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Abstract

In the present paper we formulate and investigate a one-dimensional
inverse acoustic problem in the form of nonlinear system of Volterra
integral equations. We prove the conditional stability of the inverse
problem with an explicitly given Lipschitz constant depending only on
the depth [ and a bound of norms of an unknown coefficient and inverse
problem data.
The proposed technique can be applied to prove local well-posedness of
the inverse problem in Ly(0, ).

List of notations.
v(z,t): the pressure,
c(z) > 0: the velocity,
p(z) > 0: the density,
V,,—40 = 36(t) : excitation, 3 : a non-vanishing constant,
d(t): the Dirac delta function,
v(40,t) = f(¢): the additional information (inverse problem data),

co = c(+0), po = p(+0): the a priori given constants,

r=(z)= ({Z%: the travelling time variable,
u(z,t) = v(z,t) = v(go_l(x),t),
hz) = p(z) = plp~ (), glx) =c(z) = c(p™ (2)),

o(xz) = g(x)h(x): the acoustical impedance, 0 < 0, < o(z) for x > 0,

0o = o(+0): Thus we note that oq = copo,
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S(z) = —ayfo(x)/oy: the jump of u(x,t) at t = x,

a(xz) = 25'(x)/S(x): the function for which the inverse problem is for-
mulated in integral form,

A(l) = {(z,t); 0 < x <t < 2l — z}: the domain of influence for the
forward and the inverse problems,

[: the depth on which the inverse problem is solved,
M = ||o|| g, @ priori given constant,

Q= HfHHl(O,%)?

S’: the differentiation in the argument under consideration,

) ) 02 02
sza—zautza—?,unggauttza—ﬁa
1 t>0 .. .
0(t) = ’ — 7 : the Heaviside function.
0, t<0.



1 Introduction

In the present paper, we investigate an inverse problem for a one-dimensional
acoustic equation

1 1
Evtt(z,t) - (;vz>z(z,t), >0, t>0. (1.1)

Here:

¢(z) > 0 is the sound speed of the medium,

p(z) > 0 is the density,

v(z,t) is the pressure.

The equation (1.1) governs the propagation of a small amplitude acoustic

wave in the half-space. Moreover the initial and boundary conditions are
given:

V<o = 0, (1.2)
v.(+0,8) = B8(t), t>0, (1.3)
v(+0,t) = f(t), t>0. (1.4)

Here §(t) is the Dirac delta function and ( is the non vanishing con-
stant.
Inverse Problem 1.
Determine ¢(z) and p(z) (or some their combination), given the infor-
mation (1.4) concerning a solution v(z,t) to the initial boundary value
problem (1.1)-(1.3).

Let us introduce the travelling time variable and new functions



Then (1.1)-(1.4) can be written in the form

up(,t) = uge(x,t) — UJ,((j;ux(x,t), x>0, t>0, (1.5)
up<o = 0, (1.6)
ur(+0,t) = ad(t), t>0, (1.7)
u(+0,t) = f(t), t>0. (1.8)

Here
o(z) = g(z)h(z) (1.9)

is the acoustical impedance and a = 3 ¢(+0).
Inverse Problem 2. Given a # 0, f(¢), find o(x) from (1.5)-(1.8).

This kind of inverse problems have been studied by many authors and
we mention only several related results. Blagoveschenskii [8] applied the
method by Gelfand and Levitan to prove the unique solvability of (1.5)-
(1.8). Romanov [17] proved an analogous theorem for the equation

t) = q(r)w(z, ), (1.10)

wtt(a:, t) (
which can be transformed to (1.5) by introducing a new functions:
(7,

wlx = ne )
)
 10"(w) 30(33)
1@) = =550 T iewe

See also [16]. Romanov and Yamamoto [18] derived an Ly conditional
stability estimate for a multidimensional analogue of the inverse problem
for (1.10) with a concentrated source term. However the existing results
do not specify constants appearing in stability estimates and so cannot
effectively support error analysis in the numerical experiments. As for
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numerical algorithms of the inverse problem (1.5) - (1.8), we can refer
to Kabanikhin [12 — 15] and the references therein.

