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In this paper, we obtain the global uniqueness and stablity estimate for a class of mul-

tidimensional inverse hyperbolic problems of determining source terms and an initial
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for nonconservative hyperbolic equations with memory. Then, using the compact-

ness/uniqueness argument, we can prove the uniqueness and the stability by a new

kind of unique continuation property of a non-local hyperbolic equation.
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1 Introduction

We consider the following hyperbolic equation:



ytt(t, x) − ∆y(t, x) = λ(t, x)y(t, x) + µ(t, x)f(x), (t, x) ∈ Q,

y(t, x) = 0, (t, x) ∈ Σ,

y(0, x) = 0, yt(0, x) = g(x), x ∈ Ω,

(1.1)

where x = (x1, ..., xn), Q
�
= (0, T ) × Ω, Σ = (0, T ) × ∂Ω, T > 0, Ω ⊂ lRn is a bounded

domain which is either convex or of class C1,1. In (1.1), both f ∈ L2(Ω) and g ∈ H1
0 (Ω) are

unknown and we fix λ ∈ W1,∞(0, T ;L∞(Ω)) and µ ∈ C3(Q). The source term µ(t, x)f(x)

is assumed to cause the vibration and we are required to determine f = f(x) and g = g(x)

from the boundary observation ∂y
∂ν

|Σ or the interior observation y|(0,T )×G, where ν = ν(x)

stands for the unit outward normal vector to ∂Ω at x and G is a suitable subdomain of

Ω. The solution of (1.1) is denoted by y = y(f, g)(t, x). As for the unique existence of the

solution y = y(f, g) ∈ C([0, T ];H2(Ω) ∩ H1
0 (Ω)) ∩ C1([0, T ];H1

0(Ω)) ∩ C2([0, T ];L2(Ω)) of

(1.1), we refer to [9], [16].

The main purpose of this paper is to study the following two problems.

Uniqueness: Does

∂y(f, g)

∂ν

∣∣∣∣∣
Σ

= 0 or y(f, g)
∣∣∣
(0,T )×G

= 0 (1.2)

imply f ≡ 0 and g ≡ 0?

Stability: Is the map

∂y(f, g)

∂ν

∣∣∣∣∣
Σ

→ (f, g) or y(f, g)
∣∣∣
(0,T )×G

→ (f, g) (1.3)

continuous (in some suitable Hilbert spaces)?

Concerning the above problems, if g is known, i.e., there is only one unknown in (1.1),

then one can find an extensive references ([4], [5], [8], [13], [18], [19], [20], [21] and the

references cited therein), and great progress has been made there. The main tool to solve

this problem is a kind of weighted energy estimate, which is usually referred as Carleman

estimate.

As for the inverse problem for two unknown functions, however, to our best knowledge,

there are no any results available in the literature even if λ(t, x) ≡ 0 and µ(t, x) ≡ µ(t)
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except in the case when µ(t) has a special form such as µ(t) = C1e
C2t for some constants C1

and C2. The main difficulty is that a usual Carleman estimate seems not to work for this

problem.

We note that for the case λ(t, x) ≡ λ(x) and µ(t, x) ≡ C1e
C2t for some constants C1 �= 0

and C2, if we put

Z =
∂

∂t

(y
µ

)
, (1.4)

then the equation (1.1) is reduced to



Ztt − ∆Z = [λ(x) − C2
2 ]Z − 2C2Zt in Q,

Z = 0 on Σ,

Z(0, x) = g(x)
C1

, Zt(0, x) = f(x) − 2C2g(x)
C1

x ∈ Ω.

(1.5)

Therefore the global uniqueness and stability estimate for our problem follows from the

known observability inequalities for the wave equation (1.5) ([17], [23]).

For the general λ and µ, when we use the transform (1.4), we find that the equation

that Z satisfies is a hyperbolic equation with memory and with various lower order terms

(see (4.5)) and our inverse problem is reduced to the observability estimate for such a sort

of hyperbolic equation. We remark that, as far as we know, unique continuation property

for this sort of hyperbolic equation (with large memory) is not published in the literature.

This is another difficulty of our problem. Thus we need some technical conditions (see

(2.1)). Fortunately, our technical conditions admit several interesting cases such as λ(t, x) =

constant and µ(t, x) ≡ µ(t).

The rest of this paper is organized as follows. In Section 2, we state our main results.

In order to give proofs of these results, in Section 3, we derive two observability inequalities

for the hyperbolic equation with memory, which have their independent interest. The final

section, Section 4, is devoted to the proof of our main results.

