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EQUIVARIANT COBORDISM
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1. INTRODUCTION

The objective of this paper is to classify up to equivariant cobordism the smooth involutions fixing
the disjoint union of an odd-dimensional real projective space RP/ and a Dold manifold P(h,i) with
h > 0 and i > 0, where P(h,i) is defined as S" x CP!/ — 1x (conjugation), see [Do]. The speical cases
j = 1,3 have been considered in [Gu] and [L-L]. Here we deal with the general case of j. Note that since
P(h,0) = RP"* and P(0,i) = CP', and the involutions fixing RPJ LI RP" (resp. RPJ LI CP?) has been
known well (see [Re] and [St2]), one will exclude the case h = 0 or ¢ = 0 in this paper.

Suppose (M™,T) is a closed manifold with involution fixing a disjoint union of RP/ with normal
bundle ™7 and P(h,i) with normal bundle v*, so m = h + 2i + k. In order to avoid that (M™,T)
is cobordant to an involution fixing only either RP? or P(h,i), one may assume that (RP7,»™7) is
nonbounding, and thus w(r™7) = (1 + «)? with ¢ odd where H*(RP/;Z3) = Zs[a]/(a/T = 0) and
a € HY(RPI; Zs). In fact, since wy(v™7) = qa # 0 one has m > j. Since (RP7,»™7) is nonbounding
and every involution fixing RP?Y bounds, the component of M containing RP/ must contain P(h,i), so
m > h+2ior k> 0. Also, (P(h,i),v*) must be nonbounding, for if not (M,T) is cobordant to an
involution fixing (RP7,™~J). Here one uses convention that (RPJ,v™=7) is nonbounding, and thus
(M™,T) does not bound equivariantly if (M™, T) exists.

Letting 27 < j < 2P+ ¢ is only determined modulo 2P, so it is assumed that ¢ < 2PT1.
The mod 2 cohomology of the Dold manifold is given by
H*(P(h,i); Zs) = Lse,d] /(" = d"T = 0)

where ¢ € HY(P(h,i); Zy) and d € H?>(P(h,1); Z3). According to the recent work of Stong [St1], one may
write the total Stiefel-Whitney class of v* in the form

w(r?) = (1+¢)*(1 + ¢+ d)w(p)’

where ¢ = 0 or 1 and w(p) = 1+ terms of dimension at least 4 is an exotic class (¢ = 0 except for
h=2,4,5, or 6).

Now form the class
w(RP(v))
(1 + 6)m7h72i77‘

wlr] =

where e is the characteristic class of the double cover of RP(v) by the sphere bundle of v, so that each
w(r]y is a polynomial in w,(RP(v)) and e. Then

o)l c i+l e)” a c e)r—1 4 ... on i
(1.1) w[r]_{(1+ "1+ e+ d)H{(1+e)" + (a+b)e(l+e) ' +---} on P(h,i)

(1+ o)t {1+ e)"T2Hr=I 4 ga(1 + e)t+2iFr=i=t 4 ...} on RP/.
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According to Conner and Floyd [C-F], RP(v*) and RP(v™ 7) are cobordant in BZs,, and thus the char-
acteristic numbers

w[r1]w, * - .w[TS]wSemflf\wl\7...7@5\ [R]P’(yk)] = w[ri]e, - w[rs]ws€m717\w1\7...7|ws\ [RP(ymfj)]

where each w = (iy,...,4¢) is a partition of |w| = i3 4+ --- + 4;. This provides a method of studying
involutions fixing RP/ LI P(h,i). Such a method was first used by Pergher and Stong to study involutions
fixing a disjoint union of a point and a closed manifold (see [P-S]).

Throughout this paper, the coefficient group is Zs. w denotes the total Stiefel-Whitney class and wy
denotes the s-th Stiefel-Whitney class.

2. EXAMPLES FOR WHICH INVOLUTIONS EXIST

Now let us bulid some involutions fixing RP/ U P(j,i) with j odd.

Write ¢ = 2(2v + 1) and let
k{2u+1 ifu=1
07 2v if u# 1.
From [P-S] and [St2], there is an involution (N, T}) with 1 < [ < kg having fixed point set * LURP? with
the normal bundle of RP? in Nt being ¢ @ (I — 1)R, with ¢ the nontrivial line bundle, where * denotes a
point. This is constructed by applying the operation I' [ — 1 times to the involution (RP‘*! Ty) defined
by
Ty[0, 21, s ia] = [0y 1, oo Ti11]
which fixes RP? LI RP?! with the normal bundle ¢ of RP?! and cobording away various bounding fixed
components (see Royster [Ro]).

Consider the involution Thit+: on
S7 x Nt x Nt
—1 x twist

P(j, N"*) =
induced by 1 x T; x T;. The fixed point set of this involution is
J int int ; SI x R+l x RitH
(1). 57 X poin X PO _ RPP/ and the normal bundle is formed by X x
—1 x twist
i+ DR.
S7 x ((RP? x point) LI (point x RP?))

2).

@) ) - —1 x twist ] . ]
quotient is S? x (RP*x point) with normal bundle S7 X (normal bundle of RP*X point). Since S? bounds,
this component bounds away.

sois (i+1
—1 x twist sols i+ @

and the twist exchanges the two copies of RP!, so the

7 x RP* x RP* g L ~DR) x (¢ ~ 1R
(3). SXL with the normal bundle S x (e (= UR) X (L9 ({-DR)) and this is cobor-
—1 X twist —1 x twist
S7 x CP* o .
dant to = P(j,4) with the normal bundle n & (I — 1)¢ & (I — 1)R, where ¢ induced by

—1 X conjugation
¢ is a 1-plane bundle over P(j,i), and n is a 2-plane bundle over P(j,i). Note that w({) = 1 + ¢ and
w(n) =1+ c+d (see [Do], [Uc]).

This produces an involution (P(j, N“*!), Tyi+1) fixing RP/ with the normal bundle v?+2! having
w(v? ) = (14 a)**! and P(j,i) with the normal bundle v? having w(v?) = (1+¢)!~1(1 +c+d). The
normal bundle to the fixed point set has [ — 1 sections. Thus, there exist the involutions (MJ+2++ T)
with [ + 1 < k < 2l which has the same fixed information as (P(j, N**!), Tyi1) such that MI+2i+k
bounds for & < 2[. On the other hand, since the normal bundle to the fixed point set has [ — 1 sections,
then one may apply the inverse operation I'~! [ — 1 times to (P(j, N**!), Ti+1), so that (MIT2+k T is
cobordant to T*=2/(P(j, N"*!), Tyis1) for 1 +1 < k < 21,

Now let us look at P(j, Ni*!). One has
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Lemma 2.1. For 1 <1< ko, P(j, N"*") bounds.

