X () uﬂ( U X+wi)).

n=1 n=1 i=n+1 = i=n+1

Since Moy (Us2 s (X +wi)) € Hx € X, we have (72, X = X (),
(iii) It is obvious by the definition.

(iv) For a posmve integer n, we have X = X™ U J_ (X +w;) by (iii). Recursively, we
get X = JF (U LeWm) (X™ +w,)) U Uuew(’“) (X +w,) for any positive integer k.

Hence X = J, o, (X XM 4+ w,)UNe, (Uuewr(lk) (X +wy)). 1

Definition 3.7 For an w-invariant pair X = (X, X)), we define Iy C OnpXoeG by
I = span{SupnfS; | 1,V € Wae, f € Co(T'\ X™), n € N},
where X = Xy [J2 (X + w;).

Proposition 3.8 For an w-invariant pair X = (X, X)), the set I becomes a gauge
wwvariant ideal of OueX o G.

Proof. Clearly I; is a *-invariant closed linear space, and is invariant under the gauge
action 8 because 3(S,p, fSz) = tH=IMlS, p, fS¥ for t € T. To prove that I is an ideal, it
suffices to show that for any ju, v1, fta, V2 € Wa and any f € Co(I'\ X™), g € Cy(I), the
product zy of x = S, p,fS; € I and y = S,,,9S;, € O XoeG isin I5. If S} S, =0
or S;.S,, = S, for some u € Woo, then it is easy to see that xy € Ig. Otherwise
Sy Sy, = Sy for some p = (iy,d9,... i) € Wa with u # . When 4, § n, we have
pnfSu = anuawuf = 0. Hence zy = 0 € I. When i; > n, we have p,, fS,, = p.S,0u, [ =
Su0., . Now, f € Co(T\X™) implies o,,, f € Co(I'\ X) because X +w, C X+w;, C X",
Hence we have xy € I;. It completes the proof. |

Proposition 3.9 Let X = (X, X)) be an w-invariant pair, and set I = Ig. Then
X;=X.

Proof. By the definition of I, we get Xl(n) C X™ for any n € N. We will first prove that
X; = X. To the contrary, assume that X; G X. Then there exists f € I N Cy(I") such



that f(70) = 1 for some 7y € X. Since f € I, there exist n; € N, f; € Co(I'\ X)) and
v € Wo (1=1,2,..., L) such that

L
Hf - Z Sulpnlflszl
=1

Take a positive integer n so large that n; < n and p;, v, € W, for l = 1,2,...,L. For
any fio € Wy, we have p,S;, fSu,pn = Pnou,, f and oy, f(y0 — wy,) = 1. For [ with
W = v = lip, we have anZO(SmpnlflSjl)Suopn = ppf1. For | with v = v = pg for
some v = (iy,149,...,1;) € W, with i; > n;, we have anZO(SmpnlflSjl)Suopn = Pn0Ou, fi-
We have o, f; € Co(I' \ X), because X +w, C X +w;, C X ) For other I, we have
PS5 (81 Py f155,)SPn = 0. Hence we get

L L
O'wuof_zgl = ‘pn(awuof_zgl)” pn < Zsulpnlfl yl) pwoPn
=1 =1

where g; € Co(T'\ X)) when iy = vy = po, and g € Co(I'\ X) when v = vy = pq
for some v = (iy,i2,... ,ix) € W, with 43 > n;, and g, = 0 otherwise. To derive a
contradiction, it suffices to find p9 € W, such that g;(yo —w,,) = 0 for any [. By Lemma
3.6 (iv), we have either vo € () -_; (Upewéw (X +w,)) or 7o € XM 4w, for some p € W,.

When vy € N, (Uuewﬁlm)(X + wy)), take g € W, so that |uo| > |wml,|w| for
l=1,2,...,Land v € X +w,,,. Then 1y = v, = pp never occurs. Hence g, € Cp(I' \ X)
for any . We get ¢;(vo — wy,,) = 0 because vy —w,, € X. When v, € XM 4 w,, for some
€ Wy, take 1o = p. Since o —w,, € XM c XM ¢ X we have g;(7o —wy,,) = 0 either
if g € Co(T'\ X)) or if g, € Cy(T \ X). Hence g;(7p — w,,) = 0 for any [. Therefore we
have X; = X.

Next we will show that X I(") = X for a positive integer n. To derive a contradiction,
assume that X(n) - X ™ Then there exists f € Cy(T") such that p,f € I and f(y) = 1
for some vy € X("). Since p,f € I, there exist n; € N, f; € Co(I'\ X™) and py, v €
We (1 =1,2,..., L) such that

< -
2

L
pnf - Z SmpnlflS;
=1

Take a positive integer m so large that p;, v, € W,,, iy <mforl =1,2,... ,Land n < m.
By Lemma 3.6 (iii), we have X™ = Xt yJ" = (X +w;). When 75 € X, we have
fi(0) = 0 for any I. On the other hand, we get || f —>_, _, _y fill <1/2 because

L
pm(pnf_zsulpmflsz)pm:pmf_ Z pmfl'

=1 p=v=0

This is a contradiction. When 7y € X + w; for some ¢ with n < i < m, we have o, f =
SH(pnf)Si € I and o, f(79 — w;) = 1. This contradicts the fact that X; = X. Therefore

XI( "= XM for a positive integer n. Hence X(OO N, X}n) =0, X = X We
have shown that X; = X. |



By Proposition 3.9, the map I — X, from the set of gauge invariant ideals I of
O X e G to the set of w-invariant pairs is surjective. Now, we turn to showing that this
map is injective (Proposition 3.15). To do so, we investigate the quotient (O XaeG)/1
of OxXawG by an ideal I which is not Oy X G. Since I N Cy(I) = Co(I"\ X7), a C*-
subalgebra Co(I") /(I N Cy(I")) of (OuoXawG) /I is isomorphic to Cy(X). We will consider
Co(X) as a C*-subalgebra of (OxXawG)/I. We will use the same symbols S, Ss, ... €
M((Ouo X G) /1) as the ones in M(Oy X G) for denoting the isometries of O, which
is naturally embedded into M ((OwXaeG)/I). For an w-invariant set X, we can define a
*-homomorphism o, : Cy(X) — Cy(X) for 4 € W,,. This map o, is always surjective,
but it is injective only in the case that X C X + w,, which is equivalent to X = X +w,.
One can easily verify the following.

Lemma 3.10 Let I be an ideal that is not OxXawG. For p,v € Wy, and f € Co(X;) C
(OooXawG) /1, the following hold.

(i) S,.fSy =0 if and only if f =0.

(ii) Forn € N, p,f =0 if and only if f € Co(X1\ X}n)).
(iii) fS, = Su0u, f-
(iv) (OscXawG) /1 =5Span{S.fS; | p,v € Weo, f € Co(Xp)}-

We define a C*-subalgebra of (OyXawG)/I, which corresponds to the AF-core for
Cuntz algebras.