An early numerical result for the acoustic inverse problem was ob-
tained in a discrete form by Baranov and Kunetz [7]. Bamberger et al
[5, 6] used the conjugate gradient technique for reconstructing acousti-
cal impedance. Reviews and lists of references can be found in Bube
9] and Bube and Burridge [10]. Symes [21] investigated an inverse
problem similar to (1.1) -(1.4), and Sacks and Symes [19] considered
a multidimesional inverse problem (see also [20,22] and the references
therein). He and Kabanikhin [11] used an optimization technique for
a three dimensional inverse acoustic problem. Alekseev [1] and Alek-
seev and Dobrinskii [2], Baev [4] considered practical applications of
the above inverse problems. Azamatov and Kabanikhin [3] proved the
well-posednes around one solution in L4 of a Volterra operator equation.
Their result can be combined with the results of our paper to prove the
local well-posedness and well-posedness in the neighborhood of the exact
solution with the explicit constants.

The purpose of this paper is to offer stability estimation with con-
stants explicitly given in terms of 3, cg, po, 04, the depth [, and the Hi-
norms M and @) of o and f, respectively.

Here we set
co = ¢(+0), po = p(+0) and o, = inf,~go(z) > 0.

Then, on the assumption that ¢ (4+0) = ¢ (+0), we will prove the
estimate (see Theorem 5.1),

Ha(l) - 0(2)HH1(071) <C Hf(l) - f(Z)HHl(OQZ) ’

where the constant

C(la Ma Q?ﬁ)cﬁap(bo-*) >0

is explicitly given as a function of parameters [, M, Q), 3, co, po, Ox.



2 Formulation of the inverse problem in integral
form

We start with the equations:

uﬂ%ﬂizumﬁﬁf—jg&%@J% 2>0,t>0  (21)

upeo = 0, (2.2)
up(+0,8) = a 3(t), (2.3)
uw(+0,t) = f(t), t>0. (2.4)

Throughout the paper, we assume that o € C''[0, 00) and
0<o,<o(x), z>0.

It is known that the solution to the forward problem (2.1) - (2.3) has
the following form (Romanov [17], Kabanikhin [12 — 13]):

w(z,t) = S@)0(t — ) +a(x, 1), (2.5)

where « is continuous for x > 0 and sufficiently smooth for t > z > 0.
We will derive an equation for the function S(z), using the assumption
that S(z) and u(x,t) are sufficiently smooth.

We have from (2.5)

uy(z,t) = S'(2)0(t — ) — S(x)d(t — ) + Uy (z,t) (2.6)
and therefore from (2.3)

[guw@—@—suw@—m+ﬂ4%@} = ad(b).

r=+0

Hence
S(+0) = —a. (2.7)
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We differentiate (2.5) twice with respect to x:

Upe (2, 1) = S"(2)0(t — x)

— 258(x)0(t — x) + S(x)d"(t — ) + Upe(x,t)  (2.8)

and then do the same with respect to ¢

ug(z,t) = S(x)d (t — ) + ty(x,t). (2.9)

Using (2.6), (2.8) and (2.9), we equate in (2.1) all the factors correspond-
ing to the singular term §(t — x):

zsf(x)—j((gsm) = 0. (2.10)
It follows from (2.10) that
S(z) = S(+0) %Z") (2.11)
and it follows from (2.4) and (2.7) that
S(+0) = f(+0) = —a. (2.12)
Therefore
S(z) = —a %Z") (2.13)

Using (2.5), (2.10) and (2.13), we can change the inverse problem (2.1)
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- (2.4) by (2.14) - (2.17):

!/
u(x,t) = uge(x,t) — ZS (@ux(az,t), t>x>0, (2.14)

S(x)
ue(0,8) = 0, t>0, (2.15)
u(z,x+0) = S(x), x>0, (2.16)
w(+0,t) = f(t), t>0. (2.17)

In fact, (2.16) is seen as follows. By (2.1) and (2.2), we conclude that
u(z,t) =0, 0<t<ux,

in terms of the uniqueness of solution to the forward problem.
Then, by (2.5), we have

w(r,z) =0, x>0.

Therefore (2.16) follows.

The inverse problem (2.1)-(2.4) is equivalent to

Reduced Inverse Problem. Find wu(z,t) for ¢t > x > 0 and
S(z) for = >0 in (2.14)-(2.17).

In this section, we transform the reduced inverse problem to a system
of nonlinear Volterra integral equations.