Proof. When 1 <[ < kg, N**! bounds. Furthermore, one has that (N x N+ twist) fixing N+ with
the normal bundle p bounds equivariantly, and thus the bundle (N**!, ;@ sR) bounds for any s > 0. So,
RP(p @ (s+1)R) bounds. On the other hand, consider the involution on P(j, N**!) induced by T’ x 1 x 1
on §7 x Nl x Nt where
TI(I(), L1y ,.’L‘j) = (—.’L'(],ZL‘l, s ,CI/‘j).

It is easy to see that the fixed data is (N, u @ jR) U (P(j — 1, N*t!), &) where ¢! is a real line
bundle over P(j — 1, N*+!). Therefore, by [C-F] one obtains that the cobordism class {P(j, N*!)} =
{RP(u® (j+1R)} +{RP(' @ R)} =0. O

If | < ko, by Lemma 2.1 and applying the operation T’ to (P(j, N**!), Tiyi+t), then the resulting
involutions I'?(P(j, N*t!), Tyi+1) denoted by (M7+2+21+2 T) have the following properties:

(i). There is an integer z¢ such that for = < g, M7+2+242 bounds, but M7T2"+2+70 does not bound.

(ii). For o < xq, (MIT2+214% T) has the same fixed information as (P(j, N"*!), Tyi+1).

This gives the following result.

Proposition 2.1. Let [l < ko. There exist involutions (MIT2+F T') fizing RPJ U P(j,4) with | +1 < k <
2l + x¢ such that

(i). (MI+2+k T s cobordant to TF=2L(P(j, N**Y), Ti+1) for each k;

(i1). MI+2Hk bounds for k < 21 + xq, but not for k = 2l + .

Note that if I = kg then Ni**o does not bound. It will be proved later that P(j, N***0) must be non-
bounding, so T'(P(j, N“t%0) Tyitx,) does not have the same fixed information as (P(j, N*T*0), Tyrisx, ).

3. THE CASE IN WHICH h IS ODD

Following the notations of the section 1, one first discusses the case in which h is odd. From (1.1) one

then has
01 = (h4+i+14+a+Db)c on P(h,i)
W= o on RPJ,

So
w0 e™ I [RP(2™ )] = of ™I [RP(v™ )] = of [RPY] # 0
and ] ) ) .
0 # w[0)e™ ' IRPWF) = (h+i+1+a+b)ddem IRPWF))
which implies that h +i4+1+4+a+b % 0 mod 2 and ¢/ # 0, so h > j.

Now, there are certain operations in the bordism of BZsy. For x = e,w;, or w; + e, one may dualize
any power of z, giving homomorphisms

(dual ") : M,,(BZ2) — Np—+(BZs).

Dualizing e is the Smith homomorphism of Conner and Floyd [C-F]. Dualizing w1 and w? was used by
C.T.C. Wall [Wa] in studying oriented bordism.

Consider the operation
(dual w[0]%) = (dual (w1 + (m — h — 2i)e)? : N,,,_1(BZs) — N, _3(BZs).

When applied to RP(v™~7), w[0]; = a and the dual is RP(v™ 7 |gps;—2) which is the projective space
bundle of v™~7 with w(¥™7) = (1 + a)? over RP/~2. When applied to RP(v*), w[0]; = ¢, and the dual
is RIP’(V’“\p(h,Q’i)) which is the projective space bundle of l/k|p(h,27i) over P(h —2,4). Since RP(v™77) is
cobordant to RP(v*), the duals will be cobordant in BZy, and one has

Proposition 3.1. There is an involution (M™ 2, T) fizing RPI~2 with w(v™ ) = (1 + )9 and P(h —
2,4) with normal bundle Vk|p(h,2,,-).
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Note. When restricted to P(0,i) = CP!, w(v*) becomes (1+d)® and b does not change under restriction
since ¢ is unchanged. The values of a and ¢ may reduce to smaller equivalent values.

By iterating this procedure, one may reduce j to 1 and quote resulrs of Guo [Gu] (5 = 1). Since Guo
assumes w(vF) = (14 ¢)%(1 + ¢ + d)® which is not valid, we will not use her results. (In fact, there is an
error in Guo’s results.)

So, by iteration one may consider the case j = 1 with h odd (so h > 1 obviously).

Theorem 3.2. Suppose (M2 T fizes RP' U P(h,i). Then
(1). q=h=b=1,a=¢=0, and i is even, and
(2). let i =2"(2v + 1) with u > 0,

2utl 412 fu=1
<k<

2 k{ 24t -1 ifu> 1.

Further, (M'T2%k T fizing RP! L P(1,4) is cobordant to T*=2(P(1, N*t1) Tis1).

Proof. Obviously, ¢ =1 holds since 7 = 1. Now one computes the values of w[1]a. On P(h,1),

wll] = {1+(h+i+1)c+(<h+;+1)c2+(i+1)d)+---}

><{1+6+(a+b)c+(<a_2|—b>c2+bd)(1+e)_1—1—---}

SO
wll]y = {(h+;’+1)cz+(i+1)d}+(h+i+1)c{e+(a+b)c}+(a;b>62+bd
= (h+i+1)ce+(i+1+b)d+<h+i+;+a+b>62.
On RP?,
w(l] = (14 )" + (1 + )2
SO

wli]s = <h ! 2i> e2.

Form the class

htitl b
By = w[1]2+(h+z'+1)w[0]1e+< +Z+2+“+ >w[oﬁ
[ i+1+b)d on P(h, i)
L ("P)e2+ (h+i+1)ae  on RPL

If 7 is odd, then P(h,i) bounds, for

w(P(h,i)) = (1+¢)" (1 +c+d)"™"
has only even powers of d. Since (P(h,i),v*) is nonbounding,

w(®) = (14 )4 (1 + ¢+ d)°w(p)®

must have some term with an odd power of d. Since h is odd, the only exotic class occurs for h = 5 and
then by [St1]
ctd?
— 1 _—
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which has no odd powers of d. Thus b is odd. This gives

. fd on P(h,1)
w2 = (hgzl) e?+ae on RP'.

Then
w[0]h e RP (V)] = die* T [RP(1F)] # 0

' b 9 i
w[0)hiaier = ah{< —; 2)62—}—(16} ekl

— b (h ; 2i) ht2i-1

must be nonzero on RP'. This implies & = 1 and then (h‘gzi) = (2’;'1) =1

and so

Since wo (VF) = bd + (“;b)CQ #0,k>2and 2(i+1) < 1+2i+2 < h+ 2i+ k = m. Further, one has
that
wéﬁ»lemflfQ(iﬂ»l) [RP(V/C)] — di+1em7172(i+1) [RIP)(V/C)] — 0

but
w;+lemflf2(i+l) [R]P)(mel)] — (62 + ae)i+1em7172(i+1) [R]P)(mel)]
— emfl[RIP(ymfl)]
1
= coefficient of @ in ———
(14 a)e
# 0
which is a contradiction.
Thus, i is even.
If b is even, then
. [ d on P(h,i)
Wz = (h-g%) 2 on RP!

and w(0]higeh 1 = cMde*1 # 0 for P(h,i), and for RP! this is ("}*)ae?*+*~1. Since this is nonzero,
one must have h = 1, but then (hzm) = (*') = 0 since 2i + 1 = 1 mod 4.

