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Abstract. We construct a generator system of the annihilator of a generalized

Verma module of a classical reductive Lie algebra induced from a character of
a parabolic subalgebra as an analogue of the minimal polynomial of a matrix.

In a classical limit it gives a generator system of the defining ideal of any
semisimple co-adjoint orbit of the Lie algebra.

1. Introduction

In [O3] generalized Capelli operators are defined in the universal enveloping al-
gebra of GL(n,R) and it is shown that they characterize the differential equations
satisfied by the functions in degenerate principal series representations of GL(n,R).
The operators are used to formulate boundary value problems for various bound-
aries of the symmetric GL(n,R)/O(n) and to construct generalized hypergeometric
equations related to Radon transformations on Grassmannian manifolds. In [O4]
using these operators we construct a generator system of the annihilator of the
generalized Verma module for gln(C) induced from any character of any parabolic
subalgebra.

In this paper the generator system is constructed for any classical Lie algebra.
It is different from the one constructed in [O4]. In the case of gln(C) the generator
system in [O4] is an analogue of minors and elementary divisors. The generator
system here is an analogue of the minimal polynomial of a matrix. For the generator
system of the center of the universal enveloping algebra the former corresponds to
Capelli identity in [C1] and [C2] and the latter to the trace of the power of a matrix
with components in the Lie algebra which is presented by [Ge].

In §2 we define a matrix F with components in g or the universal enveloping
algebra U (g) associated to a finite dimensional representation of a Lie algebra g and
define a minimal polynomial of F with respect to a g-module (cf. Definition 2.4).

In §3 we calculate the Harish-Chandra homomorphism of certain polynomials of
F . It is a little complicated but elementary. Owing to this calculation, in §4 we
introduce some polynomials of F and study their action on the generalized Verma
module.

Then we construct a two-sided ideal of U (g) generated by the components q(F )ij
for the minimal polynomial q(x) of F and prove Theorem 4.4, which is the main
result in this paper. It says that the ideal describes the gap between the generalized
Verma module and the usual Verma module (cf. (5.1) and (5.7)) if at least the
infinitesimal character is regular. The main motivation to write this paper is to
construct a two-sided ideal with this property originated in the problem in [O1].

It follows from this theorem that the ideal equals the annihilator of the general-
ized Verma module induced from the character of the parabolic subalgebra of the
classical Lie algebra if at least the infinitesimal character is regular and dominant
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(cf. Corollary 4.6). But the assumption that the infinitesimal character is dominant
may be unnecessary (cf. Conjecture 2 and 3 in §6).

We will use the homogenized universal enveloping algebra U ε(g) introduced in
[O4] so that we can compare the generator system of a co-adjoint orbit in the dual of
g. As a classical limit we get the generator system of any semisimple co-adjoint orbit
for a classical Lie algebra, which is described in Theorem 4.11 (cf. Remark 4.12).

In §5 we show some applications of our two-sided ideals to integral transforma-
tions of sections of a line bundle over a generalized flag manifold. For example,
Theorem 5.1 is a typical application, which shows that the system of differential
equations defined by our two-sided ideal characterizes the image of the Poisson
transform of the functions on any boundary of the Riemannian symmetric space of
the non-compact type.

In §6 we discuss the infinitesimal character which is excluded in the results in §4
and present some conjectures.

In the subsequent paper [OO] we will give a simple explicit formula of minimal
polynomials of generalized Verma modules of the scalar type for any reductive Lie
algebra and study the same problem as in this paper.

In order to explain our idea, suppose G = GL(2n,C) and putA =
(
λIn 0
B µIn

)
∈

g = Lie(G). Here λ, µ ∈ C and B ∈M (n,C) is a generic element. Note that A is

conjugate to λIn ⊕ µIn if λ �= µ and to
(
λ 0
1 λ

)
⊕ · · · ⊕

(
λ 0
1 λ

)
otherwise. We

will identify g and its dual g∗ by the symmetric bilinear form 〈X,Y 〉 = TraceXY .
Let IΘ(⊂ S(g)) be the defining ideal of the closure V̄Θ of the conjugacy class
VΘ =

∑
g∈GAd(g)A with Ad(g)X = gXg−1 .

Note that IΘ = I0Θ by denoting
IεΘ =

⋂
g∈G

Ad(g)Jε
Θ,

Jε
Θ =

∑
X1, X2, X3∈M(n,C)

U ε(g)
((X1 0

X3 X2

)
− λTraceX1 − µTraceX2

)
.

Here Uε(g) is the quotient of the tensor algebra of g by the two sided ideal generated
by elements of the form X ⊗ Y − Y ⊗X − ε[X,Y ]. Then U0(g) is the symmetric
algebra S(g) of g and U 1(g) is the universal enveloping algebra of g. We call a
generalization of IεΘ a quantization of I0Θ and the quantization I1Θ is nothing but
the annihilator of the generalized Verma module U (g)/J1

Θ.
Since rank(X − λI2n) ≤ n and rank(X − µI2n) ≤ n for X ∈ V̄Θ, the (n + 1)-

minors (∈ S(g)) of ((Eij) − λI2n) and ((Eij) − µI2n) are in IΘ. On the contrary,
they generate IΘ if λ �= µ. The quantizations of the minors are generalized Capelli
operators and studied by [O3].

If λ = µ, the derivatives of (n + 1)-minors of ((Eij) − xI2n) at x = λ are
also in IΘ and in general the generators are described by using the elementary
divisors. In [O4], we define their quantizations, namely, we explicitly construct the
corresponding generators for any generalized Verma module of the scalar type for
gl(n,C) using quantized elementary divisors. Moreover in [O4] we determine the
condition that the annihilator determines the gap between the generalized Verma
module and the Verma module. In the example here, the equality

(1.1) J ε
Θ = IεΘ +

∑
i>j

U ε(g)Eij +
n∑

i=1

U ε(g)(Eii − λ) +
2n∑

i=n+1

U ε(g)(Eii − µ)
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holds if and only if λ − µ /∈ {ε, . . . , (n − 1)ε}. When ε = 1, this condition is also
equivalent to the fact that U (g)/Jε

Θ has a regular infinitesimal character. If (1.1)
holds, the quantized generators are considered to be the differential equations which
characterize the representations of the group G related to the generalized Verma
module. Hence they are important and the motivation of our study in this note is
this fact.

On the other hand, since (x− λ)(x− µ) is the minimal polynomial of A, all the
components of ((Eij) − λI2n)((Eij) − µI2n) are in J0

Θ. They generate I0Θ together
with

∑2n
i=1 Eii−nλ−nµ if λ �= µ. We can quantize this minimal polynomial and the

quantized minimal polynomial in this example equals q ε(x) = (x− λ)(x− µ− nε).
We can show that the 4n2 components of the matrix qε((Eij)) ∈M (2n, U ε(g)) and
the element

∑2n
i=1Eii − nλ − nµ generate IεΘ if λ− µ /∈ {ε, . . . , (n− 1)ε}.

The main topic in this paper is to construct the elements in U (g) which kills the
generalized Verma module of the scalar type for the classical Lie algebra by using
the quantized minimal polynomial.

The author expresses his sincere gratitude to Mittag-Leffler Institute since the
result for g = gl(n,C) was obtained when the author was invited there from Sep-
tember until November in 1995 and the result is reported in [O2].

2. Minimal Polynomials

For a module A and positive integers N and N ′, we denote by M (N,N ′,A) the
set of matrices of size N ×N′ with components in A. If N = N ′, we simply denote
it by M (N,A) and then M (N,A) is naturally an associative algebra if so is A.

We use the standard notation gln, on and spn for classical Lie algebras over C.
For a Lie algebra g we denote by U (g) and S(g) the universal enveloping algebra and
the symmetric algebra of g, respectively. For a non-negative integer k let S(g)(k) be
the subspace of S(g) formed by elements of degree at most k. If we fix a Poincare-
Birkhoff-Witt base of U (g), we can identify U (g) and S(g) as vector spaces and we
denote by U (g)(k) the subspace of U (g) corresponding to S(g)(k).

The Lie algebra glN is identified with M (N,C) � End(CN) by [X,Y ] = XY −
Y X. Let Eij =

(
δµiδνj

)
1≤µ≤N
1≤ν≤N

∈ M (N,C) be the standard matrix units. Note

that the symmetric bilinear form

(2.1) 〈X,Y 〉 = TraceXY for X,Y ∈ glN

on glN is non-degenerate and satisfies

〈Eij , Eµν〉 = δiνδjµ,

X =
∑
i,j

〈X,Eji〉Eij ,

〈Ad(g)X,Ad(g)Y 〉 = 〈X,Y 〉 for X, Y ∈ glN and g ∈ GL(N,C).

Lemma 2.1. Let g be a Lie algebra over C and let (π,CN) be a representation of
g. We denote by U (π(g)) the subalgebra of the universal enveloping algebra U (glN)
of glN generated by π(g). Let p be a linear map of glN to U (π(g)) satisfying

(2.2) p([X,Y ]) = [X, p(Y )] for X ∈ π(g) and Y ∈ glN ,

that is, p ∈ Homπ(g)(glN , U (π(g))).
Fix f(x) ∈ C[x] and put

(2.3)


p(E) =

(
p(Eij)

)
1≤i≤N
1≤j≤N

∈M
(
N,U (π(g))

)
,(

Fij

)
1≤i≤N
1≤j≤N

= f(p(E)) ∈M
(
N,U (π(g))

)
.
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Then

(2.4) [X,Fij] =
n∑

ν=1

XνiFνj −
n∑

ν=1

XjνFiν

=
n∑

µ=1

〈X,Eiν〉Fνj −
n∑

ν=1

Fiν〈X,Eνj〉 for X =
(
Xij

)
1≤i≤N
1≤j≤N

∈ π(g)

with Xij ∈ C.

Proof. Fix X ∈ π(g). Since

[X,Eij ] = [
∑
µ,ν

XµνEµν , Eij] =
n∑

µ=1

XµiEµj −
n∑

ν=1

XjνEiν ,

we have (2.4) for f(x) = x by (2.2).

Suppose
(
F 1
ij

)
and

(
F 2
ij

)
∈ M

(
N,U (π(g)

)
satisfy (2.4). Put Fij =

n∑
k=1

F 1
ikF

2
kj

in U (π(g)). Then

[X,Fij] =
n∑

k=1

[X,F 1
ik]F

2
kj +

n∑
k=1

F 1
ik[X,F

2
kj]

=
n∑

k=1

(
n∑

µ=1

XµiF
1
µkF

2
kj −

n∑
ν=1

XkνF
1
iνF

2
kj

)

+
n∑

k=1

(
n∑

µ=1

F 1
ikXµkF

2
µj −

n∑
ν=1

F 1
ikXjνF

2
kν

)

=
n∑

µ=1

XµiFµj −
n∑

ν=1

XjνFiν

and therefore the elements
(
Fij

)
of M

(
N,U (π(g))

)
satisfying (2.4) form a subal-

gebra of M
(
N,U (π(g))

)
. �

Definition 2.2. If the symmetric bilinear form (2.1) is non-degenerate on π(g), the
orthogonal projection of glN onto π(g) satisfies the assumption for p in Lemma 2.1,
which we call the canonical projection of glN to π(g).

