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Abstract

The algebraic structure on the subspace of the quasi-primary vectors given by the projection
of the (n) products of a conformal superalgebra is formulated. As an application the complete
list of simple physical conformal superalgebras is given. The list contains a one-parameter
family of superconformal algebras with 4 supercharges that is simple for general values.

1 Introduction

For an infinite-dimensional Lie superalgebra G, one often assumes that there exists a finite set F
of generating functions of G and that the Lie bracket is written in terms of the OPE (Operator
Product Expansion), i.e.,

(2)

a(z)b(w) ~ Z ma (1.1)

where the Y is finite. It means

o) b(w)] = 3“4 055(: ), (1.2
¢ (w) = Res,[a(z), b(w)](z — w)?, (1.3)

for a,b € C[0]F, where the > is always finite. The finiteness is called locality. Many important
infinite-dimensional Lie superalgebras, e.g., affine Lie algebras, the Virasoro algebra, the Neveu-
Schwarz algebra, have locality.

The notion of conformal superalgebra (vertex Lie superalgebra) is formulated in [7] and [10],
which is an axiomatic description of Lie superalgebras with OPE with respect to the infinitely many
operations a(;)b = ¢ as above. Once a conformal superalgebra is given, one can reconstruct the
Lie superalgebra G. We shall require existence of conformal vector in addition, which corresponds
to a Virasoro subalgebra in the associated Lie superalgebra.

For a conformal superalgebra R the subspace of the quasi-primary vectors (see section 2 for pre-
cise formulation) are identified with R/(OR). For some kind of conformal superalgebras the space
of primary states generates the conformal superalgebra and the associated Lie superalgebra ([10]).
On the other hand, it is well-known that a conformal superalgebra R yields a Lie superalgebra
structure on R/(OR). We will study more detailed structures on R/(OR) (section 3).

The algebraic structures on the space of the primary vectors are described in [1]. We will study
the algebraic structures on the space of the quasi-primary vectors, defining the (n) products on it
by the projection of the (n) products. We will show that one can reconstruct the entire conformal
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superalgebra from the (n) products on the space of the quasi-primary vectors (section 4). For the
normal product the structure given by the projection are discussed in [2].

The (n) products are (anti-)commutative, but may not be associative. We have some simple
cases of the algebraic structures on the subspace of the quasi-primary vectors. The most simple
one is the case of affine Lie superalgebras, for which all products but the (0) product vanish and
the (0) product yields a Lie superalgebra structure on the finite-dimensional vector space of the
quasi-primary vectors. The second case is physical conformal superalgebras, which corresponds to
the superconformal algebras, for example, the Virasoro algebra, the Neveu-Schwarz algebra and the
N = 4 superconformal algebra. In this case all products but the (0) product and the (1) product
vanish and they yield a left Clifford module structure on the finite-dimensional vector space of the
quasi-primary vectors. The action of Clifford algebra is described in [5]. It restricts the dimension
of the space of the quasi-primary vectors of physical conformal superalgebras.

Examples of simple physical conformal superalgebras are given in [3], [9], [7], and [8]. The
list of known simple physical conformal superalgebras are Vir, Ky, Ky, K3, S, Wa, CKg, where
we have followed the notations of [3] and [6]. Vir is the Virasoro algebra. K is known as the
N = j superconformal algebra. Ss and W5 are superconformal algebras with 4 supercharges. S,
is known as the N = 4 superconformal algebra. CKg is discovered in [3] and is the only known
superconformal algebra with more than 4 supercharges.

In [8] a list for the simple physical conformal superalgebras is given, however, we are making
another approach. As an application of the reconstruction theorem we will classify simple physical
conformal superalgebras by working on the space of the quasi-primary vectors and the (n) products
on it. We have found a simple physical conformal superalgebra N, and a one-parameter family
of physical conformal superalgebras N that is simple for all o € (C/{%1}) \ {[1]}, which imply
a class of simple physical conformal algebras that is not in the list of [8] exists; Ny and Nf's are
counter examples to Lemma 4.1(b) in [8]. The simple physical conformal superalgebras Ny and N
coincide with the centerless conformal superalgebras of the large N = 4 superconformal algebras
written down in [11]. The complete list of the simple physical conformal superalgebras is Vir, K1,
Ky, K3, Sa, Wa, Ny, N and CKg (section 8).
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paper. I am very grateful to Shun-Jen Cheng for valuable comments on changing the conformal
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2 Preliminaries

Let K be a subfield of C. A K-vector space V with a direct sum decomposition V = V5 @& V;
is called a Z/2Z-graded K-vector space. The homomorphisms of Z/2Z-graded vector spaces are
supposed to be compatible with the gradation. The Z/2Z-gradation is called parity. Vp is called
the subspace of even parity, and Vi is of odd parity.

The Z/2Z-graded objects are called super- objects. Commutativity for the product - of a
superalgebra is defined to be a - b = (—1)p(a)p(b)b - a, where a, b are supposed to be homogeneous
with respect to the parity p.

Now let us state the axioms for conformal superalgebras, based on the descriptions in [7] and
[8]. We denote AU) = A7/4!, where A is an operator.

Definition 2.1 Let R be a Z/2Z-graded K-vector space equipped with countably many products
(n):R®R— R, (neN),

and a linear map 0 : R — R. The triple (R,{(n)}, .N, L) satisfying the following conditions for
an even vector L € R are called a conformal superalgebra:



(C) Forall a,b,c € R,

(C0) there exists some N € N such that for all n € N satisfying n > N
a(n)b = 0,

(C1) for all n € N,
(6@)(n)b = —na(n,l)b,

(C2) for all n € N,

amyb = (_1)p(a)p(b) Z (—1)j+”+15‘(j)b(n+j)a,
7=0

(C3) for all m,n € N,

o0

m a
) (bnyc) = Y < j ) (a¢jb) (ntmg) €T (—=1)P@POp (agme).
j=0

V) L € R satisfies L)L = 0L, L(1yL = 2L, LisyL =0, Ly = O as operators on R, and L) is
(0) 1) (2) (0) 1)
diagonalizable.

Remark 2.2 The ) in (C3) is a finite sum because of (CO0).

L is called the conformal vector of R. A homomorphism of conformal superalgebras from R
to R’ is a K[0]-module homomorphism f : R — R’ that is compatible with the (n) products for
all n € N and maps L to the conformal vector of R’. An ideal of a conformal superalgebra is a
K [0]-submodule that is closed under the left multiplication of the (n) products for all n € N. A
conformal superalgebra R with no ideals other than {0} and R itself is called a simple conformal
superalgebra. The ideal {c € R|z(,)c = 0,2 € R,n € N} is called the center of R. If the center is
{0} then the conformal superalgebra is said to be centerless.

Remark 2.3 Right ideals are defined similarly, but they coincides with left ideals.

Note 2.4 The axiom (V) is not included in the definition of conformal superalgebras in [7] and
[8] nor of vertex Lie algebras in [10], while existence of the conformal vector is assumed for super-
conformal algebras. We set it into the axioms for conformal superalgebras.

Two conformal superalgebras (R, {(n)}, N, L) and (R', {(n)}, N, L) are said to be equivalent
to each other if there exists an isomorphism of K[d]-modules f : R — R’ that is compatible with
the (n) products.

Note 2.5 In [7] and [8] the class with respect to the equivalence above is considered. We will
consider the isomorphism classes, which is stronger than to the equivalence classes.

The eigenvalue of L(;) is denoted by A(z) for an eigenvector = and is called the conformal
weight of x. Define R* = {z € R|Lyz = ka}, Ag = {k € K|R* # {0}} and A, = AR\ {0}.

Remark 2.6 We have A(0z) = A(xz) + 1 and A(zpyy) = A(z) + A(y) —n — 1. That is,
(n) : RP @ RY — Rpta—n—1,



A conformal superalgebra R over C is called a superconformal algebra if there exists a finite-
dimensional subspace F such that R = C[0]F, all conformal weights are non-negative half-integers,
and moreover the even subspace Reyen = @n eN R"™ and the odd subspace Rodd = @n eN1 R™.

We call a superconformal algebra R a physical conformal superalgebra if F C R?* @ R ® R'® Rz
and F ﬁARQ = CL, following the terminology in [8].
Set R =P, .7 R and J = Span{(9a)(n) + na,-1)| @ € R, n € Z} where R, is a copy of

(nt+m—yj)
is called the Lie superalgebra associated to R. If the conformal superalgebra R is not simple then
the Lie superalgebra associated to R is not simple.

R for each n € Z. The Lie superalgebra R/J defined by [a(y,), bn)] = Z;io <T> (a(j)b)

3 O-decomposition

For a conformal superalgebra (R, {(n)}, ., L), we shall call the subspace {z € R|Lzz € R"} the

reduced subspace 9f R and denote it by R. We call the elements of the reduced subspace reduced
vectors. Denote R¥ = RN R* Ay = {k € K|R* # {0}} and Ay = Ag \ {0}. Obviously we have
R° = RO

Remark 3.1 If the Lie algebra (R, (0)) is perfect then we have La = 0 for all a € R because
L(g)a(o)b =0 for all a,b € RL.

We introduce the notion of reqular conformal superalgebras. The superconformal algebras are
regular.

Definition 3.2 A conformal superalgebra R is regular if R? is the center and if ApN(—1N) C {0}
and for each k € Ap there exists some M € N such that &k —m ¢ Ag for all m € N satisfying
m > M.

Proposition 3.3 Let (R,{(n)},.N>L) be a regular conformal superalgebra and R the reduced
subspace of (R,{(n)}, cN,L). Then there exists a unique decomposition

x = Za(j)xj (3.1)
=0

for any x € R for some m € N where 2° € R and 27 € Drcar RF for j > 0.
R

PrOOF  Since R is the center of R, Ly acts on R/R? for all k € N. So R/R? has the sly-module
structure defined by

E - L(Q),
H w— —2L), (3.2)

Consider P = @keA,R Span{z € R/R°| L)z = kx, x ¢ U, Lz € U for some submodule U}. Since
LyP C P, we have a basis {ex}rea of R/R° and a function v : A — A, satisfying L1yex = v(N)ex
for all A € A so that {e)}rca is a basis of P for some A’ C A. Consider the sla-module homomor-
phism f: @ycp Vo — R/R° defined by f(vy) = ex where V) is the Verma module of the highest
weight —2v(\) with respect to H and vy is the highest weight vector of V. Since R is regular f is
surjective and each Verma module V_,,(y) is irreducible, hence f is isomorphic. Thus we have a



unique decomposition z = Zj 0D I for any 2 € R/R® where 2/ € P for all j. Hence P = R/R°,
so we have the decomposition of the result. The uniqueness is obvious. 1

We shall call the decomposition of Proposition 3.3 the 9-decomposition of x and =7 the j-part
of x setting 27 = 0 for A(x) —j ¢ Ag.

Corollary 3.4 R = K[J|R.
Corollary 3.5 R is isomorphic to R/(OR) as K -vector spaces.

Corollary 3.6 A regular conformal superalgebra R over C is superconformal if and only if the
reduced subspace is finite-dimensional, all the conformal weights are half-integers, and moreover
the even subspace of the reduced subspace Reyen = @neN R™ and the odd subspace R,j5 =

GBnENJr% Rn

Corollary 3.7 Let R be the reduced subspace of a conformal superalgebra R and R(n) a copy of R
for eachn € Z. The Lie superalgebra associated to R is €D, .7, R(n) with the product [a(y,),bn)] =

o m
2 j=0 ( j ) (a(j)b)(n-‘,-m—j)'

Proposition 3.8 For a homomorphism of conformal superalgebras

f(RAMY,eN D) — (B A}, N L), (A) f(R) € R, (B) f(R) = R if and only if f is
surjective, and (C) f|p is injective if and only if f is injective.
Proor  (A) Since 0 = f(Lg)a) = L’(Q)f(a) for a € R, it is obvious f(R) C R’

(B) Assume that f(R) = R’. Consider the d-decomposition 2’ = > oW for ' € R'. Then
we have ' € R such that f(z') = 2’ for all i € N, so f2; 0Wg) = 2. Conversely assume that f
is surjective. Then for any a’ € R’ there exists 2 € R such that f(z) = a’, so a’ -2 oW f(x7) = 0.

Since the d-decomposition is unique, f(z°) = a’ for some 2° € R. Hence we have f(R) = R'.
(C) Assume that f| is injective. Take 2 € R such that f(z) = 0. Then }_, W f(x7) =0, so

we have f(x?) = 0 for all i € N. Hence 2 = 0 for all i € N, which implies z = 0. The converse is
obvious. 1

Definition 3.9 Define the (n) product on R for each n € N by

n): R X R — R
< >
(a, b) i a<n>b = (a(n)b)o,

where (a(,)b)° is the 0-part of a,)b.
The center of a regular conformal superalgebra R is {v € R| Vpyr =0 for all z € Ryne N}.