Thus, b is odd. Moreover, a is even since h +i+ 1+ a+ b % 0 mod 2.

For b odd,

. [0 on P(h,1i)

2= { ("t?)e?  on RPL.
gives Wye™ 3 = 0 on P(h,i), but on RP! this is ("1?)e™ ! with the value of e” ! on RP(v™ ') being
the coefficient of a in m = H%a, which is 1. Thus (hgzi) = 0 which says h = 1 mod 4.

If h > 1, dualizing w[0]%? gives an involution (M?*k T) fixing P(0,i) = CP! with k¥ > 0 and with
normal bundle v*|cpi. The involutions fixing CIP* are well-known and one has k = 2i and b = i + 1 with
(M?+E T) being cobordant to (CP! x CP?, twist).

Now, let us find w[2]4. One has that on P(h,i),
w2 =1 +w; +wa+ {1 +e)’ +ur(l+e) +us+us(l+e) " +us(l+e)>+---}
where w, = w,(P(h,i)) and u; = w;(v*) from which

w[2]y = woe? + xze + x4 (dimzs = 3,dimzy = 4)
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and . '
wa(P(h, i) = (i +1)d + <h+;+ 1)02 —d+ (“;Jr 1>c2
S0 .
w[2]s = de® + (h +; + 1) 2 + z3e + 14
and on RP!
w[2] = (14 )P +2+1 4 o1 4 )h+2
=)

h4+2i+1 h+2i h+2i+1
w[2]4:( 4l )e4+a< | Z>63:< 41 )64

since h = 1 mod 4. Then

. h+i+1 2 9 de? + zze + x4 on P(h,i)
e G 0 S i S
SO
w0 i 2 = T (de? 4 zze + x4)eF
= h1gig2ik—2i
ch*ldiek

on P(h,1i) for since i is even all other terms have dimension more than h + 2 in ¢ and d. The value of
this on RP(v*) is
Mo, (V) [P(hyi)] = T rdPwy (VF)[P(R, 1))
= (a4 b)e[P(h, )]
= a+b
and a + b is odd. Thus, this is nonzero. However,

w[0)}tiieh 2 = ot (h + iﬁ + 1) ekt —

on RP! since h — 1 is even and positive.
Thus, h = 1. Moreover, a = 0 and the exotic class cannot occur, so w(¥*) = (1 + ¢+ d)®.

Now dualizing w[0]; gives an involution (M?2"** T) fixing a point = RP? and P(0,7) = CP? with the
normal bundle of CP? being v*|cp: with w(v*) = (1 + d)®. Royster’s argument for involutions fixing
(point) LU RPVe™ also works for fixing (point) LI CPeV*" to give

b=1.

Furthermore, one knows the possible values of k. (See [St2]). Writing i = 2*(2v + 1) with « > 0 one has

Qutl 4 9 ifyu=1
ZSkS{le if uw> 1.

Next, it suffices only to show that k& = 2**! with u # 1 is impossible.
If k = 2vH with w > 1, then m = 14241 (204+1)+24"1 = 142%2(v+1), and by direct computations,
one has that on P(1,2%(2v + 1))
w[l]y = cde + de? + d?
and on RP?
w[1]4 = 0.
Then .
wity “TVRP( )] = 0
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but

2u+1 2u+1

w1 CYRPW2T] = (cde + de® + d2)2 D [RP(v

)]
c 2)2% (v+1)
- P2 2o )
c 2)2% (v+1)
. d+f:cd+)d [P(1,2" (20 + 1))]

A V(1L e+ d)* YT P(L, 2420 + 1))
_ (2“(1) +1) - 1) <2“ - 1) cd® D [P(1,29(20 + 1))]

2uy 1

B Uy +2% — 1
o 2up

=1

which is a contradiction.

Finally, let us observe the involution (P(1, N**'), Tis:) with i = 2%(2v + 1) even. Taking [ = 1, one
sees that (P(1, N**1), Tyi1) has the fixed date RP! with w(v?+2) = 1 4+ « and P(1,4) with w(v?) =
l+c+d If u=1, choosing [ = 2* +1 = 3 one has that (P(1, N“*3), Tyi+s) also fixes RP! with
w(v?*6) = 1 + a and P(1,i) with w(¥®) = 1+ ¢ +d. Hence, for 2 < k < 24! 4+ 2 with u = 1,
(M2HF T fixing RP U P(1,4) exists and then (M!T24F T') is cobordant to TF=2(P(1, N*+1), Thi+1).
If u > 1, taking [ = 2% — 1, it is easy to see that (P(1, N*T2"~1) Tyi42v_1) has the same fixed information
as (P(1, N*t1), Tyi+1). Since | = 2% —1 < 2% P(1, N**2"~1) bounds, and one may apply the operation T
one time to (P(1, N**2"~1) Tiiou_1), so that T'(P(1, N*+2"~1) Tyi42u 1) has the same fixed information
as (P(1, N*t1) Tyit1). Thus, for 2 < k < 2+t — 1 with u > 1, (M*+2+k T) fixing RP! U P(1,1) exists,
so is cobordant to I'*=2(P(1, N**1), Tyi1). O

Note. In her paper [Gu], Guo showed that when u = 1, there exists an involution with k = 7. This is
false.

Returning to the general case of j one has

Lemma 3.1. Suppose that (M"24k T fizes RPJ LI P(h,4) with h odd. Then
(i) h=j:
(i) i is even;
(i4i) b =1, and a is even;
(iv) Fori=2%(2v+ 1), one has

2utl 42 jfu=1

2§k§{ Ut 1 ifu>1;

(v) Erotic characteristic classes do not occur in the bundle v*. Thus w(v*) = (14 ¢)%(1 + ¢+ d).

Proof. (i)-(iv) follow applying to Proposition 3.1 and Theorem 3.2. It suffices only to show that (v) holds.
cAd?

For this, one need only consider the case j = 5 and suppose w(v*) = (1 + ¢)%(1 + ¢ + d)(1 + m)
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Then
ctd?
(1+d)?
04
1+ d)2)
= (140" *(A+c+d) A+ +d*+ct)
Al4c)r

14+c+d

A

14+c+d

w®) = (1+e)*(1+c+d)(1+ )

= 14+ *A+c+d)(1+

= (14" *A+c+d+

= 1+ *(1+c+d) +

since a is even. Now

11 Lot d
l+e+d 14c 1474 1+e 1+c¢ (14¢)2 (1+c)t

SO
ct 4 1 d d? d’
ltctd ¢ {1—|—c+(1+c)2 tarer T (1+c)i+1}
and “ a
m:c4, W:c4+c5.
Thus

w) = {1 +)* P+t + S Hd{(1+ )+t B+ ) B+ (4 E).
Further, it follows that w2i+5(vk) # 0 and so k > 2i + 5. However, k never exceeds 2i + 2 since

2utl 4+ 2 ifu=1

< k<
2—’“—{ Qutl 1 if u > 1.