Remark 2.3. Assume that g is reductive and that the finite dimensional represen-
tation (π, V ) in Lemma 2.1 is completely reducible. Let G be a connected and
simply connected Lie group with the Lie algebra g and let GU be a maximal com-
pact subgroup of G. Moreover let g = n̄ ⊕ a ⊕ n be a triangular decomposition
of g such that exp a ∩ GU is a maximal torus of GU . Let Σ(a) and Σ(a)+ be the
sets of the roots for the pair (g, a) and (n, a), respectively, and let Ψ(a) denote the
fundamental system of Σ(a)+. We fix a Hermitian inner product on V so that π
is a unitary representation of GU . Let {v1, . . . , vN} be an orthonormal basis of V
such that vj is a weight vector of a weight #j with respect to the Cartan subal-
gebra a. We may assume that #i − #j ∈ Σ(a)+ means i < j. Hence #1 is the
lowest weight and #N is the highest weight of the representation π. Under this
basis we identify π(X) =

(
π(X)ij

)
∈ M (N,C) � End(CN) � glN for X ∈ g by

π(X)vj =
∑N

i=1 π(X)ijvi. Note that π(a) ⊂ aN , π(n) ⊂ nN and π(n̄) ⊂ n̄N by
denoting

(2.5) aN =
N∑
j=1

CEii, nN =
∑

1≤j<i≤N

CEij and n̄N =
∑

1≤i<j≤N

CEij.
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Since π(X) is skew Hermitian for the element X in the Lie algebra gU of GU and
Cπ(gU ) + π(a) = π(g), we have tπ(g) = π(g). Hence the symmetric bilinear form
(2.1) is non-degenerate on π(g) and there exists the canonical projection of glN to
π(g).

Definition 2.4 (Characteristic polynomials and minimal polynomials). Given a Lie
algebra g, a faithful finite dimensional representation (π,CN) and a g-homomorphism
p of End(CN ) � glN to U (g). Here we identify g as a subalgebra of glN through
π. Let U (g) and U (g)G be the universal enveloping algebra of g and the center of
U (g), respectively. Put F =

(
p(Eij)

)
∈ M (N,U (g)). We say qF (x) ∈ U (g)G[x] is

the characteristic polynomial of F if it is a non-zero polynomial of x satisfying

qF (F ) = 0

with the minimal degree.
Suppose moreover a g-module M is given. Then we call qF,M (x) ∈ C[x] is the

minimal polynomial of F with respect to M if it is the monic polynomial with the
minimal degree which satisfies

qF,M(F )M = 0.

If p is the canonical projection in Definition 2.2, we sometimes denote Fπ, qπ
and qπ,M in place of F , qF and qF,M , respectively.

Remark 2.5. i) After the results in this paper was obtained, the author was in-
formed that [Go2] studied the characteristic polynomial of Fπ for the irreducible
representation π of the reductive Lie algebra.

ii) If g is reductive, the characteristic polynomial is uniquely determined by (π, p)
up to a constant multiple of the element of U (g)G since U (g)G is an integral domain.

iii) If g is reductive and M has an infinitesimal character χ, that is, χ is an
algebra homomorphism of U (g)G to C with (D − χ(D))M = 0 for D ∈ U (g), then
χ(qF (x)) ∈ C[x]qF,M(x).

iv) The characteristic polynomial and minimal polynomial of a matrix in the
linear algebra can be regarded as a classical limit of our definition. See the proof
of Proposition 4.16.

Theorem 2.6. Let g be a reductive Lie algebra and let F be a matrix of U (g)
defined from a representation of π under Definition 2.4.

i) There exists the characteristic polynomial qF (x) whose degree is not larger
than

∑
ω mπ(#)2. Here # runs through the weights of π and mπ(#) denotes the

multiplicity of the generalized weight # in π.
ii) The minimal polynomial qF,M (x) exists if a g-module M has a finite length

or an infinitesimal character. Its degree is not larger than that of the characteristic
polynomial qF (x) if M has an infinitesimal character.

Proof. Let Û (g)G denote the quotient field of U (g)G and put Û (g) = Û (g)G⊗U(g)G

U (g). Owing to [Ko] it is known that U (g) = Λ(H(g))⊗U (g)G, where H(g) is the
space of g-harmonic polynomials of S(g) and Λ is the map of the symmetrization
of S(g) onto U (g). It is also known that H(g) �

∑
τ∈ĝf

mτ (0)τ as a represen-
tation space of g by denoting ĝf the equivalence classes of the finite dimensional
irreducible representations of g.

Hence the dimension of the g-homomorphisms of π ⊗ π∗ to Û (g) over the field
Û (g)G is not larger than

∑
τ∈ĝf

[π⊗π∗, τ ]mτ(0). Here [π⊗π∗, τ ] is the multiplicity
of τ appeared in [π ⊗ π∗] in the sense of the Grothendieck group. Moreover it is
clear that

∑
τ∈ĝf

[π ⊗ π∗, τ ]mτ(0) = mπ⊗π∗ (0) =
∑

� mπ(#)2. On the other hand
Lemma 2.1 says that the space Vk =

∑
i,j CF k

ij is naturally a subrepresentation of
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the representation of g which is realized inM (N,C) and belongs to π⊗π∗ and that
the map Tk : Eij �→ F k

ij defines a g-homomorphism of M (N,C) to U (g). Hence
T1, . . . , Tm are linearly dependent over Û (g)G if m >

∑
�mπ(#)2 . Thus we have

proved the existence of the characteristic polynomial with the required degree.
For the existence of the minimal polynomial it is sufficient to prove the ex-

istence of a non-zero polynomial f(x) with f(F )M = 0. Considering the irre-
ducible subquotients ofM in Definition 2.4, we may assume M has an infinitesimal
character λ. Let qF (x) be the characteristic polynomial. We can choose µ ∈ a∗

so that ω̄(qF (x))(λ + µt) ∈ C[x, t] is not zero. We can find a non-negative in-
teger k such that f(x, t) = t−kω̄(qF (x)) ∈ C[x, t] and f(x, 0) is not zero. Put
Iλ =

∑
Z∈U(g)G U (g)

(
Z − ω̄(Z)(λ)

)
. We define h(t) ∈ M (N,H(g) ⊗ C[t]) so that

f(F, t)− Λ(h(t)) ∈M (N, Iλ+µt). Since dF (F )(λ+ µt) ∈M (N, Iλ+µt), h(t) = 0 for
t �= 0 and hence h = 0 and therefore f(F, 0)

(
U (g)/Iλ

)
= 0. Hence f(F, 0)M = 0

because Ann(M ) ⊃ Iλ. �
Hereafter in this note we assume

(2.6)


π is injective,
p(glN) ⊂ g,

p(X) = CX for X ∈ g

in Lemma 2.1 with a suitable non-zero constant C. Then we have the following.

Remark 2.7. i) Since π is faithful, g is identified with the Lie subalgebra π(g) of
glN and U (π(g)) is identified with the universal enveloping algebra U (g) of g. We
note that the existence of p with (2.6) is equivalent to the existence of a g-invariant
subspace of glN complementary to g.

ii) Fix g ∈ GL(N,C). If we replace X by gXg−1 for X ∈ π(g) in Lemma 2.1,(
Fij

)
naturally changes into g

(
Fij

)
g−1 and therefore the corresponding character-

istic polynomial and minimal polynomial does not depend on the realization of the
representation π.

iii) Suppose g is semisimple. Then the existence of p is clear because any finite
dimensional representation of a semisimple Lie algebra g is completely reducible.

iv) Let σ be an involutive automorphism of glN . Put

g = {X ∈ glN ; σ(X) = X}.
Let π be the inclusion map of g ⊂ glN . Since q = {X ∈ glN ; σ(X) = −X} is g-
stable, we may put p(X) = X+σ(X)

2 in Lemma 2.1, which is the canonical projection
with respect to the bilinear form of glN .

v) For a positive integer k and complex numbers λ1, . . . , λk, the vector space
spanned by the N2 components of the matrix (p(E) − λ1IN) · · · (p(E) − λkIN ) is
g-invariant. Moreover the trace of the matrix is a central element of U (g), which is
clear from Lemma 2.1 and studied by [Ge] and [Go1] etc.

3. Projection to the Cartan subalgebra

Now we consider the natural realization of classical simple Lie algebras. Denoting

Ĩn =
(
δi,n+1−j

)
1≤i≤n
1≤j≤n

=

 1
. . .

1

 and J̃n =
(

Ĩn
−Ĩn

)
,

we naturally identify

(3.1)
on = {X ∈ gln; σon(X) = X} with σon(X) = −ĨntXĨn

spn = {X ∈ gl2n; σspn
(X) = X} with σspn

(X) = −J̃ntXJ̃n.
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Definition 3.1. Let g = gln or o2n or o2n+1 or spn and put N = n or 2n or 2n+1
or 2n, respectively, so that g is a subalgebra of glN . Put

(3.2) ī = N + 1− i

for any integer i and define

(3.3) εi =


0 if g = gln,

1 if g = oN ,

1 if g = spn and i ≤ n,

−1 if g = spn and i > n.

Then the involutions σg of glN defining g with g = oN and spn satisfy

σg(Eij) = −εiεjEj̄ī.

We moreover define

(3.4) F =
(
Fij

)
1≤i≤N
1≤j≤N

=
(
Eij − εiεjEj̄ī

)
1≤i≤N
1≤j≤N

.

This definition of F means C = 2 in (2.6) if g = oN or spn. We will denote Fi

in place of Fii for simplicity. Then g =
∑

i,j CFij and

(3.5) [X,Fij] =
N∑

ν=1

(
XνiFνj −XjνFiν

)
for X =

(
Xij

)
∈ g ⊂M (N,C)

by Lemma 2.1.
Use the notation (2.5) and define a = g∩ aN , n = g∩ nN and n̄ = g∩ n̄N . Then

(3.6) g = n̄⊕ a⊕ n

is a triangular decomposition of g.

