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Summery: We show that a family of smooth stable curves defined on the interior
of a log regular scheme is extended to a log smooth scheme over the whole log regular
scheme, if it is so at each generic point of the boundary, under a very mild assumption.
We also include a proof of the fact that a log smooth scheme over a discrete valuation
ring has potentially a semi-stable model. As a consequence, we show that a hyperbolic
polycurve in the sense of [9] over a discrete valuation field has potentially a proper
semi-stable model if the characteristic of the residue field is sufficiently large.

A. de Jong and F. Oort proved in [4] that a family of smooth stable curves defined
on the complement of a divisor with simple normal crossing of a regular scheme is
extended uniquely to a family of stable curves over the whole regular scheme, if it is so
at each generic point of the boundary. S. Mochizuki generalized their result to the case
where the base scheme is assumed a log regular scheme in [9]. In this paper, we study
a log smooth extension instead of a stable extension. The main result is the following.

Theorem 1 (See Corollary 1.4) Let Y be a regular noetherian scheme and Dy be
a divisor with normal crossings. Let fy, : Xy, — Uy =Y — Dy be a proper smooth
and geometrically connected curve and Dy, be a divisor of Xy, finite and etale over
Uy. Let g be the genus of Xy, — Uy and r be the degree of Dy, over Uy and assume
2g—241r>0. We put Ux = Xy, — Dy,.. We consider the following conditions.

(1) There ezists a projective and regular scheme f : X — 'Y extending Xy, — Uy
such that Ux(C Xy, ) C X is the complement of a divisor of X with normal crossings
and that the pair (X, Ux) is log smooth over (Y, Uy).

(2) For a generic point n; of Dy, let K; be the completion of the function field of
Y atn;. Then, for each n;, there exists a projective and regular scheme Xoy, over Ok,
extending the base change X, = Xu, Xu, K; such that Uk, = Ux %Xy, K;(C Xk,) C
Xoy, s the complement of a divisor of Xoy, with normal crossings and that the pair
(Xox, Uk;) is log smooth over Ok, .

(8) Let N > 1 be an integer invertible on Y. The finite etale covering Dy, of Uy

and the finite group scheme Jy y, over Uy of N-torsion points of the Jacobian Jy, of
Xy, are tamely ramified at each generic point n; of Dy .
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Then we have (1)=(2) =(3). We have (3)=(2) if N > 3. We have (2)=(1) if one
of the following conditions (a), (b1) and (bs) is satisfied.

(a) 2 is invertible on Y.

(b)2=0onY.

(ba) Y is proper over a discrete valuation ring of residue characteristic 2.

A characterization of log smooth morphisms is recalled in Proposition 1.2.
Applying Theorem 1 to a polycurve over a discrete valuation field, we obtain the
following consequence.

Corollary 2 (See Corollary 1.9) Let U be a smooth scheme of dimension n of finite
type over a discrete valuation field K of residue characteristic p > 0. Assume that
there exists a sequence of morphisms of smooth schemes U = U, — U, — -+ —
Uy = Spec K satisfying the following condition:

For 0 <1 < n, there exist a proper smooth and geometricall connected curve X;iq

over U; and a divisor D;y1 of X;11 finite and etale over U; such that U;y1 is the
complement X; 11 — Djiq.
Let g; be the genus of the curve X;11 and r; be the degree of D;iq1 over U;. Assume
further that 2g; — 2+ 1; > 0,p > 2g; + 2 and p > r; for 1 < ¢ < n. Then there
exist a finite separable extension L of K, a projective and semi-stable scheme Xo, over
Or and an open immersion Uy, = U @ L — Xo, such that the pair (Xo,,UL) is
semi-stable over Oy,.

In a paper in preparation, we plan to discuss its application to semi-stable reduction
of surfaces of various types.

To deduce Corollary 2 from Theorem 1, we show that a log smooth scheme over a
discrete valuation ring has potentially a semi-stable reduction.

Theorem 3 (See Theorem 1.8) Let X be a log scheme log smooth and of finite type
over a discrete valuation ring Og and Ux be the interior of X. Then there exist
an integer e > 1 such that, if L is a finite separable extension and the ramification
index er i is divisible by e, there exists a projective and log etale morphism f: W —
X ®18i Or, such that Uy = f~Y(Uxy) — Uxy = Ux @k L is an isomorphism and
(W, Uw) is semi-stable over Op.

The terminologies on log schemes in the statement will be recalled in Section 1.1.

The case where Ux = Xk is proved by H.Yoshioka [14]. We give a proof of Theorem
3 which is very close to the original proof of him because it is basic to the application
above and his proof is not easily accessible in a written form.

The ideas of the proof of the main results are the following. In the proof of Theorem
1, the essential part is the implication (3)=-(1). By the extension theorem and the log
purity theorem in [9], the assumption (3) implies that there is a finite and log etale
Galois covering Y’ of Y where the pull-back of X, is extended uniquely to a stable



curve X' — Y’. If the quotient X'/G by the Galois group G was log smooth over
Y =Y'/G, it would be done. However, the action of G on X' is not toroidal in general
in the sense defined in Definition 3.4 and the quotient may not have the required
property. We modify X’ so that the action of G on the modification Xy is toroidal.
The notion of toroidal action and the modification process played essential roles in [1]
in the language of toroidal geometry. Taking the quotient X = Xy//G, we obtain the
required extension. In practice, we need to make this construction etale locally on Y’
and need some argument to descend it.

The idea of the proof of Theorem 3 is to follow the proof in the case of characteristic
0 using toroidal embeddings in [8]. In this paper, we stick to the language of log schemes
and fans in the sense of Kato [7].

The contents of the paper are as follows. In Section 1, we recall basic definitions
on log schemes and semi-stable schemes and state the main results. At the end of
the section, we recall basic definitions on families of curves. In Section 2, we recall
basic properties of log blow-ups and fans. We give a dictionary between polyhedral
complexes with integral structures in [8] and fans in [7] and give a proof of Theorem
3. After establishing some basic facts on actions of finite groups on schemes, we define
the notion of toroidal action in Section 3. It is an analogue of what defined in [1].
In the second half of the section, we study the locus where a tame group action on a
nodal curve is not toroidal and how one can modify it to make the action toroidal. In
the last Section 4, applying the results in Section 3, we complete the proof of Theorem
1. At the end of proof, we give equivalent conditions in Theorem 4.2 for a curve over
a discrete valuation field to have a log smooth model over the integer ring. It is a
generalization of a result in [12].

Parts of the work were done during the author’s stay at the Johns Hopkins Univer-
sity and Université de Paris-Sud in the spring 2001. He thanks them for the hospitality.
He also would like to thank Luc Illusie, Kazuya Kato and Chikara Nakayama for help-
ful discussions on log structures. Isabelle Vidal pointed out an error in the proof of
Proposition 3.6 in a preliminary version. He thanks her for pointing it out.

1. Main results.
1.1 Log smooth extension of family of curves.

We briefly recall some generalities on log structures. For the details, we refer to [6],
[7], [11] and [13]. In this paper, a monoid means a commutative monoid. A finitely
generated monoid P is called an fs-monoid if the canonical map to the associated
group P — P& = {ab'|a,b € P} is injective and its image is equal to the saturation
Pt = {a € P%|a™ € Tm P for some n > 1}. We identify an fs-monoid P with its
image in P*®P.

In this paper, a log structure o : Mx — Ox on a scheme X means an fs-log
structure defined on the etale site of X. Namely, it is defined etale locally on X by
charts by fs-monoids. A scheme X equipped with a log structure is called a log scheme.
If a log structure My is defined Zariski locally, we say My is a Zariski log structure
and X is a Zariski log scheme (cf. [11] Proposition 2.1). We put Mx = Mx/O%.



A locally noetherian log scheme X is log regular if, for z € X, the quotient Ox z/ Iz
by the ideal I; generated by the complement Mx ; — Ox ; is regular and dimOx ; =
dim(Ox z/I5) +rank M, [13] 4.4.5, [11] Definition 2.2. Let X be a locally noetherian
log regular log scheme. The scheme X is normal and the maximum open subset U C X
where Mx|y = O is dense. We have My = Ox N 3,0 where j : U — X is the open
immersion [11] Proposition 2.2. We call U the interior of X and Mx the log structure
defined by U. If X is a locally noetherian log regular log scheme and U is the interior
of X, we say the pair (X,U) is a toric pair as in [9]. When (X, U) is a toric pair, by
abuse of notation, we write (X, U) to denote the log scheme (X, Mx) where Mx is the
log structure defined by U. If X is regular and U = X — D is the complement of a
divisor D C X with normal crossings, the pair (X, U) is a toric pair. A toric pair has
a resolution in the following sense.

Proposition 1.1 ([11] Theorems 5.2 and 5.3, c¢f. Lemma 2.1.2) Let (X,U) be a toric
pair. Then, there exist a reqular noetherian scheme X', a divisor D' C X' with simple
normal crossings and a projective surjective morphism f : X' — X such that U =
X' — D' is equal to f~1(U), that the induced map U' — U is an isomorphism and that
the map (X', U") — (X,U) is log etale.

Remark. As a converse of Proposition 1.1, we expect to have the following statement:
On a noetherian log scheme X, if there exists a coherent ideal Z such that the log
blow-up (see §2.1) is log regular, then the log scheme X is log regular.

We recall a characterization of log smooth morphisms.

Proposition 1.2 ([6] Theorem (3.5)) Let S be a log scheme and f : X — S be a log
scheme over S. Let x be a point of X,V — S be an etale neighborhood of s = f(z) and
Q — I'(V,0g) be a chart. Then, the following conditions (1) and (2) are equivalent.

(1) f is log smooth (resp. log etale) over S at x.

(2) There exist an affine etale neighborhood ¢ : U = Spec A — X of x, a map
U—Voverf:X — S, achart P— I'(UOx) and a morphism QQ — P of charts
satisfying the following conditions (a) and (b).

(a) The induced map Q¥ — P#P is injective and the order of the torsion part of its
cokernel (resp. the cokernel is finite and its order) is invertible on U.

(b) The map U — V @gzq) Z[P] is (classically) smooth (resp. etale).

A log scheme log smooth over a log regular scheme is log regular.

Now we state the main result. In the following, if it is not stated otherwise explicitly,
we regard Spec Ok for a discrete valuation ring Ok as a log scheme with the interior
Spec K.

Theorem 1.3 Let (Y,Uy) be a toric pair. Let fy, : Xy, — Uy be a proper smooth

and geometrically connected curve and Dy, be a divisor of Xy, finite and etale over
Uy. Let g be the genus of Xy, — Uy and r be the degree of Dy, — Uy and assume
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29 —2+1 > 0. Let Ux be the complement Xy, — Dy,. We consider the following
conditions.

(1) There exists a projective and log smooth scheme f: X — Y extending the toric
pair (Xu,,Ux) over Uy.

(2) For a generic point n; of Dy, let K; be the completion of the function field of
Y at n;. Then, for each n;, there exists a projective and log smooth scheme Xoy, over
the integer ring Oy, extending the toric pair (Xg,, Ux, ) = (Xvy, Xvy Ki, Ux Xuy Kj).

(3) Let N > 1 be an integer invertible on Y. The finite etale covering Dy, of Uy
and the finite group scheme Jy y, over Uy of N-torsion points of the Jacobian Jy, of
Xy, are tamely ramified at each generic point n; of Dy .
Then we have (1)=(2) =(3). We have (3)=(2) if N > 3. We have (2)=(1) if either
of the following conditions (a) and (b) is satisfied.

(a) 2 is invertible on 'Y and Y is quasi-compact.