Definition 3.11 Let I be an ideal that is not O, X, G. We define C*-subalgebras of
(OooXawG) /I by
G = span{S, £ S} | v € WP, f € Co(X1)},
Fi = span{S,pn f S5 | v € WP, f € Co(X1)},
fj(n) = span{SMfS: | v €Wy, 0< ‘:u’ = ‘V‘ <n, f€ OO(XI)}7
Fi = Span{sﬂfszt | py V€ Weo, |/~L| = ‘V‘a IS OO(XI)}7
forneZ,,0<k<n.

Lemma 3.12 Let I be an ideal that is not OyuXowG. Forn € Z,,0 < k < n, we have
the following.

(i) G = M @ Co(X).
(i) F™M > M, @ Co(X ™).

n) ~ n—1 n,k n,n
‘7:1(): k:ofz( )@Q§ ),
U, }"I(") is dense in Fy.

(i)
(iv)

Proof.



(i) Since the set W has nk elements, we may use {eu,y}“’y W® for denoting the
matrix units of Ml,,x. One can easily see that

M,x @ Co(X)) 3 e, @ f > S, f55 € G
gives us an isomorphism from M, ® Co(X;) to G\™*).

(ii) We can define a surjective map from an’k to F; (k) by
k) 5 8, £85 — SupafSi e FIMH).

Its kernel is Ml,x ® Cy(X; \X ] ) under the isomorphism Q(n k) o = M,» ® Co(X1) by
Lemma 3.10 (ii). Hence we have F\"" & M, @ Co(X\™).

(iii) It can be done just by computation.

(iv) Obvious by the definitions of F I(n) and Fi. i

We will often identify g}”’") with Co(X7,M,»n). The following lemma essentially ap-
peared in [C].
Lemma 3.13 Fori= 1,2, let E; be a conditional expectation from a C*-algebra A; onto
a C*-subalgebra B; of A;. Let ¢ : Ay — As be a *-homomorphism with ¢ o Fy = E5 0 .
If the restriction of p on By is injective and Ey is faithful, then ¢ is injective.

For an ideal I which is invariant under the gauge action 3, we can extend the gauge

action on O X e G to one on (Ou X 4w G) /I, which is also denoted by . The following
lemma is standard.

Lemma 3.14 Let I be a gauge invariant ideal that is not Ox X G. Then,
E] : (OOONQMG)/I R /ﬁt(l')dt € (OOONQMG)/I
T

15 a faithful conditional expectation onto Fr, where dt is the normalized Haar measure on
T.

Proposition 3.15 For any gauge invariant ideal I, we have Iz, =1

Proof. When I = Oy XaG, we have X; = X *) — (). Thus Iz, = OxXauG. Let I be
a gauge invariant ideal that is not Oy XaeG and set J =I5 By the definition, J C I.
Hence there exists a surjective x-homomorphism 7 : (O xawG) /J — (OuXawG)/I. By
Proposition 3.9 and Lemma 3.12, the restriction of 7 on FE) 5 is an isomorphism from
fb(,k) onto F I(k) and so the restriction of 7 on F; is an isomorphism from F; onto F;. By
Lemma 3.14, there are faithful conditional expectations E; : (OuoXaeG)/J — F; and
Er: (OuoXawG) /I — F; with E; o = wo E;. By Lemma 3.13, 7 is injective. Therefore
Iz, =1 i

Theorem 3.16 The maps [ +— X; and X — I induce a one-to-one correspondence
between the set of gauge invariant ideals of OxXow G and the set of w-invariant pairs of
subsets of T'.

Proof. Combine Proposition 3.9 and Proposition 3.15. 1



4 Primeness for w-invariant pairs

In this section, we give a necessary condition for an ideal to be primitive in terms of
w-invariant pairs. We will use it after in order to determine all primitive ideals.

An ideal of a C*-algebra is called primitive if it is a kernel of some irreducible repre-
sentation. A C*-algebra is called primitive if 0 is a primitive ideal. When a C*-algebra A
is separable, an ideal I of A is primitive if and only if [ is prime, i.e. for two ideals Iy, I,
of A, Iy N Iy C I implies either Iy C I or I, C I. We define primeness for w-invariant
pairs. For two w-invariant pair X; = (Xl,X( )) Xs = (Xo, X3 OO)) we write X; C X, if
X, C X, X( %) X(OO and denote by X;UX, the w-invariant pair (X;UX,, Xl(OO)UXQ(OO)).

Definition 4.1 An w-invariant pair X is called prime if X;UX, DX implies either
X1 5 X or X2 S X for two w-invariant pairs Xl, Xo.

Proposition 4.2 If an ideal I of Oy X oG is primitive, then )?1 1S a prime w-invariant
pair.

Proof. Let I be a primitive ideal of Oy X, G. Take two w-invariant pairs )?1, )?'2 with
X, UX2 D XI Set I} = % and I, = [~ Then

[1ﬂ]2:[)’z—lu)’z—2 CI)’;—I C[

Since [ is prime, we have either Iy C [ or I C I. Hence we get either )?1 S X ;] or
X5 D X;. Thus Xy is prime. |

In general, the converse of Proposition 4.2 is not true (see Corollary 5.4 and Proposition
6.24). The ideal [ is prime if and only if the equality I; N I, = I implies either I; = I or
I, = I for two ideals I, I (see the proof of (iii)=(iv) of Proposition 4.3). The following
is the counterpart of this fact for prime w-invariant pairs.

Proposition 4.3 For an w-invariant pair )N(, the following are equivalent.
(i) X is prime.
(ii) For two w-invariant pairs )?1, )?2, the equality )?1 U )?2 =X implies either )?1 =X
or Xo = X.
(iii) For two gauge invariant ideals Iy, Iy of OxXoeG, the equality I, N Iy = I implies
either Iy = I or I, = I5.

(iv) For two gauge invariant ideals I1, Iy of Qs XawG, the inclusion Iy NIy C I implies
either I C I or I, C I5.

Proof. (i)=(ii): Take two w-invariant pairs X, X2 with X; U X, = X. By (i), we have
either X1 5 X or X2 > X. Hence we get either X1 X or X2 X.

(il)=(iii): Take two gauge invariant ideals Iy, I with ;NI = Ig. We have X, UX,, =
X. By (i), we have either X;, = X or X;, = X. By Proposition 3.15, we have either
L =1Izorl,=15.



(iii)=(iv): Take two gauge invariant ideals Iy, I with I; NIy C Is. Then we have
(L+Ig)N(La+1z)=(LNhL)+ 1z =15

By (iii), either I + I =I5 or I + Iy = I holds. Hence we get either I, C I or
I, C ]X"
(iv)=-(i): Similarly as the proof of Proposition 4.2. |

We will use the implication (ii)=>(i) to determine which w-invariant pair is prime. We
also need a notion of primeness for w-invariant sets.

Definition 4.4 An w-invariant set X is called prime if X; U Xy D X implies either
X1 D X or Xy D X, for any w-invariant sets X7, Xs.

We set sg(w) = {w, | # € W} which is the semigroup generated by wy,ws, ... and
denote by sg(w) its closure. Note that a closed subset X of I' is w-invariant if and only
if X +8g(w) = X. For any v € I, it is easy to see that the set v + 5g(w) is a prime
w-invariant set. The following is a necessary and sufficient condition for an w-invariant
set to be prime, which can be considered as an analogue of maximal tails in [BHRS].