Using the D’Alembert formula for representing the solution to the
Cauchy problem (2.14), (2.15) and (2.17), we obtain

/

u(z,t) = F(x,t)+A{2%um}(x,t), t>ax>0. (2.18)
Here

Fla,t) = 3[ft—2)+ f(t+2),
(2.19)

Apl(e,t) = §a (K€ v(€ 7)) de.
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We let ¢t — x4+ 0 in (2.18) and take (2.5) into account to obtain

/

S(x) = F(x,x+0)+A{2%ux](a:,x+0), x>0, (2.20)

We introduce a new function

= 2 2.21
o) = 250 2:21)
that is,
S) = —aexpis [ ale)de
) = —aexpyg J a :
Let us differentiate (2.18) and (2.20) with respect to «
1 T
Ux(xt = 5/ uxgt+x_§)+ux(€7t_x+€)]d€a
0
t>az>0. (2.22)

S'(z) = dd (x,z+0) —|—/a Eug (&, 2x — £)dE. (2.23)
0

In terms of (2.21), we can rewrite (2.23)

a(z)S(z) = f'(2x)+ 7&(&)%(5,2@" — &)d¢. (2.24)

The function

pz) = ;p{i / a@dg} (2.25)

satisfies

- L Ja(@m(e)de (2.26)
0



Therefore, multiplying (2.24) by (2.26) and noting that p(z)S(z) = 1,
we can obtain

< [ren+ [a@uEw-oal @)

Hence we reduce the inverse problem to the system of three nonlinear
integral equations (2.22), (2.26) and (2.27) with respect to u,, p and a.
For convenience, we can rewrite (2.22), (2.26) and (2.27) in a vector form

O(r,1) = Gla,t)+ B@®). (2.28)
Here we set:
Da,t) = (@1(a,0), Dafe). 03(x)) . Cla,t) = (Gl 1), Co. Ga(w))
B(@) = (Bi(®),5:(®), B5(®)) .

Oy(x,t) = ug(z,t), Po(x) = p(x), P3(z) = a(x),

Gilat) = Fulwt), Go = —2, Gy(z) = —2f/(22),

a a

Bi(®) = 3] 05(0)| @16t +x— &) + (6t — w4 E)]de,

By(®) = —5] @5(6)22(E)de.
(2.29)

By(®) = —(f'(22) + [ B3(§)®a(€, 20 — £)d )

X j Dy (€)Dy(€)dE — gf Oy ()4 (€, 20 — £)dE.
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For simplicity, by ® € Ly(l), we mean that

®y(7,t) € La(A(1)),

CIDJ(x) S LQ(O,Z), ] =2,3,

and set

3
2
lel* () = Hq)lniQ(A(l))_i_z:QH(I)jHLQ(O,l)'
]:

We recall that that

All) = {(z,t): 0<ax<t<2—uxa}.
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3 Conditional stability in L,

In this section, we will prove conditional stability for solution to the sys-
tem of the nonlinear Volterra equations (2.29) and will give dependency
of the constant of the stability estimate.

We introduce (I, M, ¢, po, 0x), the class of possible solutions of the
inverse problem, namely, o(x) € X(I, M, cq, po, 0«) if o(x) satisfies the
following conditions:

1. o(z) € H(0,1) N CY0,1),
2. HUHHl(O,Z) < M,

3.0< o, <o(x), ze€(0,l),
4. o9 = copo-

We define F(I,Q, 3, cy), the class of possible data, namely,
feF(1,Q,pB,c) if f satisfies the following conditions:

1. f e H(0,20),
2. 1/ 1020 < @
3. f(+0) = —fco.
We note that the third condition must follow from (1.9) and (2.12).

Suppose that for fU) € F(I,Q, 3, co), there exists 0\ from X(1, M, g, po, 0+)
which solves the inverse problem

Yoy
Q
P
.
S
N—
~
Yoy
&
N—
=

il (2,1) = ul(w,t) - Na,t), >0, t>0, (3.1)

ToO(z)
ufﬁo = 0, (32)
ud(+0,t) = a d(t), t>0, (3.3)
u(+0,t) = fU®), t>0, (3.4)



Then we show the stability in our inverse problem where the constant
is given by ||®W||(1) and || ||(1).

Theorem 3.1. Suppose that for GU) € Ly(l), there exists ®U) ¢
Lo(1), which solves the inverse problem

W (z,t) = GU(x,t) +B(@Y), j=1,2, (x,t)eAl), (3.5)

for g =1,2.
Then
1 2)(12 1 2)112

H(D( ) @ )H ) < G Hf( ) f( )HH1(0,21)' (3.6)

Here we have
1
Cr = [Bl+ 34—+ 1) (1 + 6020
5200
2 1 4 2 2 4
X exp {CID*[251+6(4W+<I>*)(1+24<I>*l)+12Q +12(I>*]},
€0
(3.7)

@, = max{| @V (1), [@®] 1)}, Q= [FY]; 00

Remark 3.1. Notice that if |G| (1) is small, then ||®| (1) is small
as well, which implies that HU,/UHLg(o,z) is small. In partcular, when
o = const, then u(x,t) = —ad(t — x).