(b) There exists an integer N > 3 invertible on 'Y and there is no closed subset of
Dy =Y — U which is a subset of Dy[%].

Proof will be given in Section 4.

Remark. 1. The condition (b) is satisfied if either of the following conditions are
satisfied.

(b1) Dy is a scheme over a field of characteristic 2.

(be) Dy is proper over a discrete valuation ring of residue characteristic 2.

2. In [9] Theorems A and B, analogous statements for stable extension of a family
of curves and log etale extension of a finite etale covering are proved. Contrary to
them, we do not have the uniqueness of the extension in Theorem 1.3 because a log
blow-up (see §2.1) will give another extension.

By Proposition 1.1, we have the following Corollary.

Corollary 1.4 LetY be a reqular noetherian scheme and Dy be a divisor with normal
crossings. As in Theorem 1.3, let fy, : Xy, — Uy be a proper and smooth curve and
Dy, be a finite and etale divisor satisfying 2g —2+1r > 0. We put Ux = Xy, — Dy, .
We consider the following conditions.

(1) There ezists a projective and regular scheme f : X — 'Y extending Xy, — Uy
such that Ux 1s the complement a divisor with normal crossing and that the toric pair
(X,Ux) is log smooth over (Y,Uy).

(2) For a generic point n; of Dy, let K; be the completion of the function field of
Y atn,. Then, for each n;, there exists a projective and regqular scheme Xo, over Ok,
extending Xk, — K; such that Uk, = Ux Xy, K; is the complement of a divisor of
Xoy, with normal crossing and that the toric pair (Xoy, , Uk;) is log smooth over O;.

(3) Let N > 1 be an integer invertible on Y. The finite etale covering Dy, and the

finite group scheme Jyy, of N-torsion points of the Jacobian Jy, of Xy, are tamely
ramified at each generic point n; of Dy .



Then we have (1)=(2) =(3). We have (3)=(2) if N > 3. We have (2)=(1) if either
of the (a) and (b) in Theorem 1.3 is satisfied.

As a consequence of Proposition 1.1 and Theorem 1.3, a hyperbolic polycurve has
a smooth compactification if the characteristic is sufficiently large.

Corollary 1.5 Let U be a smooth scheme of dimension n of finite type over a perfect
field F' of characteritic p > 0. Assume that there exists a sequence of morphisms of
smooth schemes U = U,, — U,_1 — --- — Uy over F satisfying the following condition:

The scheme Uy is a smooth surface of finite type over F'. For 2 <1 < n, there exist
a proper smooth and geometricall connected curve X;11 over U; and a divisor D;y1 of
Xiy1 finite and etale over U; such that U1y is the complement X;11 — D;yq.

Let g; be the genus of the curve X;11 and r; be the degree of D;iq1 over U;. Assume
further that 2g; —2+1; > 0,p > 29; + 2 and p > r; for 2 < i <n. Then there exist a
projective smooth scheme X and an open immersion U — X such that the complement
X — U 15 a divisor with simple normal crossings.

Proof of Corollary 1.5. By Proposition 1.1, it is sufficient to show that there exists
a projective and log smooth scheme X' over F' whose interior is U. If n = 2, it is
well-known. We show the general case by induction applying Theorem 1.3 (3)=-(1).
Let X! be a projective and log smooth scheme over F' whose interior is U;. By the
assumption that p > 2¢; + 2, the action of the inertia group I, at each generic point
n; of X/ — U; on the N-torsion J;11 ny of the Jacobian of X, ;1 over U, is tamely
ramified for an integer N invertible in F'. By the assumption that p > d;, the finite
covering D; 1,1, — U, 1 is tamely ramified at each generic point ;. Hence the curve
X;+1 and the divisor D, satisfy the condition (3). Applying (3)=-(1) of Theorem 1.3,
we obtain a projective and log regular scheme X/, log smooth over X/ such that the
interior is U;;1. Hence the assertion follows by induction.

1.2 Log smoothness and semi-stable reduction.

Let K be a discrete valuation field.

Definition 1.6 Let X be a scheme locally of finite presentation over Ok and U be an
open subscheme of X. We say a pair (X,U) of X is semi-stable over Ok of relative
dimension n if the following condition is satisfied.

FEtale locally on X, the scheme X is etale over Spec O[Ty, ..., T,|/(To--- T, — )
and U is the inverse image of Spec Ok [To, ... , Ty, Ty *, ... T4/ (To - - - T, —7) for some
0<r<m<n and a prime element © of K.

If the pair (X, Xi) is semi-stable, we say X is semi-stable.

If ”Etale locally” in the condition is replaced by ”Zariski locally”, we say a pair
(X, U) is strictly semi-stable. If (X, U) is semi-stable, U is a subscheme of the generic



fiber Xy and is the complement of a divisor of a regular scheme X with normal cross-
ings. If the residue field is perfect, a scheme X locally of finite presentation over Oy
is semi-stable if and only if the following conditions (1) and (2) are satisfied.

(1) X is regular and flat over Ok and U is the complement of a divisor D with
normal crossings.

(2) The generic fiber X is smooth and Dy is a divisor of Xk with relative normal
crossings.

We regard Spec Ok as a regular log scheme defined by the interior Spec K.
Lemma 1.7 If (X,U) is semi-stable over Ok, it is log smooth over Of.

Proof. The question is etale local. We take a chart N — Oy sending 1 to a prime
element 7. Then, it suffices to apply Proposition 1.2 (2)=(1) to the map N — N
sending 1 to (1,...,1,0,...,0) with 1 in the first r-components.

We recall a local description of the fiber product in the category of log schemes.
Let X and Y be log schemes over a log scheme S. Let P — I'(X,0x),Q — I'(Y,Oy)
and R — I'(S, Og) be charts and ¢ : R — P and ¥ : R — @ be morphisms compatible
with X — S and Y — S. Let P 45" @ be the saturation of the image of P + @ in
the amalgamete sum P8P + e Q8P = Coker(p — 1) : R8? — P & (Q&P). Then the fiber
product X x'$8Y as a log scheme is the scheme (X xgY) ®z(pyq Z[P +%* Q] with the
log structure defined by the chart P +5%* Q.

Conversely to Lemma 1.7, a log smooth scheme over a discrete valuation ring has
potentially a semi-stable model.

Theorem 1.8 Let X be a log scheme log smooth and of finite type over Ok and Uy be
the interior of X. Then there exist an integer e > 1 such that, if L is a finite separable
extension and the ramification index e, i is divisible by e, there exists a projective and
log etale morphism [ : W — X®lgi Oy, such that Uy = f~'(Ux,) —» Uxy =Ux @k L
is an isomorphism and (W, Uy ) is semi-stable over Of,.

Proof of Theorem 1.8 will be given at the end of Section 2. The case where Ux = X
is proved by H.Yoshioka [14].

Remark. As a converse of Theorem 1.8, K.Kato informed me of the author that he
has a proof of the following statement: Let X be a log scheme of finite type over Og.
If there exist a finite separable extension L of K and a coherent ideal Z on the base
change X ®18i Oy, such that the log blow-up (see §2.1) is log smooth over Oy, then X
is log smooth over O.

Corollary 1.9 Let U be a smooth scheme of dimension n of finite type over a discrete
valuation field K of residue characteristic p > 0. Assume that there exists a sequence
of morphisms of smooth schemes U = U, — U,_1 — --- — Uy = Spec K satisfying
the following condition:



For 0 <1 < n, there exist a proper smooth and geometricall connected curve X;iq

over U; and a divisor D;y1 of X;11 finite and etale over U; such that U;y1 is the
complement X; 11 — Djiq.
Let g; be the genus of the curve X;11 and r; be the degree of D;iq1 over U;. Assume
further that 2g; — 24+ 1; > 0,p > 2g; + 2 and p > r; for 1 < ¢ < n. Then there
exist a finite separable extension L of K, a projective and semi-stable scheme Xo, over
Or and an open immersion Uy, = U @ L — Xo, such that the pair (Xo,,UL) is
semi-stable over Oy, .

Proof of Corollary 1.9. We deduce Corollary 1.9 from Theorems 1.3 and 1.8. By
Theorem 1.8, it is sufficient to show that there exists a projective and log smooth scheme
Xp, over Op, whose interior is the base change Ur. If n = 1, it follows from Proposition
1.14 (3)=-(1) in the following subsection. The general case is proved similarly as
Corollary 1.5 by induction applying Theorem 1.3 (3)=(1).

1.3 Nodal curves and stable curves.

In this subsection, we recall some basic definitions on families of curves.

Definition 1.10 We say a scheme f : X — Y flat and locally of finite presentation
over a scheme Y is a nodal curve over' Y, if the fiber f~'(y) is a reduced curve with at
most ordinary double points for each y € Y. We say a pair (f : X — Y, D) of a nodal
curve f: X — Y and a closed subscheme D of X is a pointed nodal curve if D is etale
over'Y and X is smooth over'Y on a neighborhood of D.

A nodal curve is called a locally stable curve in [9] when it has geometrically con-
nected fibers. For a nodal curve f : X — Y over Y, let ¥ = ¥(X) denote the set of
non-smooth points. It is a closed subset of X and the intersection D N is empty. For

a geometric point T above x € X, let Br(Z) = Spec Oﬁ(’?f@j — {z} denote the set of
sh

branches of the geometric fiber at . The set Br(Z) = Spec OX, 2 — {Z} consists of

two elements.

Lemma 1.11 ([2] Corollaire 1.3.2 (i)) Let f : X — Y be a nodal curve over Y and
x € X. Then there exist etale neighborhoods U of v and V of y = f(z), a section
w € I'(V,Oy) and an etale morphism U — V[S,T)/(ST — w) over Y.

By Lemma 1.11, a nodal curve X over Y is locally of relative complete intersection
of relative dimension 1. The relative dualizing sheaf wx/y is an invertible Ox-module.
If (X — Y, D) is a pointed nodal curve, wx,y(log D) = wx/y ® O(D) is an invertible
Ox-module.

Lemma 1.12 (cf. [9] Lemma 4.2) Let (Y, Uy) be a toric pair and (f : X — Y, D) be a
pointed nodal curve such that f is smooth over Uy. We put Ux = f~(Uy)N (X — D).
Then (X,Ux) is a toric pair and the map f: (X,Ux) — (Y, Uy) is log smooth.



We call the log structure on X defined by Ux the standard log structure.

Proof. The assertion is etale local on X. By Lemma 1.11, it is sufficient to consider
the following two cases. In one case, Y = Spec R, X = Spec R[S, T]/(ST — w) where
w € R is invertible on Uy and D = (). In the other case, X is classically smooth over
Y and D is a section of f. The assertion is clear in the second case and we show the
first case. We consider the universal case where Ry = Z[wy] is the polynomial ring, the
log structure on Yy = Spec Ry is defined by the chart N — Ry sending 1 to wy and
Xo = Spec R[S, T]/(ST — wp). Then, if we define a map N — N? by sending 1 to
(1,1), we have X, = Spec Ry ®znj Z|N?]. With the log structure My, on X, defined
by the canonical map N? — R, ®z[N] Z[N2], the log scheme X is log smooth over
Yy by Lemma 1.2 and the interior of X is the inverse image Uy, of Uy,. Hence the
assertion follows in this case. We consider the general case. Since w € R is invertible
on Uy, it is in the image of I'(Y, My ). Hence, by localizing if necessary, we may take
a chart ) — R and an element W € () whose image is w. We define a map of log
schemes Y — Yj by sending wy to w and 1 to W. Since the map N — N? of monoids
is saturated, the amalgamate sum P = Q +n N? is equal to its saturation and the
map X — Y ><1390g Xy of the underlying schemes is an isomorphism. Hence the assertion
follows.