Hence the exotic class cannot occur. [

Note. (1). From the results for j = 3 [L-L], one finds that there exist examples with
u=1forg=1,a=2and4< k<6
qg=3,a=0and 2< k<4, and
u#lforg=1,a=0and2<k<2utl —3
g=3,a=2and 4 <k <2vtl —1,
One sees that given a pair (g, a), there are kyin and kpyax with

2utl 42 ifu=1
QS ]{Imin,kmax S{ 2u+1_1 if u> 1.

such that kpnin <k < kpax, but kgin may not be equal to 2, and k. may not be equal to
2utl 192 ifu=1
2utl 1 ifu > 1.
However, for j = 1, ki, = 2 and
T 24t 42 ifu=1
maeT o 2utl 1 ifu > 1.

This is because (¢, a) has only a choice, i.e., (¢g,a) = (1,0) for 5 = 1, but not for 5 > 3. Thus, Lemma 3.1
does not provide the complete information for the general case of j, and the argument is not finished yet.

(2). It is known that P(j, N**!) bounds if | < kg. Let [ = ky. One claims that P(j, N***0) does not
bound. If P(j, N***0) bounds, then one may apply the operation I' one time to (P(j, N*T%0), Tyitx,),
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so that the resulting involution I'(P(j, N*Tko), Thyisx,) fixes RPJ with w(p2 2k +1) = (1 + o)+ and
P(j, Nitko) with w(v?o+1) = (1 + ¢)k~1(1 + ¢ + d), and has dimension j + 2i + 2kg + 1. However,

2t 42 ifu=1
2k°+1>{ 2utl 1 fu > 1

gives a contradiction.

Recall that 27 < j < 2P+ and ¢ < 2P*L. Since j = h, a is only determined by modulo 2P*! too and it
is assumed that a < 2PT!. Throughout the following discussions, (M™, T) fixing RPJ LI P(h, i) is always
assumed to satisfy (i)-(v) stated in Lemma 3.3.

Lemma 3.2. Suppose (M™,T) fives RPJ LI P(j,i). Then ¢g=a+i+1 mod 2P

Proof. One first claims that m > ¢. If ¢ < j then w, (v 7) = (g)aq =al#0,som>j+q>q. If

q

W < j < g < 27+L, then wa (V") — <2p

>a2p7é050m2j+2p>2p+1>q.

Now let 2z = a + i+ 1 mod 2PT!1. One claims again that m > z. If i > 2P then m = j +2i + k >

1 P »
2i > 2Pt > 2 Tf i < 2P and a > 2P, then wyr o (VF) = (;7—:_ 2)02 21 ¥d#0,50 k> 2P +2 and

m > j+k>j+2P > 2Pt > g Ifi < 2P and a < 2P, then z = a+i+1 and wq 2 (V%) = (a>cad =c%d # 0,
a
sok>a+2andm>i+k>i+a+1=uz.
From (1.1) one has that

[ e+c on P(j1)
w[l]l_{ e+a onRPI.

The argument proceeds as follows.

(i). f x > g thenz — (¢+1) > 0. When 0 <z — (¢ + 1) < j, one has

wlIff eTRRON] = (et e [REG)
- +(c1>a+<1c )4: e LtC0)
- e T re
T S YAt
S
— JdP.)]

but

W[y e ERPG )] = (e+a)* Lem T RP( )

_ O+ o
= rap
= (1+a)" "' [RP]

0
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since z — ¢ — 1 < j, which leads to a contradiction. When j < x — (¢ + 1) < 27", one has
wll]{ e IRBF)] = (e + ) eI RP(Y)]

(1+c)at .
1+ 0)e(l+ctd) [P0 )]
1

= W&[P(j,i)]
D)
B <2p+11x+q>
a J
0

since 2P71 — 1 — w4+ q=2PT1 2 (z —q¢— 1) <2PFL -2 j < j, but

w(1]{~ e URP(™ )] (e + )T L™ IRP(v™ )]
)1 )
- vy
1 J
T + a[RP ]
= 1.

Thus, z > ¢ is impossible.
(ii). If z < ¢, in a similar way as (i), one may obtain that this is also impossible.

Combining (i) and (ii), = must be equal to ¢. O

Since the case j = 1 is understood well (see Theorem 3.2), one always assumes j > 3 in the following
discussions. Now one divides the argument into two cases: (I). u = 1; (IT). u > 1.

Case (I): u=1.

For u = 1 one has i = 4v+2. Suppose (M7 t4+2+k T fixes RP UP(j, 4v+2). The argument proceeds
as follows.

First, one cannot have a > 6. For a > 8, one must have j > 8 (else a is taken mod 8) and a must have
a power of 2 which at least 8 and less than j in its 2-adic expansion. Then there is at least a nonzero
term ws(v*) with s > 6 in w(¥*), and v* cannot be realized by a bundle of dimension less than or equal
to 6.

For a = 6, one cannot have j > 7, for then (g)c6d # 0 making k£ > 8. Thus a = 6 can occur only for
j =5, and one must have kK = 6 and ¢ = 4v + 1 mod 8. In particular, ¢ = 1 if v is even, and ¢ = 5 if v
is odd.

Claim. a = 6 is impossible.

Proof. One computes the values of w[1]y and w[1]gy+6. On P(5,4v + 2), one has

wll] = 1+e)’A+ec+d)*P{l+etct+(P+d)(l+e)t+S31+e) 2+ (c*+Pd)(1+e)?
+P(1+e) *+ctd(1+e)°}

SO

2,2 2 A e
10[1]4=cde—|—c2e2—|—de2+c4+(v>c4:{ cde+c'e” +de” + ¢ if v is even

1 cde + c%e? + de? if v is odd.
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and
wl]gyys = d*V2(ce + €2) + terms of degree less than 4v 4 2 in d.
On RP®,
wll] = (1+a) {(1 + )% a1+ e)® 4 @ aA(1+ e)*H 4 (g) (1 + 6)8”}
- (1+a) {(1 re)S +a(l+e)t+ (Z)a“(l +e)+ <§>a5} (1+e)®
S0

ot +et ifg=1
witla = { et if g = 5.
and w(l]gy 16 = 284 whichever ¢ = 1 or ¢ = 5.
If v is even, then

cde + c?e* + de? +e*  on P(5,4v +2)

with+ il = { § o

with w[1]; and w[l]g,+6 together gives
w{f(w(l]s + wi]])w[l]sueeRP(V*T10)] = 0
but

wi]f (wll]s + wli]i)wsoree[RP(°)]
= {(e+c)*(cde + ?e? + de® + e*)
x (cd*2e 4 d**2e? 4 terms of degree less than 4v + 2 in d)}e[RP(1%)]
_ (14 ¢)3(1 + cd + 2 + d)(cd®+? + d4vf2 + terms of degree less than 4v + 2 in d) 1P(5, 40 + 2)]
(1481 +c+d)
_ (1+c+d+c+c®+ced)(d**T2(1 + ¢) + terms of degree less than 4v + 2 in d) (P(5, 40 + 2)
(1+c¢)2(14c+d)
_ (14 ¢)(1+c+d)(dF2(1+c) +;erms of degree less than 4v + 2 in d) P(5, 40+ 2)]
(14¢)3(1+c+d)

d*T2(1 + ¢) + terms of degree less than 4v + 2 in d

= P(5,4v + 2

T (P(5,40+2)]
a2 terms of degree less than 4v + 2 in d

= P(5,4v + 2 P(5,4v + 2
—[P(5, 40 +2)] + T [P(5, 40 +2)