Definition 3.2. For a positive integer k and complex numbers λ1, . . . , λk put

F k(λ1, . . . , λk) = (F − λ1IN ) · · · (F − λkIN )

and define an element F̄ k(λ1, . . . , λk) in M (N,U (a)) by

(3.7) F k(λ1, . . . , λk) ≡ F̄ k(λ1, . . . , λk) mod M (N, n̄U (g) + U (g)n)

In this section we will study the image F̄ k(λ1, . . . , λk) of F k(λ1, . . . , λk) under
the Harish-Chandra homomorphism with respect to (3.6). First we note that if

(3.8) Fij ∈


n̄ if i < j,

a if i = j,

n if i > j,
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we have
(3.9)

F k
ij(λ1, . . . , λk) ≡

j∑
µ=1

F k−1
iµ (λ1, . . . , λk−1)(Fµj − λkδµj) mod U (g)n

= F k−1
ij (λ1, . . . , λk−1)(Fj − λk)

+
j−1∑
µ=1

(
FµjF

k−1
iµ (λ1, . . . , λk−1) − [Fµj, F

k−1
iµ (λ1, . . . , λk−1)]

)

= F k−1
ij (λ1, . . . , λk−1)(Fj − λk) +

j−1∑
µ=1

(
FµjF

k−1
iµ (λ1, . . . , λk−1)

−
i−1∑
ν=1

〈Fµj, Eiν〉F k−1
νµ (λ1, . . . , λk−1) +

N∑
ν=µ+1

〈Fµj, Eνµ〉F k−1
iν (λ1, . . . , λk−1)

)
by Lemma 2.1.

The following is clear by the induction on k.

Remark 3.3. i) The highest homogeneous part of F̄ k(λ1, . . . , λk) with the degree k
is given by

F̄ k(λ1, . . . , λk) ≡
(
δijF

k
ii

)
1≤i≤N
1≤j≤N

mod M (N,U (a)(k−1)).

ii) If g = gln or o2n+1 or spn and π is the natural representation of g, it is clear
that TraceF k

π for k = 1, 2, . . . , n or k = 2, 4, . . . , 2n or 2, 4, . . . , 2n, respectively,
generate U (g)G as an algebra. In particular for any D ∈ U (g)G there uniquely
exists a polynomial f(x) with Trace f(F ) = D. In the case when g = o2n we use
both the natural representation π and the half-spin representation π′ of g and then
TraceF k

π for k = 2, 4, . . . , 2(n− 1) and TraceF n
π′ generate U (g)G.

iii) The Killing form of g is a positive constant multiple of the restriction of the
bilinear form (2.1) to g if g is simple.

Hereafter suppose that g = gln or o2n or o2n+1 or spn and that F is given by
(3.4). Then (3.4) means

〈Fµj , Eiν〉 = δijδµν − εµεjδµ̄iδj̄ν and 〈Fµj, Eµν〉 = δjν − εµεjδµ̄νδj̄µ

and therefore it follows from (3.9) that

(3.10)

F k
ij(λ1, . . . , λk) ≡ F k−1

ij (λ1, . . . , λk−1)(Fj − λk + j − 1)

+
j−1∑
µ=1

(
FµjF

k−1
iµ (λ1, . . . , λk−1)

− δijF
k−1
µµ (λ1, . . . , λk−1) + εµεjδµīF

k−1
j̄ī

(λ1, . . . , λk−1)

− εµεjδµj̄F
k−1
ij (λ1, . . . , λk−1)

)
mod U (g)n.

Since [U (g)n, U (a)] ⊂ U (g)n and since Fij ∈ n and Fj̄ī ∈ n for i > j, the equation
(3.10) shows F k

ij(λ1, . . . , λk) ≡ 0 mod U (g)n for i > j by the induction on k.
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Similarly we have F k
µν(λ1, . . . , λk) ∈ n̄U (g) if i < j. Hence by denoting

(3.11)

ωi =

{
0 if i ≤ n,

εi if i > n,

ω′
j =

{
0 if j ≤ n or j̄ ≥ j,

εj if j > n and j̄ < j,

we have

F k
ii(λ1, . . . , λk)(3.12)

≡ F k−1
ii (λ1, . . . , λk−1)(Fi − λk + i− 1− ωi) + ωiF

k−1
ī̄i

(λ1, . . . , λk−1)

−
i−1∑
µ=1

F k−1
µµ (λ1, . . . , λk−1) mod U (g)n,

F k
ii+1(λ1, . . . , λk)(3.13)

≡ F k−1
ii+1(λ1, . . . , λk−1)(Fi+1 − λk + i− ω′

i+1) + ωiF
k−1
ī−1ī

(λ1, . . . , λk−1)

+ Fii+1F
k−1
ii (λ1, . . . , λk−1) mod U (g)n.

Now we give the main result in this section:

Proposition 3.4. Suppose that g = gln or o2n or o2n+1 or spn and that F is given
by (3.4). Let Θ = {n1 < n2 < · · · < nL = n} be a sequence of positive integers.
Put n′

ν = nν − nν−1 for ν = 1, . . . , L with n0 = 0 and fix k with 1 ≤ k ≤ L. Let
λ1, . . . , λk are complex numbers. Put n0 = 0 and nν = n for ν > L and define

ιΘ(ν) = p if np−1 < ν ≤ np,

J̃(λ)i = U (g)n +
i∑

ν=1

U (g)(Fν − λιΘ(ν) + nιΘ(ν)−1).

If g = gln, we put H(Θ, λ1, . . . , λL) = FL(λ1, . . . , λL).
If g = spn or o2n, we put

H(Θ, λ1, . . . , λL) = F 2L(λ1, . . . , λL,

− λ1 − n′
1 + 2n+ δ, . . . ,−λL − n′

L + 2n+ δ).

If g = o2n+1, we put

H(Θ, λ1, . . . , λL) = F 2L+1(λ1, . . . , λL, n,

− λ1 − n′
1 + 2n, . . . ,−λL − n′

L−1 + 2n).

Moreover we define

H̃(Θ, λ1, . . . , λL−1) = F 2L−1(λ1, . . . , λL−1, nL−1,

− λ1 − n′
1 + 2n+ δ, . . . ,−λL−1 − n′

L−1 + 2n+ δ).

Here

(3.14) δ =


1 if g = spn,

0 if g = o2n+1 or gln,

−1 if g = o2n.

i) The off-diagonal elements of F k(λ1, . . . , λk) satisfy

F k
ij(λ1, . . . , λk) ≡ 0 mod U (g)n if i > j,

F k
ij(λ1, . . . , λk) ≡ 0 mod n̄U (g) if i < j.
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ii) If i ≤ n, then

F k
ii(λ1, . . . , λk)

≡
{

0 mod J̃(λ)i if i ≤ nk,∏k
ν=1(λk+1 − λν − n′

ν) mod J̃(λ)i if nk < i ≤ nk+1.

iii) If i < n, then

F k
ii+1(λ1, . . . , λk)

≡
(�−1∏
ν=1

(λ� − λν − n′
ν − n�−1 + i)

k∏
ν=�+1

(λ� − λν − n�−1 + i)
)
Fii+1

mod J̃(λ)i if n�−1 < i < n� and k ≥ 7.

iv) Suppose g = o2n or o2n+1 or spn. Then

Hii(Θ, λ1, . . . , λL) ≡ 0 mod J̃(λ)n for i = 1, . . . , N.

In particular, if λL = nL−1, then

H̃ii(Θ, λ1, . . . , λL−1) ≡ 0 mod J̃(λ)n for i = 1, . . . , N

and

H̃nn+1(Θ, λ1, . . . , λL−1)

≡ (−1)L−1
(L−1∏
ν=1

(λν + n′
ν − n)(λν + n′

ν − n− δ)
)
Fnn+1

mod U (g)J̃(λ)n.

Proof. Put F k(λ) = Fk(λ1, . . . , λk) for simplicity. If i < n, it follows from (3.12)
that

F k
i+1i+1(λ)−F k

ii(λ) ≡ F k−1
i+1i+1(λ)(Fi+1−λk+i)−F k−1

ii (λ)(Fi−λk+i) mod U (g)n

and therefore by the induction on k we have

(3.15) F k
ii(λ) ≡ F k

i+1i+1(λ) mod U (g)n + U (g)(Fi+1 − Fi).

Here we note that Fν+1 − Fν ∈ J̃(λ)n� if n�−1 < ν < n�. Hence we have

F k
ii(λ) + J̃(λ)n� = F k

n�n�
(λ) + J̃(λ)n� for n�−1 < i ≤ n� and 1 ≤ 7 ≤ L.

Put sν = nν −nν−1 and introduce polynomials f(k, 7) of (λ1, . . . , λL, s1, . . . , sL)
with 7 ≤ n so that

(3.16) F k
n�n�

(λ1, . . . , λk) ≡ f(k, 7) mod J̃(λ)n� .

Similarly for i with n�−1 < i < n�, we put t = λ�−n�−1+ i and define polynomials
g(k, 7) of (t, λ1, . . . , λL, s1, . . . , sL) so that

(3.17) F k
ii+1(λ1, . . . , λk) ≡ g(k, 7)Eii+1 mod J̃(λ)i.

Then we have

(3.18)

f(k, 7) =


1 if k = 0,

f(k − 1, 7)(λ� − λk) −
�−1∑
ν=1

sνf(k − 1, ν) if k ≥ 1,

g(k, 7) =

{
1 if k = 1,
g(k − 1, 7)(t− λk) + f(k − 1, 7) if k > 1.

We will first prove f(k, 7) = 0 if k ≥ 7 by the induction on 7. Putting 7 = 1
in (3.18), we have f(k, 1) = f(k − 1, 1)(λ1 − λk) and f(1, 1) = 0 and therefore
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f(k, 1) = 0 for k ≥ 1. Then if k ≥ 7+1, we have f(k, 7+1) = f(k−1, 7+1)(λ�+1−
λk) −

∑�
ν=1 sνf(k − 1, ν) = f(k − 1, 7 + 1)(λ�+1 − λk) by the hypothesis of the

induction. Hence we have f(k, 7 + 1) = 0 for k ≥ 7+ 1 by the induction on k.
Putting λ� = λ�−1 + s�−1 in (3.18), we have f(k, 7)− f(k, 7 − 1) = f(k − 1, 7)−

f(k − 1, 7) = · · · = 0 and therefore f(7 − 1, 7)|λ�=λ�−1+s�−1 = 0. Hence there exist
polynomials h(7) with f(7 − 1, 7) = h(7)(λ� − λ�−1 − s�−1). Then (3.18) shows

h(7)(λ� − λ�−1 − s�−1) = f(7 − 2, 7)(λ� − λ�−1)− s�−1f(7 − 2, 7− 1).