For a morphism of log schemes f : X — Y, we define a quasi-coherent Ox-module
Qﬁ(/y(log /log) by

QY jy (log /log) = (Ux)y © Ox @z MY /M) /(do(a) — ala) ® a;a € Mx).

For a section a € My, the image of 1 ® a is denoted by dloga. For a pointed nodal
curve (X — Y, D) over a log regular scheme Y with the standard log structure, we
have a canonical isomorphism wy,y (log D) = Q- (log /log).

We recall the definition of stable curves.

Definition 1.13 We say a pointed nodal curve (f : X — Y, D) is stable if f is proper,
[:Ox = Oy and if wx,y(log D) is f-ample.

Under the other conditions, the last condition that wy,y (log D) is f-ample is equiv-
alent to the following condition.

Let y — Y be a geometric point and C' be an irreducible component of a geometric
fiber X;. Let g be the geometric genus of C' and 7 be the number of points of C'N
(Xy —CUDy). Then we have 2g —2+1r > 0.

For the extension of a smooth stable curve over a discrete valuation field, the
following result is well-known.

Proposition 1.14 ([3] Theorem (2,4) and Proof of Lemma (1.12)) Let K be a discrete
valuation field, fx : Xx — K be a proper smooth and geometrically connected curve
and Dk be a divisor of Xk such that the pair (fx : Xk — K, Dg) is a stable curve.
Let N >1 be an integer invertible in Ox. We consider the following conditions.



(1) There exists a semi-stable scheme (Xo,.,Uk) extending (Xx,Ux = Xk — Dk).

(2) There exists a stable curve (fo, : Xo, — Ok, Do, ) extending (fx : Xk —
K, Dg).

(3) The finite covering Dy over K is unramified and the action of the inertia Iy
on the finite group scheme Jn k of N-torsion of the Jacobian Ji is unipotent.

Then we have (1)&(2)=(3). We have (3)=(1) if N > 3.

2. Log blow-up and Fan.
2.1 Log blow-up.

We briefly recall the definition and basic properties of log blow-ups [13] 1.6. Let P
be a monoid. An ideal of P is a subset I of P satisfying PI C I. For an fs-monoid
P, we call a subset I of P®P a fractional ideal of P if there exist a finite number of
elements aq,... ,a, C I such that I = U:Zl a; P and [ is not empty.

Let X be a log scheme. We say a sheaf Z of ideals of M is coherent if, for x € X,
there exist a chart P — I'(U, Mx) on an etale neighborhood U of z and an ideal I such
that Z|y = IMx|y. We say a subsheaf Z of M is a fractional ideal if Mx -7 C Z and,
for x € X, there exist a chart P — I'(U, Mx) on an etale neighborhood U of x and
a fractional ideal I C P®° such that Z|y = IMx|y. A coherent ideal Z is a fractional
ideal if and only if, for each x € X, the stalk Z; is not empty. A fractional ideal Z is a
coherent ideal if and only if 7 C Mx.

Let X be a log scheme and Z be a fractional ideal of Mx. Then the log blow-up is
locally described as follows. Let P — I'(U, Mx) be a chart on an etale neighborhood
and I be a fractional ideal of P such that Z|y = IMx|y. Let I¢ be the saturation
{a € P#|a" € I" for some n > 1}. Then, the log blow-up X7 — X is defined by
patching U Xgpec zip] Proj Z[@, ,(1¢)"]. The canonical map X7 — X is projective.
We show that it is log etale. For a € I, let P, be the submonoid |J;~,a™"1" of P& and
P be the saturation. Then Proj Z[@P, ,(1¢)"] has an open covering by Spec Z[P:]
for a € I. Hence X7 — X is log etale.

Lemma 2.1 Let X be a noetherian log reqular scheme.

1. ([11] Proposition 4.2) Let Z be a fractional ideal of Mx. Then the log blow-up
X7 of X by T is canonically identified with the normalization of the blowing-up of X
by the ideal Ty = a(Z)Ox generated by the image of .

2. ([11] Theorems 5.2 and 5.3, cf. Lemma 2.3.1) There exists a coherent ideal T of
My such that the log blow-up X7 1s a reqular scheme and that the interior Ux, is the
complement of a divisor with simple normal crossings.

2.2 Fan.

We recall the definition of fans, [7] Sections 5 and 9. Let P be a monoid. A prime
ideal of P is an ideal p of P such that the complement P — p is a submonoid of P.
The set of prime ideals of P is denoted by Spec P. For example, for the additive
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monoid N of non-negative integers, we have Spec N = {0, {n € Njn > 1}}. The
topology of the set ' = Spec P is defined by the open basis consisting of subsets
U, ={p € Fla ¢ p} for a € P. The sheaf Mg of monoids on F' is defined by requiring
Mp(U,) = Pla™']/Pla™]*.

We say a pair (F, M) of a topological space F' with a sheaf My of monoids is a fan if
it has an open covering by affine fans. A map f : ' — F’ of fans (F, Mp) and (F’, Mp)
consists of a continuous map f : F — F’ and a map of sheaves ¢ : f*Mp — Mp of
monoids satisfying ¢; (1) = 1 for t € F. We say a fan F is an fs-fan if it has a finite
open covering by affine fans that are isomorphic to the spectrums of fs-monoids. If F'is
an fs-fan and x € F, the stalk M, is an fs-monoid and the set U, = {y € F|z € {y}}
is an affine open subset canonically isomorphic to Spec Mg ;. In the rest of the paper,
we consider only fs-fans and the word fan will mean fs-fan.

Let f: F' — F and g : F” — F be morphisms of fans. Then the fiber product
I’ xr F" in the category of fs-fans is locally described as follows. Let U C F,V C F’
and W C F” be affine open subfans satisfying f(V) C U and g(W) C U. We put
P = F(U, MF),Q = F(V,Mp/),R = F(W, MF//) and let @ P — Q and Qﬂ : P — R be
the induced map. Let @ +53* R be the saturation of the image of Q + R in the quotient
of Q% @ R**/((p(a),—v(a)),a € P#). Then the fiber product F’ xp F” is obtained
by patching Spec @Q +5' R.

Let F' be an fan. We say a sheaf 7 of ideals of My is coherent if, for an affine open
subfan U C F, the ideal Z|y is generated by the ideal I'(U,Z) of I'(U, Mr). We say a
subsheaf Z of Mg’ is a fractional ideal if My -Z C T and, for an affine open subfan
U C F the subset I'(U,Z) C T'(U, M%) is a fractional ideal of T'(U, Mr) and we have
Ty =T'(U,T)Mp|y. A coherent ideal 7 is a fractional ideal if and only if the stalk Z,
is not empty for each x € F.

Let F' be a fan and Z be a fractional ideal of Mp. The blow-up Fr of F by T is
defined as follows. First we consider the case where F' = Spec P for an fs-monoid
P. Let I = I'(F,Z) be the fractional ideal of P satisfying Z = I'(F,Z)Mp. For
a € I, we define P, = |J;_,a "I" as a submonoid of P#*. For a,b € I, we have
P,[(b/a)™'] = B[(a/b)7']. By patching the saturation Spec P for a € I by the
identity Spec P5'[(b/a)~'] = Spec P*[(a/b)~'], we define Fr = Proj([],.n1"). In
the general case, the blow-up F7 is defined by patching.

Definition 2.2 1. Let F be an fan. We say a fan F is reqular if, for x € F', there is
an isomorphism My, — N"®) where r(z) = rank M%f’m.
2. Let I be a fan over N. We say F' is saturated over N 1if, for x € F such that
r(z) =1, the map N — I'(F, Mp) — Mg, is either an isomorphism or the 0-map.
We say F is semi-stable if it is reqular and is saturated over N.

The terminology will be justified by Lemma 2.7. Let F be a fan over N. For
an integer e > 1, let N, be monoid N regarded as a monoid over N by the map
ex : N — N = N, and F. be the base change F. = F' Xgpec nv Spec N, defined as an
fs-fan.

The following Lemma is crucial in the proof of Theorem 1.8.
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Lemma 2.3 1. Let F be a fan. Then there exists a coherent ideal T on F such that
the blow-up F1 is reqular.

2. Let F be a fan over N. Then there exist an integer e > 1 and a fractional ideal
1 on the base change F. such that the blow-up F, 1 is semi-stable over N..

3. Let F be a fan semi-stable over N and e > 1 be an integer. Then there exists a
coherent ideal I on F, such that the blow-up F, 1 is semi-stable over N..

The rest of this subsection is devoted to a proof of Lemma 2.3. Before starting the
proof, we recall the dictionary between fractional ideals on fans and good functions
on polyhedral complexes. We call the point = () € Spec N the generic point and
s ={n > 1jn € N} € Spec N the closed point. Let f : F — Spec N be a fan over N.
We say F is generically trivial, if, for ¢ € f~!(n), the stalk M, is the trivial monoid
{1}.

In the following, we use the terminology in [8] Chapter II Definitions 5 and 6 p.69-
70, with slight modifications. We begin with attaching a conical polyhedral complex
with an integral structure to a fan and a compact polyhedral complex with an integral
structure to a fan generically trivial and saturated over N. Let RT be the monoid of
non-negative real numbers.

Let ' be a fan. For an affine open subfan U, C F, we put P, = I'(U,, Mx)
and 0, = HO0Mmonoid (Pa, RT). The set 0, is a conical convex polyhedron in the dual
space V' of the R-vector space V,, = P2 ®z R. The polyhedron o, is not contained
in a hyperplane. Let L, C V, be the finitely generated free abelian group P%°. By
patching o,’s, we obtain a conical polyhedral complex Ap = |J, 0o. Modifying the
terminology loc.cit., we call the family (V). of the finitely generated abelian groups
N, = Hom(Ly,Z) C V. the integral structure of Ap. For a € V,, and x € V., let
(a,x) € R denote the canonical pairing.

Let F' =, U, be a fan and Ap = |, 0, be the corresponding conical polyhedral
complex constructed above. If a function f : Ar — R satisfies the following properties
(i)-(iv), we say f satisfies the condition (x).

(i) f(Ax) = Af(z) for A € Rt and x € Ap,

(ii) f is continuous and piecewise-linear,

(ili) f(oa N Ny) C Z for all a,

(iv) f is convex on each o,; f(Az+uy) > Af(x)+pf(y) forx,y € o, and A\, u € RT.
For a function f : Ap — R satisfying the condition (x), we define a fractional ideal Z;
of Mp as follows. Let U, C F and P, be as above. We define a fractional ideal I, s
of P, by I,y = {a € P®|(a,z) > f(x) for all x € 0,}. Then it is easily verified that
there exists a unique fractional ideal Z; characterized by the condition I'(Uy, Zy) = I, 5
for all a. If f has values in R*, the corresponding fractional ideal Z; is integral.

Let f: Arp — R be a function satisfying the condition (x). We say a subpolyhedron
o of some o, is associated to f if it is a maximal subpolyhedron on which f is linear.
We say a polyhedron o C o, associated to f is of multiplicity 1, if there exists a basis
(x1,...,2,) of N, such that o is spanned by z1, ..., x,.
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Let FF — N be a fan over N. We assume F' is generically trivial and saturated over
N. Let Ap = |J, 0, be the conical polyhedral complex with the integral structure
(Ny)o defined above. Let U, C F and P, be as above and let 7 denote the image of 1
by the map N — PB,. If P, # {1}, we define a subspace V* C V* of codimension 1
to be {x € V|{m,z) = 0} and a V%-torsor V! to be {z € V|(r,z) = 1}. We define
a compact convex polyhedron ¢} C o, to be o} = o, N V. By patching o!l’s for
P, # {1}, we obtain a compact polyhedral complex A, =, o) C Ap. Modifying the
terminology loc.cit., we call the family (N}), of the N2 = {z € N,|(r, ) = 0}-torsors
N! = N, NV the integral structure of AL. Note that by the assumption that F is
saturated over N, we have N, = N° @ Zz for x € N..