= 140

= 1

If v is odd, in a similar way as above, then

wlta+ wlil + wl = { T TS on B A+
with w[1]; and w[1]gy16 together gives
wllf(w{i]a + wli]i + w[0])w[s+ee[RP(*F19)] = 0
but
w3 (w[l]a + wli]f +wl0]))w[l]seree[RP(v°)] = 1.

Therefore, a = 6 is impossible. O

11
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For a = 4, 1_/6 = 41 @ 1 provides a suitable v*, and, of course k = 6 is the only possibility. However,
dualizing w[O]T3 may change this case into the case j = 3 with ¢ = 0, and the range of the values of k
must lie in 2 < k < 4. Therefore, a = 4 is impossible.

For a = 2, one has ¢ = 4v + 5 mod 2P, Dualizing w[O]f changes this case into the case j = 3
with ¢ = 1, thus one has that 4 < k < 6. Taking [ = 3 in the involution (P(j, N**+2%), Travi241), then
for each 4 < k < 6, Fk*G(P(j,N‘l”%) Tnavts) fixes RPV with w(p®+4+F) = (1 4 a)? and P(j,4v + 2)
with w(¥”®) = (1 + ¢)?(1+ ¢ + d). Hence, (M7T4T2+k T is cobordant to I*~6(P(j, N4 %), Tnuvis) for
4 <k <6.

For a = 0, one has ¢ = 4v + 3 mod 2P, Now dualizing w[O] B changes the general case j into the
case j = 3, and one knows that 2 < k < 4. Proposition 2.1 provides the examples of the involutions of
this type. T*=2(P(j, N**3 Tyau1a) belongs to the involution of this type for 2 < k < 2+ x, so o must
be less than or equal to 2, and x¢ > 1 since P(j, N*'*2) bounds. There is a sufficient reason for which
zg = 1 is impossible since the involutions of the case a = 0 possess completely the analogous structures
as those of the case a = 2. Also, this can be seen clearly when j = 3 (see [L-L]). So it should be certain
that zg = 2, and the proof is omitted.

Combining the above arguments, one has

Theorem 3.3. Suppose that (MIT42+k T fizes RPY U P(j,4v + 2) with j > 3. Then either

(1) a = 0, ¢ = 4v + 3 mod 2°*! and 2 < k < 4. Further, (MIT*H2HE T js cobordant to
Fk72(P(j7 N4v+3)7TN4v+3),' or

(2) a =2, ¢ = 4v+5 mod2°* and 4 < k < 6. Further, (MIT* 2k T js cobordant to
TF=6(P(j, N*+5), Tyaoss).

Case (II): u> 1.
Lemma 3.3. Ifu > 1, then k > 2+ a.

Proof. One sees that w(v*) = (14 ¢)*(1+c+d) is a product of the classes 1+ c and 1+ c+d. Since one
has assumed that a < 2P+, there does not exist the integer a’ less than a such that (1 +¢)* = (1 + ¢)*
and (14 ¢)** = (1 4 ¢)* 41 (note that a is even). Also, since the exotic classes cannot occur in w(v*),
v¥ may be expressed by a¢ @ n @ sR which has dimension a 4+ 2 + s > a + 2 where s > 0, so k must be
more than or equal to a +2. O

From the case u = 1, one sees that a < 2¥ = 2, so that the involutions may correspond to those
examples constructed in the section 2. Also, for the special cases 7 = 1,3 with u > 1, one has a < 2“.
Now one considers the general cases with u > 1.

Lemma 3.4. Ifu > 1 then a < 2.

Proof. First, one computes the values of w[1]y. On P(j,1),

CE (| (P @R
1+e (1+e)? (1+e)?

L L L 1
= {(1+C)Z+J+1+(1+C)7’+]d+< )(1+c)2+31d2+---}x{1+e+c+<a+ >62+d

2
1 L+ 1 L+ 1
+<a—;— )c%—i—de—i—(az >02€2+d€2+<a_§ >c3+

a+1\ 4 a\ o
( 4 )c +(2)cd+ }
S i
- {1+<Z+]Jr >c2+(z+i+ )c4+d+cd+< 2] *d
a+1\ , a+1\ 5 4 9 a+1 a—l—l a\ o
+d + 5 e+ de+ , JCe + de” + 5 A+ 5 cd+---}

wll] = (14+cf(l+c+d) ™ {l+etc+

t+1
2

1
5 )X {1+€+C+(a—; )02
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i+ 1
(note that i +j + 1 is even and (Z—; ) =0) so

1 1 L +j+1 1 i +7+1
(3o waee () Geas (137 (1) (47

1 i o
+(a+ )c2d+d2+c2d+cde+<z+]+ )c4+<Z+J>CQd

w[1]4

2 4 2

1 1\ | (i+j+1 1\ | (i+j+1
S A (S R Ay [ ) R QA R

1 i L '
Note that <g>+<a; ): and (Z+j2+ )—i—(z;]) = 1. On RP, one has

wll] = (A+a ™ {(1+e)* " +a(l+e)* + <g) o?(1+e)* 4+ <§>a3(1 +e)%?
+<Z>a4(1+e)2i3+---}
1+ (j42rl>a2+ (jil)a”'“}
x{l+eta+ <g>a2 + (g>a26+ (g)a262 + <;1)a3 + <Z)a4+---}

w[l]s = (g>a262 + (Z)o/‘ + (j er 1) (3)044 + (j I 1>a4.
Form the class
i = ity (§)uoeon ot + { (4) + (73 (9« (75 ) oot

de? + cde + d*>  on P(j,1)
0 on RP

SO

for since (2) + (“4%) = (4) + (*4") =0 and
q j+1\  fa+1 i+j+1
@)+ ()= ()

Now suppose that a > 2%. Then 2PT! > a > 2% so p > u (this happens in the case j > 5). By Lemma
3.3, one knows k > a + 2. If a < j then

by Lemma 3.2.

a—2"+2"2(p4+1)=a—2"+2i + 2" =a+2i +2* <j+2i+ (a+2) <m.