Proposition 4.5 An w-invariant set X of I is prime if and only if for any v1,7 € X
and any neighborhoods Uy, Uy of v1,v2 respectively, there exist v € X and py, pia € Weo
with v +w,, € Uy and v+ w,, € Us.

Proof. Suppose X is a prime w-invariant set. Take 71,79 € X and neighborhoods Uy, U,
of 71,72 respectively. Set X; = I'\ U,y (Uj —w,) for j = 1,2. Then X; and X, are
w-invariant sets satisfying X; 2 X and X3 A X. Since X is prime, we have X; U Xy 5 X.
Hence there exists v € X with v ¢ X; U X5. By the definition of X; and X5, there exist
1, f2 such that v +w,, € Uy and v+ w,,, € Us.

Conversely assume that for any v1,7. € X and any neighborhoods U;, U; of 71,72
respectively, there exist v € X and py, ps € Wy with v +w,, € Uy and v + w,, € Us.
Take w-invariant sets X; and X, satisfying X; 2 X and X5 A X. There exist 71,7, € X
with 71 ¢ X7 and v, ¢ X,. Hence there exist v € X and pq, 1o € Woo with v +w,, ¢ Xy
and v+ w,, ¢ X,. Since X; and X, are w-invariant, we have v ¢ X; and v ¢ Xo.
Therefore, X; U X5 5 X. Thus, X is prime. |

Lemma 4.6 If an w-invariant pair X = (X, X)) is prime, then X(®) = Hy or X(*) =
Hx U{v} for some vy ¢ Hx.

Proof. Let X = (X, X)) be a prime w-invariant pair. To derive a contradiction, assume
\HX has two points vy, v,. Take open sets Ul 3 v, Uy 3 v with Uy NUy = 0,

UlﬂHX—Q)andUgﬂHX—(Z) Then X; = (X, \U)(Z—l 2) are w-invariant pairs
satisfying X = X;UX,. However, we have X gZ X; and X ¢ X5. This contradicts the
primeness of X. |

Lemma 4.7 Anw-invariant pair (X, Hx) is prime if and only if X is a prime w-invariant
set.
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Proof. Suppose that (X, Hy) is a prime w-invariant pair. Take w-invariant sets Xi, X3
with X C X; U Xy. We have (X, Hy) C (X1, X1) U (Xa, X2). Since (X, Hx) is prime,
either (X, Hy) C (X1,X;1) or (X,Hx) C (X3, X5) holds. Therefore X is a prime w-
invariant set. Conversely assume that X is a prime w-invariant set. Take two w-invariant
pairs (Xl,Xl(oo)), (XQ,XQ(OO)) with (Xl,Xl(OO)) U (XQ,XQ(OO)) = (X, Hx). Since X is prime,
either X C X; or X C Xy. We may assume X C X;. Then X = X;. Hence Hy =
Hx, C X\ c Hy. We get (X1, X\™) = (X, Hy). By Proposition 4.3, (X, Hy) is a
prime w-invariant pair. |

Lemma 4.8 An w-invariant pair (X, Hx U {v}) is prime for some v ¢ Hx if and only
if X =~ + 5g(w).

Proof. Suppose that an w-invariant pair (X, Hx U {7}) is prime. Then (X, Hx U{vy}) C
(X, Hx)U (y+5g(w),y +5g(w)) implies (X, Hx U{y}) C (v +38g(w),y +5g(w)) because
Hxy U{y} ¢ Hx. Hence v+ 5g(w) C X C v +5g(w). Thus, we get X = v + 5g(w).
Conversely, assume X =  + 5g(w). Take two w-invariant pairs (X1, X\°), (Xs, X3*)
with (X1, X)) U (Xo, X)) = (X, Hy U {7}). We may assume v € X\°). Then
we have X = v+ 5g(w) € X\™ +5gw) C X; C X. Hence X; = X. We have
HxU{y} = Hy, U{y} € X c Hyx U {7}. Therefore (X1, X\*) = (X, Hx U{y}). By
Proposition 4.3, (X, Hx U {~}) is a prime w-invariant pair. |

Proposition 4.9 An w-invariant pair (X, X(*)) is prime if and only if either X is prime
and X = Hy or X = vy +58(w) and X = Hx U {y} for some v ¢ Hx.

Proof. Combine Lemma 4.6, Lemma 4.7 and Lemma 4.8. i

5 The ideal structure of O, %G (part 1)

In this section and the next section, we completely determine the ideal structure of
OxXawG (Theorem 5.3, Theorem 6.30). The ideal structure of Oy X oG depends on
whether w € '™ satisfies the following condition:

Condition 5.1 For each i € Z, one of the following two conditions is satisfied:

(i) For any positive integer k, kw; # 0.
(ii) There exists a sequence fiy, fio,... in W, such that Sp.Si = 0 for any k and

limy, o wy,, = 0.

This condition is an analogue of Condition (K) in the case of graph algebras [BHRS].
In this section, we deal with the case that w satisfies Condition 5.1.

Proposition 5.2 If w satisfies Condition 5.1, then for an ideal I that is not OxX e G,
there exists a unique conditional expectation E; from (OxXawG)/1 onto Fr such that
E[(Sufs;k) = (5‘#"|V|Suf5;k fO’I" n, Ve W, f € CO(XI).
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Proof. Take x = Zle S fiSy € (OsXowG) /I where py, v € Wy and f; € Co(Xy) for
l=1,2,...,L Set xo = >, -, Su/iS;, and we will prove that [lzo| < [lz. If we

choose a positive integer n so that |, |v| < n and vy € W, for 1 = 1,2,..., L, then
2o € F™. By Lemma 3.12, there exist 2 € ™ (0 < k <n—1) and z§" € gI""
such that zo =Y _,_, a:(()k). We have ||xo]| = maX{Haj(()D)H, e Hx(()")H}

First we consider the case that ||zg] = HiE(()k)H for some k < n — 1. If we set g, =
Zuewr(f“) SupnS;; € M((Ooo X0 @) /1), then gy, is a projection satisfying that g5, ), qx = 0
if jul # |n]. Hence g = aizoge = @), We get [lzoll = ||l = llawwaell < Il
Next we consider the case that ||zo| = onn)H. Then there exists vy € X such that

1z | = 125" (76) |- By Lemma 3.6 (iv), we have

xi= U+ o (U cra)

HEW, E=1 N ey

When vq € XI(") + w, for some p € W, set u = ZVGW("> SuSupn Sy € M((OxuXaeG)/1).