Let F — N be a fan generically trivial and saturated over N and Ay = |, ob
be the corresponding compact polyhedral complex constructed above. If a function
[+ AL — R satisfies the following properties (ii')-(iv!), we say f satisfies the condition
(x1).

(ii') f is continuous and piecewise-affine; there exists a subdivision of each o, by
subpolyhedrons and on each polyhedron we have f(Az+(1—\)y) = Af(z)+(1—X)f(y)
for 0 < X <1,

(iii') f(ol N NL) C Z for all o,

(iv!) f is convex on each o,.

If a function f : AL — R satisfies the condition ('), its linear extension f : Ay — R
defined by f(Az) = Mf(z) for z € AL and A\ € R* satisfies the condition (x). We
define a fractional ideal Z; of Mp to be T i defined above.

Let f : AL — R be a function satisfies the condition (x'). We say a subpolyhedron
ol of some o is associated to f if it is a maximal subpolyhedron on which f is affine.
We say a polyhedron o C ol associated to f is of multiplicity 1, if there exist elements
T1, ..., of N} such that (zo —z1,..., 7, — 1) is a basis of N and ¢ is spanned by
T1yewo 3 Lp.

The following Lemma is clear from the definition.

Lemma 2.4 1. Let F be a fan and f be a R-valued function on the conical polyhedral
complex A satisfying the condition (x). Then the following conditions are equivalent.

(1) The blow-up Fz, of F' by the fractional ideal Iy is regular.

(2) The polyhedra o associated to f are of multiplicity 1.
2. Let F be a fan over N. Assume F' is generically trivial and saturated over N. Let f
be a R-valued function on the compact polyhedral complex AL satisfying the condition
(x1). Then the following conditions are equivalent.

(1) The blow-up Fz, of F' by the fractional ideal Iy is semi-stable over N.

(2) The polyhedra o associated to f are of multiplicity 1.

Let F' be a fan generically trivial and saturated over N and an integer e > 1. We
define a canonical identification of the compact polyhedral complex A}, with A}. For
an affine open subfan U, C F', we identify the amalgamete sum P, . = P, +~ N, with
the submonoid P, + (r/e) C V,. We define an isomorphism o, = Hom(F,,R*) —
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One = Hom(P, .,R") by sending = € o, to the map characterized by a — e(a, z) for
a € P,. By the isomorphism, the polyhedron aé’e is identified with ol. It induces an
isomorphism A} — Aj . By the isomorphism o), — o, , the integral structure N, , is
identified with the N2, = tNJ-torsor induced by the NJ-torsor torsor N2

The proof of [§8] Chapter I Theorem 11 shows Lemma 2.5.1 below. Similarly, [§]

Chapter III Theorem 4.1 means Lemma 2.5.2 below.

Lemma 2.5 1. Let I be a fan and A g be the corresponding conical polyhedral complex
with integral structure. Then there exists a function f : Arp — RT satisfying the
condition (x) such that the polyhedra o associated to f are of multiplicity 1.

2. Let F be a fan generically trivial and saturated over N and AL be the corre-
sponding compact polyhedral complex. Then there exist an integer e > 1 and a function
[+ AL — R satisfying the conditions (x') with respect to the integral structure defined
by F. such that the polyhedra o associated to f are of multiplicity 1 with respect to the
integral structure defined by Fr.

Proof of Lemma 2.5. 1. It follows from Lemmas 2.5.1 and 2.4.1.

2. If F is generically trivial and saturated over N, it also follows from Lemmas
2.5.2 and 2.4.2. We reduce the general case to this case.

First we reduce it to the case where F' is generically trivial. Let f : F' — Spec N
be a fan over Spec N. By 1, replacing F' by some blow-up, we may assume F' is
regular. Let Fy be the maximum open subfan containing the closed fiber f~!(s) and
fo : Fo — Spec N be the restriction. We show that F{ is generically trivial and we
define a map g : F' — F} satisfying f = foog. Let U C F be an affine open subfan.
Then U is isomorphic to N™ for some integer m > 0 and the map U — Spec N
is defined by the map N — N" sending 1 to (1,...,1,0,...,0) where the first r
components are 1 upto numbering. The open immersion U N Fy — U is corresponding
to the projection N™ — IN" to the first r-components. Hence Fj is generically trivial.
We define a map U — U N Fy to be that corresponding to the inclusion N” — N™ of
the first r-components. Then it is easy to check that they are glued to define a map
g : F — Fyand we have f = fyog. Let e > 1 be an integer and assume that there
exists a fractional ideal Zy on Fj . such that the blow-up Fj .z, is semi-stable over N,.
We define a fractional ideal Z on F, to be that generated by the pull-back of Z;. Then
the blow-up F% 7 is isomorphic to the fiber product £y . 7, X5, F' and is semi-stable over
N.. Thus it is reduced to the generically trivial case.

Next, we reduce it to the case where F' is saturated over N. Let ¢1,... %, be the
points in the closed fiber f~!(s) and m be a common multiple of the images I; of 1 by
the maps N — Mp,;, — Nfori=1,...,r. It is sufficient to show that the base change
F,, = F XN N, is saturated over N,,. By localizing, we may assume I’ = Spec N and
the map F' — N is defined by the map x/: N — N. Then, since m is a multiple of [,
the saturation N; +33* N, is isomorphic to N,, X Z/IZ and the assertion follows.

3. We reduced it to the case where F' = Fy = Spec N and the map fy : Fy —
Spec N is corresponding to the map N — N™ sending 1 to (1,...,1). By the same
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argument as above, we may assume F’ is generically trivial. Let ¢4, ... ,t,, be the points
of F' such that Mp;, is isomorphic to N. We define a local isomorphism ¢ : F' — Fj =
Spec N such that f = foog. Let U be an affine open subfan and put I = {i|t; € U}.
Then we have a canonical isomorphism U — Spec N’. Patching the compositions
U — Spec N! — Spec N = F; with the map defined by the projection N™ — N,
we define a map ¢g : F' — Fy. Then we have f = fy o g. Hence it is reduced to the case
where F' = Fj and f = fo. In this case, it is proved in [8] Chapter III Example 2.3.

2.8 Fans associated to log reqular schemes. Proof of Theorem 1.8.

We recall the definition of the fan associated to a log regular scheme, [7] Section
10. Let X be a noetherian log regular Zariski log scheme. Let F(X) C X be the
subspace consisting of the points z such that the maximal ideal m, is generated by
the complement Mx , — O)Xm. We define a sheaf Mp(x) of monoids on F(X) as the
restriction of My. If P — I'(U,Ox) is a chart on an open subscheme U, there is a
canonical map F(U) = U N F(X) — Spec P and it is a local isomorphism. For x € X
and P = My, there exists a chart P — T'(U,Ox) on an open neighborhood U such
that the canonical map F(U) — Spec P is an isomorphism [7] Proposition (10.1).
Hence the topological space F'(X) together with the sheaf Mp(x) of monoids is a fan.
We call the fan F'(X) the fan associated to X.

Lemma 2.6 Let X be a noetherian log reqular Zariski log scheme and F' be its asso-
ciated fan. For a fractional ideal T of My, let Ir dente the restriction of the image of
T in M to F. Then the map {fractional ideals of Mx} — {fractional ideals of My}
sending Z to Ir is a bijection.

Proof. Since the question is local, we may assume F(X) = Spec P where P = My,
for some x € X. Then both the coherent ideals of Mx and the coherent ideals of My
are in one-to-one correspondences with the ideals of P and the assertion follows.

The fan F'(Spec Ok) for a discrete valuation ring Ok is canonically identified with
Spec N. The semi-stability of a log smooth scheme over O is described in terms of a
fan as follows.

Lemma 2.7 Let X be a noetherian log reqular Zariski log scheme.
1. The following conditions are equivalent.

(1) The scheme X is regular and the interior U is the complement of a divisor with
normal crossings.

(2) The fan F(X) is reqular.
2. If X is log smooth over a discrete valuation ring Ok, the following conditions are
equivalent.

(1) The scheme X is semi-stable over Ok.

(2) The fan F(X) is semi-stable over F(Spec Of).

Proof. 1. Follows immediately from the definitions.
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2. (1)=-(2) is clear from the proof of Lemma 1.7. We show (2)=-(1). The question
is etale local on X. Let ) = N — Og be the chart sending 1 to a prime element 7.
Shrinking X, we take a chart P — I'(X,0x) and a map () — P as in Proposition
1.2 (2). The map X — Spec Ok ®z Z[P] is smooth and U is the inverse image
of Spec Og ®zn) Z[P?P]. If a € P denote the image of 1, we have O ®zNj Z[P] =
Ok|[P]/(a—m). Shrinking X and localizing P, we may assume that F'(X) is isomorphic
to Spec P. By 1, the quotient P/P* is isomorphic to N™ for some integer m > 0.
By the assumption that F' is semi-stable, we may assume that the image of 1 by the
composition N — P/P* — N™is (1,...,1,0,...,0) where the first r coordinates are
1 upto numbering. By taking a splitting and an isomorphism P* — Z"~™  we have an
isomorphism P — N™ x Z"~™. If r # 0, by modifying the splitting, we may assume
that the image of 1 by the composition N — P — N x Z"™ is (1,...,1,0,...,0)
where the first r coordinates are 1. Thus in this case, the assertion is proved. Assume
r = 0. Then we have X = Xg. By the same argument as above, localizing X if
necessary, there is a smooth map X — Spec K[P] such that U is the inverse image of
Spec K[P#P] and P/P* is isomorphic to N" for some integer r. Thus also in this case,
the assertion is proved.

Lemma 2.8 1. Let S be a noetherian log reqular Zariski log scheme, X be a noethe-
rian Zariski log scheme log smoooth over S and T be a noetheran log reqular Zariski
log scheme over S. Let X ng T be the fiber product as an fs-log scheme and let
F(S),F(X),F(T) and F(X xg§®T) be the associated fans. Then there is a canonical
map F(X x'$8T) — F(X) xps) F(T) and it is locally an isomorphism.

2. Let X be a notherian log reqular Zariski log scheme and F' = F(X) be its fan. Let
7 be a coherent ideal of Mx and Iy be the corresponding coherent ideal of Mg. Then the
log blow-up X7 is Zariski log reqular and there is a canonical map F(X7) — F(X)z,.
Further the canonical map F(Xz) — F(X)z, is locally an isomorphism.

Proof. 1. Since the question is local on X, we may assume that there exist charts
P —T(X,Mx),Q — I'(S,Mg) and R — I'(T, Mr) such that F'(X) = Spec P, F'(S) =
Spec @ and F(T') = Spec R and morphisms of charts  — P and () — R. Then since
P+3"R —T'(X X\ BT, MXX?gT) is a chart, there is a canonical map F(X x o8 T) —
Spec P+3' R = F(X) X p(s) F'(T) and it is locally an isomorphism. Thus the assertion
follows.