If a > j then a > 2P s0 war 12 (V*) = (555) ¥ T2+ ¢*"d # 0. Thus 2P +2 < k < 2™ — 1. This implies
that v > p, so u = p and

a—2"42" P2+ 1) =27 +2i+a<j+2i+k=m.
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Further, one has that

w[l]lef2uwiu(v+l)emflfa72i72“ [R]P’(l/k)] _ (6—{-0)(172“ (deQ +Cde+d2)2"(v+1)em717a72i72“ [R]P’(l/k)]
1+e¢ a—2" d+6d+d2 2% (v+1) o
_ (A4 ( A ) PG, )]
Ao (i+ectd)
d2”(v+1)(1+c+d)2"(v+1) o
- (1+C)2u [P(]7l)]
(2 -1y e
= < oy )ﬁ[P(JJ)]
JdP(j,1)]

1

but

w[lﬁfﬂwi“(v+1)em717a72i72“ [R]P’(l/mij)] =0
which is a contradiction. Therefore, a > 2% is impossible. O

Up to now, if (M7*24F T) fixes RPJ LU P(j,4) with v > 1 and with those properties indicated in
Lemmas 3.1, 3.2, 3.3, and 3.4, then Proposition 2.1 shows that (M7+2"+F T') exists when k is restricted
to a range of values, and, taking | = a+ 1 in the involution (P(j, N**!), Tyi+1), (M7 2% T is cobordant
to ¥~ 2(P(j, Nt Tyivasr) for a+2 < k < 2a+ 2+ x9. However, xg is only a unknown number. We
wish to know the certain value zq. This is equivalent to determine the upper bound of k.

Now let us estimate the maximum k value for realizing the Stiefel-Whitney class w(v*) = (1+¢)%(1 +
c+d).

Let E(s) denote the set formed by all iy, ...,i; in the dyadic decomposition 2 + - .- 4 2% of an integer

s> 0, and E(0) is defined as an empty set. We will use Lucas Theorem, which states that for two integers

s1,82 >0, (Sl) =1 mod 2 if and only if E(s2) C E(s1) (see [Si]).
2

When p > u, one has j > 2P > 2% > q (this only happens in the case j > 5). If kK > 2“ + a + 1, then
j-2%4a+14+2"2(v+1)=j42i+2"4a+1<j+2i+k=m.
Using the class w4 in the proof of Lemma 3.4, one has
0 = Wl P e () nmimim2 a2 (Rp(k)] + [RP( 7))
_ (6 +C)j72u+a+1(d€2 +Cd€+d2)2u(v+1)6m7j72i72u7a72[R]P)(1/k)] +0
— (1 +c)j72u+1d2u(”+1)(1 +C—|—d)2u(v+1)7l[P(j, ’L)]

_ (2“(’[} ;i) —~ 1) &2 D (1 1 &) [P, 1)]
Jdd[P(j,7)]
1

which is impossible. Thus k& must be less than or equal to 2% 4+ a + 1.

When p < u, one has ¢ = a + 1 by Lemma 3.2. Let ag be an integer having the property that
E(ag) = E(j) N E(a). It is easy to see that ag is even, and ag < j and ag < a. In particular, E(j) C
E(2"—1—a+ag). If k> 2t — j 4+ ag, then

ag +2"2(v+1)=ag +2i + 2" < j+ 2+ k=m.
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Using the class wy in the proof of Lemma 3.4, one has
0 = wilfrdy TYem a2 (RPWA)] 4 [RP(™ )

_ (6 + c)ao (d€2 + ede + d2)2“(v+1)emflfa072“+2(v+1)[RP(VI@)] +0
= (Lo @ (1 + e+ d)* TP, 1))

d2u(2fu+1) (1 + C)2u717a+a0 [P(j, ’L)]

2U_1— .y
= ( .“+“°>cfd1[P(j,i)]
J

=1

which is a contrary equation. Thus k& must be less than or equal to 2“7 — j + aq.

Observation. The upper bound of k estimated as above is attainable in some special cases. For
example, when ¢ = 2% — 2, the above arguments show that if p > u then the upper bound of & should
be 2¥ +a+1 = 2" —1, and if u > p+ 1 then ag = j — 1 so the upper bound of k should be
2utl _j4qao = 2%T1 —1. The examples in the section 2 make sure that 2%+! —1 with ¢ = 2*—2 can become
the upper bound of k. In fact, if u > 1, then P(j, N**2"~1) bounds, and thus one may apply the operation
I just one time to (P(j, N**2"~1), T, ,.—) such that the resulting involution I'(P(j, N**2"~1), Tiyiyzu 1)
has the same fixed information as (P(j, N**2" 1), T\yi+2u_1) and has dimension j + 2i + 2“1 — 1. Also,
ifu>1and j =1, or 3, then u > p+ 1 must be satisfied. It is easy to see that ag = a when j = 1,3, so
the upper bound of k should be 2¥*! — j + a. This just corresponds to those results showed in Theorem
3.2 and [L-L, Theorem 5.1]. For the general case, the proof for which the upper bound of k estimated as
above is attainable seems to be a difficult thing. We try to give a proof, but nothing conclusion.

It is extremely tempting to conjecture that the upper bound of k is 2% 4a+1 if p > u, and 2*T1 —j+aqg
if u > p+ 1. In other words, xo should be 2% —a — 1 if p > u, and 2%+t —j —2a — 24 ag if u > p+ 1.

Now suppose (M™,T) fixes RP/ L P(h,j) with h odd. Then (M™,T) possesses those properties
indicated in Lemmas 3.1, 3.2, 3.3, and 3.4. If the above conjecture is true, then the result with v > 1
may be stated as follows.

Theorem 3.4. Ifu > 1 then (M2 T firing RPIUP(4,4) is cobordant to TF=2(P(j, N'To1) Trivatr)
for whicha +2<k<2%4+a+1lifp>uanda+2<k <2%' —j4ag ifu>p+1 whereay is an
integer having the property E(ao) = E(j) N E(a).

4. THE CASE IN WHICH h IS EVEN

In this section, one considers the involution (M™,T) fixing RP/ Ll P(h,i) with h even. First, let us
prove some lemmas.

Lemma 4.1. If h is even, then h > q—1 and j+1 > 2i+ k.
Proof. From (1.1) one then has

0]y = (i+1+a+0bc on P(h,i)
Y= et a on RIPY,
Since m > ¢ (see the proof of Lemma 3.2), one may form the characteristic number for

w[0]d eI @T) = (¢ 4 )T e
which has value on RP(v¥™~7) equal to the coefficient of o/ in % = 4= and that coefficient is
nonzero. On RP(vF),

w[0]7 eI — (j 4 14 a4 b)IT e

and the value of this on RP(¢*) must be nonzero. Thus, one has that if ¢ > 1, then i + 1 + a + b must
be odd and h > q — 1. If ¢ = 1, it is obvious that h > ¢ — 1.
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Now for h <t < m — 1, one has that on RP(v*)
w0]ie™ Pt =(i+1+a+b)ce™ =0

. t
and the coefficient of o in gig;q is zero. If one writes

(1+0[)h+1
14 S0
1+ a) + +«

where sg is the degree of the highest term, 0 < sy < 7, and sq is even since h+ 1 and ¢ are odd so sy < j
Further,

1+ q)h+1+G—s0) _

has the coefficient of o/ being 1. Since h +1 4 j — 59 > h, thismakes h+1+j—s9 >m =h+2i+k so
j+1>s9+2i+k > 2i+ k. This completes the proof. O

Lemma 4.2, If m # j + q, then
(1). i+1+a+Db is odd;
(2). h>2i+k;

(3). The exotic classes cannot occur in w(vk).