It follows from (3.18) that f(k, 7) is a polynomial of degree at most 1 with respect to
s�−1 because f(k, ν) does not contain s�−1 for ν < 7. Hence h(7) = f(7−2, 7)|s�−1=0.
Moreover by putting s�−1 = 0 in (3.18), it is clear that f(7 − 2, 7)|s�−1=0 does not
contain λ�−1. Hence h(7) = f(7 − 2, 7− 1)|λ�−1 �→λ� and we get

(3.19) f(7 − 1, 7) =
�−1∏
ν=1

(λ� − λν − sν)

by the induction on 7. Thus we have ii).
Now we put

(3.20) f(7 − 1, 7) =
�−1∑
ν=0

c(ν, 7)(λ� − λν+1)(λ� − λν+2) · · · (λ� − λ�−1)

with homogeneous polynomials c(ν, 7) of (λ1, . . . , λ�−1, s1, . . . , s�−1) with degree ν.
Here c(ν, 7) does not contain λ�. Then by the induction on k = 7 − 1, 7− 2, . . . , 0,
(3.18) shows

(3.21)

f(k, 7) =
k∑

ν=0

c(ν, 7)(λ� − λν+1)(λ� − λν+2) · · · (λ� − λk),

−
�−1∑
ν=1

sνf(k − 1, ν) = c(k, 7)

because
∑�−1

ν=1 sνf(k − 1, ν) does not contain λ�. We will show

g(7, 7) =
�−1∑
k=0

(t− λ�)(t− λ�−1) · · · (t− λk+2)f(k, 7)(3.22)

=
�−1∏
ν=1

(t− λν − sν).(3.23)

Note that (3.22) is a direct consequence of (3.18). Denoting

gk(7) =
�−1∑
ν=0

c(ν, 7)(λ� − λν+1) · · · (λ� − λk−1)(λ� − λk)(t − λk+1) · · · (t − λ�−1)

for k = 0, . . . , 7− 1, we have

gk−1(7) − gk(7)

=
k−1∑
ν=0

c(ν, 7)(λ� − λν+1) · · · (λ� − λk−1)(t − λ�)(t − λk+1) · · · (t − λ�−1)

= (t− λ�)(t − λ�−1) · · · (t − λk+1)f(k − 1, 7)

from (3.21) and therefore (3.22) shows

g(7, 7) = g�−1(7) +
�−1∑
k=1

(gk−1(7) − gk(7)) = g0(7) = f(7 − 1, 7)|λ� �→t,
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which implies (3.23). Since f(k, 7) = 0 for k ≥ 7, (3.18) shows

(3.24) g(k, 7) =
�−1∏
ν=1

(t − λν − sν)
k∏

ν=�+1

(t− λν) if k ≥ 7,

from which iii) follows.
In general we have proved the following lemma.

Lemma 3.5. The functions f(k, 7) and g(k, 7) of λ1, λ2, . . . , s1, s2, . . . and t which
are recursively defined by (3.18) satisfy (3.19), (3.24) and f(k, 7) = 0 for k ≥ 7 ≥ 1.

Now suppose g = spn or o2n. Then

(3.25) F k
n+1n+1(λ) ≡ F k−1

n+1n+1(λ)(Fn+1 − λk) +
n∑

ν=1

(F k−1
n+1n+1(λ) − Fn−1

νν (λ))

+ δ(F k−1
n+1n+1(λ) − F k−1

nn (λ)) ≡ 0 mod U (g)n.

Hence

(3.26)

F k
n+1n+1(λ) − F k

nn(λ)

≡ F k−1
n+1n+1(λ)(Fn+1 − λk + n+ δ)− Fk−1

nn (λ)(Fn − λk + n+ δ)

≡ 0 mod U (g)n + U (g)(Fn+1 − Fn)

by the induction on k and
(3.27)

F k
n+1n+1(λ) ≡ 0 mod

n∑
ν=1

U (g)F k−1
νν (λ) + U (g)n + U (g)(Fn+1 − λk + n+ δ).

Since Fn+1 = −Fn, we have from (3.25)

FL
n+1n+1(λ1, . . . , λL−1, nL−1) ≡ 0 mod J̃(λ)nL−1 +

n∑
ν=nL−1+1

U (g)Fν

in the case λL = nL−1 and from (3.27) with −(λL − nL−1)− λL+1 + n+ δ = 0

FL+1
n+1n+1(λ1, . . . , λL,−λL + nL−1 + n+ δ) ≡ 0 mod J̃(λ)n.

Suppose i < n. Then

F k
īī(λ) ≡ F k−1

ī̄i
(λ)(Fī − λk) +

ī−1∑
ν=1

(
F k−1
ī̄i

(λ) − F k−1
νν (λ)

)
+ δ(F k−1

ī̄i
(λ) − F k−1

ii (λ))

mod U (g)n

and therefore
(3.28)
F k
ī+1ī+1(λ)− F k

ī̄i(λ) ≡ F k−1
ī+1ī+1

(λ)(Fī+1 − λk + ī + δ) − Fk−1
ī̄i

(λ)(Fī − λk + ī+ δ)

+ δ(F k−1
i−1i−1(λ) − F k−1

ii (λ)) mod U (g)

≡ 0 mod U (g)n + U (g)(Fi − Fi−1) + U (g)(Fi−1 − Fī),

F k
n̄pn̄p

(λ) ≡ 0 mod
n̄p−1∑
ν=1

U (g)F k−1
νν (λ) + U (g)n + U (g)(Fn̄p − λk + n̄p − 1 + δ).

Note that Fn̄p −λk+ n̄p−1+ δ = (Fn̄p +λp−np−1)−λk−λp+np−1−np+2n+ δ.
Since Fν̄ = −Fν , we have

(3.29) F k
ī+1ī+1(λ) ≡ F k

ī̄i(λ) mod J̃(λ)n for n̄p ≤ ī < n̄p−1

and hence by the induction on p = L,L− 1, . . . , 1, we have
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(3.30) F 2L+1−p
n̄pn̄p

(λ1, . . . , λL,−λL + nL−1 − nL + 2n+ δ,

. . . ,−λp + np−1 − np + 2n+ δ) ≡ 0 mod J̃(λ)n

and if λL = nL−1, then

(3.31) F 2L−p
n̄pn̄p

(λ1, . . . , λL−1, nL−1, λL−1 + nL−2 − nL−1 + 2n+ δ,

. . . ,−λp + np−1 − np + 2n+ δ) ≡ 0 mod J̃(λ)n.

Suppose λL = nL−1 and g = spn. Then from (3.13) we have
(3.32)

F k
nn+1(λ) ≡ F k−1

nn+1(λ)(Fn+1n+1 − λk + n+ δ) + Fnn+1F
k−1
nn (λ) mod U (g)n

≡ FL
nn+1(λ)

k∏
ν=L+1

(−λν + n+ δ) mod J̃(λ)n if k ≥ L.

It follows from Lemma 3.5 with t = n+ 1 that

H̄nn+1(Θ, λ) ≡ Fnn+1

L−1∏
ν=1

(−λν + nν−1 − nν + n+ δ)
L−1∏
ν=1

(λν − nν−1 + nν − n)

mod J̃(λ)n.

Thus we have proved iv).
Lastly suppose g = o2n+1. Note that Fn+1 = 0 and Fn+2 = −Fn. Then

F k
n+1n+1(λ) ≡ F k−1

n+1n+1(Fn+1 − λk) +
n∑

ν=1

(
F k−1
n+1n+1(λ) − F k−1

νν (λ)
)

mod U (g)n

≡ 0 mod
n∑

ν=1

U (g)F k−1
νν (λ) + U (g)(−λk + n),

F k
n+2n+2(λ) ≡ F k−1

n+2n+2(Fn+2 − λk) +
n+1∑
ν=1

(
F k−1
n+2n+2(λ) − F k−1

νν (λ)
)

−
(
F k−1
n+2n+2(λ) − F k−1

nn (λ)
)

mod U (g)n

≡ 0 mod
n+1∑
ν=1

U (g)F k−1
νν (λ) + U (g)(−Fn − λk + n)

and

FL+1
n+1n+1(λ1, . . . , λL, n) ≡ 0 mod J̃(λ)n,

FL+2
n+2n+2(λ1, . . . , λL, n,−λL + nL−1 + n) ≡ 0 mod J̃(λ)n,

Since

F k
n+1n+1(λ) − F k

nn(λ) ≡ F k−1
n+1n+1(Fn+1 − λk + n)− F k−1

nn (Fn − λk + n)

mod U (g)n

F k
n+2n+2(λ)− F k

n+1n+1(λ) ≡ F k−1
n+2n+2(Fn+2 − λk + n)− F k−1

n+1n+1(Fn+1 − λk + n)

− (F k−1
n+1n+1(λ)− F k−1

nn (λ)) mod U (g)n,

we have

F k
n+2n+2(λ) ≡ F k

n+1n+1(λ) ≡ F k
nn(λ) mod U (g)n + U (g)Fn

and
FL
n+1n+1(λ) ≡ FL

n+2n+2(λ) ≡ 0 mod J̃(λ)n if λL = nL−1.
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Note that (3.28) is valid if ī < n. But since Fn̄p − λk + n̄p − 1 + δ = −λk − (Fnp −
λp + np−1)− λp + np−1 − np + 2n, we have

F 2L+2−p
n̄pn̄p

(λ1, . . . , λL, n,−λL + nL−1 − nL + 2n, . . . ,−λp + np−1 − np + 2n) ≡ 0

mod J̃(λ)n

for p = L,L−1, . . . , 1. Similarly we have (3.31) with δ = 0 if λL = nL−1. Moreover
(3.32) is valid with δ = 0 and we have iv) as in the case of g = spn. �

4. Generalized Verma modules

Retain the notation in the previous section. Let Θ = {(0 <)n1 < n2 < · · · <
nL(= n)} be the sequence of strictly increasing positive integers ending at n. Put

HΘ =
L∑

k=1

nk∑
i=1

Fi and HΘ̄ =
L−1∑
k=1

nk∑
i=1

Fi.

Recall that Fi = Fii, F =
(
Fij

)
∈ M (N, g), n =

∑
i>j CFij , a =

∑
i CFi, n̄ =∑

i<j CFij and g = n ⊕ a ⊕ n̄. Note that Fij = Eij in the case g = gln and
Fij = Eij + σg(Eij) in the case g = o2n+1, spn or o2n. Here σg is the involution of
glN to define g in (3.1) so that g is the subalgebra of glN fixed by σg. Let G be
the analytic subgroup of GL(N,C) with the Lie algebra g. Namely G = GL(n,C),
O(2n+ 1,C), Sp(n,C) or O(2n,C).

Define

(4.1)


mΘ = {X ∈ g; ad(HΘ)X = 0},
nΘ = {X ∈ n; 〈X,mΘ〉 = 0}, n̄Θ = {X ∈ n̄; 〈X,mΘ〉 = 0},
pΘ = mΘ + nΘ.

We similarly define mΘ̄, nΘ̄, n̄Θ̄ and pΘ̄ replacing Θ by Θ̄ in the above definition.
Then n = n{1,2,...,n}, n̄ = n̄{1,2,...,n} , a = a{1,2,...,n} and pΘ and pΘ̄ are parabolic
subalgebras of g containing the Borel subalgebra b = n + a.

Let {e1, . . . , en} be the dual bases of {F1, . . . , Fn}. Then the fundamental system
Ψ(a) for the pair (n, a) is

(4.2) Ψ(a) =


{e2 − e1, e3 − e2, . . . , en − en−1} if g = gln,

{e2 − e1, e3 − e2, . . . , en − en−1,−en} if g = o2n+1,

{e2 − e1, e3 − e2, . . . , en − en−1,−2en} if g = spn,

{e2 − e1, e3 − e2, . . . , en − en−1,−en − en−1} if g = o2n.