Remark 3.10 The (n) products vanish except for finite many (n)s if R is finite-dimensional.

Let us denote (x;y) = % where y is a non-negative integer and z € C, and define
(2A(a)—n—j—1:5) _ Hj—l (2A(a)—n—j—1+k)
(A FAC)—n—j-1);j) ~~ k=0 (A(@)+A(0)—n—7F-1)+k)
G(A(a), A(),n,j) = for Afa) + A(b) —n—j—1¢&—3N,
1, for A(a) + A(b) —n—1=10,5 =0,

0, otherwise.



Proposition 3.11 For a regular conformal superalgebra R
(a(myb)? = G(A(a), A(b), 1, J)agmjyb (3.3)
where a,b € R.

Proor If A(a) + A(b) —n — j — 1 = 0 the both sides are in R°, so the proposition is obvious.
Otherwise, apply L%Q) to the both sides of a(,)b = Zj 5‘(j)(a(n)b)j and take the O-parts. The left

hand side is i
(L{pamb)” = (=1)! ( T &+20- A(@))) (@i j)D)°. (3.4)
k=n

Taking the 0-part of L{Q) Ej 8(j)(a(n)b)j, we obtain

(Liyamd)® = JI k+2(A) +A0) —n—j—1) = 1)(amb)’. (3.5)
k=1
Hence we have
J : —n—k+2A(a) — 2 )
(@b +2(A(@) +AB) —n—j—1) ) D)
= A A(b),n,j)amﬂ-)b. (3.6)

Proposition 3.12 A K-linear map f : R — R’ satisfying f(L) = L' and fagmyb) = f( a)my f(b)
foralla,b € R, n € N uniquely extends to a homomorphism of conformal superalgebras f R— R,
where (R {(m)},eNy L) and (R, {(n)}, cN> L") are regular conformal superalgebras.

PROOF Defineamap f : R — R' by f(z) = > dY) f(x7) where z € R. Obviously f(dx) = df(x)
for all z € R. By (3.3) we have a(m)b = Y72 G(A(a), A(b),n, j)0Y agijb, by (C1) and (C2)
(W a) () (0Wb) = (—1)k Eé 0 W(‘)( Dag,_—_jb for all a,b € R, k,1 € N. Hence the (n)
products on R is written in terms of the (n) products and the operator 9, so f(:c(n)y) ( )(n)f(y)

for all z,y € R and n € N, that is, fis an homomorphism of conformal superalgebras.
Suppose given two extensions f and f’ of f. Then f/(0Wa) = 0% f(a) = f(0™a) holds for
all a € R. Hence the extension of f is unique by Corollary 3.4. ]

Corollary 3.13 Two conformal superalgebras (R,{(n)},.N,L) and (R',{(n)}, N, L") are iso-
morphic if and only if there exists a bijective K-linear map f : R — R’ satisfying f(L) = L' and
J(amyb) = f(a)my f(b) for all a,b € R and n € N.

We can reconstruct the ideals of a regular conformal superalgebra (R, {(n)}, N, L) from the
triple (Ra {<n>}n€N7 L)

Proposition 3.14 For an ideal I of a conformal superalgebra R, there exists an ideal I of the
reduced subspace R with respect to the (n) products. Conversely I = K[0]I is an ideal of R for an
ideal I of R.



Proor  We may assume that I is proper without loss of generality. Consider the projection
J: R — R/I. We have a projection f : R — (R/I) with f(a,b) = f(a)myf(b) for all a,b € R.
Set I = ker f. We have x(n>f CIforallz € Rand I =kerf= K[J]I. The converse is obvious. g

Corollary 3.15 A regular conformal superalgebra (R,{(n)}, N, L) is simple if and only if any
ideal T of the reduced subspace R is either R or {0}.

Consider the following properties of the triple (P, {(n)}, .N, L) for a Z/2Z-graded K-vector
space P equipped with countably many products {(n)} .y on V where L € P:

(P0) For a,b € P there exists some N € N such that for all n € N satisfying n > N,

a<n>b =0.

(P2) For a,be P andn € N,
Qb = —(—1)HP@OPO g

(P3) For a,b,c € P and n,m € N,

3 (m) G(AD), A(c),n, )@ m—jybins iy

Jj=0 J
a ~(n )
_(_1);0( )p(®) Z (]) G(A(G), A(c)vmaj)bhzfj)a(mﬂrj)c
7=0

m+n

= Z F(A(a)aA(b)vmvna]) (a(j)b) (m+n—35)C
=0

where

F(A(a), A(b),m, n,t)

_ Et: <t7_”k) (m’L”]j""‘_t) (—1)*FG(A(), A(b), t — k. k).

k=0

(PV) L is even and satisfies Lgya = 0, L(;yL = 2L, Lsya € PO for all @ € P. The operator Ly is
diagonalizable. P is central, ApN(—$N) C {0}, and for all k € Ap there exists some M € N
such that k —m ¢ Ap for all m € N satisfying m > M, where P* = {a € P| L(;ya = ka}
and Ap = {k € K| P* # {0}}.

Proposition 3.16 The triple (P, {(n)}, .N,L) satisfies (P0), (P2), (P3), (PV), where P is the
reduced subspace of a regular conformal superalgebra with the products {(n)}, .N-

PrROOF  Only (P3) is not obvious. We shall obtain (P3) by taking the 0-part of the both sides of
(C3). Apply Proposition 3.3 to the right hand side of (C3) and take the O-part. Then,

(i (7:) (@)5) (i) c> 0

k=0

0
oo

= | X (7:) (3(j)(a<k>b)")(m+n_k)c

J,k=0



(F) ("5 ) 17 C@@. A0 k) @ D menie

> (7’?) (m:—nk_ k) (1) G(A(a), Ab), k;t = k) (a()b) mtn-)€
= F(A(a), Ab),m, . ) (@) b) (mn—tyc, (3.7)

which is the right hand side of (P3). On the other hand the 0-part of the term a(,,)b¢,)c of the left
hand side of (C3) is,

(agmybmc)” = Em: <?‘> G(A(b), A(C), 1, 1) m—j binsj)Cs (3.8)
=0
and for the term b,)a(m,)c
(b(n)a(m)c)o = Y (?) G(A(a),A(c),m, )bn—jy @ (mq5)C- (3.9)
=0
Thus we obtained the left hand side of (P3). 1

Example 3.17 For m =0 and n =0, (P3) is

a(0>b<0>c — (—1)p(“)p(b)b<0>a(0>c = (a<0>b) (0)C- (310)

For m =1 and n =0,
A(b) —1
a<1>b<0>c + —A(b) _f_ )A(c) — 2a<0>b<1>c — (_1)P(a)P(b)b<0>a<1>C

Ab) -1

= (apb)pe+ W(amb) (0)C-

(3.11)

Form=1and n =1,

a1b10+ QA(b)_ aobgc
WOLET IAD) + Ale) — 3) @@
. 2A(a) —
—(=ppr® (b<1>a<1>c+ 2(A(a) (+ )A(c) =3) b<°>a<2>c>

A(b a
= (amde) H( B e

)_
(24(a) —3)(2A() —3) (amb) oy
2(A(a) + A(b) - 3)(2A(a) +2A(0) —5) PO

(3.12)

For m =2 and n =0,

(b) = 3)(A(b) — 1) e
(A(®) + Ale) — 3)(2A(b) + 2A(c) — 5) " 7




—(—l)p(“)p(b)b<0>a<2>c
2(A(b)

= (a<o>b)<2>c+W(a<l b) e
(A(b) —1)(2A(0) — 3)

4 (3.13)

(A(a) + A(b) - 3)(2A(a) + 2A(b) - 5) (ab) e

4 Reconstruction of the conformal superalgebras

We can reconstruct the entire regular conformal superalgebra (R, {(n)}neN,L) from the triple
(B A{{n)},eN> L)-

Theorem 4.1 For a triple (P,{(n)}, .N,L) satisfying (P0), (P2), (P3) and (PV), there exists a
regular conformal superalgebra (Rp,{(n)}, N, L) whose reduced subspace is P and the products
satisfies (a(n)b)o = a(n)b for all a,b € P, n € N. Furthermore the conformal superalgebra is unique
up to isomorphisms.

PrROOF  Consider the left K[0]-module Rp = (K[@] ® (Brear (o Pk)) @ PP where 9 is an

indeterminate and PV is regarded as a left K[9]-module by 9P° = 0. We omit the ® for brevity.
Define A(#’a) = A(a) + j for a € P. Each z € Rp is uniquely written as z = 3, V) g7
for some 2° € P and 27 € ®k2€(AP\{O} P* for all j > 0. Define (n) products on Rp by amyb =
3520 G(A(a), A®), 1, 7)ADag, s jyband (0% a) ) (0Db) = (—1)* Xy mrme=m @ am—r—jb
where a,b € P. Tt is easy to check that the (n) products satisfy (C0) and (C1), and by direct
calculation 0 is a derivation with respect to the (n) products. Now, for a,b € P,

o0

_(_1)p(a)p(b)+n Z (—1)j8(j)(b(n+j)a)
§=0

= (DO 3T (170D GAB), Ala)n + 5. k)Y (g 490)

7,k=0

(—1)s~kFp(@p(b)tntl <Z) G(A(D), A(a),n + s — k, k)0 (b(45y0)

- - —-s 2A0)—n—-—s—1 (s)
- a‘(">b + ZQFI <2(A(a) +A(b)—n—s5—1) 1> 0 (a(n+s>b)v (4.1)
a B\ oo (B 3) a B 1\ _ L(f(—a-p)
where oI ( - ,a:) = ijo &) zY), We have oI} - 1) = )T —5) for v ¢

—Nanda € —N. If s > L and A(a)+A(b) —n—s—1= A(a(,45b) € —2N then 9 (a(,44b) = 0,
so we have

8

_ p(a)p(b +n Z b(nﬂ)a) = amb
=0
> Ir'2(A(a) + A(b) —n—s—1))I'(2A(a) —n—1
Z@(((H() N2A(@) —n - 1)

) (g
(A(a) + A(b) —n—s—1)+s)T'(2A(a) —n — s — 1)(9 ((n+s)b)

= Z G(A(a)v A(b)’ n, S)a(g) (a(n+s>b)

= a(n)b. (42)



Then, (C2) is checked for all a = 92 and b = 'y by induction on k and [ where x,y € P. Indeed,
assume (0Fx)(, (d'y) = (—1)P@P®) Zj(—1)1+"+j8(j)(81 )(nﬂ)(ak ) for all n. Applying 9 to the

both sides we have (9512) ) (0'y)+ () ) (0T 1y) = (—1)PEww) 3 ELTT gitt(glyy o (9Fa).
By (C1) we have
(0% 2) () (0" 1y)
— n(@kx)(n,l)(aly) (x)p(y)z n+yja(1) 8y)( o) (8 )
= (_1)p(x)p(y)2(_ 1+n+13(1)(8l+ y)(nﬂ,)(a z), (4.3)

which implies (C2) for a = 9*x and b = 9"*1y. On the other hand
(0% 1a) () (0') + (8%2) () (0" )
—1POR) Y T ()G (0 y) (45 (0% 2) + (8') () (9" 10)), (4.4)

thus we have (C2) for a = 0**'z and b = 9'y, which completes the induction.
For all a € P, we have

L) (8’“a) = 8k+1a, (4.5)
(A(a) + k)oFa,
E(k —1+2A(a))0" a,

SIS
G
= =
Q Q
El
L 9
~— ~—
[

which imply (CV).
In order to show (C3), let

J(a,b,c,m,n, k)
> m
= a(m)b(n)akc - (—l)p(“)p(b)b(n)a(m)akc - Z ( ] > (a(j)b)(m+n_j)8kc, (48)
7=0

where a,b,c € P. By (C1) and the Leibniz rule we have

dJ(a,b,c,m,n, k)
=-mJ(a,b,ec,m —1,n,k) —nJ(a,b,c,m,n—1,k)+ J(a,b,c,m,n, k+ 1), (4.9)

where we understand J(a,b,c¢,—1,n,k) = 0 and J(a,b,c,m,—1,k) = 0 for all m,n,k € N. We
have A(b(,y0%c) — A(d%¢) = A(b) —n — 1, so J(L,b,c,1,n,k) = 0 for all n,k € N. By (P3) and
the definition of L, J(L,b,c,2,n,0) = 0. Substituting them into (4.9) for m = 2 we obtain
J(L,b,¢,2,n,k) =0 for all n,k € N by induction on k. On the other hand taking the 0-part of
(4.9) we obtain 0 = —mJ(a,b,c,m—1,n,k)° —nJ(a,b,c,m,n—1,k)° + J(a,b,c,m,n,k+1)°. By
induction on k we have J(a,b,c,m,n,k)? = 0 for any m,n,k € N.