(n) (n)
0

Then u is a partial isometry. We have v*ru = u*zou = v*zy v = 7, (04, (7)) where 7,

is the natural surjection from g}”’") onto F I("’"). Since v — w,, € X}n), we have

70 (0w, (2N 2 Nl0w, (25 (0 — w) | = 1257 (o) || = l25]] = [|2o]l-

Therefore ||zo|| < [Ju*zu| < ||z

When vy € (oo, <Uuewﬁf“) (X;+w,)), wecanfind i € {1,2,...,n} such that yo—kw; €
Xy for all £ € N. Since w satisfies Condition 5.1, either kw; # 0 for any k € Z,
or there exists a sequence {fi}trez, C W, with lim; ., w,, = 0 and Sr.Si = 0 for
any k. In the case that kw; # 0 for any k € Z,, we can find a neighborhood U of
Yo — nw; € X such that UN (U + kw;) = 0 for k =1,2,... ,n. Choose a function f with
0 < f < 1 satisfying that the support of f is contained in U and f(vyy — nw;) = 1. Set
u = Zuewr(z") SMSfflﬂsz € (OxuXowG)/I. Since

wu= Y SfUSiS, S = > SutSs,

pwewl™ pewl™

u*u corresponds to 1 ® f under the isomorphism g}”’“) ~ M,» ® Co(X7). Thus we
have |lu*ul| = sup,cx, [f(7)] = 1, and so [lul| = 1. A routine computation shows that

urru = u*xén)u = fanwix(()n) € Co(X7,M,,»). Since 79 — nw; € X, we have

lu*zull > (| f (Yo = 1) nezy” (0 — nwi)|| = 257 (30) || = ||zo]|-

Hence ||zo|| < ||u*zu|| < ||z||. Finally, we consider the case that there exists a sequence
{tetrez, € Wy with lim,_w,, = 0 and S¥ S; = 0 for any k € Z,. For k € Zy,
define a partial isometry uy = Zuemﬁ") SuSPSu S € One € M((OnoxawG)/I). A routine
computation shows that u}zu; = u,*;x(()n)uk = sty x(()n) € Co(X7, Myn). Since yo—nw; €
X7, we have

]| > |0 nw s, 28 (o — nwi) || = |25 (70 + wi)-

12



Hence we have H:E(()")('yo +wy )|l < ugzugl] < Jlz|| for any k € Z,. Therefore |zg| =

125 (o)l = limg oo 25" (Y0 + wp )| < [l2])-
Hence the map

span{S,fS; | p,v € Wa, f € Co(X1)} 2
— xo € span{S,fS) | u,v € Wx, |p| = |v|, f € Co(X1)}.

is well-defined and norm-decreasing. The extension F; of the map above is the desired
conditional expectation onto F;. Uniqueness is easy to verify. i

By uniqueness, the conditional expectation E; above coincides with the one in Lemma
3.14 when [ is gauge invariant. Actually an ideal of Oy X, G is gauge invariant if there
exists such a conditional expectation, as we see in the proof of the following theorem.

Theorem 5.3 Suppose that w satisfies Condition 5.1. Then for any ideal I we have
Iz =1, and so I is gauge invariant. Hence there is a one-to-one correspondence between
the set of ideals of OuXowG and the set of w-invariant pairs of subsets of T'.

Proof. If X; =0, then I = O, x,.G so Iz, = 1. Let I be an ideal that is not O xaeG,
and set J =1 %, By the same way as in the proof of Proposition 3.15, we can find a sur-
jective x-homomorphism 7 : (O X G)/J — (O XawG) /1 whose restriction on F is an
isomorphism from F; onto F;. By Proposition 5.2, there exists a conditional expectation
Er: (OpoXowG) /1 — Fy satisfying E;om = wo Ej, where Ej : (OuoXo0wG)/I — Fyis a
faithful conditional expectation defined in Lemma 3.14. By Lemma 3.13, 7 is injective.
Therefore I = 1 %, The last part follows from Theorem 3.16. 1

Corollary 5.4 When w satisfies Condition 5.1, an ideal I of OxXowG is primitive if
and only if the w-invariant pair Xy is prime.

Proof. 1t follows from Proposition 4.3 and Theorem 5.3. i

6 The ideal structure of O, %G (part 2)

In this section, we investigate the ideal structure of Oy, X,«G when w does not satisfy
Condition 5.1 i.e. there exists ¢ € Z, such that kw; = 0 for some positive integer k,
and that there exist no sequences i1, fto, ... in Wy, such that S;k S; = 0 for any k£ and
limj o wy, = 0. Note that such ¢ is unique. Without loss of generality, we may assume
i = 1. Let K be the smallest positive integer satisfying Kw; = 0. Denote by I the
quotient of I' by the subgroup generated by wy, which is isomorphic to Z/KZ. We denote
by [v] and [U] the images in IV of y € I" and U C T respectively. We use the symbol ([7], 0)
for denoting elements of I x T. Define A = span{SFfS;' | f € Co(T'),k,l € N} which
is a C*-subalgebra of Oy X, G. In [Kal], we defined a C*-algebra Tk and a continuous
family of *-homomorphisms ¢., : A — Tk for v € I'. Note that ¢.,(z) = 0 if and only
if ©ytw () = 0 for z € A. We also defined 1,9 = 7 0 ¢, for (v,0) € I' x T, where
o : Tk — My is a continuous family of *-homomorphisms.
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Definition 6.1 For an ideal I of Oy X G, we define the closed subset Y; of IV x T by
Yi={([7].0) e T" x T | ¢y 9(x) =0 for all z € ANT}.
We denote by Y7 the pair (Y7, XI(OO)) of a subset Y; of IV x T and a subset XI(OO) of I.

Definition 6.2 For a pair Y = (Y, X)) of a subset ¥ of I x T and a subset X of
I', we define subsets X and X™ of T by

X={yeTl|([7],0) €Y for some 6 € T},

X () — x(o0) U (X + w;).
i=n+1

With this notation, a pair Y = (Y, X)) is called w-invariant if (X, X)) is an
w-invariant pair of subsets of I' and if Y is a closed set satisfying that [X()] x T C Y.

Proposition 6.3 For an ideal I of Oy X oG, the pair Y} is w-invariant.
Proof. By [Kal, Proposition 5.15], we have
X;={yel'|([7],0) € Y for some 0 € T}.
By the argument in the proof of [Kal, Lemma 5.21], we have
Xl(l) ={yel'|p,(z)=0forany z € ANI}.

Therefore [XI(I)] x T C Y;. Thus the pair Y; is w-invariant. 1

We get the w-invariant pair }N/] from an ideal I of Oy, X4 G. Conversely, from an
w-invariant pair Y , we can construct the ideal Iy of Oy x40 G.

Definition 6.4 For an w-invariant pair Y = (Y, X)) we define Jy C Aand Iy C
OooxawG by

Jy ={x € Al p(x) =0for ([7],0) € Y, and ¢, (x) =0 for v € XMy,
Iy =span ({S,2S) | v € We, © € Jp}
UA{Supaf Sy | v € Wa, n € Zy, f € Co(\ X™)}),

with the notation in Definition 6.2.
Proposition 6.5 For an w-invariant pair }7, I is an ideal of O X G.
Proof. Once noting that Jy N Co(I') = Co(T" \ X) and Jy N p;Co(T) = p1Co(I \ X D),

we can prove that Iy is an ideal in a similar way to Proposition 3.8 with the help of the
computation in [Kal, Proposition 5.20]. 1
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Lemma 6.6 Let Y = (Y, X)) be an w-invariant pair. For any ([7],0) € Y, there exists
x € Jy such that 1., ¢(x) # 0.

Proof. The proof goes exactly the same as in the proof of [Kal, Lemma 5.22|, once noting
that ([7],0) € Y implies v ¢ X, |

Proposﬂzlon 6.7 Let Y = (Y, X)) be an w-invariant pair, and set I = I. Then we
have YI Y.