We put αj = ej+1− ej for j = 1, . . . , n− 1 and αn = −en or −2en or −en− en−1 if
g = o2n+1 or spn or o2n, respectively. Then the fundamental system for (mΘ ∩ n, a)
is Ψ(a) \ {αn1, . . . , αnL−1} and that for (mΘ̄ ∩ n, a) is

Ψ(a) \ {αn1, . . . , αnL−1 , αn} if g = o2n+1 or spn,

Ψ(a) \ {αn1, . . . , αnL−1} if g = o2n and nL−1 �= n− 1,
Ψ(a) \ {αn1, . . . , αnL−1 , αn} if g = o2n and nL−1 = n− 1.

Then the Dynkin diagram of g is as follows:

gln

α1 α2 αn−2 αn−1

◦——◦— · · ·—◦——◦ o2n+1

α1 α2 αn−1 αn

◦——◦— · · ·—◦=⇒◦
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spn

α1 α2 αn−1αn

◦——◦— · · ·—◦⇐=◦
o2n

α1 α2 αn−2 αn−1

◦——◦— · · ·—◦——◦

◦
αn

Fix λ = (λ1, . . . , λL) ∈ CL and define a character λΘ of pΘ

(4.3) λΘ(X +
n∑

i=1

CiFi) =
n∑

i=1

CiλιΘ(i) for X ∈ nΘ + [mΘ,mΘ].

We similarly define a character λΘ̄ of pΘ̄ if λL = 0.
We introduce the homogenized universal enveloping algebra

(4.4) U ε(g) =

( ∞∑
k=0

⊗kg

)
/〈X ⊗ Y − Y ⊗X − ε[X,Y ]; X, Y ∈ g〉.

of g as in [O4]. Here ε is a central element of U ε(g). Let U ε(g)(m) be the image of∑m
k=0⊗kg in U ε(g) and let U ε(g)G be the subalgebra of G-invariants of U ε(g). Fix

generators ∆1, . . . ,∆n of U ε(g)G so that

(4.5)


∆j ∈ U ε(g)(j) (1 ≤ j ≤ n) if g = gln,

∆j ∈ U ε(g)(2j) (1 ≤ j ≤ n) if g = o2n+1 or spn,

∆j ∈ U ε(g)(2j) (1 ≤ j < n), ∆n ∈ U ε(g)(n) if g = o2n.

If g = o2n, we assume that ∆n changes into −∆n by the outer automorphism of
o2n which maps (F1, . . . , Fn−1, Fn) to (F1, . . . , Fn−1,−Fn). Moreover put

(4.6)


Jε
Θ(λ) =

∑
X∈pΘ

U ε(g)(X − λΘ(X)), M ε
Θ(λ) = Uε(g)/Jε

Θ(λ),

Jε
Θ̄
(λ) =

∑
X∈pΘ̄

U ε(g)(X − λΘ̄(X)), M ε
Θ̄
(λ) = Uε(g)/Jε

Θ̄
(λ),

Jε(λΘ) =
∑
X∈b

U ε(g)(X − λΘ(X)), M ε(λΘ) = U ε(g)/Jε(λΘ).

For a U ε(g)-module M the annihilator of M is denoted by Ann(M ) and put
AnnG(M ) =

⋂
g∈GAd(g)Ann(M ). Note that AnnG(M ) = Ann(M ) if ε �= 0.

When ε = 1, U ε(g) is the universal enveloping algebra U (g) of g and we will some-
times omit the superfix ε for Jε

Θ(λ) and M ε
Θ(λ) etc. Then MΘ(λ) and MΘ̄(λ) are

generalized Verma modules which are quotients of the Verma module M (λΘ).

Remark 4.1. i) The parabolic subalgebra p containing the Borel subalgebra b
uniquely corresponds to pΘ or pΘ′ and therefore we will sometimes use the no-
tation mp, np, n̄p, λp, J ε

p(λ), M ε
p(λ) and M ε(λp) for mΘ′ , nΘ′ , n̄Θ′ , λΘ, Lε

Θ′ (λ),
M ε

Θ′ (λ) and M ε(λΘ), respectively, by this correspondence. If o2n and λL = 0, we
may put Θ′ = Θ or Θ′ = Θ̄.

ii) Suppose g = o2n. Then we have not considered the parabolic subalgebra p
such that the fundamental system for (mp, a) contains αn−1 and does not contains
αn. But this is reduced to the case when it contains αn and does not contains αn−1

by the outer automorphism of o2n. If λL = 0, then MΘ(λ) = MΘ̄(λ). Note that the
condition λL = 0 corresponds to the fact that MΘ(λ) is invariant under the outer
automorphism.
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Let ρ ∈ a∗ with ρ(H) = 1
2
Trace(ad(H))|n for H ∈ a. Then with δ in (3.14)

ρ =



n∑
ν=1

(
ν − n+1

2

)
eν if g = gln,

n∑
ν=1

(
ν − n − 1

2

)
eν =

n∑
ν=1

(
ν − n − δ+1

2

)
eν if g = o2n+1,

n∑
ν=1

(
ν − n − 1)eν =

n∑
ν=1

(
ν − n− δ+1

2

)
eν if g = spn,

n∑
ν=1

(
ν − n

)
eν =

n∑
ν=1

(
ν − n− δ+1

2

)
eν if g = o2n.

(4.7)

We define λ̄ = (λ̄1, . . . , λ̄n) ∈ Cn by

(4.8) λΘ|a + ερ = λ̄1e1 + λ̄2e2 + · · ·+ λ̄nen.

For P ∈ U ε(g) let ω(P ) and ω̄(P ) denotes the elements of S(a) � Uε(a) with

(4.9)
P − ω(P ) ∈ n̄U ε(g) + U ε(g)n,

ω̄(P )(µ+ ερ) = ω(P )(µ) for ∀µ ∈ a∗.

Then ω̄ induces the Harish-Chandra isomorphism

(4.10) ω̄ : U ε(g)G →̃ S(a)W .

Here W is the Weyl group for the pair (g, a) and S(a)W denotes the totality of
W -invariants in S(a).

Definition 4.2. Retain the above notation and define polynomials

(4.11)



qεΘ(gln;x, λ) =
L∏

j=1

(x− λj − nj−1ε),

qεΘ(o2n+1;x, λ) = (x− nε)
L∏

j=1

(x− λj − nj−1ε)(x+ λj + (nj − 2n)ε),

qεΘ(spn;x, λ) =
L∏

j=1

(x− λj − nj−1ε)(x+ λj + (nj − 2n− 1)ε),

qεΘ(o2n;x, λ) =
L∏

j=1
(x− λj − nj−1ε)(x+ λj + (nj − 2n+ 1)ε)

and if g = spn or o2n+1 or o2n,

(4.12) qεΘ̄(g;x, λ) = (x− nL−1ε)
L−1∏
j=1

(x− λj − nj−1ε)(x + λj + (nj − 2n− δ)ε)

with the δ given by (3.3). Furthermore define two-sided ideals of Uε(g)

(4.13)


IεΘ(λ) =

N∑
i=1

N∑
j=1

U ε(g)qεΘ(g;F, λ)ij +
∑
j∈J

U ε(g)
(
∆j − ω(∆j)(λΘ)

)
,

Iε
Θ̄
(λ) =

N∑
i=1

N∑
j=1

U ε(g)qε
Θ̄
(g;F, λ)ij +

∑
j∈J̄

U ε(g)
(
∆j − ω(∆j)(λΘ)

)
with

(4.14)


J = {1, 2, . . ., L− 1} if g = gln,

J = {1, 2, . . ., L}, J̄ = {1, 2, . . . , L− 1} if g = o2n+1,

J = J̄ = {1, 2, . . . , L− 1} if g = spn,

J = J̄ = {1, 2, . . . , L− 1} ∪ {n} if g = o2n.



ANNIHILATORS OF GENERALIZED VERMA MODULES 17

Remark 4.3. i) Let p(x) and q(x) be monic polynomials with q(x) ∈ C[x]p(x). Then

N∑
i=1

p(F )ii ∈ U ε(g)G,

N∑
i=1

p(F )ii −
N∑
i=1

F degp
i ∈ n̄U ε(g) + U ε(g)n + U ε(g)(deg p−1),

q(F )ij ∈
∑

1≤µ≤N
1≤ν≤N

U ε(g)p(F )µν .

Hence it is clear

(4.15) IεΘ′ (λ) ⊃
∑

D∈Uε(g)G

U ε(g)(D − ω(D)(λΘ)) for Θ′ = Θ and Θ̄.

Note that it is known that the right hand side of the above equals AnnG(M ε(λΘ)).
ii) IεΘ(λ) and Iε

Θ̄
(λ) are homogeneous ideals with respect to (g, λ, ε).

Now we give the main theorem in this paper:

Theorem 4.4. i) Let g = gln, o2n+1, spn or o2n. Then

(4.16)


IεΘ(λ) ⊂ Ann

(
M ε

Θ(λ)
)
,

qεΘ(g;F, λ)ii+1 ≡ rεi (g; Θ, λ)Fii+1 mod J ε(λΘ) if nk−1 < i < nk,

Jε
Θ(λ) = IεΘ(λ) + Jε(λΘ) if rε(g; Θ, λ) �= 0.

Here

rεi (gln; Θ, λ) =
k−1∏
ν=1

(
λk − λν − (nν − i)ε

) L∏
ν=k+1

(
λk − λν − (nν−1 − i)ε

)
=

k−1∏
ν=1

(λ̄i − λ̄nν )
L∏

ν=k+1

(λ̄i+1 − λ̄nν−1+1),

rεi(spn; Θ, λ) = rεi (o2n; Θ, λ)

= rεi (gln; Θ, λ)
L∏

ν=1

(
λk + λν + (nν − 2n− δ + i)ε

)
=

k−1∏
ν=1

(λ̄i − λ̄nν )
L∏

ν=k+1

(λ̄i+1 − λ̄nν−1+1)
L∏

ν=1

(λ̄i+1 + λ̄nν ),

rεi (o2n+1; Θ, λ) = rεi(gln; Θ, λ)
(
λk − (n− i)ε

) L∏
ν=1

(
λk + λν + (nν − 2n+ i)ε

)
=

1
2
(λ̄i + λ̄i+1)

k−1∏
ν=1

(λ̄i − λ̄nν )
L∏

ν=k+1

(λ̄i+1 − λ̄nν−1+1)
L∏

ν=1

(λ̄i+1 + λ̄nν )

with i and k are integers with nk−1 < i < nk and

(4.17) rε(g; Θ, λ) =
L∏

k=1

∏
nk−1<i<nk

rεi (g; Θ, λ).
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ii) Suppose λL = 0. If g = spn or o2n+1 or o2n, then
(4.18)