Consider
— (m
B(a,b,¢,m,n) = agm)bmyc — (—1)P(a)p(b)b(n)a(m)0 - Z < j ) (ag)b) (mtn—g) © (4.10)
§=0

where a,b,c € Rp. By (Cl) and (C2), it suffices to check B(a,b,c,m,n) = 0 for m,n € N
where a,b € P and ¢ € Rp. We have B(a,b,c,m,n)? = 0 for a,b € P and ¢ € Rp be-
cause J(a,b,c,m,n,k)° = 0 for all k& € N. If A(B(a,b,c,m,n)) = 0 then B(a,b,c,m,n) =
B(a,b,c,m,n)? =0, so we may assume A(B(a,b,c,m,n)) # 0. By (4.7) we have

((L(2))*B(a,b,c,m, n))o = (2(A(a) + A(b) + A(c) = m —n — 2 —k): k) (B(a,b,c,m,n))*. (4.11)
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The coefficients on the right hand side never vanish because A(B(a, b, ¢,m,n)*) ¢ —4N, hence B*
is proportional to ((L(2))*B)°. Since J(L,b,c,2,n,k) =0,
LyB(a,b,c,m,n)
= —(n+2(1-A(a))B(a,b,c,m+1,n)
—(m+2(1 = A(b)))B(a,b,c,m,n + 1) + B(a, b, Liz)c,m,n), (4.12)

(L(g))kB(a, b,c,m,n) is written by a linear combination of some Bs. Thus we have B¥ = 0 for all
k € N, which implies (C3).

The reduced subspace of Rp coincides with P itself. The uniqueness follows from Corollary
3.13. .

The following lemma plays an important role in later sections.

Lemma 4.2
by =D b )@ ¢ + 55 (a()b) (prg—i)C (4.13)
J

for some rj,s; € K where a,b,c € R, p,q e N.

PrROOF  Denote (P3),, , for (P3) specifying m,n. For p = 0, (4.13) follows from (P3)¢ 4. Suppose
(4.13) holds for all p < k and ¢ € N. (P3)j41,4 implies (4.13) for p =k + 1. I

Proposition 4.3 Consider a regular conformal superalgebra (R,{(n)}, .N,L). Let S be a subset
of the reduced subspace R and Ig the ideal generated by S. Then for a basis B with an order < on
B

Is N R =Span {v' 0%,y " yu | V" €B, ueS, ny €N, v <ot} (4.14)
PrROOF  Set
F,Is = Span {vl(m>v2(n2>v3(n3>~ 0" U ‘vk,u €S, npeN, r< p} . (4.15)

By Lemma 4.2, v!(,,,y0% (5,,y 0% () - 0 ()0 i written by a linear combination of these elements

r

with v* and v**! swapped (but n;s may differ) as an element of (F;Is)/(F;_11s). Hence we have
F,Is = Span {v',,,0% ) 'v"<nr>u‘ V" E€B, ueS, ng €N, r<p, vt <ov} (4.16)
Since Is N R = Do F,Is, thus we have the result. ]

Let P be the category of triples (P,{(n)}, L) satisfying (P0), (P2), (P3), (PV) where P is a
vector space, {(n)} is a set of products on P, and L is a vector in P, with the morphisms being
the linear maps that commute with all the (n) products and preserve L. We can summarize this

section: the category of regular conformal superalgebras is equivalent to the category P by the
functor F'(R) = R and F(f) = fl|z.

5 Physical conformal superalgebra
In this section we will study physical conformal superalgebras. One can reduce the axioms for
conformal superalgebras into some simple relations. We shall assume K = C hereafter.

A regular conformal superalgebra R is physical if and only if the reduced subspace R satisfies
the following.
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Eigenvalues of L(;) on R are 2, %, 1 and %

- R?=CL.

R3/? and RY? are odd subspaces.
— R! and R? are even subspaces.

All the (n) products vanish except for the (0) product and the (1) product for physical conformal
superalgebras.

Let R be a physical conformal superalgebra and R be the reduced subspace. Consider the
products on R defined by,

a(yb
aob—{ m; for Aa) + A(b) —2 #0,

0, otherwise,
a*b=aqpbd.
Obviously we have
(D0) Lea=a, L*a=0,
(D1) a°b = (_1)p(a)p(b)boa7
(D2) ash=—(—1)PPtpheq,

Rewriting the relations in Example 3.17 in terms of the product ° and the product ® we obtain

(D3) (A(d) —1acboec = (A(b) —1)(a°b)oe,

(D4) (A(D) + Ale) — 2)acboc — (=1)PWPO (A(a) + A(c) — 2)beacc

= (A(b) — A(a)) (a°b) °c,

(D5) (A(a) + A(b) + A(c) —3)acbec+ (A(b) —1)a*beoc
—(=1)P@P®) (A(a) + A(c) — 2)beacc
= (A(a) + A(D) + A(c) — 3) (a®b) cc+ (A(b) — 1) (a°b) ¢,

(D6) asbec— (—1)PPBpegec = (avb) oc.

Let us denote V = R3/2, 4 = R', F = RY2 for a physical conformal superalgebra R, following
the notations in [8]. That is, R is decomposed into R = CL&V & A@ F. Define the inner product
(-,-) on V by a(pb = (a,b)L. Consider the following properties:

HO) Lo =id, L* =0 as operators on R,

H2 (R, °) is an associative commutative superalgebra,

H3

)
)
H1) (R, *) is a Lie superalgebra,
)
) Ae gives derivations with respect to °,

(
(
(
(
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(H4) wevef=(ucv)ef+ (uev)ef, foru,v €V and f€F,
(H5) (u° +u*)?v = (u,u)v, for u,v € V,
(H6) (u° +wu*)%a = (u,u)a, forue V and a € A.

Proposition 5.1 For the reduced subspace R = CL®V & A® F of a physical conformal superal-
gebra, the products © and ® have the properties (HO0-6).

Proor (D2) and (D6) yield (H1). The product ° is commutative by (D1). We have (A(b) —
Dacboc = (—1)P@p+p®r(©)(A(h) — 1)ceab by (D1) and (D3). If A(a) = A(b) = Alc) = 1
then the both sides are 0 because A(a) + A(b) + A(c) —4 = —1. So we may assume A(b) #
without loss of generality, hence aoboc = (—1)P(@P()+P®P()cogop, thus aoboc = (a°b)e
have (H2). For the others, let

C,

Qr,y,2) = (Al@)+AY) +A() —3)zeysz+ (Aly) - Dreyez
—(~)PPO(A) + Alz) = 2)y ez z — (Aly) — )(x°y) sz
—(A@) +AYy) + A(z) = 3)(z*y)° (5.1)

and

P(z,y,2) = (A(z)—Dzeysz+ (A(y) —Dasyoz— (~H)PIPO(A(y) —1)yoxez
—(=1)P@PW(A(z) — D)yezoz — (A(z) + Aly) — 2)(z*y)° 2. (5.2)

It is easy to check (A(z) — 1)Q(z,y, 2) + (Aly) — 1) (—1P@POQ(y, 7, 2) = (A(x) + Aly) + A(z) -
3)P(z,y, z). Since if A(x)+A(y)+A(z) —3 = 0 then the both sides are 0, so we have P(z,y,z) =0
for all z,y, 2 € R because Q(z,y,z) = 0 for all z,y,z € R by (D5). P(z,y,2) = 0 for A(z) =
(A(z),Ay), A(2) = (3,32,32),(3,3,2) and (2, 3,1) imply (H3), (H4), (H5) and (H6) respectively.
|

(H4), (H5) and (H6) imply the following.

Proposition 5.2 The reduced subspace R of a physical conformal superalgebra is a left CI(V. (-, -))-
module by the action vx =vex +vex, where v €V and x € R.

Thus we have obtained the action of the Clifford algebra CI1(V,(,-)) on the associated Lie

superalgebra, where V' is the space of the reduced vectors with the conformal weight % The action
is discussed in [5].

Corollary 5.3 The Clifford algebra C1(V, (-, -)) acts on the associated Lie superalgebra of a physical
conformal superalgebra, where V is the space of reduced vectors of the conformal wezght 2 with the
inner product defined by (u,v)L = u)v.

Furthermore we have the converse of Proposition 5.1.

Proposition 5.4 Suppose given a finite-dimensional Z/2Z-graded vector space R with the decom-
position R = CL®V & A ® F with respect to a weight A, where A(V) = 3/2, A(A) = 1, and
A(F) = 1/2 with the parity p(CL) = p(A) =0 and p(V) = p(F) = 1, and two products ° and *
with the weight A(z*y) = A(z) + A(y) — 1, A(zoy) = A(z) + A(y) — 2. If (R, *, °) have the
properties (H0-6) then the triple (R,{(n)}, L) is a physical conformal superalgebra where we set
ayb=a*b, a;yb= (Aa) + A(b) —2)a°b and ag,yb =0 forn > 2.
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PrOOF  (P0), (P2) and (PV) are obvious. It is easy to check that (P3)%’, is equivalent to

m,n

(P3)%,, hence (D0-6) are sufficient to (P3). Only (D5) is not obvious since (D0) is (HO) itself,

(D1) and (D6) follow from (H1), and (D2), (D3) and (D4) follow from (H2). Let P and @ be as
n (5.1) and (5.2). Then, (H1) and (H2) imply

_(_1)p(y)p(z)p(x7 z,y) + (=1)P@PWHP@PE) p(y 5 g) = (_1)p(y)p(Z)Q(x7 2,9), (5.3)

hence if P(z,y,z) = 0 for all 2,9,z € R then we have Q(m,yZ z) = 0 for all z,y,z € R, which
implies (D5). Let us show P(z,y,z) = 0 for all z,y,z € R. Since P satisfies P(z,y,z) =

—(=1)P@PW Py, z, 2) and (—1)P@PW (A(2) — 1)P(z,y, 2) — (—1)P@PWHP0IPGE)(A(y) — 1)P(z, 2,7)

= —(=1)P@PE(A(x) — 1)P(y, 2,7), we have (1) P(z,y,2) = 0 & P(y,z,2) = 0 and (2) if
A(x) #1, P(z,y,2) =0A P(z,z,y) =0 = P(y,z,2) = 0. So it Sufﬁces to consider the following
cases: (A(2), A(y), AE) = (1,39, (3,1.9), 3,11, (3.1, (3,3.9). (13) gives (3,1,) and
(5,1,1). (H5), (H6) ar}d (H4) imply (3,3,32), (2,2,1) and (3,2, 2) respectively. Hence (D5) is
shown for all z,y, z € R. ]

=

6 Simple physical conformal superalgebra

In this section we will describe some properties of simple physical conformal superalgebra. A
criterion for simplicity is given. Let R be a simple physical conformal superalgebra, R the reduced
subspace, V = R%, A=R!and F = R3.

The following result is stated in [7] and [8]:

Proposition 6.1 Let R be the reduced subspace of a simple physical conformal superalgebra. Then
the inner product (-,-) on V is nondegenerate.

PrOOF Set VO ={v e V| forallu eV (u,v) =0} and consider the ideal I,0 generated by V°.
Fix a basis B of R and take an order on B such that a < b if A(a) < A(b). Set

ij = Span {xl(i1>x2<i2>' . 'xk@k)vo |xr €B, vpeV 2t <2tk §p}. Obviously L ¢ Fy.J.
Take any u,v € V, vo € V°, 2" € B. Since v*vy = 0, we have x1<il>~~x”_1<ip_1>v°vo =0in
F,J/F,_1J. By (D5) we have

oy 2t yveuevy = @y aP TG (—gusvov)
_ 1
= x1<i1> T 2@!) 2>(Zv wewg)
= 0, (6.1)

in F,J/F,_1J. By (D3) we have ' ;- aP~%; ,yveuovy =0in F,J/Fy_1J. A(wmy) > Ay)
occurs only when x € V, thus we have L ¢ >~ F,J. By Proposition 4.3 Do F,J = Iyo N R, hence

Iyyo is proper unless VO = {0}. 1
Now, let F? = {f € F|v! 00?0030y f = 0 for all v* € V}.

Proposition 6.2 A physical conformal superalgebra R with V' # {0} is simple if and only if
F3 =0 and the inner product is nondegenerate.

PROOF  Suppose that the inner product on V' # {0} is nondegenerate and R is not s1mple Take
Ia proper ideal of the reduced subspace R. Iis decomposed into I=(In CL)® InV)ye(n
A) @ (I N F) by the action of L(;y. I N CL = {0} because I # R. In particular I NV = {0} since

the inner product on V is nondegenerate. I is a CI(V,(-,-))-module because I is an ideal. The
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Clifford action of a unit vector in V yields an isomorphism of vector spaces between I N (CL @ A)
and IN (V& F),soif INF = {0} then I = {0}. Since L ¢ I we have I N F C F? while I # {0},
thus 3 # {0}.