Proof.
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We set

flz) = W)~ fP2), Fa,t) = FY(z,t) - FP(a,1).

Then it follows from (3.5) that

O(x,t) = Gz, t)+B@OY)—B@2), (z,t)e A(l). (3.8)

Recalling the definition (2.29), we will estimate the first component ®,
by the right-hand side of (3.8):

@1(2,t)| < |Gi(z,t)] +

X

+ o[ 1Bs(©)de
0

J/ml@ﬁl (& t+o—E)Pdi+

St~

(¢, t—a+6)|2de ]

D1 (&, t—z+&)|2dE

0
AT SO J/| (€ tha—)Pde +
0 0

St~z

Therefore, noting that (a + b+ ¢)? < 3(a? + b> + ¢?) and (v/a + Vb)? <
2a + 2b for a > 0 and b > 0, we obtain

[@1(z. ) < 3]Gzt

[0 (©)de [ [|@1(¢, t+2—) P+ DIE t—z+€)[ de.
0 0
(3.9)
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Henceforth, for &1 € Lao(A(l)), we set

v [20-¢
H‘I%H%Q(A(z,x)) = /(/ |<I>1(€,7')2d7'> d¢
3

0

and we note that |||, A = [ Pullr,a0)
From (3.9), it follows that

~ 2 ~ 12
H(I)1HL2(A(Z,3:)) <3 HG1HL2(A(Z,x))

z 20=¢
/] {/ L \df/ 190, 7€~ )P +|20(E 7€ +€) e
0 ¢

¢ ¢
+ [1e7(E)ag | [é1<§',7+5—£'>2+é%(g'm—g+g'>|2]dg} drdg
0 0

+

[\LI V]

x & x
< 3HG1HZ(A(L$))+12®2//|CI) (5’)|2d5’d5+12<1>§/uc1>1HL Aoy 4
00 0
(3.10)
where

o, = maX{HCI)(l)H (1)

@3

We estimate the second component of the left-hand side of (3.8):

[ 1082 (€)d5(6)lde
0

©57(¢) IZdSJ/ €)[2d¢ + = J/@z |2d§J/ £)[2d¢.
0

l\:JIr—L

~ 1 %
[Ba(a)| < 5 [ 125 (©)Po(E)]dE +

I
N | —
4 (e}
S—,

Therefore

[D2(8)]? <

l\:JIr—L

¢
@7 [ |92 + @317’ (3.11)
0

and
~ 2 1 T~ 2 ~ 12
H%HLQ(OJ) = 5@30/[”@2"@(0,5) + Hq)i*HLQ(o,g)}df' (3.12)
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Let us estimate ®3, using the third equation from the system (3.8)
- . 5
[Ps(2)] < |Ga()[+ 3 wj, (3.13)
j=1

where

w(r) = ,a‘\m - By(2®)],

wy(w) = |By(a >Ma\wz<x>,
o) = 2{Bi(@)[Ba(@D) - By(@®)]|

ws(x) = 2|(fV)(22) - <f<2>>'<2:c>HB2<<I><2>>\.

First we have

that is,
) < AV 0PE B + [Ba(OF]de.  (3.19)
0

Second,

Dy(€)01" (6,22 — &) + P () b (6, 22— ©)|ds

wa ()

IA

|2de / @17(€, 20 — €)|2de+

+ J/x@?)(f)lwf J/xél(f,zasgﬂ?df] ,

18
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8

wy(z) < % [ 1®5(6)de [ 181V (€, 20 —€) P+ — 2 [ |@1(&, 20— ) e
0 0 0

(3.15)
Third
nlz) < [Bal@)lalin(e) < 2nta) [0l 0l )]a
< %w (x)Jo/cpg 2d§J/|<I> |2d£<| il wy(2)®?
and hence
Wi(z) < O‘Z@j:wg(x). (3.16)
Furthermore
wilr) < J [ |@f |2de J 1@ (&, 22 — €)2dg
(J [ 18a(6) 2 + J [ 185 2d§)
0 0
and
@) < 208 [ [00(¢, 20— de [[|Ba() -+ Ba(6) 2]
0 0
(3.17)
Finally,
ws(x) < (WY (22) — (fP) (22)),
so that
) < @Oy () - (FO) () (3.18)