2. Since the question is local on X, we may assume that there exist a chart P —
['(X, Mx) such that F(X) = Spec P and an ideal I C P defining Z. For a € I, let
U, be the open subscheme X ®gzp) Z[P:*] C X7. Since the map P, — I'(U,, Mx;)
is a chart on U,, we have a canonical map F(U,) — Spec P?' and it is locally an
isomorphism. By patching, we obtain the required map.

We prove Theorem 1.8. More precisely, we show the following.

Theorem 2.9 1. Let X be a log scheme log smooth and of finite type over Ok. Then
there exists an integer e > 1 such that, if L is a finite separable extension of ramification
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index e, there exists a fractional ideal Z on the base change Xo, = X®18i Oy, such that
the pair (W, Uw) of log blow-up W = Xo, 7 and its interior Uy is strictly semi-stable
over Ory,.

2. Let (X,Ux) be a strictly semi-stable pair over Ox and L be a finite separable
extension. Then there exists a fractional ideal I on the base change Xo, = X ®18i Oy,
such that the pair (W,Uw) of log blow-up W = Xo, 7 and its interior Uy is strictly
semi-stable over Oy,.

Proof. 1. By Lemma 2.1.2, we may assume X is a Zariski log scheme. Then by Lemmas
2.6, 2.7.2 and 2.8, it follows from Lemma 2.3.2.
2. Similarly as above, by Lemmas 2.6, 2.7.2 and 2.8, it follows from Lemma 2.3.3.

3. Toroidal action on log schemes.
3.1 Complement to SGA 1 Fxposé V.

Let X be a scheme over a scheme S and G be a finite group acting on X over S. For a
point € X, the inertia group I, is the subgroup {g € G|g(x) = x and g|.(») = idx@) }-
For o € G, the fixed locus X7 is the intersection of the diagonal X with the graph I',
of o in X x g X. With this notation, we have I, = {¢ € G|z € X?}. If X is separated
over S and x € X, there exists an affine open neighborhood U of x stable under I,
such that the inertia I, for 2’ € U is a subgroup of I,.

Let f: X — Y be a morphism of schemes over a scheme S and G be a finite group
acting on X and on Y over S. Assume that the actions of G are compatible with f.
Then for x € X and y = f(x), we have I, C I,. If we have an equality I, = Iy(,), we
say f preserves the inertia group at x. If f preserves the inertia group at all the points
of X, we say f preserves the inertia groups.

Let X be a scheme over a scheme S and G be a finite group acting on X over
S. We say the action of G on X is admissible if the ringed space (Y, Oy), where
7: X — Y = X/G is the quotient space and Oy is the G-fixed part 7.0%, is a scheme.
We call Y = X/G the quotient of X by G. If X is locally of finite presentation over .S,
the canonical map 7 : X — Y is finite and Y is locally of finite presentation over S.
An action of G is admissible if and only if there exists an open covering X = J,.; U;
by affine open subschemes U; C X stable by G.

Lemma 3.1 Let X be a scheme over a scheme S and G be a finite group acting on X
over S.

1. Let & be a geometric point of X and ¥ — U — X be an etale neighborhood of ¥.
Then there exists an etale neighborhood T — U’ — U and an action of I, on U’ such
that the composite map U — X is compatible with the actions of I, and, at the image
' of T inU', we have I, = I,.

2. Let X' be another scheme over S with an action of G over S and f : X — X'
be a morphism of schemes over S compatible with the actions of G. We assume that
X and X' are locally of finite presentations over S. Let x be a point of X.

Then the following conditions (1) and (2) are equivalent.
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(1) The morphism f is etale and preserves the inertia group at x.

(2) There exists affine open neighborhoods U of x and U’ of ' = f(x) stable under
the action of I, such that f(U) C U' and that the restriction U — U’ is etale and
preserves the inertia groups with respect to the actions of I, on U and on U’.

3. With the assumptions in 2, we assume further that the actions of G on X and on
X' are admissible. Letm: X —Y = X/G and 7' : X' =Y’ = X'/G be the quotients.
Then, the conditions (1) and (2) in 2 are equivalent to the following condition (3).

(3) The morphism'Y — Y' is etale at y = w(x) and the map X — X' xy: Y is an
isomorphism on a neighborhood of x.

Proof. 1. Replacing G by I,, we may assume G = [,. Shirinking X, we may assume
X = Spec B is affine. Let 7 : X — Y = X/G = Spec A be the quotient where A = B¢
and put y = 7(x). Let A’ and B’ be the strict henselizations of A and B respectively
at y and x. Since 77(y) = {x} and B is integral over A, we have B’ = B ®4 A’
Since A’ = lim 5.y yI'(V, Oy), there exist an etale neighborhood V' — Y of § and a
morphism V' Xy X — U of etale neighborhoods. The group G acts on U' =V xy X
via the second factor and we have I, = I,.

2 and 3. The implications (2)=-(1) in 2 and (3)=-(2) in 3 are clear. We show
(1)=-(3) in 3. First we show Y — Y’ is etale at y = w(x). Since X/I, — Y and
X'/I, — Y’ are etale at the images of x and of 2/, we may assume G = I, by replacing
G by I,.. By shrinking X and X', we may assume X and X’ hence Y and Y’ are affine.
The induced map Y — Y is of finite presentation. Since the question is etale local at
y and at y' = 7(2’), we may replace Y and Y’ by their strict henselizations at y and
at 3 respectively. We put Y = Spec A and Y’ = Spec A’ where A and A’ are strictly
henselian and put X = Spec B and X’ = Spec B’. Since 771(y) = {z}, 7"} (y) = {2’}
and B and B’ are finite over A and A’ respectively, the rings B and B’ are strictly
henselian local rings. By the assumption that the map B — B’ is etale, it is an
isomorphism. Hence the map A — A’ is an isomorphism and the assertion is proved.

We show that the map X — Y Xy X’ is an isomorphism on a neighborhood of z.
We may assume Y — Y’ is etale. Then the map X — Y Xy X’ is finite and etale.
Since the map 7= (y) = G/I, — 7 '(y') = G/I» induced on the inverse images is a
bijection, it is an isomorphism on an neighborhood of x.

We show (1)=-(2) in 2. Replacing G by I,, we may assume G = [,. Since the
question is local, we may assume X and X’ are affine and the map f: X — X' is etale.
Then by (1)=(3) in 3, the map induced on the quotients ¥ = X/G — Y' = X'/G is
etale and the map X — Y xys X’ is an isomorphism. Thus the map X — X’ preserves
the inertia groups.

Lemma 3.2 Let f: X — S be a quasi-projective scheme over a noetherian scheme S
and G be a finite group acting on X over S.

1. The action of G on X is admissible. The quotient Y = X /G is quasi-projective
over S. If X is projective over S, the quotient Y 1is also projective over S.
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2. Let L be an f-ample invertible sheaf on X with an equivariant action of G. Then
there exist an integer N > 1 and an f-ample invertible sheaf M on'Y with a canonical
isomorphism M — LZN where m : X — Y s the canonical map.

Proof. 1. If L is an f-ample invertible sheaf, the sheaf &) gec 9L 1s also f-ample.
Hence we assume L is an f-ample invertible sheaf on X with an equivariant action of
G and show 1 and 2.

We put R = @,,-, [+LZ" and let RY = @, -(f:LZ™") be the G-fixed part. We
show that the quotie;lt Y = X/G is constructed as an open subscheme of Proj RE.
The question is local on S and we assume S is affine. We put R = @, -, I'(X, L")
and R = @, ., (X, L£&")¢. For a point z € X, by [5] Corollary (4.5.4), there is
an integer n > 1 and a section s € T'(X,L£®") such that the open subscheme X,
where s is a basis of £%" is an affine neighborhood of the orbit Z = Gz of z. By
replacing s by the norm ®,cqg*s, we may assume s is invariant by G. Hence X has
an open covering by G-stable affine open subschemes X, and the action of G on X is
admissible. Since X is quasi-compact, there exist an integer N > 1 and G-invariant
sections sy,...,s, € ['(X, £L%N)Y such that X, ,...,X,, is an affine open covering of
X. Since X, = Spec R[1/S;]deg 0, the quotient Y = X/G is obtained by patching
Y, = Spec RY[1/si]deg 0 and is an open subscheme of Proj RY. Since Y has an affine
open covering Y, ..., Y., the sheaf M = O(N) is an ample invertible Oy-module
and there is a canonical isomorphism 7*M — L£®V. Hence Y is quasi-projective over
S. If X is projective, Y is also projective.

Lemma 3.3 Let f : X — S be a smooth scheme over a scheme S and let G be a
finite group with actions on X and S compatible with f. Let v € X. Assume that
the order N of the inertia group I, is invertible at x and that the action of I, on the
fiber Q}X/S,z ® k(x) is the sum of characters x1,... ,Xn : I — pa(x) for an integer
d > 1 invertible at x. Assume further that the local ring Og t) contains a primitive
d-th root of 1 and regard x; as characters I, — ,ud(OS,f(m)). Then there exist an
open neighborhood U of x stable by I, and functions t1,...,t, € I'(U,O) such that
g(t:)) = xi(g)t; for g € I, and i = 1,... ,n and that the map U — A% defined by
t1,...,t, 1s etale.

Proof. For a character x : I, — 1a(Ox), let e, denote the projector % delz X (g9)g
and let e, - Ox, and e, - (Qﬁ(/s’z ® k(z)) be the x-parts. Then, the k(z)-vector space
ey - (Qﬁ(/s’z ® k(x)) is generated by the image of e, - Ox , by the derivation d : Ox , —
Q}X’/S,z ® k(z). Hence there exist tq,...,t, € Ox, such that g(t;) = xi(g9)t; and
(dty,...,dt,) is a basis of Q% /5. @ k(). The assertion follows from this immediately.

3.2 Toroidal action and quotient.
Definition 3.4 1. Let X be a log schemes and G be a finite group acting on X by
automorphisms of a log scheme. We say the action of G s tame at x € X if the

following condition (i) is satisfied.
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(i) The order of the image Im(I, — Aut(Oxz) X Aut(Mx z)) of the inertia group
I, is invertible at x.

If the action of G on X s tame at every point x € X, we say the action of G on
X s tame.

2. Let f : X =Y be alog smooth morphism of log schemes and G be a finite group
acting on X and Y as automorphisms of log schemes compatible with f. We say the
action of G is toroidal relative to f at x € X if the action is tame at x and if the
following condition (ii) is satisfied.

(ii) The action of I, on Qﬁqy(log/log)r ® K(T) is trivial.

We say an action of G on X 1is toroidal relative to f, if it is toroidal relative to f
at each point r € X.

If X is log regular, the condition (i) is equivalent to the following apparantly weaker
condition (i)
(i) The order of the image Im(I, — Aut(Oxz)) is invertible at x.

Lemma 3.5 Let f: X — Y be a log smooth morphism of log schemes over a scheme
S and G be a finite group acting on X and Y as automorphisms of log schemes over
S compatible with f.

1. Assume X is separated over S. Then if the action of G is toroidal relative to f
at v € X, there is an open neighborhood U of x stable under G such that the action of
G is toroidal relative to f on U.

2. Let Z be a log scheme over S and g : Y — Z be a log smooth map over S. Assume
G acts on Z as automorphisms of a log scheme over S and the action is compatible
with g. For x € X, if the action of G s toroidal relative to f at x € X and toroidal
relative to g aty = f(x), the action of G is toroidal relative to go f at x.