Conversely assume F® # {0}. Let I be the ideal generated by F. Apply Proposition 4.3 for
S = F3 taking an order such that z < y if A(z) < A(y). Take f € F3, v € V,(i = 1,2,3), and
a € A. Then,

vieverdegef = gevlev?erdef_(gev')evierdef
—vle(aev?)evdef—vlevZe(aevd)ef
= 0, (6.2)
so Ae F3 C F3. Applying (D5) for any a,b € V and ¢ € F?, wehavea°b®c = (a*b)°c+(a°b)*c €
F3 4+ AeF3 = F3 hence F® = I N F. Thus we have L ¢ I, so [ is proper. I

Proposition 6.3 Let R be a simple physical conformal superalgebra. Then the map
L CI(V7 ('a )) - Ra
V1V * + - Up > ('UIO +’U1.)(’UQO +U2.)"'('Uro +UT.)L,

is surjective unless VoV oV =0 with V # {0}.

ProoOF  Suppose V = {0} and the map ¢ is neither zero nor surjective. Then the subspace A® F'
is closed under the (0) product and the (1) product, so A+ F generates a proper ideal. Otherwise
suppose VoV oV £ {0}. Take I the ideal of the reduced subspace R generated by S =V eV eoV.
We have A*S C S by (H3). VeVeS C A*S+ S C S because of (H4). Apply Proposition 4.3
taking an order so that x <y if A(z) > A(y). Then we have I N F' = S, so § = F because R
is simple and S # {0}. Take a unit vector e of V. R is a CI(V,(:,-))-module and the Clifford

action of e yields an isomorphism between CL ® A and V @ F. Since VO F =V & S C Imuy, so
CL @ A C Imu, thus the map ¢ is surjective. ]

We shall denote the conformal sub-superalgebra generated by Im: by R,.

Invariants

7
Let R be a physical conformal superalgebra, R the reduced subspace, V = R%, A = R' and
F = R=. Consider the trilinear map defined by

n:VxVxV-V

(u, v, w) — u*vow,

and the bilinear form (-, -)yay on VAV defined by (u Av,w A 2)yav L = u*n(v,w, z). The form

is well-defined on V' AV because u®vewez = —u®ve®z°w and
uevewez = (u*v)*wez—veuU Wz
= —veucweoz. (7.1)

The form (-, )y av is symmetric because
utvewoz = —ucwevez—usvowez—uswovez+2u(vew)ez
= —weu*zov— (u,v)(w,2)L — (u,w)(v,z)L + 2(u, z)(v,w)L
—2(w,v)(u, 2)L — (u,v)(w, 2) L — (u,w) (v, 2) L + 2(u, 2)(v,w)L
= wez*uou. (7.2)

The form (-, )y Ay is invariant under isomorphisms of physical conformal superalgebras.
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Proposition 7.1 Let f : R — R’ be an isomorphism of physical conformal superalgebras.  f
induces an isometric transformation fAf : (VAV, (-, )vav) — (V/AV', (-, )yiavs) where V! = R'3 .

PrROOF  For an isomorphism f we have

(uAv,wA2)f(L) =

Il
- = =
S
[ ]
4
[ ]
g
o
™
S~—

Furthermore we can reconstruct the products © and * on ¢«(C1(V, (-,-))) from the form (-, )y av
for simple physical conformal superalgebras.

Proposition 7.2 Let R be a physical conformal superalgebra and R the reduced subspace. Consider
the map v of Proposition 6.3 and the map 1. Then x(nyy is uniquely determined by the pair (¢,1)
for allm € N where z,y € R, .

PrROOF  The actions V © and V ¢ are uniquely determined by ¢ and 7, since

uov = %L(U’U —vu), (7.4)

uvovew = (uvw) — t(n(u,v,w)) — (v,w)ye(u), (7.5)

uevowez = (uwwwz)— tlun(v,w,z)) — (w,z)ye(uv), (7.6)

uev = %L(U’U—I—UU), (7.7)

uevew = u(n(u,v,w)), (7.8)
ucvewezoy = (uov)ewozoy+ (usv)oworoy

= —n(w,u,v)ezey —wen(z,u,v)oy —wezen(y, u,v)
= —un(w,u,v)zy) — (wn(z,u,v)y) — L(wzn(y,u,v))
+e(m(n(w,u,v),z,y)) + t(n(w,n(z, u,v),y)) + (n(w, z,n(y, u,v)))

(@, y)vie(n(w,u,v)) + (n(z, u,v), y)ve(w) + (@,1(y, u, v))ve(w), (7.9)
uevewezey = wluwwwzy) — tluvn(w,z,y)) — (z,y)vi(uvw)

+e(n(w,u, v)zy) + (wn(z,u, v)y) + v(wan(y, u,v))

—t(n(n(w,u,v),z,y)) — c(n(w,n(z,u,v),y)) = n(w,z,n(y, u,v)))

(@, y)ve(n(w,u,v)) = (@, u,v),y)vi(w) = (@,1(y, v, v))ve(w). (7.10)

By Lemma 4.2 we have (bigyc)pya = 32, 7ibg—jyCip+jy@ + $jC(prq—jyb(jya for some rj,s; € K,

hence all (v ® 2)©® are written in some v©®s and £@s where v € V, x € Imv and © denotes any of
°cand . SincelIm =CLOV G (VeV)+ (VeVoVeoV))d (VeVeV), we have the results. g

Denote CI"(V,(-,-)) = Span{vive---vglv; € V, k < n}. (7.4), (7.5) and (7.6) imply the
following.

Proposition 7.3 Let R be a simple physical conformal superalgebra and R the reduced subspace.

For the map ¢ of Proposition 6.5, we have R, = (C1Y(V, (-, ). Furthermore if VeV eV = {0}
then R, = 1(C12(V, (-,-))).
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8 Classification of simple physical conformal superalgebras

We start classification of simple physical conformal superalgebras. We will follow the notations
Vir, K1, Ka, K3, Sa, Wa, and CKg given in [3] and [6]. By the results of the preceding sections all
that we have to do is listing up the left C1(V (-, -))-submodules of CI(V, (-,-)) and the symmetric
forms on V' AV appropriate to reconstruct simple physical conformal superalgebras.

Fix a vector space V' with the nondegenerate inner product (-,-) and consider an orthonormal
basis {e1,e2,---,en} of V. Set DY = Dy, = \[(ezk 1 +ieax), Di = Dy, = Dy, = \%(egk_l —iea),
and DY = DY*Dy? - -- DY where n = |N/2|, w € (Z/2Z)™ and w; denotes the ith binary digit
of w. We have the following theorem for the decomposition of left C1(V)-module CI(V').(]4])

Theorem 8.1 The left C1(V')-module C1(V') is completely reducible. The irreducible decomposition
is given as follows. If N = 2n then

avy= @ Mw), (8.1)
we(Z/2Z)n

where M (w) = CL(V)D¥. If N =2n+1 then

Cl(V) = @ (M+(w) O M~ (w)), (8.2)
we (422

where M*(w) = CI(V)D™(1 £ ey).

Proposition 8.2 Let R be a simple physical conformal superalgebra with dimV < 3. Then R is
isomorphic to one of Vir, K1, K3, K3.

ProorF If dimV = 0 then the map ¢ is surjective, so R is isomorphic to Vir. Otherwise by

Proposition 6.2 dim F' < dlrgv
V # {0} unless dimV = 3 with VoVeV = {0}. If dimV =1 then we have V AV = {0}, so the
conformal superalgebra R = R, is unique, which is K;. If dimV = 2 then dimV AV = 1. Since
Dy*Dy*Dy° Dy = L by (D5), so the only possible form (-,-)y v is (D A Dy, Dy A Dy)yay = 1.
Hence kert = {0} because otherwise the form (-,-)yay = 0, thus the conformal superalgebra
R = R, with dimV = 2 is unique, which is K». If dimV = 3 then D;*D;*D;°D; = L,
Di*ez*Dice3 =0, Dy*ez®*Dioe3 =0and Dy®*ez® Di°ez = —L by (D5). So the possible form
(,)vav is uniquely determined, which is nondegenerate. Hence ker: = {0} because otherwise the
form (-, -)y Ay is degenerate. Thus the conformal superalgebra R, with dim V' = 3 is unique, which
is K5. VoVoV #£{0} for K3,s0 R= Kj. ]

) for a simple physical conformal superalgebra R, so R = R, for

Consider the polynomial ring X" = Clz1, 22, -, 2,] of Grassmann indeterminates. X" is
decomposed into X™ = P ¢z X by the multidegree of polynomials. Define the action of Cl(V)
on X" by Dif = 2x;f and D;f = /20;f for f € X" where 0; denotes %. If N = 2n then
the action p : CI(V) — End(X ") is an isomorphism, so for a left ideal of ‘CI(V) we have an
isomorphism of vector spaces p; : CI(V)/I = Hom(Nyew ker p(D¥), X™), where W C (Z/2Z)"
and I =P, ey M(w). Hence CI(V)/I is decomposed into

awv)/I= @ (©uv)/y, (8.3)

te{—1,0,1}n

)(Nwew ker p(D¥)NX7) C X7, for all s € Z"}. Denote

| pr(u
I Cl(V)/I);. If N =2n+ 1 then we have a decomposition as left

the projections m; : CI(V)/I —

where (CI(V)/I); = {UE (c v ){ )1
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1(V)-modules CI(V) = Cl(V/Cen)(1+en)DCL(V/Cen)(1—en). So we have an isomorphism py :
1(V)/I = Hom(Nyepw+ ker p(D¥), X™) @ Hom(Ny,ew - ker p(DY), X™), where W+ C (Z/2Z)"
and I = (P, e+ MT(w) & (P, e M~ (w)). Hence the decomposition is

awy/r= @ ©@w)/nife g (@W)/I);. (8.4)
te{—1,0,1}™ te{—1,0,1}™

Denote the projections 7} * : CI(V )/I — (CI(V)/D)F.
Consider «; ; € C defined by a; ;L = D;*D;*D; oDj fori,j € {1,2,---,n} and B; jr, € C

by Bi kil = Di*Dj*DyoD; for i, j,k,1 € {1,1,2,2,- nn} We have
Dj*D;*D;°D; (1—1—04”)LD°D *D;° D, :(1—04”)Land04”704]z

Proposition 8.3 Let R be a simple physical conformal superalgebra with dimV > 4. Then dim V'
is one of 4, 6, 8. Furthermore if VeV oV = {0} then dimV = 4.

PROOF  Suppose given a simple physical conformal superalgebra R with dimV = 2n + 1 where
n > 2. For an arbitrary u € Z/2Z we have

0 = —(eznt1°Di)*(Di° DY) — (Di°Dj)* (eznt1°Di)
= (Di®*eznt1°D;)° DY + Do (DY * eany1°Dy)
+(eany1*D;e D;l) °D; + €an+1° (Dl D, OD;) (8.5)

Apply 7F T 4 7K~ to the both sides where all digits of ¢ are 0 except for t; = (—1)*. Then
we have ((—1)%q;; + 2)eant1 °o DY = 0. If e2p41° D} = 0 then 0 = e2,41 * €2,41° D = DY, so we
have a; ; = —(—1)*2 for an arbitrary u € Z/2Z where i,j =1,2,---,n. Hence R does not exist.

Suppose given a simple physical conformal superalgebra with dim V' = 2n and n > 4. Consider
S C (Z/2Z)" such that kert = I = @, g M(s). By Proposition 7.3 CI(V)/I = CIY(V)/I, so we
have 7/ = 0if #{k € N| tx # 0} > 4. Hence +(D¥) = 7{ («(D%)) = 0 for an arbitrary w € (Z/2Z)"
where t; = (—1)"¢, so S = (Z/2Z)", that is, the map ¢ is the 0 map, thus we have the result.