. . 6 2 6 9
Taking into account (3.14)-(3.18) and (kZl ]bk|) Z |bx|*, we obtain
from (3.13) B B

[@s()* < i—i[(f(l))/(%j) — f<2>)'(2x)}2+6§1 w?
< Z—‘i[(fm)'(zx) (Y ()]
+ 12(1)2[ }27“@2 |2+ ’@3 ]df

+ 12(4% + c1>f,§)

T

[ 1®s(¢

0

RS / @17, 22 — €)2d¢ + 02 [ |é1<£,2x—5>|2d5]
0

+ 12@4/@ (€,20 — ) 2d§/[yc1> (O + |y (&)[2| e

2

+ 6| (FV)(22) = (P (20)|
That is,

|Ps(2)]? < Mo[(f(l))/(%) - (f@))/(%)}2 + /“ |©1(&, 22 — €)|%d¢
0

() [ 1@2(8) P + pia(x) [ |D3(6) e, (3.19)
0 0
where we set

i = 1204+ B = 20,
o) = 1202[(f0y(20)]" + 1204 [ [0, 20 - ©)de,
0
1 x
pafe) = 1202[(/0)(20)] + 1204 + @) [19476 20— )a
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+ 1202 [ |07 (¢, 20 — €)|de.
0

Therefore

T

- ~ 1 ~ 12
HCI)?)HLQ(O,;U) < “Oo/[f/(%)]2d§ + 5”1 Hq)luLg(A(l,x))

+ /'LLQ(Q H&DQHLQ(()@ d€+/ﬂ3(f) H(I)?)HLg(o,g) dg.
0 0

Next we consider a system of inequalities (3.10), (3.11) and (3.19). By
the Cauchy-Bunyakovskii inequality and change of variables, we obtain
that

Calet) = Fulast) = 5[-Fe—a)+ Fle+)],

Héluig(mz,x)) = O/E/[Fx(fﬂ')rdmf

+ P+ OP]drds <2 | T, 0mm- (3.20)

For simplicity, we set

v = Hf/HLg(o,m)’
Uy (z) = H(i)luigm(z,x))’ z € (0,0), (3.21)
Uya) = [BIE)dE, j=2.3

Then it follows from (3.10), (3.12), (3.19) and (3.20) that
Uy(x) < 307w 41207 [ Wy()ds + 1202 [ Wy (&)ds, (3.22)
0 0

21



5
O
A

592 [13:06) + wa(Ee (3.29

1 x
Uy(z) < A;oy2+ ¥ (2) +/{M2 )¥s(E) +M3(§)‘1’3(5)]d§
0
(3.24)
Substituting (3.22) into (3.24) and noting that
x §~ x 2$ f
[ @€ 26 - ehagde = 3 / ( | @i dc) 3
00
-9 H(I)1HL2(A(Z,$))’ (3.25)
for U = ¥y + U, + U3, we obtain
3 T
Wr) < (304 5 S+ [ S (@€, (326)
0 J=
where
L= 12021 ). () = 202+ o),
K 2 2
1
(r) = 6PI(2+ ) + 5@3 + pz(z).
Let us introduce a new function
z 3
Vie) = 2B+ D)+ [ S e
0 J=1
Then ¥(z) < V(x) and
3 3
Vi(z) = 2:1%(33)‘1!](3:) < V(x) Zlfy](a:)
j= j=
Therefore
V() &
(x
V(QZ) — ]Z:l ,7]( )
and the Gronwall inequality yields
z 3
U(z) < V(r) <V(0)exp {/ Zl%(é)d&}- (3.27)
0 J=



On the other hand, we have

T

[re(&)de < 02+ 0/ a(E)de < 202 + 1202 [[(£0) (26)] ae

0 0

z &
+ 120) [ [|0P(¢, 26 — &) Pde'de
00
L 22 2 1)y 6
< SO+ 607 (f4) HL2(0’21)+6<I>* (3.28)

and

[€de = [I6022+ ) + 302 + mle)lde

1 2
< E@Ex +6D2(2 + 1y ) + 6P (f(1)>IHL2(O,2l)

1
- 6(4? + &1 P2 + 600 (3.29)

At the last inequality, we have applied (3.25). Hence by (3.28) and
(3.29), we obtain

3

[ (9ds < 250% + 1202
0

ONIE 6
OV g+ 1208

1
+ 6@3(4? + ®H)(1 + 24d%x) (3.30)

We substitute (3.30) into (3.27), so that

o) — 0@ 1) < & VY - (U

< G = 1 0m (331)

where the constants Cy > 0 is given by (3.7).