Iε
Θ̄
(λ) ⊂ Ann

(
M ε

Θ̄
(λ)
)
,

qε
Θ̄
(g;F, λ)ii+1 ≡ rεi (g; Θ̄, λ)Fii+1 mod J ε(λΘ) if ιΘ(i) = ιΘ(i + 1),

qε
Θ̄
(g;F, λ)nn+1 ≡ r̄ε(g; Θ̄, λ)Fnn+1 mod J ε(λΘ) if g �= o2n,

Jε
Θ̄
(λ) = Iε

Θ̄
(λ) + Jε(λΘ) if rε(g; Θ̄, λ) �= 0

with denoting

rεi (g; Θ̄, λ) =
k−1∏
ν=1

(
λk − λν − (nν − i)ε

) L−1∏
ν=k+1

(
λk − λν − (nν−1 − i)ε

)
,

·
(
λk − (n− i)ε

) L−1∏
ν=1

(λk + λν + (nν − 2n− δ + i)ε)

= (λ̄i+1 − λ̄n)
k−1∏
ν=1

(λ̄i − λ̄nν )
L−1∏

ν=k+1

(λ̄i+1 − λ̄nν−1+1)
L∏

ν=1

(λ̄i+1 + λ̄nν )

if nk−1 < i < nk,

r̄εo(g; Θ̄, λ) = (−1)L−1
L−1∏
ν=1

(
λν + (nν − n)ε

)(
λν + (nν − n− δ)ε

)

=


(−1)L−1

L−1∏
ν=1

λ̄nν (λ̄nν − λ̄n) if g = spn,

(−1)L−1
L−1∏
ν=1

(λ̄nν − λ̄n)2 if g = so2n+1,

and

(4.19)

r
ε(o2n; Θ̄, λ) =

L∏
k=1

∏
nk−1<i<nk

rεi (g; Θ̄, λ),

rε(g; Θ̄, λ) = rε(o2n; Θ̄, λ)r̄εo(g; Θ̄, λ) if g = spn or o2n+1.

Proof. Note that the parameter λν in Proposition 3.4 changes into λν −nν−1 in
the theorem. Then for Θ′ = Θ or Θ̄ Proposition 3.4 shows that

qεΘ′(g;F, λ)ij ≡ 0 mod n̄U ε(g) + Jε(λΘ′ ),

which assures IεΘ′ (λ) ⊂ Ann
(
M ε

Θ′ (λ)
)
(cf. [O4, Lemma 2.11 and Remark 2.12])

because Mε
Θ′ (λ) is irreducible g-module for generic (λ, ε) and

∑
CqεΘ′(g;F, λ)ij is

g-invariant.
Other statements of the theorem are direct consequences of Proposition 3.4. �

Remark 4.5. If the infinitesimal character ofM ε(λΘ) is regular, rε(g; Θ, λ) �= 0 and
rε(g; Θ̄, λ) �= 0.

It is proved by [BG] and [Jo] that for µ ∈ a∗ the map

(4.20) {I; I is the two sided ideal of U (g) with I ⊃ Ann
(
M (µ)

)
}

� I �→ I + J(µ) ∈ {J ; J is the left ideal of U (g) with J ⊃ J(µ)}
is injective if µ is dominant

(4.21) 2
〈µ+ ρ, α〉
〈α, α〉 /∈ {−1,−2, . . .} for any root α for the pair (n, a).

Since JΘ′ (λ) = IΘ′ (λ)+J(λΘ′ ) ⊂ Ann
(
MΘ′ (λ))+J(λΘ′ ) ⊂ JΘ′(λ) by Theorem 4.4,

we have the following corollary by this injectivity.
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Corollary 4.6. If λΘ|a + ρ is dominant and r1(g; Θ′, λ) �= 0, then

Ann
(
MΘ′ (λ)) = I1Θ′ (λ)

for Θ′ = Θ or Θ̄.

Remark 4.7. Suppose g = gln. Then another generator system of AnnG(M ε
Θ(λ))

is given for every (Θ, ε, λ). It is interesting to express them by the generators
constructed in this note, which is done by [Sa] when pΘ is a maximal parabolic
subalgebra. In the case of the minimal parabolic subalgebra, that is, in the case of
the central elements of U (g), it is studied by [I1], [I2] and [Um]. In general, it may
be considered as a generalization of Newton’s formula for symmetric polynomials.

Remark 4.8. Considering the m-th exterior product of the natural representa-
tion of gln, we may put p(E) =

(
EIJ

)
#I=#J=m

∈ M
((

n
m

)
, U (g)

)
in Lemma 2.1,

where I = {i1, . . . , im}, J = {j1, . . . , jm} with 1 ≤ i1 < · · · < im ≤ n and
1 ≤ j1 < · · · < jm ≤ n and EIJ = det

(
Eiµjν + (µ − m)εδiµjν

)
1≤µ≤m
1≤ν≤m

. Here

det
(
Aij

)
=
∑

σ∈Sn
Aσ(1)1 · · ·Aσ(n)n. The study of f(p(E)) for polynomials f(x)

may be interesting because it may be a quantization of the ideals of the rank vari-
eties (cf. [ES]) defined by the condition rank f(A) = m for A ∈M (n,C).

Remark 4.9. For g = on or spn we may expect an explicit generator system for
AnnG(M ε

p(λ)) which are of the same type given by [O4] for gln. It should be a
quantization of determinants and Pfaffians (and elementary divisors for the singular
case). The quantization of Pfaffians for on is studied by [I2], [IU] and [Od] etc. It
is shown by [Od] that it gives Ann(Mp(λ)) for the expected p.

Remark 4.10. We have considered
∑

i,j Cf(p(E))ij for the construction of a two-
sided ideal of U (g) with a required property. We may pick up a g-invariant sub-
space V of

∑
i,j Cf(p(E))ij to get a refined result. Moreover for a certain prob-

lem (cf. [O1]) related to a symmetric pair (g, k) it is useful to study k-invariant
subspaces of

∑
i,j Cf(p(E))ij which should have required zeros under the map of

Harish-Chandra homomorphism for the pair. This will be discussed in another
paper [OSh].

In the case when ε = 0 we have the following.

Theorem 4.11. Let λ ∈ a and suppose that the centralizer of λ in g equals mΘ′

with Θ′ = Θ or Θ̄. Then

I0Θ′ (λ) = {f ∈ S(g); f |Ad(G)λ = 0}.

Proof. It is clear from Theorem 4.4 that the element of I0Θ′ (λ) vanishes on λ
and therefore I0Θ′ (λ) vanishes on Ad(G)λ because I0Θ′ (λ) is G-stable.

We will prove that the dimension of the space
∑N

i=1

∑N
j=1 Cdq0Θ′(g;F, λ)ij|λ is

not smaller than dimmΘ′ . This is shown by the direct calculation and it is almost
the same in any case and therefore we give it in the case when g = spn and Θ′ = Θ̄.

Put Θ = {n1, . . . , nL} and λ = (λ1, . . . , λL). Note that λL = 0 and q0
Θ̄
(spn;x, λ) =

x
∏

1≤ν<L(x − λν)(x + λν). If nk−1 ≤ i < nk and nk−1 ≤ j < nk and k < L, we
have

dq0Θ̄(spn;F, λ)ij |λΘ = 2λ2k
∏

1≤ν<L, ν �=k

(λk − λν)(λk + λν)dFij .

If nL−1 ≤ i < 2n− nL−1 and nL−1 ≤ 2n− nL−1, then

dq0Θ̄(spn;F, λ)ij|λΘ =
∏

1≤ν<L

(−λν)(λν )dFij.
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The assumption of the proposition implies λk �= 0, λν �= 0 and λ2k �= λ2ν in the
above and therefore we get the required result.

Put V = {X ∈ g; f(X) = 0 (∀f ∈ IΘ′ (λ))}. Since [λ, g] = nΘ + n̄Θ, the tangent
space of Ad(G)λ at λ is isomorphic nΘ+ n̄Θ. Since Ad(G)λ ⊂ V , it follows from the
above calculation of the dimension that Ad(G)λ and V are equal in a neighborhood
of λ. In particular, V is non-singular at λ.

Let X ∈ g with f(X) = 0 for all f ∈ I0Θ′ (λ). We will show X ∈ Ad(G)λ, which
completes the proof of the theorem. Let X = Xs+Xn be the Jordan decomposition
of X. Here Xs is semisimple and Xn is nilpotent. By the action of the element of
Ad(G), we may assume Xs ∈ a and Xn ∈ n. Then it is clear that f(Xs + tXn) = 0
for all f ∈ I0Θ′ (λ) and t ∈ C. Moreover it is also clear that Xs is a transformation
of λΘ under a suitable element of the Weyl group of the root system for the pair
(g, a) and therefore we may assume Xs = λ. Since the tangent space of V and λ
is isomorphic to nΘ + n̄Θ, we have Xn ∈ nΘ. Hence Xn = 0 because [Xs, Xn] = 0.
and therefore X ∈ Ad(G)λ. �

Remark 4.12. Theorem 4.11 shows that we have constructed a generator system of
the defining ideal of the adjoint orbit of any semisimple element of any classical Lie
algebra. In fact, for any λ ∈ a in the orbit the centralizer of λ in g is mΘ or mΘ̄ or
g with a suitable Θ.

On the other hand [O4] constructed a generator system of the ideal corresponding
to the closure of an arbitrary conjugacy class of gln, which is of a different type
from the one given here.

We will generalize the Cayley-Hamilton theorem in the linear algebra. Put

d̄g(x) =



n∏
i=1

(
x− Fi − n−1

2 ε
)

if g = gln,

n∏
i=1

(
x− Fi − nε

)(
x+ Fi − nε

)
if g = spn,

n∏
i=1

(
x− Fi − (n− 1)ε

)(
x+ Fi − (n− 1)ε

)
if g = o2n,

(x− nε)
n∏

i=1

(
x− Fi − (n − 1

2 )ε
)(
x+ Fi − (n − 1

2 )ε
)

if g = o2n+1.

Here we note that if Θ = {1, 2, . . . , n}, then nj = j, λi + ni−1ε = λ̄i + (n + δ−1
2 )ε

and λi + (ni − 2n − δ)ε = λ̄i − (n + δ−1
2
)ε. Since d̄g(x) ∈ S(a)W [x], there exists

dg(x) ∈ U ε(g)G[x] with

(4.22) ω̄(dg(x)) = d̄g(x),

which is equivalent to dg(x) ≡ d̄g(x)(µ) mod J ε(µ−ερ). Then Theorem 4.4 assures
dg(F ) ≡ d̄g(F )(µ) ≡ 0 mod J ε(µ − ερ). Hence ω̄(dg(F ))(µ) = 0 for any µ ∈ a∗

and therefore ω̄(dg(F )) = 0, which assures dg(F ) = 0 because
∑

i,j Cdg(F )ij is
g-invariant (cf. [O4, Lemma 2.12]). Thus we have the following corollary.

Corollary 4.13 (The Cayley-Hamilton theorem for the natural representation of
the classical Lie algebra g).

dg(F ) = 0.

Remark 4.14. This result for gln and on is given by [Um] and [I2], respectively. A
much general result is given by [Go2] (cf. [OO]).