If VoVeV = {0} then we have dim V = 4 in the same way by C1(V)/I = CI*(V)/I. I

Proposition 8.4 A simple physical conformal superalgebra R with dimV = 6 is isomorphic to
CKg

PROOF  Suppose given a simple physical conformal superalgebra R with dimV = 6. The map ¢
is surjective. For all 4, j, k € N satisfying {i, 7, k} = {1, 2,3} we have

0 = (Di ) (Dk"D) + (Di°D;)* (Di° D)
(D; Dj)° Dy + D;° (Dy* D;° Dy)
+(Di Di Dy)°Dj+ D;°(Dj*D;° D)
— (ai,j+ai,k)Dj°Dk+"" (8.6)

Applying 7 ¢ to the both sides where all digits of ¢ is 0 except for the ith and the jth, t; = t; = —1,
we have (v ; + a; ;) D; ° Dy, = 0. Hence we have (; j + a; x)(ayj, + 1) = 0 applying D, ® Dy ® to
the both sides. Similarly for 0 = (D;° D;)*(Dy° D;) + (Dy° D;)*(D;° D;) and the term Dj° Dy,
we have (a; ; — a4 1) (ajr—1) =0. It is easﬂy checked that the solutions of the above equations are
o = (a1,27a2,37a3,1) =(0,0,0), a = (-1,-1,-1), a = (-1, 1,1), @ = (1,-1,1), @ = (1,1, -1).
If a = (—=1,—1,—1) then we have D;°D; = 0 and D;°D; = 0 for all 4,5 = 1,2, 3, which implies
D" OD;"Z °oDY? = 0 for all w = (w1, ws,w3) € (Z/2Z)* where {i,j,k} = {1,2,3}, so R = 0.
In the same way R = 0 for each « = (—1,1,1), « = (1,-1,1), « = (1,1,-1). If &« = (0,0,0)
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then the set {D;"' ° D?|i # j, w € (Z/2Z)} is linearly independent. Considering the relations
0 = (DY o DY) e (D} o DI'*) + (D 0 Di* )« (D' 0 DY*) for all w,w' € (Z/2Z)? and i, j,k,1 €

{1,2,3} in the same way, we have f; ;1 = 0 if {1, ],k I} # {s,5,t,t} for any s,t € {1,2,3}.
Consider the map ¢ for this case. By Proposition 7.3 we may assume D DoD3 € kers. If we have
DYt e Dy? o D% # 0 for some w € {(1,0,0),(0,1,0),(0,0,1)} then R is not simple by Proposition
6.2. Hence in’“ °eDy?eDy? =0 for all w € {(1,1,1),(1,0,0),(0,1,0),(0,0,1)}. Thus the simple

physical conformal superalgebra structure on this space is uniquely determined, which is CKg.

Proposition 8.5 Simple physical conformal superalgebras with dimV = 8 do not exist.

PROOF  Suppose given a simple physical conformal superalgebra R with dim V' = 8. The map
¢ is surjective. Then we have (a;; + o x)(ik +1) = 0 and (o ; — ajk)(0i, —1) = 0 for all
distinct 4, j, k. It is easily checked that the set of solutions o = (1,2, 1,3, Q1.4, 2,3, Q2 4, (v3.4) 1S
{(0,0,0,0,0,0), (1,1,1,—1,~1,-1),(1,1,~1,-1,1,1), (1, —1,1,1, 1, 1), (1, 1 “1,1,1,1),

(-1,1,-1,1,-1,1),(~1,1,1,1,1, ~1), (=1, ~1,1,~1,1,1), (-1, —1,—1, =1, —1, —1)}. For the non-
zero solutions we have Di"* D Dy* D"t = 0 for all w € (Z/2Z)* where {i,j, k,1} = {1,2,3,4},
hence R = 0. If v = 0 then the set {D;" ° Dj?|i # j, w € (Z/2Z)?} is linearly independent, so
Bijki = 0if {4, 4, k, 1} # {s,5,t,t} for any s,t € {1,2, 3,4}, which implies «(D;"* D} Di* D}**) = 0
if and only if D;"* ® D* © D} © D)** = 0. Suppose ¢«(D;" Dy*D,* D)"*) = 0 for some w € (Z/27)*
where {i,j,k,1} = {1,2,3,4}. Then 0 = DY*1o Dl ¢ DV 0 D o DI — D20 D o D be-
cause of (H4), so we have L(D;“IHD;“-”QD}C%D;““) = 0. Since kert # {0} by Proposition 7.3, thus
R=0. 1

Proposition 8.6 For a simple physical conformal superalgebra with dimV = 4 the form (-,-)vav
is as given on table 1 for some a € C.

Table 1: The form (-,-)yay for dimV = 4.

()% | DiAND1 DyADy DiyADs DiADy DiADy  DiADs
Dy A Dy 1 a 0 0 0 0
Do A Dy a 1 0 0 0 0
Dy A Dy 0 0 0 0 0 —(1+a)
D1 A Dy 0 0 0 0 —(1—a) 0
D1 A Dy 0 0 0 —(1—-a) 0 0
Dy A Dy 0 0 (14 ) 0 0 0

PrOOF  The table 1 is obtained by using the following formulae:

DieDfeDy = 0, (8.7)
DSeDgeDb = 0, (8.8)
D¢eDitlopDb = _—D%epbopytt

= DieDy*Di*' + DyeDje D"
+Dbo Dy e DTt — 2(D$ e D)o DI
= Db+ (-1)""aDb, (8.9)
DgeD5TtoDt = Db 4 (—1)TPaDb, (8.10)
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where a,b € Z/27Z 1

Remark 8.7 The form (-, )y Ay of Proposition 8.6 is given by
(ei Nej,ex ANe)vav = —ae€ijr + 050y — 0ikdj, (8.11)
where €;;1; is antisymmetric with €934 = 1.

On the other hand we have the following proposition.

Proposition 8.8 A physical conformal superalgebra structure exists on Cl(V) where dimV = 4
with the form (-, )y av described in Table 1 for each o € C.

PROOF By Proposition 7.2 the form (-, )y Ay determines the products © and ¢ on Cl(V) for an
arbitrary « € C. It is easily checked that they have all properties (H0-6). By Proposition 5.4 a
conformal superalgebra structure is determined on CI1(V') for each « € C. 1

We shall denote thus obtained family of physical conformal superalgebras by {N{'} .q. N{' is
equivalent to N changing the conformal vector L to L, = L — S0e1 ®ea°e3° ey except for o? =1.
For a? = 1 we shall denote Ny = (NY, (n), L1), which is isomorphic to (NY, (n), L_1).

Note 8.9 The conformal superalgebra K4 is written down in [8]. The physical conformal super-
algebra N is isomorphic to the subalgebra of K4 generated by the primary vectors other than

§1628384.
Proposition 8.10 Nj' and Nf are isomorphic if and only if o2 = (2.

PROOFL Seil F = Dl A\ l)l7 Ey = DQ A\ 1)27 E3 = D1 A DQ, Ey = Dl A DQ, Es = D1 A DQ,
E¢ = D1 A Dy. The characteristic polynomial of the matrix M;; = (E;, Ej)vav is (¢ + 1) —
a?)((t —1)? — a?)?, which is invariant under automorphisms by Proposition 7.1. Hence if N and

N} are isomorphic then o? = 2. Conversely suppose 3 = —a. Consider the map f : V — V
defined by f(e1) = ea, f(e2) = e1, f(er) = f(eg) for all k& > 2. Because kert = {0}, f extends to
an automorphism of conformal superalgebra, which maps a to —a. 1

For their simplicity we have the following.
Proposition 8.11 N is simple if and only if a® # 1.

PROOF  Consider the bilinear form (-,-) on VAV AV defined by (u3 Aug Aug,v1 Avg Avs)L =
Uz * Uz *u1 *v1 °v2 °v3. Denote f; ; = D; A D; A D; and f” = D, AD; A Dj and take the basis
{fi,ja fi,j| {Z,j}_ = i]., 2}} of V AV AV. Then we have <fi,j7 fk,l> = <fi,j; fk,l> = (1 - 042)51"]@5]"1,
(fig, fea) = (fij» feg) = 0. So the form (-,-) is symmetric, and is nondegenerate if and only if
a? # 1. By Proposition 6.2, N{ is simple if and only if a2 # 1. ]

In particular NY is simple, so we have the following corollary.
Corollary 8.12 Ny is simple.

Note 8.13 A one-parameter family of superconformal algebras that is called the large N = 4
superconformal algebra is written down in [11]. In (2), (3), (4) of [11] set v = (8+1)/2 and replace
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the central terms by 0. Fix the conformal vector L(z) = > N Lnz "% If % # 1 then the

centerless large N = 4 superconformal algebra is isomorphic to N, f by

G, = \/56(1,
-1

AT = m(62°€3i61064),

A*? = m(eloesqﬁez"&i),

AT3 = 2(1_7:% (e1°ea L ezoeyq), (8.12)
QY = ﬁ(—l)aebl ® €p, © €y,
U = 1:—1@61%2063"647

where {a, b1,b2,b3} = {1,2,3,4} and by < by < bs. For 8 = %1 the large N = 4 superconformal
algebra is isomorphic to Ny.

Note 8.14 The action of the Lie algebra (A, (0)) on V is not faithful for N since e; ®*ez°e3°ey
acts on V trivially. The ideal generated by e; ®ea°ez°ey is R itself. As is discussed in (4.12) of
8], for a unit vector u € V one has an A,-module isomorphism u° : A, = F with the inverse map
u® : F = A, where A, = {a € A| a*u = 0} in our terminology. A, is spanned by AT! + A=1
AT2 - A=2 A+3 - A=3 and U, so the condition that F is isomorphic to A, as A,-modules is also
satisfied here.

Proposition 8.15 A simple physical conformal superalgebra R with dimV = 4 is isomorphic to
one of Sa, Wa, Ny and Ng for some a € C where o € (C/{£1}) \ {[1]}-

PrROOF  Since the Clifford action of a unit vector in V yields an isomorphism between the even
subspace of Im¢ and the odd subspace of Im:, we have dimIm: > 2dim V', so dim Ime is one of 8,
12 and 16.

If dimIm: = 16 then the map ¢ is injective, so R, is isomorphic to N§* for some oo € C. So ¢
is surjective because VoV oV # {0} for all N@s. N is simple if and only if o # 1, hence R is
isomorphic to N§ for some a2 # 1.

If dim Im¢ = 12 then dim ker ¢ = 4, so we may assume ker . = M (00), which implies D} © D§ = 0.
a = —1 by Proposition 8.6, hence R, is uniquely determined, which is neither simple nor with
VeoVoV ={0}. So simple physical conformal superalgebras with dimIm: = 12 do not exist.

If dimIm¢ = 8 then dimker: = 8. We may assume M (00) C ker ¢, which implies DY D3 = 0.
a = —1 by Proposition 8.6, so ker. = M(00) & M (11). Hence R, is uniquely determined, which
is S3. In particular the Lie algebra (V oV, ¢) and its action on V by the product  is uniquely
determined. Consider the pairing J : VAV AV x F — C defined by J(v' A v? Av3, f)L =
viey2eyde f By (D6) we have J(a-w, f)+J(w,a-f)=0foralla € A, fe Fandw € VAV AV
where V' and F are supposed to be (A, ®)-modules by the product ® and so is VAV AV by
derivation. Once J is determined, u®v*® f is uniquely determined for all u,v € V and f € F, so
the action of A=V oV +VeF on V by the product ® is uniquely determined. The pairing J is
(A, *)-invariant and if J(w, f) = 0 for allw € VAV AV then f = 0, so the action of A on F' by the
product * is uniquely determined by the action of A on VAV AV, which determines the product
Vo A because of (H4). By Lemma 4.2 we have (b(gy¢)pya = 325 7ib(g—j)Cip+)a + 8jCptq—5) by a
for all a,b, ¢ € R for some 7, s; € C, so the simple physical conformal superalgebra structure on R
is uniquely determined by the pairing J. Consider a A-submodule J° = {w € VAV AV| J(w, f) =
0 forall f € F}. J°# VAV AV because R is simple. The (VoV, *)-module VAV AV is
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decomposed into two 2-dimensional irreducible modules, so dim J° is either 0 or 2. If dim J° =0
then R is isomorphic to Ny. If dim J® = 2 then we can choose a basis {D1, Do, Dy, Dg} of V that
satisfies (D;, D;) = (D, Dj) = 0;; and (D, Dj) = 0so that J° = Span{D; AD; A Dy, Dy ADyADo}
and ker: = M(00) & M (11), hence R is unique if exists, which is Ws. I

Hence we have the complete list of simple physical conformal superalgebras.

Theorem 8.16 A simple physical conformal superalgebra is isomorphic to one of Vir, K1, Ko,
Ks, So, Wy, N4, Ny and CKg, where o € (C/{£1}) \ {[1]}.

If conformal superalgebras R and R’ are equivalent then the Lie superalgebras (R/OR, (0))
and (R'/OR’,(0)) are isomorphic. Any pair of Lie superalgebras ( Vir/dVir, (0)), (K1/0K1,(0)),
(K2/0K>,(0)), (K3/0Ks3,(0)), (S2/0S2,(0)), (W2/0Ws, (0)) and (N?/ONY, (0)) is not isomorphic,
while Ny and N$'s are equivalent to N except for a? = 1. Hence we have the following corollary.