Proof. By Lemma 6.6, we get Y; C Y. To prove the other inclusion, it is sufficient to
see that 1, g(x) = 0 for ([y],0) € Y and x € I N A. Take ¢ > 0 arbitrarily. Since
x € I, there exist py,1; € Wao, 1y € Jy for 1 = 1,2,... L and py, v}, € Wao, ni, € Zy.,
fr € Co(T'\ X)) for k =1,2,..., K such that

T — Zsmxl Y, ZSM pnkfk

Take a positive integer m such that m > |u, |v| for any | and m > |u;|, |v;| for any
k. Then, HSfmxS{” - xf” < ¢ where z; = S™S,, 1,5} ST* for [ = 1,2,..., L. Since
x; € Jy, we have ||t (ST 2ST")|| < €. Since 1,4(51) is a unitary, we have [|1),(x)|| < €
for arbitrary € > 0. Hence, we have 1), 9(z) = 0. Therefore we get Y; =Y.

From Y; =Y, we have X; = X. By the definition of I, we see that X; (n) c X™ for

n € Z,. To the contrary, assume that X; (m) C X™. Then there exists f € Co(I") such that
pnf € I and f(’yo) = 1 for some v € X(” Slnce pnf € I, there exist 1, v, € Wy, 11 € J¢
forl=1,2,. Landuk,VkEWoo,nkEZ+,kaC’O(F\X("k)fork—l2 Ksuch

that
L K
puf =SS = Y Sy pn, fuS
=1 k=1

Take a positive integer m so large that p, v, ., v, € Wi, ni, < m for any [, k and n < m.
By Lemma 3.6 (iii), we have X™ = X U Ji" (X 4 w;). We first consider the case
that v € X™. By [Kal, Lemma 5.4], there exists g; € Co(I'\ X') with pyap; = p1g; for
any [. Hence we have p,,xpm = pmp1Tip1Pm = pmg: for any [. Since

pm(pnf Zsule v, ZS“ pnkfk )pm:pmf_ Z Pmgi — Z Pk

m=v=0 wy,=v;, =0

we get ||f — >, _,—g 0 — Z%:%:@ frll < 1/2. This contradicts the fact that f(yo) = 1,
g1(70) = 0 and fi(y0) = 0 for any [, k. When ~y € X + w; for some i with n < i < m, we
have o, f = S} (pnf)S € I and o, f(70—w;) = 1. This contradicts the fact that X; = X.
Therefore Xl(n) = X™ for a positive integer n. Hence X =N, X =N, XM =
X () Thus we have YI Y.

Corollary 6.8 For two w-invariant pairs Y, = (Yl,Xl(oo)), Y, = (YQ,XQ(OO)), we have
I C Iy, if and only if Y1 DY and Xl(oo) D XQ(OO).
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A relation between Iy and I can be described as follows.

Proposition 6.9 Let Y = (Y, X)) be an w-invariant pair. For t € T, set Y, =
(Y, X)) where Y; = {([74],0) € I' x T | ([y],t0) € Y}. Then Y, is w-invariant
and By(Iy) = Iy where B is the gauge action. We also have Ig = (\,op Iy, where

X =(X,X®) and X ={y €T | ([h],0) € Y for some 6 € T}.

Proof. See [Kal, Proposition 5.24]. |
Proposition 6.10 For an w-invariant pair X = (X, X)) of subsets of T', the pair
Y = ([X] x T, X)) is w-invariant and Iy = I5.

Proof. Obvious by Proposition 6.9. |

Now, we turn to showing that Iy, = I for any ideal I (Theorem 6.30). To see this, we
examine the primitive ideal space of O X0 G. Set 5g; (w) = 5g(w)\{0, w1, ..., (K—1)w;}.

Lemma 6.11 We have 5g;(w) = |J;2,(sg(w) + w;) and §g,(w) is an w-invariant set.

Proof. For v € 5g(w), we can find p, € W, such that v = limy_oo wy,, . I = (1,1,...,1)
for sufficiently large k, then v = mw; for some m € N. Hence for v € 5g;(w), we can
find py, € Weo with w,, € U2, (sg(w) + w;) such that v = limy_o w,,. Thus §5g;(w) C
Ui2,(sg(w) + w;). To prove the other inclusion, suppose mw; € |J;—,(sg(w) + w;) for some
0 < m < K and we will derive a contradiction. In this case, 0 is also in [ J;2, (sg(w) + w;).
Hence there exists a sequence {uy} in Wy, with Sy S1 = 0 such that 0 = limg_. wy, .
This contradicts the fact that w does not satisfy Condition 5.1. Therefore 5g;(w) =
Uio,(sg(w) + w;). From this equality, it is easy to see that 5g; (w) is an w-invariant set. N

Corollary 6.12 For any vy € I', there exists a compact neighborhood X of vy satisfying
that X N (X +~) =0 for any v € s5g(w) \ {0}.

Proof. Since 5g(w) \ {0} = 5g,(w) U{w1,2wy,...,(K — 1)w;} is closed by Lemma 6.11,
there exists a neighborhood U of 0 with U N (sg(w) \ {0}) = 0. If we take a compact

neighborhood V' of 0 such that V' —V C U, then X = v, + V becomes a desired compact
neighborhood of ~;. 1

Lemma 6.13 For an w-invariant set X, we have Hx = (), Ure, (X +w;). If two
w-invariant sets X1 and Xy satisfy X1 C Xo, then Hyx, C Hy,.

Proof. The former part follows from X = X + wq, and this implies the latter part. 1

Proposition 6.14 For any v € I', we have v ¢ H 55 -
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Proof. By Lemma 6.13, we have

'y—l—sg ﬂ U 7+Sg +wi) - U(Fy +§(w) —le) = 7_‘_@1(@‘})

n=11i=n =2
Hence v ¢ H, . is5(0)- 1
For v € I', we set P, = Iy where X = (v +58W), Hy 55y U {7}) which is a prime
w-invariant pair. We will show that P, is the unique primitive ideal satisfying that
Xp, = (v +58(w), Hyts5) U {7}). To see this, we need the following lemma.