Proof. 1. By the assumption that X is separated over S, on a neighborhood U of
x, we have I, C I, for 2’ € U. By considering UQGG gU, we may assume G = I[,.
By replacing G by the image Im(/, — Aut(Ox ) x Aut(Mx z)) and shrinking X, we
may assume the order N of G is invertible on X. Then the action of G is tame. Let
(w1, ... ,wy,) be a basis of Qﬁ(/y(log/log) at z. We put w] = + > gec 9 wi. Since the
action of G on QY (log /log), ® (x) is trivial, we have w; = wj and (vf,... ,w;,) is a
G-invariant basis of 0y - (log /log) at . Thus the action of G is toroidal on an open
neighborhood of z.

2. Assume that the action of G is toroidal relative to f at x € X and toroidal
relative to g at y = f(x). Then the action is tame at x. By the exact sequence
0 — Qy/,(log /log), ® k(x) — Qy,,(log /log), ® k(x) — Q )y (log /log), @ k(x) — 0,
the action of I, on Qﬁ(/z(log/log)r ® k(z) is trivial since the action is tame at x.

We give an characterization of toroidal action, similar to Proposition 1.2.

Proposition 3.6 Let S be a log scheme and f : X — S be a log scheme log smooth
over S. Let G be a finite group acting on X as automorphisms of a log scheme X over
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S. Let x be a point of X, V = Spec R — S be an affine etale neighborhood of s = f(x)
and Q@ — T'(V,Og) be a chart on V.. Then the following conditions (1) and (2) are
equivalent.

(1) The action of G on X is toroidal relative to f at x.

(2) There exist an affine etale neighborhood ¢ : U = Spec A — X of x, a map
U — V' compatible with f and an action of I, on U as automorphisms over V such
that the map U — X is compatible with the actions of I, and that the inertia group
L. at a point ' € ¢~ (x) is I,. Further, there exist a chart P — T'(U,Ox), a map of
monoids Q — P compatible with the map U — V and a bimultiplicative map ( , ) :
I, x P — puq(R) where d is an integer invertible in R, such that the pairing ( , ) is
trivial on the image of Q and that the following conditions (a) and (b) satisfied.

(a) Q% — PSP is injective and the order of the torsion part of its cokernel is
wnvertible on U.

(b) We define an action of I, on R @z Z[P] by g(a ® p) = (9,p)a ® p. Then the
map U — V Rz Z[P] is (classically) etale and compatible with the actions of I,.

Proof of Proposition 3.6. (2)=(1). Since the question is etale local at z, we may
replace G by I,, X by U and S by V. We may further replace U by V ®zq Z[P].
Then the image of I, — Aut(Oxz) X Aut(Mx ;) is a quotient of the image of I, —
Hom(P, pa(R)) and its order is invertible at . The canonical map (P®/Q%P) @k (z) —
% sy (log /log); ® £(Z) is an isomorphism and hence the action of I, is trivial.

(1)=-(2). We follow the proof (3.13) of Theorem (3.5) [6]. By Theorem (3.5) and
Remark (3.6) loc.cit., there exist an affine etale neighborhood U = Spec A — X of
x, a map U — V compatible with f, a chart P on U and a map of monoids () — P
compatible with the map U — V satisfying the conditions (a) above and

(b”) The map U — V ®gzjq) Z[P] is (classically) etale.

By Lemma 3.1, we may assume that U has an action of [, as automorphisms over V
and that the map U — X is compatible and preserves the inertia groups with respect
to the actions of I,.

To modify the chart P so that the condition (b) is satisfied, we define a bimultiplica-
tive map (, ), : [, x My — R*. First, we show that the action of I, on Mj is trivial.
Since there is a canonical surjection QY (log/log), ® #(z7) — (Mgp/Mfa ) ® K(T),
the action of I, on (Mg"/MF,)) ® k(Z) is trivial. Since the order of the inertia is
invertible at , the action of I, on Mg” /M7, is trivial. Since the action of I, on M7

is trivial, the action of I, on MEP is also tr1v1al Since I, acts trivially on Mj, the map
I, x Mz — O)X(JE : (g,m) — g(a(m))/a(m) is defined. It induces a bimultiplicative
map (, )z @ L x ME® — k(Z)*. By the assumption that the order of the image
I, — Aut(M x,z) s invertible at x, the image of the pairing is uq(Z) for an integer
d > 1 invertible at . We identify ,ud( ) with pq(R) by shrinking V. Thus we obtain a
pairing (, ): I, x Mz — pqa(R) C R*.

We take t,...,t, € Mz such that (dlogty,... ,dlogt,) is a basis of Qﬁqs(log/log)f
as in the proof (3.13) of Theorem (3.5) [6]. By the argument there, it is sufficient to show
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that, by modifying t1,... ,t,, we may assume g(t;) = (g,t;)t; for i =1,... ;7. We put
ug; = g(t;)/t;. Since I, acts on Mj trivially, it is a unit and congruent to (g, ;). Hence
w; = ﬁ delz (g,t:) tug; is a unit congruent to 1. We put ; = w;t;. Then we have
g(t}) = (g,t})t.. Hence it is sufficient to show that dlogt, = dlogt; in Qk/s(log /log)z®
k(Z). By the assumption that the action of I, on Qk/s(log/log)f ® k(Z) is trivial, we
have dlogu,,; = 0in Qk/s(log/log)fG@n(i). Hence we have dlogt.—dlogt; = dlogu; =
du; = ﬁ delz (g, ti)_ldugﬁi = 0 and the assertion follows.

Proposition 3.7 Let S and X be locally noetherian log reqular schemes and f : X — S
be a log smooth morphism. Let G be a finite group acting on X as automorphisms of
a log scheme X over S. Assume that the action of G is admissible and let 7 : X —
Y = X/G be the quotient. Let Ux be the interior of X and put Uy = w(Ux). Then the
following conditions are equivalent.

(1) The action of G on X is toroidal relative to f.

(2) The pair (Y,Uy) is toric, the map Y — S is log smooth and the map X — Y
18 log etale.

We call the log structure on Y defined by Uy the standard log structure.

Proof. (2)=-(1). To show this we only need to assume that (Y, Uy) is toric and that
X — Y is log etale. The question is etale local. Let z be a geometric point of
X. Replacing Y by the spectrum of the strict henselization at y = 7(Z), we may
assume Y is strictly local. Replacing G by [I,, we may assume G = [,. Then X
is the spectrum of the strict henselization at z. Let P = MX@ and Q = My,g and
take a chart () — Oygy. Then, by the proof of Theorem 3.3 [9] p.57, there is an
isomorphism Oy ®zjq) Z[P] — Ox; where the map ) — P is injective and the index
(PP Q%] is finite and invertible at z. Since the order of Im(/, — Aut(Ox,)) is
equal to [X : Y] = [P#P : Q#P], the action is tame. Since X — Y is log etale, the map
7y 5(log /log) — Q ¢(log /log) is an isomorphism. Hence the action is toroidal.

(1)=(2). The question is etale local on Y. Let x € X. We take etale neighborhood
U =Spec A— X of x and V = Spec R — S of f(z) and charts P on U and @ on V'
as in Proposition 3.6. Since U/I, — Y = X/G is etale, we may assume X = U, S =V
and G = I, by replacing X,S and G by U,V and I,. By Lemma 3.1.1, we may
assume A = R ®gzjq) Z[P]. Replacing G further by its image in Hom(P, uq(R)), we
may assume that the order of G is invertible in R. We define an fs-monoid Fy C P by
Py ={p € P|(g,p) = 1 for all ¢ € G}. The natural map G — Hom(P?/P§", ua(R))
is an isomorphism.

We put Y’ = Spec R ®zjq) Z[F%] and consider Y’ as a log scheme with the log
structure defined by the chart Py — R ®zjg) Z[F]. The log scheme Y’ is log smooth
over S and hence is log regular. By the natural map X — Y, the log scheme X is a
finite and log etale Galois covering of Y of Galois group G ~ Hom(P®°/P§’; a(R)).
Hence we have an isomorphism Y — Y’ of schemes. Since the interior of Y’ is the
image of Uy, the assertion follows.
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3.8 Nodal curves and toroidal action.

Let G be a finite group with a tame action on a nodal curve f : X — Y over a log
regular scheme Y. Then under a certain mild hypothesis, the points of X where the
action are not toroidal is classified as follows.

Proposition 3.8 Let S be a scheme, (Y, Uy) be a toric pair over S and (f : X — Y, D)
be a separated pointed nodal curve over'Y such that f is smooth over Uy. We regard
X as a log scheme with the standard log structure. Let G be a finite group with tame
actions on the log schemes X and on'Y over S compatible with f. Let ® C X be the
subset consisting of the points where the action of G is not toroidal relative to f. Then,

1. The subset ® C X 1is closed. The intersection ®ND is empty. If v € PN(X —X),
the action of I, on Qﬁ(/y’z ® k(x) is non trivial. If x € ®NX, the action of I, on Br(Z)
is non trivial. The intersection ® N'Y is a subset of X[1].

2. Assume S is a locally noetherian log reqular scheme, Y is log smooth over S, the
action of G on'Y is toroidal over S and ®NYX = (. Then, there exists a coherent ideal
Zs of Ox characterized by the following conditions.

The support of Ox /Iy is . For x € ®, let x, : I, — k(x)* be the character
defined by the action on Qﬁ(/y’z ® k(x). Then Ly z is generated by {f € Oxzlg(f) =
Xe(9)f forall g € I..}.

We regard ® as a closed subscheme of X defined by the ideal Zo. Then ® is neat over
Y; Q<11>/Y = 0. The subsets &1 = {x € ®|® — Y is etale at x} and the complements
Oy = & — Py are open (and closed) subsets of P.

Proof. 1. By the assumption that X is separated over S, the complement X — & is
open by Lemma 3.5.1.
On D, we have a canonical isomorphism QY (log /log)|p — Op. Hence ®ND = 0.

On X — X, we have Qﬁ(/y(log/log)\x_g = Qk/Y|X_g. Hence the assertion for
r e dN (X —X) follows. ) )
On X, we have a canonical isomorphism QY . (log /log)[s. — (M/ f* M) |2 ®zOs.

At a geometric point Z of ¥, the stalk M, /M I

757 divided by the diagonal. Thus the description of the points in ® N Y follows.
We show ® NX C B[i]. If z € ®N Y, the map [, — Aut(M)g&/M)ggf(f)) = {£1} is
surjective and hence 2 is invertible at x by the assumption that the action is tame.

2. The question is etale local on X. First, we give a local description of Y. Since
® N Y = ( and @ is closed, by replacing X by X — X, we may assume X is smooth
over Y. Let x € ®. Shrinking X, we may assume that I, C I, for 2’ € X. Replacing
G by I,, we may assume G = I,. By Proposition 3.6 (1)=(2), we may assume the
following: The scheme S = Spec R is affine and the log structure on S is defined by a
chart () — R. There exist a map of fs-monoids () — P, an integer d > 1 invertible in
R and a bimultiplicative map (, ) : G x P — p4(R) which is trivial on the image of Q)
and satisfies the condition (a) in Proposition 3.6. The scheme Y is Spec R ®zjq) Z[P]
and the action of G on Y is defined by by g(a ® p) = (g,p)a & p.

) is identified with the quotient of
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We give a local description of X. We put A = R ®zjg) Z[P] so that Y = Spec A.
Replacing d by a multiple if necessary, we may assume that the character y, : G —
k(x)* has values in pg(z). Shrinking S if necessary, we identify pq4(z) = pq(R) and
regard the character x, has values in pq(R). We put B = A[t] and define an action of
G on B extending the action on A by g(t) = x(g)t for g € G. By Lemma 3.3, shrinking
X further, we may take t; € I'(X,O) such that the map ¢ : X — A3, = Spec B defined
by t + t; is etale and compatible with the action of G. Since Iy ;) = I, shrinking X
if necessary, we may assume that the map 1 preserves the inertia groups by Lemma
3.1.2. By replacing X by Al we may assume X = Spec B.