Corollary 8.17 A simple physical conformal superalgebra is equivalent to one of Vir, Ky, K,
K3, 52, WQ, Ng and CK@

References

[1] Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-
dimensional quantum field theory. Nucl. Phys. B241, 333-380 (1984)

[2] Blumenhagen, R., Flohr, M., Kliem, A., Nahm, W., Recknagel, A., Varnhagen, R.: W-algebras
with two and three generators. Nucl. Phys. B361, 255-289 (1991)

[3] Cheng, S.-J., Kac, V.G.: A new N=6 superconformal algebra. Commn. Math. Phys. 186,
219-231 (1997)

[4] Chevalley, C.: The algebraic theory of spinors. Columbia University Press, 1954

[5] Hasiewicz, Z., Thielemans, K., Troost, W.: Superconformal algebras and Clifford algebras. J.
Math. Phys. 31, 744-756 (1990)

[6] Kac, V.G.: Lie superalgebras. Adv. Math. 26, 8-96 (1977)

[7] Kac, V.G.: Vertex algebras for beginners. Second edition. University lecture series, vol 10,
Providence RI: AMS, 1998

[8] Kac, V.G.: Superconformal algebras and transitive group actions on quadrics. Commn. Math.
Phys. 186, 233-252 (1997)

[9] Kac, V.G., Leur, JJW.: On classification of superconformal algebras. In: S.J.Gates et al. eds,
String 88, Singapore: World Sci, 1989, pp. 77-106

[10] Primc, M.: Vertex algebras generated by Lie algebras. J. Pure Appl. Algebra. 135, 253-293
(1999), math/9901095

[11] Sevrin, A., Troost, W., Proeyen, A.: Superconformal algebras in two dimensions with N = 4.
Phys. Lett. 208B, 447-450 (1988)

22



Appendix: The multiplication tables for simple physical
conformal superalgebras

Table 1: The multiplication table for the superalgebra Vir.(1)

0) | L
L |0

Table 2: The multiplication table for the superalgebra Vir.(2)

Table 5: The multiplication table for the superalgebra K.(1)

0) | L Ei Ey Ep
L |0 0 0 0
FEi |0 L 0 FEs
E, | O 0 L —-E;
Eix | 0 —Ey E; 0




Table 6:

Table 7:

(0)

The multiplication table for the superalgebra Ko.(2)

(1) L Ey E;  Eno
L | 2L 3B, 3B, Enp
By | 2B, 0 En 0
By | 2B, By 0 0
Eyo | Er2 0 0 0

The multiplication table for the superalgebra K3.(1)

By Ey Es3 Eis Ei3 Ess Ei23

L
Ey

&
S O O ©O O O O oO|t>

0 0 0 0 0 0 0

L 0 0 E, Es 0 Eas

0 L 0 —F; 0 Es —FEi3

0 0 L 0 -E1  —Ey  Ep
—Fs FE 0 0 —Fs3  FEi3 0
“Es 0 E Eys 0 —Ea 0

0 —FEs3 Ey —FEi3 FEio 0 0
Ey3s —FEi3 FEp 0 0 0 0

Table 8: The multiplication table for the superalgebra Ks.(2)

(1) L Ey Es E; Eqs Ey3 Eos Eqa3

L 2L 3Ey 3Es 3E; Era Eys By 3Ei23
Ey 3E, 0 Eis Eis 0 0 1E23 0
Es 3E, —En 0 Ess 0 —1E123 0 0
Es 3E;  —Ei3 —Fa3 0 1 E123 0 0 0
Eis | Ep 0 0 1 E123 0 0 0 0
Ei3 | Ei 0 —iEp; 0 0 0 0 0
Es3 | FEas  $Eis 0 0 0 0 0 0
Fros | 1B 0 0 0 0 0 0 0

ii



Table 9: The multiplication table for the superalgebra S,.(1)

(0) | L By Ey E3 Ey Eq Ens Ehg
L 0 0 0 0 0 0 0
Ei |0 L 0 0 0 FEs Ey
Es | O 0 L 0 0 —E; —Fy Es
Es |0 0o 0 L 0 B, -BE  —FE
E, |0 0 0 0 L —Fs3 —F1
Fi| 0 —Ey E —FEy FEj 0 —2F4 2FEi3
Ei3 | 0 —-E3 Ey £, by 2FEy —2FE19
Fi4s | 0 —-Fy —Ej FEs Eq —2F3 2F5 0

Table 10: The multiplication table for the superalgebra Sy.(2)

1) | L E Es E3 Ey Eiz Ei3 Euwn
L 2L %El %EQ %Eg %E4 By Eiz Euy
E | 3B, 0 E, Es Ey 0 0 0
Ey |3Bs —Eiz 0  Eu —Eg3 0 0 0
By |3B3 —Ei3 —-Ey 0  Ep 0 0 0
Ey, |3E, —-Eu Fi3 -Fa» 0 o 0 0
Eiz | Eng 0 0 0 0 0 0 0
Eis | Eus 0 0 0 0 0 0 0
Eyy | Eig 0 0 0 0 0 0 0

iii



Table 11: The multiplication table for the superalgebra W.(1)

o |l B Es Es Es
L 0 0 0 0 0
Eq 0 L 0 0 0
FEs 0 0 L 0 0
FEs 0 0 0 L 0
FEy 0 0 0 0 L
Eiy | 0 —Ey Ey —-F, Es
Eis | 0 —Es Ey Ey —E,
By |0 —Ey —Es Es £y
Ei |00 B3+ V—1E, —Ey Yy o)
Eys | O 0 0 V-1E, —V/—1E3
Eio3 | 0 Ei5  Eiz++V—-1Eu++V—-1E5  —Eip++V—1Ey»  —Ex»—+/—1Emp
FEazs | 0 Eas —V/—1E>; V=1Ei4+—-1Ei5  Ei5 —V—1E13
Table 12: The multiplication table for the superalgebra W.(2)
(0) By B3 Eyy4 Es Eos
L 0 0 0 0 0
E;q E, Es Ey 0 0
B _FB _E, Es —Es— J=1E, 0
Es Ey —F —FEs E, —/—1E,
E4 —E3 E, -k V—1E, V—1E;3
Eqq 0 —2E14 2Fq3 —E13 —/—1FE1, 0
Eq3 2F14 0 —2E1 Eo —V—1Ey
By —2F 3 2E12 0 V—1E12 V—1E3
Ei5 | Ei3++V—1Ewu —E19 —V/—1E1» 0 —E5
Ess 0 V—1E14 —V/—1E13 Eis 0
Eio3 —V/—1FE23 —V/—1FEa34 Ea3q 0 —FE23
Ea34 V—1E534 —V/—1E123 —F193 Eqa3 0

iv



Table 13: The multiplication table for the superalgebra W5.(3)

(0) Ei23 E934

0 0
E,y Eq5 Eas
Ey | Exis+V—1Eu+V—1E;5 —V/—1E>;
Es —E13 + V—1Es; V—=1E14 +/—1Es;
Ey —Es; —/—1E» Ei5 —V—1E3
Eio V—1Ei23 —V/—1E»34
Ey3 V—1E»34 V—1E123
Ey4 —FEa34 Eqa3
Eis 0 —FE123
Eas Ero3 0
E193 0 0
Ea34 0 0

Table 14: The multiplication table for the superalgebra W5.(4)

o | L E Es Es E,

L | 2 im 3 p, 3 py 3 p,
E;q 3E, 0 Eq2 Eq3 Eqy
E, | 2B, —Fi 0 By —E3
B3 3E;  —Ei3 —Fy 0 Eis
E4 3Ey —Eu Eq3 —Fi 0
Eo Ers 0 0 0 0
Ey3 | Eis 0 0 0 0
Eiy | Eu 0 0 0 0
Eis | Eis B3 —3V—1F13 —3vV—1Fss  $Ea
Eys | Eys  $Easa  $V—1Ei  —3V—1E13 —3FE23
Fros | 1Bis 0 0 0 0
Eass | 1Fa3 0 0 0 0




Table 15: The multiplication table for the superalgebra Wy.(5)

(1) | Eve Ewz Euwns Eis Ess
L | B2 Ei3 Eu Eis Eos
Ei | 0 0 0 $E1a3 5E234
E, 0 0 0 —3V—1Ens $V-1E
E; 0 0 0 —3V—1Eys —3v—1E13
E, | 0 0 0 1 Fos4 —3 B3
D) 0 0 0 0 0
Fhs 0 0 0 0 0
Fy 0 0 0 0 0
FEi5 0 0 0 0 0
Eos 0 0 0 0 0
Ei3 | 0 0 0 0 0
Esa | 0 0 0 0 0

Table 16: The multiplication table for the superalgebra W5.(6)

(1) Eia3 Eo3y

L | LB 1B
FE 0 0
FEs 0 0
FE3 0 0
Ey 0 0
FEio 0 0
FEi3 0 0
Fy 0 0
FEns 0 0
FEos 0 0
Ei93 0 0
Eo3y 0 0

vi



Table 17: The multiplication table for the superalgebra Ny.(1)

o |l E E» F E4

L 0 0 0 0 0

FEq 0 L 0 0 0

FEs 0 0 L 0 0

FE3 0 0 0 L 0

Ey 0 0 0 0 L

Eis |0 —E £y —E, Es
Eiz |0 —Es Ey Ey —E,
Ey |0 —E4 —Es3 Es By
FEos 0 0 —Fs3 FEs 0
FEoy 0 —Fy 0 FEs
FEsy 0 0 —Fy FEs
Ei234 | O 0 0 0 0
Eio3 | 0 FEoy —Ei3—Fy  FEio— FE3g —FE1234
FEi24 | 0 Eays  —Eua+ Eos E1234 E1s — E34
Ei34 | 0 Esg —F1234 —FE14+ FEs; Eiz+ Eo
Eazq | 0 FEiosg Es3y —Eoy Eas

vii



Table 18: The multiplication table for the superalgebra N,.(2)

(0) Eis Ey3 Ei4 Eos Esy E3qs Eiaza
L 0 0 0 0 0 0 0
Ey Ey Es Ey 0 0 0 0
FEs —F; —FEy FEs FEs Ey 0 0
FE3 Ey —F4 —FE5 —Fs 0 Ey 0
Ey —Fs3 FEy —F; 0 —FEs —FE3 0
Eis 0 —2E14  2Ei3 Eis Eia 0 0
Eis 2E14 0 —2E15 —Ei» 0 By 0
Eiy | —2FE13  2Eq 0 0 —Fi2 —FEg3 0
Eay | —Ens Eo 0 0 —FE34 Eoy 0
FEsy | —Eua 0 Ero Es3y 0 —Ebs 0
E34 0 —Ey Eq3 —FEsy Eos 0 0
E1234 0 0 0 0 0 0 0
Eia3 | Eig Ei34 Eo34 0 —FE134 E1 0
Ei9q4 | —E123  —FEasa  Eiza Ei34 0 —FE193 0
Ei34 | FEazs  —FEiaz —FEia —FEiaa FEios 0 0
Eo3q | —E134 Ei2a —FEio 0 0 0 0

viii



Table 19: The multiplication table for the superalgebra Ny.(3)

(0) Eqa3 E124 Ei34 Ea3q
L 0 0 0 0
Ey Eos Esy Es3y E1234
Ey | —E13— FEay —FE14+ Eos —FE1234 E34
Es Eq3 — E34 E1234 —FE14+ Eaz  —Foy
E, —FE1234 E12 — B3y Er3 + Eoy Eas
Ero —E124 E193 —FEa34 Ey34
Ey3 —FEi34 Ea34 E193 —F124
E14 —FEo34 —E134 Eio4 Eia3
Eas 0 —E134 Ero4 0
Esy Ey34 0 —FE193 0
E34 —FE124 E193 0 0
E1234 0 0 0 0
Eia3 0 0 0 0
Ey24 0 0 0 0
Ey34 0 0 0 0
Eo34 0 0 0 0

ix



Table 20: The multiplication table for the superalgebra Ny.(4)

WL R B B E
L 2L 3B 3E, 3E; 3E4
Ey 3E, 0 Eq2 Eq3 E14
Ey 3E, —En 0 E14 —E13
E3 5Es —Ei3 —Eu 0 E
Ey 3By,  —Eu Eys —FE12 0
Ero Eqs 0 0 0 0
Ey3 Eis 0 0 0 0
E14 Evy 0 0 0 0
Eas Eys  1F13 1By 1E134 1 B34
Eay Ey 3B —3Fi23 —3Esu  1Eiy
E34 Ess 3B 3Esq  —3E13 —3Fi
Eigy | Eisa  $Fass  —3Fi3s  $FEi4  —3Fios
Fros | 3By 0 0 0 0
Ei24 | 3E124 0 0 0 0
Ei3y | $E134 0 0 0 0
B3y | 5E234 0 0 0 0



Table 21: The multiplication table for the superalgebra Ny.(5)