Remark 4.15. Suppose g = gln. Then it follows from [O3] that

dg(x) = det
(
x− Fij − (i − n)εδij

)
1≤i≤n
1≤j≤n

.
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In [O4] we define another generator system of AnnG(M ε
Θ

(
λ)
)
for any (Θ, λ, ε) by

using “elementary divisors” in place of the “minimal polynomial” q ε
Θ(gln;x, λ).

Proposition 4.16. Suppose g = gln and let π be its natural representation. Then
the characteristic polynomial of F =

(
Eij

)
in U ε(g) equals dεg(x) and the minimal

polynomial of (F,M ε
Θ(λ)) equals qεΘ(g;x, λ).

Proof. Suppose ε = 0 and identify the dual space g∗ of g with g by the bilinear
form (2.1). Put J 0

Θ(λ)
⊥ = {X ∈ g∗; 〈X,Y 〉 = 0 (∀Y ∈ J0

Θ(λ))}. Then the condition
q(F )M 0

Θ(λ) = 0 for a polynomial q(x) is equivalent to q(F )(J 0
Θ(λ)

⊥) = 0, which
also equivalent to q(AΘ(λ)) = 0 for a generic element AΘ,λ of J0

Θ(λ)
⊥ because the

closure of
⋃

g∈GL(n,C) gAΘ,λg
−1 equals

⋃
g∈GL(n,C) g(J

0
Θ(λ)

⊥)g−1 (cf. [O4, §2]). In
fact

AΘ,λ =


λ1In′

1 0
A21 λ2In′

2

A31 A32 λ3In′
3

...
...

...
. . .

AL1 AL2 AL3 · · · λLIn′
L


with generic Aij ∈M (n′

i, n
′
j,C). Hence our minimal polynomial is the same as that

of AΘ,λ in the linear algebra and the claim in the lemma for the minimal polynomial
is clear.

We may assume ε = 1. Let p(x) be the minimal polynomial of (F,MΘ(λ))
with a fixed λ. Define a homogeneous and monic polynomial p(x, ε) of (x, ε) with
p(x) = p(x, 1). Then p(x, ε)M ε

Θ(ελ) = 0 for ε ∈ C. If follows from the result in the
case ε = 0 that the degree of p(x) should not be smaller than that of qΘ(g;x, λ).
Hence qΘ(g;x, λ) is the minimal polynomial for M ε

Θ(λ).
Since the degree of the minimal polynomial qΘ(g;x, λ) for Θ = {1, 2, . . ., n} is

n, the degree of the characteristic polynomial is not smaller than n. Hence dg(x)
is the characteristic polynomial. �
Remark 4.17. Let g is o2n+1, spn or o2n and let F be the matrix defined through the
natural representation of g. Then it may be expected that dg(x) is the characteristic
polynomial of F and q εΘ′ (g;x, λ) is the minimal polynomial of (F,M ε

Θ′(λ)) with
Θ = Θ or Θ′. We will not discuss this problem in this note but it should be
remarked that these concept is the motivation of the construction of our two-sided
ideal IεΘ′ (λ).

Definition 4.18. The non-zero element q(x, λ, ε) ∈ C[x, λ, ε] is called the global
minimal polynomial of (F,Mp(λ)) if q(x, λ, ε) satisfies q(F, λ, ε)Mp(λ) = 0 for any
(λ, ε) in the parameter space and any other non-zero polynomial whose degree with
respect to x is smaller than that of q(x, λ, ε) does not satisfies this.

Theorem 4.19. The polynomials qεΘ′(g;x, λ) in Definition 4.2 are the global min-
imal polynomials of (F,MΘ′ (λ)) for Θ′ = Θ and Θ̄.

Proof. Put ε = 0 and consider the generic λ. Then the minimality of the degree
of the polynomial is clear by evaluating qΘ′ (g;F, λ) at generic λ. �

5. Integral transforms on generalized flag manifolds

Let g be a complex reductive Lie algebra and p be a parabolic subalgebra con-
taining a Borel subalgebra b. For a holomorphic character λ of p we define left
ideals

(5.1)

{
Jp(λ) =

∑
X∈p(X − λ(X)),

Jb(λ) =
∑

X∈b(X − λ(X))
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of the universal enveloping algebra U (g) of g. Let Ip(λ) be the two-sided ideal of
U (g) which satisfies

(5.2) Ip(λ) ⊂ Jp(λ).

Let G be a connected real semisimple Lie group and let P be a parabolic subgroup of
P such that the complexifications of Lie(G) and Lie(P ) equal g and p, respectively.
Let Lλ be a line bundle over G/P such that the local section of Lλ is killed by
Jp(λ). Then the image of any g-equivalent map of the space of sections of Lλ over
an open subset of G/P is killed by Ip(λ). Here the element of Ip(λ) is identifies with
a left invariant differential operator but it may be identified with a right invariant
differential operator through the anti-automorphism of U (g) (X �→ −X, XY �→
(−Y )(−X) for X, Y ∈ g) because Ip(λ) is a two-sided ideal. If the g-equivariant
map is an integral transform to the space of functions on a homogeneous space X
of G or sections of a vector bundle over X, it is a natural question how the system
of differential equations induced from Ip(λ) characterizes the image.

The same problem may be considered when Lλ is the holomorphic line bundle
over the complexification of G/P .

5.1. Penrose transformations. Let GC be a reductive complex Lie group with
the Lie algebra g. Let G be a real from of GC and let PC be a parabolic subalgebra
of GC with the Lie algebra p and let V be a G-orbit in GC. Suppose Oλ is a
holomorphic line bundle over GC/PC which is killed by Jp(λ). Then the image of
any G-equivariant map

(5.3) T : H∗
V (GC/PC,Oλ)→ E,

is killed by Ip(λ).
This is obvious because Ip(λ) is a two-sided ideal. Here E is usually a space of

sections of a certain line (or vector) bundle over a homogeneous space of G. In this
case Ip(λ) is identified with a system of differential equations and we may identify
the element of Ip(λ) as a right invariant differential operator on G through the
anti-automorphism of the universal enveloping algebra or a left invariant differential
operator on G.

5.2. Poisson transformations. Let G be a connected semisimple Lie group with
finite center, let K be a maximal compact subgroup of G and let P be a parabolic
subalgebra of G with the Langlands decomposition P = MAN and let Po be
a minimal parabolic subgroup with the Langlands decomposition Po = MoAoNo

satisfying Mo ⊂ M , Ao ⊃ A, No ⊃ N and Po ⊂ P . Let λ be an element of the
complexification a∗ of the dual of the Lie algebra of A and put

B(G/P,Lλ) = {f ∈ B(G); f(xman) = aλf(x) (∀m ∈M, ∀a ∈ A, ∀n ∈ N )}
which is the space of hyperfunction sections of spherical degenerate principal series.
Let p be a complexification of the Lie algebra of P . The Poisson transformation of
the space B(G/P,Lλ) is defined by

(5.4) Pλ : B(G/P,Lλ)→ B(G/K), f �→ (Pλf)(x) =
∫
K

f(xk)dk

with the normalized Haar measure dk on K. Let D(G/K) be the ring of invariant
differential operator of G and let χλ be the algebra homomorphism of D(G/K) to
C so that the image of Pλ is in the solution space A(G/K,Mλ) of the system

(5.5) Mλ : Du = χλ(D)u (∀D ∈ D(G/K))

for u ∈ A(G/K). Here A(G/K) denotes the space of real analytic functions on
G/K.
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Note that B(G/P,Lλ) is the subspace of the space of hyperfunction sections of
spherical principal series

B(G/Po, Lλ) = {f ∈ B(G); f(xman) = aλf(x) (∀m ∈Mo, ∀a ∈ Ao, ∀n ∈ No)}.
Here λ is extended to the complexification a∗o of the dual of the Lie algebra a0 of
Ao so that it takes the value 0 on Lie(M ) ∩ Lie(Ao).

Theorem 5.1. Suppose that the Poisson transform

(5.6) Pλ
o : B(G/Po, Lλ)→A(G/K,Mλ), f �→ (Pλ

o f)(x) =
∫
K

f(xk)dk

for the boundary G/Po of G/K is bijective. Assume the condition

(5.7) Jp(λ) = Ip(λ) + Jb(λ)

for a two-sided ideal Ip(λ) of U (g). Then the Poisson transform Pλ for the boundary
G/P is a G-isomorphism onto the simultaneous solution space of the system Mλ

and the system defined by Ip(λ).

Proof. Since B(G/P,Lλ) is a subspace of B(G/Po, Lλ) and Pλ is a G-equivariant
map, the image of Pλ

o satisfies the systems Mλ and Ip(λ).
Suppose the function u ∈ A(G/K,Mλ) satisfies Ip(λ). Since the function

(Pλ
o )−1u ∈ B(G/Po, Lλ) also satisfies Ip(λ), the condition (5.7) assures (Pλ

o )−1u ∈
B(G/P,Lλ) because we may assume C ⊗R Lie(Po) ⊃ b. �
Remark 5.2. i) The above theorem with its proof is based on the idea given by [O3]
which explains it in the case when G = GL(n,R).

ii) The bijectivity of Pλ
o is equivalent to the condition e(λ+ρ) �= 0 by [K–]. This

condition is introduced by [He] for the injectivity of Pλ
o . Here

(5.8) e(λ) =
∏

α∈Σ+
o

{
Γ
(
〈λ, α〉
2〈α, α〉 +

mα

4
+

1
2

)
Γ
(
〈λ, α〉
2〈α, α〉 +

mα

4
+
m2α

2

)}
,

Σ+ is the set of the positive system for the pair (g, a0) so that Lie(N ) corresponds
to the positive root spaces. Moreover Σ+

o = {α ∈ Σ+; 1
2α /∈ Σ+}, mα is the

multiplicity of the root α ∈ Σ+ and ρ = 1
2

∑
α∈Σ+ mαα.

iii) Suppose G is simple and of the classical type and suppose the condition
e(λ + ρ) �= 0. Let Ip(λ) be the system given by (4.13). Then if moreover the
infinitesimal character of B(G/P,Lλ) is regular, Pλ is G-isomorphic to the solution
space of the system of differential equations Ip(λ) on G/K since Theorem 4.4 assures
(5.7). This is because the natural map of U (g)G to D(G/K) is surjective and
therefore it follows from Remark 4.3 i) that Mλ is contained in Ip(λ). Here the
function on G/K is identified with the right K-invariant function on G. Note that
all the assumption are valid when λ = 0.

iv) Owing to [K–] the abstract existence of the system of differential equations
characterizing the image of Pλ is clear (cf. [OSh]) but a certain existence theorem
of the system in the case λ = 0 is given by [Jn]. More precise study for this problem
including the relation to the Hua operators will be discussed in [OSh].