Lemma 6.15 Let I be an ideal of OxXow G with X; = X}OO) +sg(w). Then I = I,

Proof. By the argument in the proof of Proposition 5.2 and Theorem 5.3, it suffices to show
that ||zo|| < ||z|| for z = Zle S fiSy, € (OacXawG) /I and g =37 _ 1, Sw 15, 1 we
choose a positive integer n so that |, |1 < n and w;, v, € W, for any [, then xy € .7-}

We can find i € F"F (0 < k < n — 1) and 23" € G such that zy = ", x{.
We have [lzo| = max{||x(()0)||, Jlz{™|1}. In the case that [lzo]| = ||z for some
k < n—1, we can prove ||x0]| < ||x|\ in a similar way to the proof of Proposition 5.2.
In the case that [|zg]| = ||x ||, there exists vo € X, such that ||z, = ||x '(%)||. Since

X = XI( ) 4 sg(w), there exist a sequence py, o, ... € Wy and a sequence vq,7, ... , €
XI(OO) such that 7o = limy (1% + wy, ). We can find sequences pf, pf, ... € Wy and
V1, Vo, ... € W, such that w,, = Wy + Wy, and none of 1,2,...,n appears in the word
wy, for any k. For k € Z,, define a partial isometry uy = Zuewfl") SuSu,pnS,,. We have

wiruy = ulzoup = izl up = 7, (0w, 2™, where T, is the natural surjection from Q}”’n)
onto }"I("’"). Since vy, € X(OO), we have 4w, € X(n)

17 (0, 25| = 0w, 287 (v + w1 = 28 (e + wyg, + wiy)-

. Hence

Therefore we get
lzoll = llz5” (o) | = lim ™ (v 4wy, +wi Il < [l

We are done. |

Proposition 6.16 For any v € T, the ideal P, is the unique primitive ideal satisfying
that Xp, = (v + 88(w), Hyrsz) U {1})-

Proof. To prove that P, is primitive, it suffices to show that it is prime because O X0 G is
separable Let I, I be ideals of O X oo G with I1 N1 = P,. Then we get Xh LJXI2 )A(:P,Y.
Since X p, is a prime w-invariant pair, we have either X L = =X p, Or X I, = =X p,- By Lemma
6.15, we have either I) = P, or I, = P,. Therefore P, is primitive. The uniqueness follows
from Lemma 6.15. 1

We denote by A the set of prime w-invariant sets which are not of the form v+ sg(w).
For X € A, we denote by Px the ideal /¢ for X = (X, Hx) which is a prime w-invariant
pair. We will show that for any X € A, Px is the unique primitive ideal satisfying
Xp, = (X, Hx).
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Lemma 6.17 Let X € A and v € X. Then there exist a sequence jiy1, fta, ... in Wa and
a sequence Y1,%e, ... in X such that S, Sy =0 for any k and v = limy,_ o (v + Wiy )-

Proof. Since X € A, there exists 7/ € X \ (7 +5g(w)). Since X is prime, Proposition 4.5
gives us two sequences i1, fl2, - .., V1,Va, ... In W, and a sequence 71,7, ... in X with
v = limg oo (Y +wy, ) and 7' = limy_o0 (7% + wy, ). We will show that we can choose such
i satisfying S S1 = 0. If not so, then yy, = (1,1,...,1) for sufficiently large k. This
implies 7' = limg_oo(y — |&|w1 + wy, ) which contradicts the fact that 7 ¢ v + sg(w).
Therefore we can find desired sequences. |

Lemma 6.18 If an ideal I of O XaeG satisfies X € A, then I =I5 .

Proof. Similarly as the proof of Lemma 6.15, it suffices to show that ||zo| < ||z| for
v = 0SS € (OwxaeG)/I and wo = 2,y SuhiS;, € Fi". We can find
2P e F 0 <k <n—1)and 2{” € "™ such that 2y = 27 x{”. We have
|lzo]| = max{”a:(()O)H, cey Hx((]n)H} In the case that ||zo|| = Hllﬁék)H for some k < n — 1, we
can prove ||zo|| < ||z| in a similar way to the proof of Proposition 5.2. In the case that

o]l = ||z{™ |, there exists v € X such that ||zo|| = [|z{” (70)||. By Lemma 6.17, we have
a sequence fu, fla, ... in Wy and a sequence 71,72,... in Xy such that S; 51 = 0 and
v = limp_oo (ks + wy, ). For k € Z., set a partial isometry uy = Zuewﬁj‘) SuST"S,, S

_ B (1) B (n)  q;
We have upzuy = upzouy = upzy ‘uk = 0y, Ty . Since 7, € Xy, we have

gl > Nlow,, 28" ()|l = l28” (ve + w) -
Therefore we get
lzoll = lla5” (M) = lim [lz6” (3 +wp )| < ]
We are done. |

Proposition 6.19 For X € A, the ideal Px 1s the unique primitive ideal satisfying
Xp, = (X, Hy).

Proof. With the help of Lemma 6.18, the proof goes similarly as the one in Proposition
6.16. i

_ By Proposition 4.9, the remaining candidates for primitive ideals are ideals P satisfying
Xp = (70 +58(w), Hy+s(w)) for some v € T'. We will determine such primitive ideals.

Definition 6.20 For ([1],0) € I" x T, we set Y{,10) = {([7].0)} U ([v + 58, (w)] x T).
Then Y = (Y([),0), Hy+4sg(w)) 15 an w-invariant pair. We write P, ) for denoting I5.

We can show that P, is a primitive ideal for any ([7],6) € I' x T by using the

technique in [Kal]. To do so, we need Proposition 6.22, which will also be used to
determine the topology of primitive ideal space of Oy X4 G.
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Lemma 6.21 For an w-tnvariant set X, the pair X = (X, X) is w-invariant and we have

Iy =span{S,.[S; | v € Wa, f € Co(T'\ X)}.

Proof. Clearly, X = (X,X) is w-invariant. Set I = span{S,fS} | n,v € W, f €
Co(I'\ X)}. In a similar way to the proof of Proposition 3.8, we can see that I is a
gauge-invariant ideal of Oy X, G. We also see that Xl(n) = X for any n € N by arguing
as in the proof of Proposition 3.9. Hence Iy = I by Theorem 3.16. 1

Proposition 6.22 Let X be a compact subset of ' such that X N (X +~) = 0 for any
7 € sg(w) \ {0}, and set X; = X +5g(w) and Xy = X +5g,(w). Then we have that
Xo = (X1, X4), Xi = (X1, X2) and X5 = (Xo, Xs) are w-invariant pairs, and that

]XQ/IXIQJK@)C(XXT), I)?l/]XOgK@O(Xl\XQ)'

Proof. Since X is compact and sg(w) is closed, X; = X +5g(w) becomes closed. The same
reason shows that X, is closed. By Lemma 6.11, both X; and X, are w-invariant and
Xo = U2 (X1 + w;). Therefore Xy, X1, X, are w-invariant pairs. Since I, Np1Co(T) =
pCo(I'\ X3), we have p; f = 0 for any f € Co(X; \ X3) C I)~(2/I)?l. Note that X; \ Xo is
a disjoint union of compact sets X, X +wy,... , X 4+ (K — 1)w;. For f € C(X + mw;) C
Iz, /153, with 0 <m < K, we have oy, f € C(X) and

ST T o [S1™ = SP LSS O 1yn ST = ST Oy £ ST
=...=f.
Hence, we have Ig [Ig = span{S.fS; | p,v € W, f € C(X)} by Lemma 6.21. Set
WE = W \ {ul® € Wy | p € Wx} and denote by x the characteristic function of

X. Then {S,xS;}, ez satisfies the relation of matrix units and > )+ SuxS;, = 1
(strictly). Hence we have I /I = K ® B where B = x(I,/I5,)x. We have

B = span{xS.fSyx | v € Wae, f € C(X)} = span{(S{")"f | m € Z, f € C(X)}.

Since B is generated by C(X) and a unitary STy which commute with each other and
since B is globally invariant under the gauge action, we have B = C(X x T). Therefore
we get Iz /15 =K@ C(X xT).