(1) | Er2 FEiz Eiyn  Ex Esy E34 E1234
L Eio Ei3 B Eas Eay E34 E1234
Ey 0 0 0 3B 1B 1E134 1 B34
Es 0 0 0 $Eia —3Fi3  3Fau  —3Fus
E; 0 0 0 3$Eisa —3FEsi —3FEis  3E
Ey 0 0 0 1Fo4 1By —iEiy —1Eis
Fqo 0 0 0 0 0 0 0
Fis 0 0 0 0 0 0 0
FEi4 0 0 0 0 0 0 0
Fos 0 0 0 0 0 0 0
Foy 0 0 0 0 0 0 0
Fsy 0 0 0 0 0 0 0
FEio34 | 0 0 0 0 0 0 0
Eia3 0 0 0 0 0 0 0
Eioa | 0 0 0 0 0 0 0
Eiza | 0 0 0 0 0 0 0
Eo34 0 0 0 0 0 0 0

xi



Table 22: The multiplication table for the superalgebra N,.(6)

(1) Ei23  FEi2a Eiza FEas
L i1E153 $Ei4 $Ei31 3Fos
FEy 0 0 0 0
FEs 0 0 0 0
FEs 0 0 0 0
Ey 0 0 0 0
Eqs 0 0 0 0
Eq3 0 0 0 0
Eqy 0 0 0 0
Eas 0 0 0 0
Esy 0 0 0 0
E3y 0 0 0 0
E1234 0 0 0 0
Eia3 0 0 0 0
Ey24 0 0 0 0
Ey34 0 0 0 0
Fosy 0 0 0 0

xii



Table 23: The multiplication table for the superalgebra N{.(1)
o |z E Es Es o
L 0 0 0 0 0
Eq 0 L 0 0 0
FEs 0 0 L 0 0
FEs 0 0 0 L 0
Ey 0 0 0 0 L
FEis 0 —Fs Eq —akby aFs
Fi3 0 —FE3 aFy E —aFs
FEi4 0 —FEy —aks aFy Ey
FEo3 0 —akby —FEs3 FEs aFy
FEoy 0 aks —FE, —akFq FEs
FEsy 0 —ak, aFy —Fy FEs
Ei234 | 0 0 0 0 0
Eio3 | 0 —aBiy+ FEyy —FEig—aFy  Eia—aFsy —FE1234
Eip | 0 aF1i3+FEy —Eyy+akhs E1234 Ea — aF3y
Ei34 | 0 —aFE2+ E3y —FE1234 —Eiy+aFBy; Eiz+aFy
Easq | O Ei934 —ab2+ B3y —abi3 — Eay —aFiy+ Eos

xiii



Table 24:

The multiplication table for the superalgebra N¢.(2)

(0) E Es Evy Eas Eay E34 E1234
L 0 0 0 0 0 0 0
Ey FEs FEs Ey aFy —akls aFy 0
FEs —F4 —akby aFs FEs FEy —akF, 0
FE3 aly, —F; —akF, —FEs aFy Ey 0
Ey —aFs akFs —F; —akFy —FE, —FE;3 0
Eis 0 —aby — Ey3  aFi3—Fy  Eig—aFy Eig+ aFag 0 0
Es aFBhy + Eog 0 —akbis — FE3y  —FEi2 —aFBsy 0 Eh4 + akas 0
Ey | —aFi3+ FEay  aFByp+ B3y 0 0 —FE12—aF3  —FEi3+aky 0
Ess | —E13+aFy  Eia+akbs 0 0 —aFbys — E3y —aFB3+ Eay 0
Esy | —FE14 — aFa; 0 Ei2 + aF3y akbs + E3y 0 —akbyy — Eag 0
Es3y 0 —FE1y —aFyy  Eiz3—aky ab3 — Fay aF14 + Eas 0 0
Fi234 0 0 0 0 0 0 0
E1a3 aFyag aFy3g Ea3q aFa3g —F134 Ei24 0
E1o4 —akia3 —FEo34 aFi3q Ei34 akbosy —FE23 0
Ei34 FEa3q —akia3 —aki2 —E124 Ero3 abasy 0
Es34 —FEi34 Ey24 —F193 —aka3 —aF2 —aF3g 0

Xiv



Table 25: The multiplication table for the superalgebra N{*.(3)

(0) Eia3 E24 Ei34 FEa3q
L 0 0 0 0
Ey | —aF1y+ FEey  aFi3+ Eay  —aFio+ By E1234
Ey | —Fi13—akby —FEiu+aFg —FE1234 —aF13 + E34
E; E12 —aF3y Ei934 —Eiy+aFby;  —aF3 — By
Ey —FE1234 E12 — aF3y Ei3+aFy  —aFiy+ Eag
Ers —aki2 aFa3 —FEa34 Ei34
Eis —akE34 Ea3q aFia3 —F124
Ey —FEa34 —akEh34 aFyag E193
Eos —akbasy —E134 E24 akia3
Eoy Ei34 —akasy —FE123 abia4
Es3y —E124 Eqa3 —akh3 a3
Ei234 0 0 0 0
Eia3 0 0 0 0
E24 0 0 0 0
Ey34 0 0 0 0
Ea3q 0 0 0 0

XV



Table 26: The multiplication table for the superalgebra N{*.(4)

(1) L Ey FEy FE3 Ey
L oL 1B, 1B 3 p, 3B,
Ey 3B 0 Eqs Eq3 Ei4
Es 3By  —En 0 Eas Eay
E3 5E; —Ei3  —Ey 0 E34
Ey SE, —Eu —Exn —FE34 0
Eqs Eqs 0 0 3 E1a3 3F124
Eq3 Eq3 0 —1F123 0 1E134
E14 Eqy 0 —1E14 —31Fi3 0
Ess Ey3  3Eia3 0 0 5 B34
Eoy By 1Ei 0 —3Ea34 0
E34 Ess 3B 3B 0 0
Eio34 | Ei23a  $Eosq —3E134 3Ei2a —3E123
B | 1By 0 0 0 0
Eio4 %E124 0 0 0 0
Ei3y | 3E134 0 0 0 0
Eyss | $E234 0 0 0 0

Xvi



Table 27: The multiplication table for the superalgebra N{.(5)

E Eq3 Evy Eos FEay E34 E1934
Eqs Eis Ey Eos Esy E34 E1934
0 0 0 $E13  $E14  $Ei3s 3FEas
0 —1F123 —31F1 0 0 1By  —3E13
1B 0 —1E3 0 —1 B3 0 1B
3E124  3FEis4 0 3 B34 0 0 —3E123
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
E1234 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

xvii



Table 28: The multiplication table for the superalgebra N{.(6)

(1) Eio3  Eiaa Fiza FEan
L 1E123 3Eia 3Ei134  3Eas
E 0 0 0 0
FEs 0 0 0 0
FEs 0 0 0 0
Ey 0 0 0 0
Ers 0 0 0 0
Ei3 0 0 0 0
Ey 0 0 0 0
Eas 0 0 0 0
Eoy 0 0 0 0
E3y 0 0 0 0
Ei934 0 0 0 0
Eia3 0 0 0 0
E24 0 0 0 0
Ey34 0 0 0 0
Ea3q 0 0 0 0

xviii



Table 29: The multiplication table for the superalgebra CKg.(1)

o |l B Es Es Es B jo

L 0 0 0 0 0 0 0

FEq 0 L 0 0 0 0 0
FEs 0 0 L 0 0 0 0
FE3 0 0 0 L 0 0 0
FEy 0 0 0 0 L 0 0
FEs 0 0 0 0 0 L 0
FEg 0 0 0 0 0 0 L
Eyp | 0 —E Ey 0 0 0 0
Eyz |0 —E 0 Ey 0 0 0
Fiy | 0 —E4 0 0 Fy 0 0
Eis | 0 —FEs 0 0 B 0
Ew | 0 —FEq 0 0 0 0 B
Esy | 0 0 —E3 E, 0 0 0
Foy | 0 0 —Fy 0 FEs 0

FEos | 0 0 —Fs5 0 FEs

Ex |0 0 _Eq 0 0 0 Es
Es |00 0 _E, Es 0 0
Fss | 0 0 0 —FEs5 0 FEs 0
Ex |0 0 0 _Fy 0 0 Fs
Es |00 0 0 _E, E, 0
Ew |0 0 0 0 _Eq 0 E,
Fs¢ | O 0 0 0 0 —FEg FEs
Ei23 | 0 Ebas —Ei3 Eqo V-1Ess —v—1Ess /—1Ess
Ei2a | 0 By —Fy —V/—1Esg By V—1E3s —/—1E35
Ei95 | 0 Eas —Ei5 V—-1E;s  —/—1Es Eqs V—1E34
Ei6 | 0 Eg —FEi6 —V—=1E;;  —1Ess —/—1Es Ers
Eis4 | 0 By /—1Es —E Ei3 —V—1Ey  V—1Es;
Ei35 | 0 Ess —v—1Eug —Ei5 V—1E» Eys —V/—1Ey
Eis6 | 0 Ess /1B —FEie —V—=1Ey;  /—1Ey Ey3
Eus | 0 Esys  /—1E3s  —/—1Eg —Ei5 Ey V—1Ey3
Eug | 0 Es —V—1E35 /—1E —FEi6 —V—1E3 E14
Eis6 | 0 Es¢ —1Esy —v—1Ey /—1Es3 —FEe Eys5

Xix



Table 30: The multiplication table for the superalgebra CKg.(2)

(0) Eis Ei3 Ey Eis Ei6 Es;3 Esy Ess
L 0 0 0 0 0 0 0 0
FEq FEy FE3 Ey FEs Fg 0 0 0
FEs —F; 0 0 0 0 FEs FEy Es
FE3 0 —F; 0 0 0 —Fs 0 0
Ey 0 0 —F1 0 0 0 —Fs 0
FEs 0 0 0 —F1 0 0 0 —Fs
FEg 0 0 0 0 —F; 0 0 0
Eo 0 —FEos —Eoy —Eos —Ea Eys Evy Eys5
Ey3 Eos 0 —FE34 —FEss5 —FEs6 —Er 0 0
Ey4 Esy Es3y 0 —FEuys —FEue 0 —FE2 0
Eys Eas Ess5 Eys5 0 —FEs 0 0 —E1
Eig Ess Es Ey Es 0 0 0 0
Eos —Ei3 Eq 0 0 0 0 —FEs4  —Es5
Esy —Ey 0 Eis 0 0 E34 0 —FEus
Eas —Ei5 0 0 Ers 0 Ess5 Eys5 0
Eosg —FE1g 0 0 0 Eqg Es3g Eye Esg
E34 0 —FE4 Eis 0 0 —FEay Eos 0
Ess 0 —Ei5 0 Ei3 0 —Ebs 0 Es;3
FEsg 0 —F16 0 0 Fi3 —FEo 0 0
Euys 0 0 —E5 Evy 0 0 —Eos Eay
FEue 0 0 —Fi6 0 Fqy 0 —Fog 0
FEsg 0 0 0 —F16 FE15 0 0 —Fy
Eyo3 0 0 —V—=1E156 V—1Fus —V—1Eus 0 —FE134  —Fi3;
Ei24 0 V—1E156 0 —V—1E136 v/—1Eis; Ey34 0 —FE45
Er95 0 —V—1Eus —1FE136 0 —V—1E134  Eiss Ei45 0
E196 0 V-1Eus —V-1E135 V-1E3 0 Ei36 E146 Eis56
Ei34 | —V/—1Eis56 0 0 V—=1E136 —+v—1E125 —FEi1214 FEiss 0
Eiss | V—1Eu4 0 —V—1FE126 0 V—=1E15,  —FEias 0 Eqa3
Eis6 | —V/—1Fus 0 V—=1E155  —v/—1E124 0 —F126 0 0
Eus | —V/—1E136  V—1Eg 0 0 —V—1E123 0 —FE125  Ei24
Eus | V=1Ei135 —v—1FEas 0 V—1E123 0 0 —FEi26 0
Eis6 | —V/—1E13¢  V—1E124 —v/—1FE13 0 0 0 0 —F126

XX



Table 31: The multiplication table for the superalgebra CKg.(3)