5.3. Radon transformations. Let G be a semisimple Lie group of G and let P 1

and P2 be maximal parabolic subgroups of G. For characters λj of Pj we put

B(G/Pj, Lλj) = {f ∈ B(G); f(xp) = λj(p)f(x) (∀p ∈ Pj)}
for j = 1 and 2. If there exists a G-equivariant map R : B(G/P1, Lλ1) →
B(G/P2, Lλ2), then the image of R satisfies the system Ip(λ). Here p and λ corre-
spond to P1 and λ1, respectively.

Some special cases of these transformations and their relations to Aomoto-
Gelfand hypergeometric functions are discussed in [O3], [Se] and [Ta].
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6. Closure of ideals

Now we will consider the non-regular λ which are excluded in Theorem 4.4. We
begin with a general consideration.

Definition 6.1. Let M be a C∞-manifold and let U be an open subset of C�.
We denote by D′(M ) the space of distributions on M . Suppose that meromorphic
functions f1(λ), . . . , fn(λ) of U with values in D′(M ) are given. Moreover suppose
there exists a non-zero holomorphic function r(λ) on U such that f1, . . . , fn are
holomorphic on Ur = {λ ∈ U ; r(λ) �= 0} and dimVλ = m for any λ ∈ Ur . For
λ ∈ U we define

V̄µ = {f(0); f is a holomorphic function on {t ∈ C; |t| < 1} valued in D ′(M )

and there exists a holomorphic curve c : {t ∈ C; |t| < 1} → U such that

c(t) ∈ Ur and f(t) ∈ Vc(t) for 0 < |t| & 1 and c(0) = µ}.

We call V̄µ the closure of the holomorphic family of the spaces Vλ (λ ∈ Ur) at
µ. It follows from [OS, Proposition 2.21] that dim V̄µ ≥ m. We define that a
point µ ∈ U \ Ur is a removable (resp. un-removable) singular point if dimVµ = m
(resp. dimVµ > m). Note that V̄λ = Vλ if λ ∈ Ur , which follows from the last
statement in Lemma 6.3 by replacing µ and Ur by λ (∈ Ur) and Ur \ {λ}.

Example 6.2. The origin λ = (λ1, λ2) = 0 is a removable singular point of Vλ =
C(x+λ1)+C(λ2x+λ1y2+λ21) and an un-removable singular point of Vλ = C(λ1x+
λ2y).

Lemma 6.3. i) If µ is a removable singular point of the spaces Vλ, then there exist
a neighborhood Uµ of µ and holomorphic functions h1(λ), . . . , hm(λ) on Uµ valued
in D′(M ) such that they are linearly independent for any λ ∈ Uµ and they span Vλ
for any λ ∈ Uµ ∩Ur. On the other hand, the existence of hj(λ) (j = 1, . . . ,m) with
these property implies that µ is a removable singular point.

ii) If U is convex and there is no un-removable singular point in U , we may
choose Uµ = U in i).

Proof. i) Suppose dim V̄µ = m. We may assume f1(λ), . . . , fm(λ) are linearly
independent for a generic point λ in Ur . Fix a curve c to U with c(0) = µ and
c(t) ∈ Ur for 0 < |t| & 1. Then [OS, Proposition 2.21] assures the existence of
holomorphic functions vi(t) (1 ≤ i ≤ m) on {t ∈ C; |t| < 1} valued in D′(M ) and a
holomorphic curve c : {t ∈ C; |t| < 1} → U such that c(0) = µ, c(t) ∈ Ur and vi(t) ∈
Vc(t) for 0 < |t| & 1 and v1(t), . . . , vm(t) are linearly independent for any t. Then
the set {v1(0), . . . , vm(0)} is a basis of Vµ. Fix test functions φ1, . . . , φm so that
〈vi(0), φj〉 = δij and put cij(λ) = 〈fi(λ), φj〉. If 0 < |t| & 1, then vi(t), . . . , vm(t)
span Vc(t) =

∑m
i=1 Cfi(c(t)) and therefore fi(c(t)) =

∑m
j=1 cij(c(t))vj(t), which

means det
(
cij(λ)

)
is not identically zero. Let

(
dij(λ)

)
be the inverse of

(
cij(λ)

)
and define hi(λ) =

∑m
j=1 dij(λ)fj (λ) so that 〈hi(c(t)), φj〉 = δij for 0 < |t| & 1.

Suppose hk(λ) has a pole at λ = µ. Then there exists a test function φ such that
〈hk(λ), φ〉 has a pole at µ. Then it follows from Weierstrass’ preparation theorem
that there exists a curve c(t) as above and moreover 〈hk(c(t)), φ〉 has a pole at
the origin. Choose a positive integer 7 so that the function h̃(t) = t�hk(c(t)) is
holomorphically extends to t = 0 and h̃(0) �= 0. Since 〈h̃(t), φj〉 = t�δkj , 〈h̃(0), φj〉 =
0 for j = 1, . . . ,m, which contradicts to the facts 〈vi(0), φj〉 = δij because 0 �=
h̃(0) ∈ Vµ =

∑m
i=1 Cvi(0) by definition.

Thus we have proved that hi(λ) are holomorphic functions on λ in a neighbor-
hood of Uµ of µ. Since 〈hi(λ), φj〉 = δij , they are the required functions. In fact,
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fi(λ) =
∑m

j=1〈fi(λ), φj〉hj(λ) for generic λ and therefore Vλ ⊂
∑m

j=1 Chj(λ) for
λ ∈ Uµ ∩ Ur.

Now suppose the existence of h1, . . . , hm and consider the function f to define V̄µ
in Definition 6.1. Then under the above notation, f(t) =

∑m
j=1〈f(t), φj〉hj(c(t)) for

0 < |t| & 1 and therefore f(0) =
∑m

j=1〈f(0), φj〉hj(c(0)), which means dimVµ = m.
ii) The claim in i) reduces the global existence of hi to the second problem of

Cousin and it is solved for the convex open domain by Oka’s principle. �

Remark 6.4. i) Replacing “meromorphic” and “holomorphic” by “rational” and
“regular”, respectively, we have also Lemma 6.3 in the algebraic sense.

ii) When M is a finite set in Lemma 6.3, D ′(M ) is a finite dimensional vector
space V over C and fi(λ) are the elements of V with a meromorphic parameter λ.

Definition 6.5. Fix a base {X1, . . . , Xm} of g. Let

(6.1) qν(λ, ε) =
∑

α1≥0,...,αm≥0

qν,α(λ, ε)Xα1
1 · · ·Xαm

m

be elements of Uε(g) for (λ, ε) ∈ Cr+1 and ν = 1, . . . , k. Here qν,α are polynomial
functions of (λ, ε) and qν,α = 0 if α1+ · · ·+αm is sufficiently large. Let I(λ, ε) is the
left ideal of U ε(g) generated by qν for ν = 1, . . . , k. Put dj = maxλ,ε dim I(λ, ε) ∩
U ε(g)(j) for j = 1, 2, . . .. Then we can find

pj,µ(λ, ε) =
∑

α1≥0,..., αm≥0

pj,µ,α(λ, ε)Xα1
1 · · ·Xαm

m

such that pj,µ(λ, ε) ∈ I(λ, ε) ∩ U ε(g)(j) for any (λ, ε), pj,µ,α(λ, ε) are polynomial
functions and pj,1(λ, ε), . . . , pj,dj(λ, ε) are linearly independent for generic (λ, ε).
Then we denote by Ī(λ, ε)(j) the closure of the holomorphic family

∑dj

µ=1 Cpj,µ

at (λ, ε) and put Ī(λ, ε) =
⋃∞

j=1 Ī(λ, ε)
(j). We call Ī(λ, ε) the closure of the ideal

I(λ, ε) with respect to the parameter (λ, ε). We call a point (λ, ε) ∈ Cr+1 is an un-
removable singular point if (λ, ε) is an un-removable singular point of

∑dj

µ=1 Cpj,µ
for a certain j. Note that Ī(λ, ε) does not depend on the choice of {X1, . . . , Xm}
or pj,µ.

Let ĪεΘ′ (λ) be the closure of the two-sided ideal IεΘ′ (λ) given by (4.13) for Θ′ = Θ
or Θ̄. Then we give some conjectures.
Conjecture 1. There exists no un-removable singular point in the parameter (λ, ε)
of the holomorphic family I εΘ′ (λ).
Conjecture 2. Ī1Θ′ (λ) = Ann(MΘ′ (λ)).
Conjecture 3. ĪΘ′ (λ) = IΘ′ (λ) if λ is regular.
Conjecture 4. Let Ip(λ) be a two-sided ideal of U (g) satisfying (5.7) under the
notation in §5. Then
(6.2) Ann(MΘ′ (λ)) = Ip(λ) + Ann(M (λΘ)).

Conjecture 5. The condition (5.7) is valid if Ip(λ) = Ann(U (g)/Jp(λ)) and the
infinitesimal character of U (g)/Jp(λ) is regular.

Remark 6.6. i) It is clear that Ī1Θ′ (λ) ⊂ Ann(MΘ′ (λ)).
ii) Conjecture 1 is equivalent to the existence of a generator system {qν(λ, ε); ν =

1, . . . , k} of the form (6.1) such that ĪεΘ′ (λ) =
∑k

ν=1U
ε(g)qν(λ, ε) for any fixed (λ, ε).

It is also equivalent to the fact that the graded ring

gr
(
ĪεΘ′ (λ)

)
=

∞⊕
j=1

(
ĪεΘ′ (λ) ∩U ε(g)(j)/ĪεΘ′ (λ) ∩ U ε(g)(j−1)

)
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does not depend on (λ, ε) because they are also equivalent to the fact that the
dimension of the vector space ĪεΘ′ (λ) ∩ U ε(g)(j) does not depend on (λ, ε) and the
space is spanned by homogeneous elements with respect to (g, λ, ε).

iii) Conjecture 1 and Conjecture 2 are true if g = gln because there exist qν(λ, ε)
(ν = 1, . . . , k) of the form (6.1) such that AnnG(M ε

Θ(λ)) is generated by qν(λ, ε)
(ν = 1, . . . , k) for any (λ, ε) (cf. [O4]). In this case gr

(
IεΘ(λ)

)
is a prime ideal of

S(g) but this is not true in general.
iv) If gr

(
I0Θ′ (λ)

)
is a prime ideal for generic λ, then Conjecture 1 and 2 are true,

which is proved by the same argument as in [O4]. Note that I0Θ′ (λ) is the defining
ideal of Ad(G)λ for generic λ ∈ aΘ′ by Theorem 4.11.

v) The condition (5.7) with Ip(λ) = IΘ′ (λ) are true if g is of the classical type
and moreover the infinitesimal character of MΘ′ (λ) is regular (cf. the proof of
Corollary 4.6).

vi) Conjecture 4 implies Conjecture 2 and 3 if g is of the classical type and
the infinitesimal character is regular. Note that they are true if moreover the
infinitesimal character is dominant.

vii) Conjecture 5 is true if g is of the classical type. If g is of the exceptional
type, Conjecture 5 is also true except for the λ belonging to a finite number of
complex hypersurfaces which are explicitly given (cf. [OO]).
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