By the definition,

I, /15, =span{Supnf S, | 1,V € Weo,n > 1, f € C(X1\ Xa)}.

For f € C(X; \ X3) C I)?I/I)?o and ¢ > 2, we have S;S’f = S;o0,,fSf = 0. Hence
pnf =pif for any n > 1 and any f € C(X; \ X2). Thus Iy, x,/Ix, x, =span{S,p2fS;] |
v € Wy, f e C(X1\Xz)}. We can show that {S,pax'S}}vew.. satisfies the relation of
matrix units and W Sup2x'S;, = 1 (strictly), where X' is the characteristic function
of Xj \ X5. Hence we have [)?1/[)?0 = K ® B’ where

B = pox'(I5, /15, )p2x' =span{paf | f € C(X1\ Xo)} 2 C(Xy\ Xy).
Therefore we get I /I3, @ K® C(X;\ Xa). |

With the help of Proposition 6.22, we have the following proposition by exactly the
same argument as the proof of [Kal, Proposition 5.41].
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Proposition 6.23 For v, € T', the set of all primitive ideals P satisfying Xp = (70 +
@(w)a H’yo-i-@(w)) is {P([’YOLG) | XS T}

Now, we can describe the primitive ideal space Prim(Oy X o0 G) of Oy X0 G as follows.

Proposition 6.24 We have Prim(Ox X0 G) = {P, | z € (I x T)UT' U A}, where L
means a disjoint union.

The primitive ideal space Prim(O4 X4+ G) is a topological space whose closed sets are
given by {P € Prim(Ou X0 G) | I C P} for ideals I. We will investigate which subset of
(I"x T)WUT'UA corresponds to a closed subset of Prim(QOy X4 G). By Corollary 6.8, the

following is easy to verify.

Lemma 6.25 Let Y = (Y, X)) be an w-invariant set.

(i) For ([v],0) € I" x T, we have Iy C Py ) if and only if ([v],0) € Y.
(ii) For~ €T, we have Iy C P, if and only if v € X .
iii) For X € A, we have I: C Px if and only if [ X]| x T C Y.

v

Lemma 6.26 Let X be a compact subset of T' such that X N (X +v) = 0 for any
v € 5g(w) \ {0}, and set X; = X +5g(w) and Xy = X +5g,(w), which are w-invariant
sets. If Xy € A satisfies X1 D Xo, then Xy D Xj.

Proof. To the contrary, assume X, € A satisfies X; D Xy and X5 2 Xy. Then XoNX # ()
and (Xo N X) + 5g(w) is an w-invariant set satisfying (X, N X) + 8g(w) C Xy. Since
(XoNX)+35g(w)) UXy D Xg and Xy is prime, we have (XN X) +5g(w) D Xo. Hence
Xo = (XoNX)+58g(w). If XoNX has two points 7, 72, then we can take open sets Uy, Uy
such that v, € Uy, 72 € Us, Uy NUy = ). Two w-invariant sets X; = (XoNX \U;) +5g(w),
X, = (Xo N X\ Us) + 5g(w) satisfies X| 2 Xo, X5 2 Xo and X U X, = X,. This
contradicts the primeness of Xy. Hence Xy N X is just a point. However, this contradicts
the fact that Xy € A. Therefore Xy D Xy when Xy € A satisfies X; D X,. |

Lemma 6.27 Let Y, = (YA,X)(\OO)) be an w-invariant pair for each A € A. Set I =
Maea I5,- Then Y7 =Uycp Yo

Proof. For any A € A, we have Y7 D Y) because I C I . Hence we get Y7 D Usea Yo
Take ([70],00) & Uyea Ya- Then there exists a neighborhood U of ([yo],f) satisfying
UNUyep Ya = 0. By the same argument as in the proof of [Kal, Lemma 5.22], we can
find zy € A such that })6,)(20) # 0 and 1,0 (o) = 0 if ([7],6) ¢ U and ¢,(x¢) =0
if ([y] x T)NU = 0. Therefore we have xq € I, and it implies that ([yo],60) ¢ Y7. Thus
Y = U)\GA Y. i

Lemma 6.28 For any X € A, we have Py = ﬂze[XlePz.
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Proof. By Lemma 6.25, we have Px C mze[xmr P,. By Lemma 6.27, we have Yﬂze[X]XTPZ =
[X] x T. Hence we have (,c(x).p > C Px by Lemma 6.25. Thus Px = [, ¢(xxr - 1

In the proof of the following proposition, we use the fact that the subset {P €
Prim(OwXawG) | [T C P, Iy ¢ P} of Prim(Ou X G) is homeomorphic to Prim(l/1;),
for two ideals I1, Iy of Oy X G with I} C Is.

Proposition 6.29 Let Z = Y U X®) U A be a subset of (I" x TYUT U A. The set
Py ={P. | z¢€ Z} is closed in Prim(Ou x40 G) if and only if (Y, X)) is an w-invariant
setand N ={X e A|[X]|xTCY}.

Proof. Let us take a subset Z = Y L1 X () U A of (I" x T) UT' U A satisfying that (Y, X ()
is an w-invariant set and A = {X € A | [X] x T C Y}. Then the set P, = {P, | z € Z}
coincides with the closed subset defined by the ideal Iy by Lemma 6.25.

Conversely, assume Py is closed, that is, there exists an ideal I of O, X, G with
Z={2eYUX®UA|IC P.}. We first show that Y and X (> is closed. Take v € I'
arbitrarily. By Corollary 6.12, there exists a compact neighborhood X of g such that
XN (X +7) =0 for any v € 5g(w) \ {0}. Set Xy = (X1, X1), X = (X1, X») and X, =
(X2, X3) where X7 = X +5g(w) and Xy = X +5g;(w). Note that X 3 v +— [y] € [ X7\ X3
is a homeomorphism. By Lemma 6.25 and Lemma 6.26, we have

{ze("XT)UTUA|I¢ CP,lg, ¢ P.} =[X1\ Xo] xTCI"xT,
{re@xTUTUA|Ig CP.,Ig ¢ P} =X\ XoCT.

By Proposition 6.22, the map [X; \ Xa] X T 3 z — P, € Prim(OxXoG) is a home-
omorphism from [X; \ X3] x T, whose topology is the relative topology of IV x T, to
the subset {P € Prim(Owxx0eG) | Iz, C P Iz, ¢ P} of Prim(OxxaeG). The set
YN ([X;\ Xe] xT) CIVxTis closed in [X; \ X5] x T because Py is closed. Hence, the
subset Y is closed in IV x T. Similarly X is closed in I'. Set X = {y € I' | ([],0) €
Y for some ¢ € T}, which is closed because Y is closed. Set J = () gy Hn10)- We

have I C J. By Lemma 6.27, we have Y; = Y. Hence Hy C X§m). We have J C P,
for any v € Hx by Lemma 6.25. Therefore Hx C X, We have ([y + w;],0') € YV
for any ([7],6) € Y, any @ > 2 and any 6" € T because P9 C P(y4w,,0)- Hence we
get [X +w;)] x T C Y. We also have [X®)] x T C Y because P, C P for any
([7],0) € I" x T. Therefore we have proved that (Y, X(>)) is an w-invariant set. Finally,
we have A ={X € A|[X] x T C Y} by Lemma 6.28. It completes the proof. 1

By the proposition above, we get the following.