(0) Ex E34 Ess Es6 Eys Eq6 Es6
L 0 0 0 0 0 0 0
Eq 0 0 0 0
FEy Fg 0 0 0
FE3 0 Ey Es FEg 0 0 0
Ey 0 —FE3 0 0 Es Egs 0
FEs 0 0 —F3 0 —Fy 0 FEg
FEg —Fs 0 —Fs3 0 —Fy —FEs5
FEis FEis 0 0 0 0 0 0
Ei3 0 Eiy Eis Eie 0 0 0
By 0 —FE3 0 0 Eis Eie 0
Eis 0 0 —FE3 0 —FEy 0 Eie
Eig | —E12 0 0 —FEi3 0 —Eiy  —Eis
Eas | —Es6 FEay Eos Eag 0 0 0
Esy | —FEss  —FEo3 0 0 Eos Es 0
Ess | —Ese 0 —FEa3 0 —FEsy 0 Ex
Ea 0 0 0 —Fo3 0 —Fy  —FEos
Es3y 0 0 —Ey5  —Ege Ess E36 0
Ess 0 Eys 0 —FEs¢  —E3a 0 Es6
Es6 Eos Eq6 Es6 0 0 —FE34  —E3;
Eys5 0 —E35 E3y 0 0 —FEs6 Es
Ey Eoy —FEs6 0 E34 Es6 0 —Ey5
Es6 Eos 0 —FEs6 Ess —FEue Eys 0
Ei93 | —F136  E124 Eq95 E196 0 0 0
Eio4 | —F1a6  —FEr23 0 0 Eqo; Ei26 0
Ei95 | —FEis6 0 —FE193 0 —E124 0 E196
E196 0 0 0 —FE123 0 —FE124 —Fis
Ei34 0 0 —FEws —Fue  Eigs Ei36 0
Eqs; 0 Ey45 0 —E156 —FEi34 0 Ei36
Ei36 | Eios FEi46 Ei56 0 0 —FEi134 —FEi3s
Ei45 0 —FEi35  Eisa 0 0 —FEi56  Euae
FEi46 | Fi12a  —Eise 0 Ei34 Ei56 0 —FE45
Ei56 | Fis 0 —FE136  FEi3s  —Fue  Fus 0

xx1



Table 32: The multiplication table for the superalgebra CKg.(4)

(0) Eqa3 Ey24 Eq95 E196 Ei34

L 0 0 0 0 0

Ey Eas FEay Eas Eag E34

Es —FEi3 —Ey —Ei5 —FEi6 V—1E56
E; Eo —v/—1Es¢ V—1E4 —V/—1Eys —E
Ey V—1Es6 E —v/—1Es¢ V—1E3;5 Eys
Es | —V—1E4 V—1E36 Ero —V—=1E3y  —/—1Ex
Eg V—1Ey5 —V/—1E3; V—1E34 Ero V—1Ess
1P 0 0 0 0 V—1E156
Es 0 —V—1E156 V—1Fus —v—1Eus 0
Eiy | V/=1FEis6 0 —V/—=1E136  v—1E135 0
Eis | —V/=1Ews V—1FE136 0 —V—=1E134 —V—1E1
Es | V-1Eus —V—1E135 —1E3 0 V—1E125
Eos 0 —E134 —FEh35 —FEi36 Eio4
Esy Ey34 0 —FE45 —Fi46 —FE193
Eos Eq35 Ery5 0 —FE156 0

Eo Ei36 Er46 Ei56 0 0

Es3y —FE124 Eq23 0 0 0

Ess —FE125 0 Era3 0 Ei45
Es6 —F126 0 0 E193 FEi46
Eys5 0 —FEh25 E24 0 —FEi35
Ey 0 —FE126 0 E1o4 —FEi36
Es6 0 0 —FE126 Er95 0
Eqa3 0 0 0 0 0
E24 0 0 0 0 0
Eqa5 0 0 0 0 0
E196 0 0 0 0 0
Ei34 0 0 0 0 0
Fi35 0 0 0 0 0
Ei36 0 0 0 0 0
Ery5 0 0 0 0 0
Ei46 0 0 0 0 0
FEis6 0 0 0 0 0
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Table 33: The multiplication table for the superalgebra CKg.(5)

(0) Ey35 Eis6 Ery5 FEi46 Ei56

L 0 0 0 0 0

Ey E3s Es6 Eys Eq6 Es6
By | —V—1E4 V—1Ey5 V—1E3s —V/—1E3; V—1E34
E; —Ei5 —FEi6 —V/—1Eq V—1E»; —V/—1Ey
Ey V—1E» —V/—1E»;s —Ei5 —FEi6 V—1E»3
E; Eq3 V—1E3 Ey4 —V/—1E>3 —FEi6
Es | —V—1Ey4 Ey3 V—1Es3 Ey4 Eis
Eyp | —/—1Eus V—1FEus V—-1E13s —vV—1E135 V—1E34
Eq3 0 0 —V—=1FE156 V—1E135 —V—1E1n
By | V=1E16 —V—1E12s 0 0 V—1E123
Eis 0 V—1E12, 0 —V/—1E123 0
Eis | —vV/—1E124 0 V—1E193 0 0
Eos Eia5 Ei26 0 0 0

Esy 0 0 Ey95 E196 0

Eos —F193 0 —FE194 0 E196
Eo 0 —FE123 0 —FE124 —FE125
Es3y —FEh45 —FE146 Ei35 Ei36 0
Ess 0 —FE156 —Fi34 0 Ei36
Es6 Ei56 0 0 —Fi34 —FEi35
Eys5 Ei34 0 0 —FE1s56 E146
Ey 0 Ei34 Ei56 0 —FE45
Es6 —FE136 Eq35 —F146 Ei45 0
Eqa3 0 0 0 0 0
E24 0 0 0 0 0
Eqa5 0 0 0 0 0
E196 0 0 0 0 0
Ei34 0 0 0 0 0
Ei35 0 0 0 0 0
Ei36 0 0 0 0 0
Ery5 0 0 0 0 0
Ei46 0 0 0 0 0
Ei56 0 0 0 0 0
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Table 34: The multiplication table for the superalgebra CKg.(6)

| oz B By By o By joN
L | 22 3m 3E, 3 g 3E, o 3 g
E;q 3E, 0 Eq2 Eq3 E14 Eqs Eie
E, SE, —Ep 0 Eas Es4 Eos Es
Es 3E; —E —Eo3 0 E34 Ess5 Es6
E, 3By  —Eu —Eoy —Es3y 0 Eys5 Ey6
Es 3E; —Eis —Eos —Ess5 —Eys 0 Es6
Eg 3Es —FEi —FE%% —FE36 —FEus6 —FEse 0
Er E 0 0 $F123 1B $FE125 $F126
Ez | Ens 0 —1F123 0 1E134 1 B35 1 B30
E1q | B 0 —3E124 —1E134 0 1E5 1E46
Eis | Ers 0 —3E125 —5Fss —3FB14s5 0 3E156
Eig | Eue 0 —3E12 —1F136 —3F146 —1F156 0
Es3 | FEas  $Eis 0 0 —3V=1FE156  3V-1Eus —3V-1Ewus
Es | FEau 3B 0 3V —1E156 0 —3V—1F136  $vV—1E135
Eys | Eas  $Eus 0 —3V—1Eus  $V—1Eus 0 —3V—1E3
Es | Fas  3E12 0 V-1Eus —3V-1F1355 1V-1E13 0
Ess | Esi  $FEi34  —3V—1E15 0 0 3V—1E136 —3V—1E1s
Ess | FEs;  $Ei3s  3vV—1Fu 0 —3V—1FE12 0 3V —1E124
Ess | Ess 3FEis —3vV—1Fus 0 5V—1E125  —3V—1E1 0
Ess | Eis  3Eus —3V—1E136  1vV—1Eig 0 0 —1V=1FE123
Es | Eis  $FBus  3V—1FE135  —3V—1F12s 0 3V —1E13 0
Esg | Ess $Fis6 —3V—1Fi3a  3V—1Ei21  —3vV—1F3 0 0
Fros | 1By 0 0 0 0 0 0
Foy4 %E124 0 0 0 0 0 0
B | 1Bs 0 0 0 0 0 0
B | 1Eis 0 0 0 0 0 0
B3y | 5134 0 0 0 0 0 0
Fiss %E135 0 0 0 0 0 0
Euss | 3Bz 0 0 0 0 0 0
Bus | 1B 0 0 0 0 0 0
Fug | 1Bug 0 0 0 0 0 0
Fis6 %E156 0 0 0 0 0 0
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Table 35: The multiplication table for the superalgebra CKg.(7)

Ers Eqs Ery Ers Ex6 Ess Esy Ess
Ers Eqs Ery Ers Ex6 Ess Esy Ess
0 0 0 0 0 $E1a3 5E124 5E125
—3F123  —3F124 —3FE15 —3FEig 0 0 0
3 0 —5Bi31  —3Bus  —5E36 0 3V—1Ei56  —3V—1Ews
3 3 0 —3Fus  —3Fus  —3V—1Es6 0 3V—1Ei36
3 3 5Bus 0 —3Ei56  3V—1Eue —3vV—1E1s6 0
5 3 3F146 3E156 0 —3V—1Eus  $V-1E135 —3V—1E13
0 0 0 0 0

O O O O O O O O O O O O O O O O oo o o o o o o o
O O O O O O O O O O O O O O O O oo o o o o o o o
O O O O O O O O O O O O O O o O o o o o o o o o
O O O O O O O O O O O O O O o O o o o o o o o o
O O O O O O O O O O O O O O o O o o o o o o o o

XXV



Table 36: The multiplication table for the superalgebra CKg.(8)

Esg

Esy

Ess

Esg

Eys

Eye

Esg

Eqg
1E12
0
+V—1E1s5
—3V—1E135
3V—1E134
0

O O O O O O O O O O O O O O o O oo o o o o o o o o

E34
1E134
—3V—1E1356
0
0
3V —1E126
—3V—1E1s
0

SO O O O O O O O O O O O O O o o o o o o o o o o

Ess
1
5F135

1V —1E146

0

—1V/—=1E13

0

1V —=1E124

0

S O O O O O O O O O O O O O o o o o o o o o o o

XXVi

Ese
1 B34
—5V—1Eus
0
3V —1E125
—3V—1E124
0

O O O O O O O O O O O O O O o O oo o o o o o o o o

Eys
1E145
—3V—1E136
$V—1E13
0
0
—3V—1E13
0

SO O O O O O O O O O O O O O o o o o o o o o o o

Eqg
1B
3V—1Ei35
—3V—1E125
0
3V —1E13
0

O O O O O O O O O O O O O O o O O o o o o o o o o

Es6
1 E156
—3V—1E134
3V—1E124
—3V—1FE13
0

S O O O O O O O O O O O O O o O o oo o o o o o o o o



Table 37: The multiplication table for the superalgebra CKg.(9)

(1) | Ei2s  FEia FEias  FEias  Eisa
L | 1E12s 1B $E15  3Fis  3Fin
Eq 0 0 0 0 0
FEs 0 0 0 0 0
FE3 0 0 0 0 0
FEy 0 0 0 0 0
FEs 0 0 0 0 0
FEg 0 0 0 0 0
Eo 0 0 0 0 0
Ey3 0 0 0 0 0
Ey4 0 0 0 0 0
Eis 0 0 0 0 0
Eq6 0 0 0 0 0
Ess 0 0 0 0 0
Esy 0 0 0 0 0
Ess 0 0 0 0 0
Es 0 0 0 0 0
E34 0 0 0 0 0
E3s 0 0 0 0 0
Es6 0 0 0 0 0
Eys 0 0 0 0 0
Eq6 0 0 0 0 0
Es6 0 0 0 0 0
E1a3 0 0 0 0 0
E1o4 0 0 0 0 0
Er95 0 0 0 0 0
E1s6 0 0 0 0 0
Ei34 0 0 0 0 0
Er35 0 0 0 0 0
Ei36 0 0 0 0 0
FEi45 0 0 0 0 0
E146 0 0 0 0 0
Eis6 0 0 0 0 0

xxvii



Table 38: The multiplication table for the superalgebra CKg.(10)

(1) | Eiss  FEizs Fus  Fus  Eise
L | 1E135 %FEi3s 3$FEus 3Fus  3Fise
Eq 0 0 0 0 0
FEs 0 0 0 0 0
FE3 0 0 0 0 0
FEy 0 0 0 0 0
FEs 0 0 0 0 0
FEg 0 0 0 0 0
Eo 0 0 0 0 0
Ey3 0 0 0 0 0
Ey4 0 0 0 0 0
Eis 0 0 0 0 0
Eq6 0 0 0 0 0
Ess 0 0 0 0 0
Esy 0 0 0 0 0
Ess 0 0 0 0 0
Es 0 0 0 0 0
E34 0 0 0 0 0
E3s 0 0 0 0 0
Es6 0 0 0 0 0
Eys 0 0 0 0 0
Eq6 0 0 0 0 0
Es6 0 0 0 0 0
E1a3 0 0 0 0 0
E1o4 0 0 0 0 0
Er95 0 0 0 0 0
E1s6 0 0 0 0 0
Ei34 0 0 0 0 0
Eqss 0 0 0 0 0
Ei36 0 0 0 0 0
FEi45 0 0 0 0 0
E146 0 0 0 0 0
Ei56 0 0 0 0 0

xxviil
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