We put P = P x N and identify B = R ®z[qQ] Z[P]. We will define an ideal I of P
and show Zy = IOx. We define a bimultiplicative map (, ) : Gx P — pq(R) extending
G x P — pg(R) by putting ( ,t) = x.. Replacing G by its image in Hom(P, ua(R)),
we regard G as a subgroup of Hom/(P, wa(R)). For b € P, let xp: G — ta(R) denote
the character defined by ys(g) = (g,b). We define an ideal I of P to be that generated
by f’x ={be Plxy = x}. The ideal [ is generated by P, = {b € P|x, = x} and by t.

We show Zs = IOyx. Changing the notation, let x denote an arbitrary point of X
and y = f(x). First we consider the case t(x) # 0. In this case, we have IOx ; = Ox ;.
On the other hand, we have I, C Ker y; and x ¢ ®. Hence we have also Zg z = Ox ;.
We assume t(z) = 0. We define a prime ideal p of P by p = {b € Pla(b)(z) = 0}.
Then the inertia group I, is equal to H = {g € G|(g,b) = 1 for all b € P— pt. We
put x = x; and let x’ be the restriction of x to H. Then the ideal Zs ; is generated
by the image of P,,» = {b € P,|xs|z = X’} where P, denotes the localization at p.
Hence it suffices to show the equality pp%/ = f’x . PPX. Since H is the kernel of the map

G—H om(l6 — p, ita), we have a commutative diagram of exact sequences

0 — 15; e pep —~ - pe/ 15; — 0

(P~ p)® —— Hom(G.jta) —— Hom(H,j1q) — 0.

Since P, = 7~ (n(P)), we have P, = P, - f’px by diagram chasing. Thus the assertion
is proved.

Since @ is a subscheme of a section of X over Y, it is neat over Y. It is clear that
®, is open in ®. The subset ®; is the closure of the inverse images of generic points of
Y and is also closed.

Let G be a finite group with a tame action on a nodal curve f : X — Y over a log

regular scheme Y. Then under a certain mild hypothesis, we can modify X so that the
action of GG is toroidal relative to f.

Proposition 3.9 Let the assumption be the same as in Proposition 3.8. Then,
1. Assume that the following condition is satisfied for each x € 3.
(s) There exist an etale neighborhood U of x, an open neighborhood V' of y = f(z)

containing the image of U, a section w € I'(V,Oy) and an etale morphism U —
VIS, T]/(ST — w?) over Y.
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Then there exists a coherent ideal Iy, of Mx characterized by the following condition
at each v € X.

The quotient Mx /s, is supported on ¥. If x € X, the stalk Is; is generated by
S,T,w in the notation above.

The log blow-up Xs; — X by the ideal Iy, is a nodal curve over'Y and the action of G is
canonically extended on Xx.. We regard Xs, as a log scheme over Y with the standard
log structure. Then the set ®(Xyx) N X(Xyx) is empty.

2. Assume that S is a locally noetherian log reqular scheme, Y is log smooth over
S, the action of G on'Y is toroidal over S and that ®(X)NX(X) = 0. Let Zo be the
ideal defined in Proposition 3.8.2 and ¢ : X¢ — X be the normalization of the blow-up
by Zo. We put Ux, = o {(f1(Uy)N (X — (DU ®;)) C Xg. Then (Xs,Ux,) is a
toric pair. We regard Xo as a log reqular scheme with the log structure Mx, defined by
Ux,. Then the map Xo — Y 1is log smooth, the action of G is canonically extended on
Xo¢ and the action of G on Xg is toroidal relatively to the composition X¢ — X — Y.

We call the log structure on Xg defined by Ux, the standard log structure.

Proof. 1. We verify that the coherent ideal Zy, is well-defined. Since the question
is etale local, we may assume X is etale over Y[S,T]/(ST — w?). Tt is sufficient to
show that S,T and w are uniquely determined modulo units upto ordering. Since
X and Y are normal, functions on X and on Y are determined modulo units by the
discrete valuations at the points of codimension 1. Shrinking Y, we may assume Y
is the spectrum of a discrete valuation ring R. Then upto ordering, the divisors of S
and T are the irreducible components of the closed fibers. The ideal (w?) C R is the
annihilator of Q?X ne Hence the ideal Zy, is well-defined and is coherent.

We show the assertions on Xs. It is clear that X is a nodal curve over Y and that
the action of G is canonically extended on Xy. We show ®(Xy) N X(Xy) is empty.
Assume 2’ € &(Xy) N X(Xx). Then the image = of 2 is in 3(X). One of the branches
at 7’ is exceptional and the other is the proper transform of a branch at . Hence the
action of I, on Br(Z') is trivial and the assertion follows.

2. The question is etale local on X. Since ®NY = () and D is closed, by replacing X
by X —Y, we may assume X is smooth. Similarly, we may assume D = (). It is sufficient
to show the claim for X — ®; and X — ®;. In other words, it is sufficient to consider
the cases ® = ®; and & = P, respectively. Assume & = ®;. Then &, is a divisor of
X etale over Y. Hence the underlying scheme of Xg is the same as that of X and the
log scheme Xg with the log structure My defined by Ux, = f~(Uy) N (X — @) is log
smooth over Y. Since the restriction Q&q} sy (10g /log)®o, Og is canonically isomorphic
to Og by the residue map, the action of G on X is toroidal relatively to Y.

We assume & = ®&,. As in the proof of Proposition 3.8.2, we may assume Y =
Spec A, X = Spec B where A = R @z Z|P], B = R ®z)g Z[P] in the notation
loc.cit. Let I C P denote the ideal generated by P, and t as loc.cit. We define an
ad hoc log structure M% on X by the chart P=PxN— B. Itis log smooth over
Y. We define a coherent ideal Z' of M’ to be that generated by the ideal I C P.
Since Zo = Z'Ox, the normalization X¢ is identified with the underlying scheme of
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the log blow-up by the coherent ideal Z' by Lemma 2.1.1. Hence the scheme X4 has
an open covering by Uy = X ®gp) Z[P?] and U, = X ®z(p) Z[P™] for a € P, where
P, =t I" = P(P/t) and P, = | Ja "I" = P(P,/a) x {t/a) are submonoids of P#.

We show that the pair (Xo,Ux,) is toric and is log smooth over Y. Since we are
assuming D = ®; = (), we have Uy, is the inverse image (f o ¢)~'(Uy) of Uy. First,
we show that the pair (Uy, U; N (f o ¢)~}(Uy)) is toric and is log smooth over Y. Let
MY, be the log structure on Xg defined as the log blow-up of X. Since X¢ with MY
is log smooth over X it is sufficient to show that the interior of U; with respect to the
log structure MY is the inverse image of Uy. By assumption ® = ®,, the set P is
not empty and we have ]5tgp = P,- PP, Hence the interior of U, with respect to the log
structure MY is the same as the inverse image of Uy-.

We show that the pair (U,, U, N (fop)~!(Uy)) is toric and is log smooth over Y for
a € P,. Let Iy = (P,) C P be theideal INP and put P, =Ja "I} = P(P,/a) C P*P.
Then we have P, = P, x (t/a). Hence U, is isomorphic to Y ®gp Z[P:*][t/a]. The
scheme Y, =Y ®yzp| Z[P;*] with the log structure defined by the chart P:*" is log etale
over Y and the scheme U, with the log structure My, defined by the chart P®* is log
smooth over Y. The interior of U, with respect to the log structure My, is the same
as the inverse image of Uy .

We show that the action of G on X4 is relatively toroidal over Y. It is sufficient
to show this on U; and on U, for a € P,. First, we consider U;. The action of G on
(X, MY ) is relatively toroidal since the basis dlogt of Q%X, M%) sy (log /log) is invariant
under G. Since the map U; — (X, M%) is log etale, the pull-back of dlogt is a basis
of Qy, sy (log /log). Hence the action of G on U, is relatively toroidal. We consider U,
for a € P,. Since Y, is log etale over Y, the log differential dlog(t/a) is a basis of of
Q,, /v (log /log) = Q. Since t/a is invariant under G, the action of G' on U, is also
relatively toroidal.

4 Proof of Theorem 1.3.

4.1 Proof of Theorem 1.3 (3)=(1).

In this subsection, we show the following.

Lemma 4.1 In Theorem 1.3, we have (3)=(1) if N > 3 and if either of the following
conditions is satisfied.

(a) 2 is invertible and Y is quasi-compact.
(b°) There is no closed subset of Dy =Y — U which is a subset of Dy|[3].

Proof. Let N > 3 be an integer invertible on Y and assume the condition (3). First we
show that there is a finite etale Galois covering Uy, — Uy such that the normalization
Y’ — Y in Uy satisfies the condition: (Y’,Uy-) is a toric pair log etale over (Y, Uy)
and the pull-back (f : Xy — U, Dy) xy Uy, is extended to a stable curve over Y.
By (3), there is a finite etale Galois covering Uy, — Uy that trivializes the finite etale
covering Dy — U and is tamely ramified at each generic point of Dy. Let Uy, be the
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finite etale Galois covering Isomyy, ((Z/NZ)?, Jx.u, ) of Uy. Then by (3), the covering
Uy is tamely ramified at each generic point of Dy. Let Y’ be the normalization
of Y in the finite etale Galois covering Uys Xy, Uy; tamely ramified at each generic
point of Dy. Then by the log purity theorem, Theorem B [9], the pair (Y',Uy/) is a
toric pair and log etale over (Y, Uy). Further, by the extension theorem, Theorem A
loc.cit., the pull-back (f : Xy — U, Dy) Xy Uy is uniquely extended to a stable curve
(f': X' =Y’ Dys) over Y.

Let G be the Galois group of the covering Y’/ — Y. By the uniqueness of the
extension, the curve f': X’ — Y’ has a natural action of G. We regard X’ as a log
scheme with the standard log structure. The map f': X’ — Y’ is log smooth. We will
construct X by taking the quotient by G after modifying X’ so that the action of G
is toroidal relative to the map to Y’. By Proposition 3.7 (2)=-(1), the action of G on
Y’ is toroidal relative to Y’ — Y. Since I, C I, for x € X’ and y = f’(z), the action
of G on X' is tame. Hence the assumption of Proposition 3.8 is satisfied.

We construct X — Y assuming that the stable curve f’ : X’ — Y satisfies the
condition (s) in Proposition 3.9.1. Let ¥ C X’ be the non-smooth locus of the nodal
curve X' — Y’ and o : X5, — X' be the log blow-up constructed in Proposition 3.9.1.
The map o : X5, — X’ is an isomorphism on the inverse image of Uy:,. We show that
the etale part ®; = ®;(X%;) in Proposition 3.8.2 is empty. Since the action of G on
the pull-back Xy, = Xy xp, Uy is free, we have ® N (X' xy/ Uys) = 0 and &; = (.
Let ¢ : (X§)e — X§ be the blow-up at & = ®5(X{,) constructed in Proposition 3.9.2.
The map ¢ : (X§)e — X, is also an isomorphism on the inverse image of Uy,. We
put Xy, = (X§)e. Since ®; = () as shown above, the standard log structure of Xy~
is defined by (p 0 0) ' (Xy,, — Dy,,) C Xys. The action of G on X' is canonically
extended to an action of G on Xy.. By Proposition 3.9, the action of G on Xy is
toroidal relatively to the composition map fy: : Xy — Y.