Proof. If m < j + g then ¢ must be more than j, so ¢q—1>j+ 1 and ¢ > 1. By Lemma 4.1, one has

h>q—1>j4+1>s9+2i+k>2i+k
and i + 14 a4+ bis odd. If m > j + ¢, then the characteristic number for

w[O]Jl'Jrqem*l’j*q =(e+ a)j+qem717j7q
. , i+
has value on RP? equal to the coefficient of o/ in (Hfgj)qq

= (1 + a)7, which is nonzero. On P(h,1),
w[O]Jﬁqem*l*j*q =@ +1+a+b)dTlem =i
and the value of this on P(h,4) must be nonzero. Thus, i + 14 a + b is odd and

h>j+q.
Further, by Lemma 4.1 one has

h>j+q=0U+1)+(q—1)>2i+k+(¢—1)>2i+k.

If the exotic classes occur in w(z/k), then generally k£ > 4 since dimp > 4, so h > 2¢ + k > 6, and the
only possibility for which the exotic classes may occur is that h = 6,7 = 1, and 7 = 5. However, Stong’s

argument [St1] shows that if the exotic class occurs when h = 6, then w(p) = 1 + ¢®d with dim p = 8, so
k> 8 and

6=h>2i+k>10
which leads to a contradiction. Thus, the exotic classes cannot occur in w(v*). O

Letting 24 < h < 2411 and 28 < i < 2B*!, one may assume that a < 247 and b < 2B+! since a
(resp. b) is only determined by modulo 241 (resp. 25+1). Let C = max{A + 1, B + 1}.

Lemma 4.3. If m # j + q, then
(1). b< 28 < and further, k > 20b.
a h .
2). FErde [RPI] = 1.
(3). k> 2i+4b fora> h.
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Proof. By Lemma 4.2, one can write w(v*) = (1 + ¢)%(1 + ¢ + d)°.
(1). Since
1

wlolf e RP(W™ )] =

[RP] =

one has that

wlolf e REOY)] = e PR )

_ ( b)dl 911 4 )2 T2 el ()

- ( b)<20+2A+1 abi)
a h—q+1
is nonzero, so

(4.1) GC;b):L

Since (20[1’) = 23:14’) = 1, one has that b < 2B for if not 28+1 — b is less than 28 (< i) so (23?’1’) =0,

but this is a contradiction. Furthermore, it follows that k > 2b since there exists the nonzero term d® in
w®) = (1+¢c)?(1 +c+d)°.

(2). The characteristic number for

w[O]h m—1— h hemflfh

has value on RP(v*) equal to (chb), which is 1 by (4.1), thus on RP(v™7),

a)h -
wloltem I HRRO)) = GO R

must be nonzero.

(3). If a > h, then a > 24 so the coefficient of the term a2" db is nonzero in w(k) = (14+c)*(1+c+d)°.
Thus

(4.2) k> 24 4 2b.

On the other hand, by Lemma 4.2(2), one has that 24*1 > h > 2i + k so

0;
(4.3) g s HEH
2
From (4.2) and (4.3), it follows that
21+ k
k>24 pops 2 Lo
and thus
k > 2i 4+ 40.

This completes the proof. [

Proposition 4.1. If (M™,T) fives RPJ U P(h,i) with h even, then m = j + q.
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Proof. Suppose that m #£ j + q. The argument proceeds as follows.
(I). The case in which 7 is odd.

If 4 is odd, then one has b is odd since (20;17) =1 by (4.1), and further a is even. Now one computes
the values of w[1]; and w[1]y. On P(h,i),

a+b

w[l] = (1+c)h(1+c+d)”l{1+e+c+< )

>02 + d + terms of degree more than 2}
h+i+1
= {1+ ( +; + )02 + terms of degree more than 2}

b
x{1+e+c+ (a; )cZ + d + terms of degree more than 2}

b h+i+1
ot (157) e (157

so w[l]; = e+ ¢ and

and on RP/
wll] = (L4a) L+ fa(l o) @ o (14 )71 4o}
1 h+2i+1—j
= {1—|—<]—; >a2+---}{1+a+ae+( * Z;_ j)62+<g)az+---}

so w[l]; = a and

4+ 1 h+2i+1—3j
wll]s = ae+ It o® + tatl-g e+ (4)a2
2 2 2
Form the class

2 = wltla + wlth (ol0h -+t + (75 1) (8wt + (") wloh 4wl

then on RPY, 25 = 0, and on P(h, i), w[0]}x is either ¢"d or ¢"(e? + d).
When w[0]?25 = c"d on P(h,1), one has that

w]0)h e 1h2i — { Shdiek*1 ZE IJR?H(JJL,Z)
gives a nonzero value on RP(v¥), but the value of this on RP(v™77) is zero. This is a contradiction.
When w[0]?z9 = c"(e? + d) on P(h,), one has that
w(0]fzytlem D RP ()] = 0
but
w0 aitbem—1=h =2 [RP(LF)] = ch(e? 4 d)itbem—1mh—2+0) [RP(F))
(1 4d)t

(1+ce)*(1+c+d)pP
= "1 +d)'[P(h,i)]
1

[P(h, 1)]

which leads to a contradiction. Note that m —1 —h —2(i+b) =k —1 — 2b > 0 by Lemma 4.3(1).
Thus, there does not exist the case in which i is odd.

(IT). The case in which i is even.
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Let 7 be even. Then a + b is even by Lemma 4.1 and
X(M™) = X(RP?) + x(P(h,i)) = 0+ x(P(h.i)) = (h+1)(i + 1)

is nonzero modulo 2 where x(-) denotes the Euler characteristic number, and thus m must be even since
the Euler characteristic number of any odd-dimensional manifold is always zero. Further, k is also even.

By direct computions, one has that on P(h,i), w[1]; = e + ¢ and

i+ 1
w[0]z = (a;b>02+bd+ <h+;+ )c2+d

2 4 2

. 1 b 1
+(<h+;+1>c2+d)((a;b>c2+bd)+(h+i+ >c4+< ;—Z>02d+(2_; >d2

and on RPY, w[1]; = o and

_(hH2i=g o (a4 2 (FF1N o (h=J\ 2 (4) 2 (FF1)
w[O]g—( 5 )e +<2>a {0y Jar= )t )T, e
and

h+2i—7 h+2i—2—7 I+ 1 h+2i—7
w[0]4 = (L+4Z J>e4+(g>( + 22 ])a262+(i)a4+<‘7; )( +ZZ ])0262
J+HIN\[(q\ 4 J+1\ 4
+< 9 )<2>a +( 4 a.