Thus we have proved the conditional stability where the dependency
of the constants C is given by (3.7).

In the next section, we will sharpen (3.6), that is, we will estimate ®,
in terms of [ and M.
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4 Sharp estimation of ®* by |[o|| 4, -

For sharpening Theorem 3.1, we will first estimate Lo-norms of ®; and
Dy by || 3|1, Let the vector-function @ = (@4, @, ®3)" solve the
system

B(x,t) = Glz,t)+B(®), (z.t)€ Al). (4.1)

We begin with the equation for ®s:

1 17
apfz) = —— - 50/c1>3(g)<1>2(g)dg, z e (0,1). (4.2)
Therefore
2 1 x X
() < g+ g [ IBs(OPdE [1:(6)Pde,
and

2 21 1 2 ’ 2

Hence the Gronwell inequality yields

, oA (1.
[P2[7,00 < @GXP{?\‘I’BHLQ(O,Z)}- (4.3)

Let us estimate the Ls- norm of ®; from the first equation of the system
(4.1):

X

Bi(r,t) = Fule )45 [ @()[@(E a6 +1(€ t—a+6)|de
0

Since, for (z,t) € A(l), we have

@1(z, ) < 2/Fu(w, 1))
+ [1@5(€) e [[|@a(& b+ 3 — O+ @1t — 2 + O[],
0 0
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then (3.20) yields

2 2 2 ’ 2
1Pl Tsa00) < 2211 02 + 2 H(I)3HL2(O7:E)/Hq)lHLg(A(l,g)) dg, € (0,1),
0

so that we obtain

2
121117 a0y < 2exp{201@s03,00} 17100 (44)
Next, since
o'(z)
@ —= —_=
s(w) = ale) = 75
we have
2 1 2 1 2
H(I)?)HLQ(O,Z) < ;HU”Hl(o,Z):pM- (4.5)

Consequently we obtain from (4.4) and (4.3) that

1
121117, a0 < 2lexp{2[a_%M2}Q2,

2
[0l 00 < Zpow{ o

and therefore

52 o2

*

2l 1
H<I>H2()<216Xp{2l—M2}Q2+ 2eXp{ 2lM2} — M?

>k

and

o

* *

1 21 1
®? < 2l exp {2[0—8M2} Q* + 2 eXp{ 2lM2} +M?. (4.6)

25



5 Estimation of Ha(l) — 0(2)HH1(0 )

We recall that (0U)) (2) = aV)(2)oV)(z) = q)éj)(x)a(j)(x), j=1,2and
denote

) = [ (5.1
so that we obtain
5'(6) = 85(¢) 07 5 (€)de + B(€) [0 (+0) + j (e?)(&)dg|
Hence
161500 < Allo @O+ 207 B, +21 / 1257 116" 0.6) dE:

By the Gronwall inequality, we have

1530y < Ao +O) + 102 [ exp {2 ]0f] .

Using (3.6) and (4.5), we obtain
12 1 2
16" 2,00 < 4llo™ (+0)[* + 1M exp {2z0_$M2} S VAR il M

< Gyl s - (5.2)

020
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where we set

1
Cy = 4[cip? + IM?] exp {21—2M2} Ch. (5.3)
o

*

By (5.1), we obtain

[2 2
HUHL2 0,) H HLQ(O,Z) < 502 IF - f(2)"H1(0721)' (5.4)
Therefore it follows from (5.2) and (5.4) that
~112 1 2)|12
HUHHl(OJ) < C Hf( /- f( )HHl(O,Zl) :
Here we set 2
o) .

Therefore, in terms of (3.7), (4.6), (5.3) and (5.5), we have proved our
main result:

Theorem 5.1. Suppose that for fU. f@ from F(l,Q, 0, cy), there
exist o), 0 € (1, M, ¢o, po, o) which solve the inverse problem (2.1)-
(2.4) with f1) and f®, respectively. Then

2 2
o =00 < CUY = O 0

where

O M. Q. .o, po. ) = AL+ 1)[chp + M) exp {QZPM 2}

1
X [3l+3(452 5

X exp {77[25l+6(4

+17°) (1 + 6170))

5+ )(1+2477l)+12Q2+12772]},

12
}PM

G

1) 2 1
n = 2lexp {2la—%M }Q +—5203 exp{QJ3
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