We show that the action of G on Xy~ is admissible and the quotient X = Xy /G
with the induced map f : X — Y = Y’/G satisfies the required properties. The scheme
X' is projective over Y’ and hence over Y. By Lemma 3.2.1, the action of G on Xy~
is admissible and the quotient X = Xy /G is projective over Y. Applying Proposition
3.7(1)=(2) to the composition X’ — Y’ — Y the map f: X — Y is log smooth with
respect to the standard log structure on X. Since the log structure of Xy is defined
by (¢ oo) ' (Xu,, — Du,,), the standard log structure of X is defined by Xy, — Dy, .
Thus f: X — Y satisfies the required properties.

For later use, we construct an f-ample invertible sheaf on X. Since (f' : X' —
Y’ D') is a stable curve, the invertible sheaf Lx = Qﬁp/y/(log/log) is f’-ample. The
sheaf Ly has a natural equivariant action of G. Let Og(1) and Ox;(1) be the relatively
very ample sheaf on Xy = (X§)e over X, and on X§, over X' respectively and 7 :
Xy — X be the canonical morphism. The invertible O, ,-module Eg’;j) = 0s(1) ®
©*(Oxn(1) @ o*LE)®H is relatively ample over Y’ and hence over Y for sufficiently large
i, v > 1 and has a natural equivariant action of G. By Lemma 3.2.2, there exist an

integer N > 1 and an invertible Ox-module MWrN) with a canonical isomorphism
’]T*M(:M7V7N) N Egéhl/)@]\/‘
Y/
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We complete the proof of the case (b) by showing that the condition (b) for Dy
implies the condition (s) in Proposition 3.9.1 for f’ : X’ — Y’. Since ¥ N & is proper
over Dy and is a subset of X’[3], its image is a closed subset of D and is a subset of
D[3]. Hence, if the condition (b) is satisfied, the set ¥ N & is empty and the condition
(s) is satisfied.

To prove the case (a), we consider the condition (s’) below. We introduce a notation.
Let V be a locally noetherian log regular scheme, P — I'(V,Oy) be a chart on V' and
n be an integer invertible on V. Then, let V,, denote the finite log etale covering
Vi, =V ®@gp) Z[P] of V' defined by the map of monoids xn : P — P.

(s’) There exist an integer n > 1 invertible on Y, an etale covering (V; — Y)i=1
and charts P, — ['(V;, Oy ) satisfying the following condition:

A primitive n-th root 1 is defined on V;. For the covering V/ = V;, = V; ®z/p;
Z|P;] — V; defined above, the pull-back of the stable curve (f' : X’ — Y’, Dy/) to
Y’ xy V! satisfies the condition (s) in Proposition 3.9.1.

Let n be 2-times the 2-part of the order of G. We show that the condition (a) implies (s”)
for this n. The condition (a) implies that 2 and hence n is invertible on Y. Let Y’ — Y
be the finite log etale Galois covering above. It is sufficient to find, for each g, an etale
neighborhood V' — Y and a chart P — I['(V,Oy) such that priMy: C My, v, is a
subsheaf of M. Q/van. Let § — Y be a geometric point and ¥’ — Y be a geometric point
above . By the proof of Theorem 3.3 [9] p.57, there are etale neighborhood V' — Y
of g and V! — Y’ of ¢/, charts P — I'(V, My ) and P’ — I'(V’, My/) and a morphism
of charts P — P’ satisfying the following property. The map P — P’ is injective and
Carl o’ C P. Here and in the rest of paragraph, we use the additive notation. It is
sufficient to show P’ C 2(1P + P')**. Let a € P' and put CardG = 2(2m + 1). Then
b = %(2m+1)a is an element of P. Since a = 2(=b—ma), we have 2b—ma € (£ P+ P’)**
and the assertion follows.

We construct f : X — Y assuming the condition (s’). Let n > 1 be an integer,
(Vi = Y)iz1....m be an etale covering and P, — I'(V;,Oy) for i = 1,... ,m be charts
as in the condition (s’). First, we construct it etale locally on Y. The finite log
etale covering V! — V; is a Galois covering of Galois group G; = Hom(P;, u,). Let
(fl: X[ =Y’ xy V! D;) be the stable curve over Y’ xy V" extending the pull-back. It
satisfies the condition (s) in Proposition 3.9.2. We apply the above construction to the
Galois covering Y/ xy V' — V; of Galois group G x G; to obtain a log smooth extension
fi + Xi — V; of the pull-back Xy, — Uy. We put V;; = V; Xy V;. To descend the family
Ji: Xi = Vitoget f: X — Y, we define isomorphisms ;; : X; xy;, Vi — X; xv, Vi;
satisfying the cocycle conditions.

Let V; be the normalization of V' xy V/. It is a finite and log etale Galois covering
of V;; of Galois group G;; = G; x Gj. On the finite and log etale Galois covering
Y xy Vi of Vj; of Galois group G' x Gjj, the pull-back is extended to a stable curve
(fi; + Xi; = Y' Xy VI, Dij) and the extension satisfies the condition (s). Applying the
construction above, we obtain a log smooth extension f;; : X;; — Vj; of the pull-back.
By the uniqueness of the extension of stable curves, we have canonical isomorphisms

10 X — X[ xy V.. The map 9}, is compatible with the natural actions of G' x Gi;.

/.
i
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Let Xyr = (Xjy)e — X] and Xy, = (Xi;x)e — Xj; denote the blow-ups defined
in Proposition 3.9. The scheme X; is the quotient of Xy by G x G and Xj;; is the
quotient of XV/]- by G x G;;. We show that the isomorphisms ¢, : X, — X[ xy V/
induces isomorphisms zzij : XV/]- — XV/ Xy VZ’J and ¥;; 1 X — XZ' XVi VZ] to define
i =iz o5+ Xj Xy, Vig — Xi xv; Vi

For this, we show that the map V], — V/ is etale. It is sufficient to show that the
finite and log etale Galois covering V’ — V! xy, Vi; of Galois group G is classically
etale. By the definition, V}; is the normahzatlon of (VI xv; Vij) ®zip,] Z[]f] induced
by xn : P; — P;. By the definition of V;, the image of the map P; — My v, is

contained in the subsheaf of M. Vixy. v, Hence, for each point of V! xy, Vij, there is an

etale neighborhood W — V/ xy, V;; and a map P; — I'(W, Oy},) such that the pull-back
Vi Xvrxy,vi; Wis isomorphic to W ®gp,) Z[P] = W Bz/L) ) Z[X][PF?] and is etale
over W. Thus the map V;; — V] is etale as requlred

We prove that the 1somorphlsms Vi 0 X — X[ xyy V) are extended to isomor-
phisms inj : V/ — Xy Xy V.. Since V’ — V!'xy, Vi; is a finite and etale Galois cover-
ing of Galois group Gj, the map X, — XZ’ Xy, Vij is also a finite and etale Galois covering
of Galois group Gj. Since G acts freely on Xj;, if x € X is the image of 2’ € X]; and
if I, C G x @ is the inertia group, the inertia group I,y C G X G;; = G X G; X Gj is
I x {1}. Hence the closed subscheme X(X};) of Xj; is the inverse image of ¥(X]) and
the closed subscheme ®(X; ) of the blow-up X,y is the inverse image of ®(X] ).
Thus, by definition of Xy and XV/;-’ the isomorphisms i, : X[, — X] xy V) are
extended to isomorphisms QZZ']' : XV/]- — Xy Xy Vi as claimed. It is compatible with
the induced actions of G x Gj;.

By taking the quotients of the isomorphisms zzij : XV/]- — Xy xyy Vi by G x Gy,
we obtain isomorphisms v;; : X;; — X; Xy, V;;. In fact, by the definition, the quotient
Xv; /(G x Gij) is Xij. On the other hand, since the map Xys xv Vi; — Xy xy, Vi is a
finite and etale Galois covering of Galois group G;, the quotient (XV/ Xy Vi) [(Gx Gij)
is identified with (X xy, V;;)/(G x G;) = X; Xy, V;;. We define an 1somorphlsm ©ij to
be 1;; o wj_il. It is easy to see that the isomorphisms ;; satisfy the cocycle condition.

To descend the descent datum (f; : X; — Vi, i+ Xi xy;, Vij — Xj Xy, Vij), we
define a descent datum on it of a relatively ample invetible sheaf. For sufficiently large
integers p;,v; > 1 and sufficiently divisible integers N; > 1, let MZ(.“ i Ni) 1o the fi-

Egétml/i)@]\/i

v/
where 7; : Xys — X; are the canonical map. By replacing p; and v; by p = max; i
and v = max; v;, we may assume j; = i and y; = v for all 4. Further by replacing N;
by N = lem; N;, we may assume N; = N for all i. We write M(“ = M, for short.

We define isomorphisms j; The 1somorph1sms w” :

)-

. . . . . . i Vi Ni
ample invertible sheaves on X; with a canonical isomorphism 7} Mg“ vl _,

i "

XV{]- — Xy xyr V' induce lsomorphlsms w | XypxyV = E Xy Similarly as
above, we define an f;;-ample invertible sheaf MZ] on X;;. Then, they induce an

. . .
. — M; and isomorphisms 90¢ng|ij‘/].\/1-]- —

A

*
%] AV
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It is easy to see that the isomorphisms satisfy the cocycle condition. Thus the proof of
Lemma 4.1 is completed.

4.2 End of Proof of Theorem 1.3.
We complete the proof of Theorem 1.3 by showing the following.

Theorem 4.2 Let K be a discrete valuation field, fx : Xg — K be a proper smooth
and geometrically connected curve and Dy be a divisor of Xy such that the pair (fx :
Xk — K,Dg) is a stable curve. Let N > 1 be an integer invertible in Or. We
consider the conditions.

(1) There exists a projective and log smooth scheme Xo, over the integer ring
Ok extending (Xk, Xk — Dk) such that the log structure of Xo,. is defined by Ux =
XK — DK — XOK-

(2) There exists a finite tamely ramified extension L of K and a stable curve (fo, :
Xo, — O, Do,) over Or, extending the base change (fx : Xk — K,Dk) @k L.

(3) The finite covering Dk and the finite group scheme Jy x of N-torsion points
of the Jacobian Jix of Xk are tamely ramified over K.

Then we have (1)< (2)=(3). We have (3)=(1) if N > 3.

The case Dk = () is proved essentially in [12]

Proof of Theorem 4.2. The implication (3)=-(1) for N > 3 is a special case of Lemma 4.1
where Y = Spec Ok. In fact, if 2 is not invertible in O, the condition (b’) is satisfied.
The implications (2)=-(3) and (3)=(2) for N > 3 follow from the counterparts in
Proposition 1.14. We show (1)=-(3). If the condition (1) is satisfied, by Theorem 1.8
and Proposition 1.14 (1)=-(3), there exists an integer e > 1 such that, if L is a finite
separable extension and the ramification index ey k is divisible by e, the base change
Dy ®g L is unramified over L and the action of I, C Ix on Jy g @k L is unipotent.
Hence we have (1)=-(3). Another proof is found in [10]. By taking an integer N > 3
invertible in O, we have (1)<(2).

Proof of Theorem 1.3. Clearly, we have (1)=-(2). The implications (2)=-(3) and
(3)=(2) for N > 3 follows from Theorem 4.2 (1)=-(3) and (3)=-(1) for N > 3 re-
spectively. We show (2)=-(1) assuming (a) or (b). If 2 is invertible, the condition (2)
implies (3) for N = 4 and hence (1) by Lemma 4.1. The condition (2) together with
(b) implies (3) for an integer N > 3 invertible on Y. and (b’) in Lemma 4.1 and hence
(1) by Lemma 4.1.
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