(a). If b is even, form the class

b b—1 b
wl0]y = (a N b) c?e? + bde? + bede + (a N >C4 + (a N >b02d+ (2) d?* + bctd

o=l ("5 Y0wtoh +wttn? 4 ((2) + (7 )it

then on P(h,i), w[0]"4y is ¢"d or ¢ (e? + d), and on RP/, &5 = 0. Similarly to the argument as the case
(I), one can obtain that there does not exist the case in which b is even if i is even.

(b). It b is odd, form the class
v = w0t (“ff _j> (w[0]1 + w{1])* + (@ + (j;”) @ + (jj;l))w[l]‘%
@) (S Dutielon + el

then one has that on RPJ,

Ty = 0
and on P(h,1),
w0 s = chde? or c(e* + de?) if (%’) +(th =1
VT eh(de? + d?) or (et + de? + d?) if (3)+ (Y =o.

One knows from Lemma 4.3(1) that k > 2b so 2i + k > 4b. The argument is divided into the following
four cases.
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(i). When w[0]?z4 = c"de? on P(h,i), one has that

w0 (x4 + wl0]} + w[1]})be™ TTARRP(LF)] = (de? + et)lem LA RP (LK)
"(1+d)" .
= Wt o rerap’ il
c"[P(h, )]
0
but

w0 (x4 + w[0]] + w[1]])be™ ITATRRP(L™ )] = (e+ a)te™ T RP(™ )]
- e
-1

by Lemma 4.3(2). This is impossible.
(ii). When w[0]%z4 = c*(e* + de?) on P(h,i), if b > 1 then one has that

A1+ d)>t ch

w[O]’fo*lemflfh%(bil)[RP( )] a —|—c) 1 +C+d)b[P(h,i)} 114

[P(h,i)] =1
but
w[OH‘xi_lem*Ph%(b*l)[R]P’(z/m*j)] =0.

If b =1 and a < h, then the top nonzero Stiefel-Whitney class in w(v*) = (1 + ¢)*(1 + ¢+ d) is cd so
k > a+ 2 (note that @ is odd and k is even). Thus, one has that

o’

w(l]]e™ I RP(™ )] = W[RW] =1
but
wllfe™ TIRPWH)] = (e+a)fe™ I RP(VY)]
(1+c) )
Tr o reral i
(1+c)y 1 .
1+t 14 1+c[ (h, )
1 d d’ .
= T b e M)
= (1+c)j7“717id1[ (h,1)]
= 0

sincea+1+1i<2i+k < j+ 1< h by the proof of Lemma 4.2. If b =1 and a > h, by Lemma 4.3(3)
one knows that k >2i+4som—1=h+2i+k—12>h+ 4¢+ 5 for since k is even. Now

. i h( 4 2\i+1,_ m—1—h—4i—4 .
w[O]’fmZJrlemfl—hAz% _ { (C) (e* +de?) e 22 gg;’l)

has a nonzero value on RP(v*), but the value of this on RP(¢¥™~7) is zero, which gives to a contradiction.
(iii). When w[0]%zy = c(de? + d?) on P(h,i), if b > 1 then

h(g.2 1 g2\b—1_m—1—h—4(b—1) .
w[o]ileiflemflfhfqbfl) _ { 8 (de? + d*)* e ZE gé»i;,z)
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gives a nonzero value on RP(v*) but not on RP(v™~7), which leads to a contradiction. If b = 1, in a
similar way as the case (ii), one may conclude that b = 1 is impossible.

(iv). When w[0]#z4 = c(e* + de? + d?) on P(h,1i), one has that
chdb(1 + d)®

wl0f} (e -+ wl0lf + il e MREO)] = ey

[P(h,i)] = c"d’[P(h.i)] =

but

w[O] (x4+w[0] + wl1]? )bem717h74b[RP(l/mfj)] _ (e+a)h mflfh[RP(Vm,j)]
(22 o
1

by Lemma 4.3(2).
Thus, there does not exist the case in which 7 is even.
Combining the above arguments, one completes the proof. [

For the case m = j + ¢, consider the involution T, on RP/T¢ defined by

Tq([x()a"' s Ljy Lj41,° - 7:1:j+q]) = [an"' sy Xjy —Lj41," " a_£j+q]

fixing RP/ with normal bundle 17 = g having w(r?) = (1 + )¢ and RP?"! with normal bundle /1! =
(j +1)¢ having w(zﬂ“‘l) (1+a)?Tt, forming the union (M™, T') U (RP/*4, T,) one obtains an involution
(Mi+4,T) fixing RP4~! with w(z/*!) = (1 + a)/*! and P(h,i) with nornal bundle v*, with h > ¢ — 1.

Observation. Finding involutions fixing RPY and P(h,i) with h even reduces to a problem about
finding involutions that fix RP?~! and P(h, i), which is the problem for even projective spaces. This means
that in order to understand the problem with h even one is going to be forced to study the problem of
involutions fixing RP¥*" L P(h, ). Classifying involutions fixing RP®*" Ll P(h, i) up to cobordism does
not belong to the purpose of this paper. The problem will be discussed in the other paper.

Finally, one points out that there exist the examples for the case m = j + ¢q. For h = ¢ — 1, there is
an obvious way to get an involution fixing RP4~! and P(h,4), which is to begin with the involution on
P(q—1,i4 1) induced by T1([z0, - , 2i; Zi+1]) = [20, - , Ziy —2i+1]. This fixes P(q — 1,) with normal
bundle n and P(g—1,0) = RP?~! with normal bundle (i+1)n = (i+1)¢+(i+1)R. In order that the normal
bundle of RP4~! having dimension j + 1, one needs 2(i + 1) = j + 1 or i = % —1= % The normal
bundle of RP?"! has w(v (”1)) (14 @)i*! = (1+ )™= and one wants it to have w(vi+1) = (14 a)i*+1.
This occurs only for (14 «) “+ = 1 which means L = 2¢(v+1) with 2% > g—1. Thus j = 2“F(2v+1)—1
and 2% > g, and i = 22t —1=24(2v+ 1) — 1. Thus one has

Proposition 4.2. For j = 2" (2v + 1) — 1 and q < 2", there is an involution (M39,T) fizring RPI
with w(v?) = (14 a)? and P(q — 1, 55%) with normal bundle n where w(n) = 1 + ¢ + d.

Note. For j =3 = 22 — 1 this gives ¢ < 2s0 ¢ = 1 and P(q — 1, %) = P(0,1) which was excluded
since h = 0. Thus, this involution doesn’t occur for j = 3. For ¢ > 1, this is a valid involution.
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