Theorem 6.30 When w does not satisfy Condition 5.1, there is a one-to-one correspon-
dence between the set of ideals of OxXow G and the set of w-invariant pairs of subsets of
IV x T and subsets of I'. Hence for any ideal I of OuuXaeG, we have I = I3, .

Proof. There is a one-to-one correspondence between the set of ideals of Oy, X, G and the

closed subset of Prim(Oy X4+ G). By Proposition 6.29, the closed subset of Prim(Ou, X 00 G)
corresponds bijectively to the set of w-invariant pairs. 1
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7 More about O X G

In this section, we gather some general results on O, X ,~G. First we compute the strong
Connes spectrum of the action o : G ~ O4. We need the following lemma.

Lemma 7.1 For any w € I'°, we have {0} U Hygy = {0} UM~ Uis,, (sg8(w) 4+ w;).

Proof. 1t suffices to show that

)\ (U +w)) € U (sse) +w)

for any n € Z,. Take v € sg(w) \ ({0} U2, (58(w) +w;)) and n € Zy. Since v € 5g(w),
there exists a sequence {fi} C Wy such that v = limy_o w,, . We will show that we can
find an integer grater than n in the word pu; for infinitely many k, from which it follows
that v € U;2,,1(sg(w) +w;). To the contrary, assume that u, € W, for sufficiently
large k. Then there exists i € {1,2,...,n} which appears in p; eventually. We have
¥ —w; = limy_o0 (wy,, —w;) € 5g(w). This contradicts the fact that v ¢ 5g(w) +w;. Hence

{0} U Hygwy = {0} U N2 Ui, (sg(w) + wi). i

Proposition 7.2 The strong Connes spectrum f(a“’) of the action o is {0} U Hgg().
Proof. By [Ki, Lemma 3.4], we have
T(e¥)={yel] a®,(I) C I,for any ideal T of OuXawG},

where @ : I' A Oy X0 G is the dual action of a. For an w-invariant pair X = (X, X))
and v € T, we see that o, (I5) = Ig . where X — v = (X —7,X® —~). Hence
o +(Ig) C I is equivalent to say that X—i—'y C X and X () +7C X () for an w-invariant
pair X = (X, X)) and v € I'. Considering the case that X = (sg g(w), {0} U Hyg()), w
have ({0} U Hzgy) +7 C {0} U Hggy for v € T(a®). Hence T'(a®) C {0} U Hag(w). Let
(X, X)) be an w-invariant pair. For v e X, we get

v+ (Y UGgw) +w) = (O +sgw) +w) € ([ JX +w) € Hy € X&)
n=1i=n n=1i=n n=1i=n
By Lemma 7.1, we have X () + ({0} U Hygg(,y) € X . Since {0} U Hyg() C 58(w), we have
X+({0}UHsg(,)) C X. Hence when w satisfies Condition 5.1, we have I'(a¥) D {0}UHgg(
by Theorem 5.3, and so I'(a*) = {0} U Hgz(.y- Next we consider the case that w does not
satisfy Condition 5.1. For an w-invariant pair (Y, X)), we have X + (Hggw)\{0}) C X
by the former part of this proof, where X = {y € I' | ([7],0) € Y for some § € T}. Hence
for any ([70),60) € Y and v € Hygw) \ {0}, we have 75 + v € X because 7y € X. Since
(X)) x T C Y, we have ([vo +1], 00) € Y. Therefore we also have {0} U Hgg(,) C ['(a®)
by Theorem 6.30. Thus I'(a*) = {0} U Hgg(.).- |

Next we give necessary and sufficient conditions for w € I'* that the crossed product
O X oG becomes simple or primitive.
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Lemma 7.3 Let I be an ideal of the crossed product OuXowG. Then I =0 if and only
if Xp=T.

Proof. The “only if” part is trivial. One can easily prove the “if” part by the same
arguments as in the proofs of Proposition 5.2 and Theorem 5.3. 1

Proposition 7.4 Forw € '™, the following are equivalent:

(1) The crossed product OuoX oG is simple.

(ii) There are no w-invariants sets other than T' and ().
(iii) I' =sg(w).

If OoXowG is simple, then it is purely infinite.

Proof. The equivalence between (i) and (ii) follows from Lemma 7.3. (ii) implies (iii)
because Sg(w) is w-invariant. (iii) implies (ii) because X = X 4 5g(w) if X is w-invariant.
For the last statement, see [Ka2, Proposition 5.2]. 1
The equivalence between (i) and (iii) was already proved by A. Kishimoto [Ki] by
using strong Connes spectrum. Note that the strong Connes spectrum f(a“’) is equal to
' if and only if 5g(w) = I by Proposition 7.2.

Proposition 7.5 The following conditions for w € I'™° are equivalent:

(i) The crossed product QX 0w G is primitive.
(ii) T is a prime w-invariant set.

(iii) The closed group generated by wy,ws, ... is equal to T

Proof. (1)=(ii): This follows from Proposition 4.2.

(ii)=-(i): It suffices to show that 0 is prime. Let I, Iy be ideals of O X oG with
NI, =0. We have X;, U X, = Xpn, = I. Since I is prime, either X;, D I" or
X, DT If X;p DT hence X;, =T, then I1; = 0 by Lemma 7.3. Similarly if X;, D I,
then I = 0. Thus 0 is prime and so Oy, X4« G is a primitive C*-algebra.

(ii) <= (iii): This follows from Proposition 4.5. |

One can prove the equivalence between (i) and (iii) in the above theorem by char-
acterization of primitivity of crossed products in terms of the Connes spectrum due to
D. Olesen and G. K. Pedersen [OP] and the computation of the Connes spectrum of our
actions o due to A. Kishimoto [Ki].

Proposition 7.6 The crossed product Oy X oG s isomorphic to the Cuntz-Pimsner al-
gebra O of Co(I')-bimodule E = Cy(I')*°, whose left module structure is given by

f'(flaf2>"' afn;---) = (le(f)fl>aw2(f)f2>--- 7an(f)fna"') clr

for f e Co(I') and (f1, fay- - s fny-..) € E.
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Proof. The inclusion Cy(T") — Oy X oG and £ 3 (0,...,0, f,,0...) = Spufi € OxuXoeG
satisfies the conditions in [Pi, Theorem 3.12]. Hence there exists a x-homomorphism
¢ Op — OuXawG which is surjective since O X oG is generated by {S,f | n €
Zy, f € Cy(I')}. One can show that ¢ is injective by using Lemma 3.13. Thus Oy X G
is isomorphic to Ofg. 1

Corollary 7.7 The inclusion Co(I') — OxXawG is a KK-equivalence. Hence for i =
0,1, we have K;(OxXawG) = K;(Co(T)).

Proof. See [Pi, Corollary 4.5]. |

Proposition 7.8 If w € I'™ satisfies —w; ¢ {w, | p € W,,} for any i,n € Z., then the
crossed product Ouo X o G is AF-embeddable.

Proof. See [Ka2, Proposition 5.1]. |
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