2 Main Results

In this paper, C denotes a generic constant which may be different from line to line but is

independent of f and g. In what follows, for a set S ⊂ lRn and ε > 0, put

Oε(S)
�
= {y ∈ lRn

∣∣∣ |y − x| < ε for some x ∈ S}.
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We need the following assumptions:




λ ∈ W 1,∞(0, T ;L∞(Ω)), µ ∈ C3(Q),

∂λ
∂xj0

= ∂µ
∂xj0

= 0 for some j0 ∈ {0, 1, · · · , n},
min(t,x)∈Q |µ(t, x)| > 0,

(2.1)

where x0
�
= t.

We recall that y(f, g) ∈ C([0, T ];H2(Ω) ∩ H1
0(Ω)) ∩ C1([0, T ];H1

0(Ω)) is the solution of

(1.1).

Our main results in this paper are stated as follows.

Theorem 2.1 Let (2.1) hold and T > diam Ω. Then there exists a positive constant C such

that

C−1(|f |L2(Ω) + |g|H1
0(Ω)) ≤

∣∣∣∂y(f,g)
∂ν

∣∣∣
H1(0,T ;L2(∂Ω))

≤ C(|f |L2(Ω) + |g|H1
0(Ω)),

∀ (f, g) ∈ L2(Ω) ×H1
0 (Ω).

(2.2)

Theorem 2.2 Let (2.1) hold. Let G = Ω ∩ Oδ(∂Ω) for some δ > 0. Let T > supx∈Ω\G |x−
x0|. Then there exists a positive constant C such that

C−1(|f |L2(Ω) + |g|H1
0 (Ω)) ≤ |y(f, g)|H2(0,T ;L2(G)) ≤ C(|f |L2(Ω) + |g|H1

0 (Ω)),

∀ (f, g) ∈ L2(Ω) ×H1
0(Ω).

(2.3)

The proofs of Theorems 2.1–2.2 will be given in Section 4. Now several remarks are in

order.

Remark 2.1 One can easily check that λ(t, x) = constant and µ(t, x) ≡ µ(t) ∈ C3[0, T ]

with µ(t) �= 0 satisfies Assumption (2.1).

Remark 2.2 If (f, g) ∈ H−1(Ω) × L2(Ω), then one can obtain a similar global uniqueness

and stability result.

Remark 2.3 Using the same method, one can consider more general hyperbolic equations

(with various lower order terms).

Remark 2.4 The condition in the second line of (2.1) is technical. It is open how to drop

this condition.
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3 Observability estimate for hyperbolic equation with

memory

3.1 Statement of the results

Let us consider the following hyperbolic equation with memory:


ytt − ∆y =
∑
|α|≤1

[
Aα(t, x)Dαy(t, x) +

∫ t

0
Bα(t, s, x)Dαy(s, x)ds

]
in Q,

y = 0 on Σ,

y(0, x) = y0(x), yt(0, x) = y1(x) x ∈ Ω.

(3.1)

In (3.1), α = (α0, α1, · · · , αn) is a multi-index with nonnegative integer components and

|α| = α0 + α1 + · · · + αn, Dα =
(

∂
∂t

)α0
(

∂
∂x1

)α1 · · ·
(

∂
∂xn

)αn

.

In order to prove Theorems 2.1–2.2, we shall derive observability inequalities for (3.1)

which estimate the initial energy |(y0, y1)|H1
0 (Ω)×L2(Ω) of (3.1) by means of boundary data or

interior data.

If Aα = 0 (|α| = 1) and Bα = 0 (|α| ≤ 1), then the multiplier method yields the

observability inequalities (e.g. [9], [15]). Furthermore, for the case Bα ≡ 0 (|α| ≤ 1), the

corresponding observability problem for (3.1) is now well-understood ([1], [3], [12], [17], [23]);

and the main tool is a Carleman estimate or microlocal analysis. However, as long as the

first equation in (3.1) with integral terms is concerned, it is quite difficult to apply those

tools. Therefore we will use another approach developed in [6]–[7] to establish the desired

observability inequalities.

We need the following assumptions:



A0 ∈ L∞(Q), B0 ∈ L∞((0, T ) ×Q);

Aα ∈ C1(Q) and Bα ∈ C1([0, T ] ×Q) for any |α| = 1;

∂Aα

∂xj0
= ∂Bα

∂xj0
≡ 0 for some j0 ∈ {1, 2, · · · , n} and for all |α| ≤ 1.

(3.2)

Our results on observability inequalities are the following:

Theorem 3.1 Let (3.2) hold and T > diam Ω. Then there exists a positive constant C such

that

C−1(|y1|L2(Ω) + |y0|H1
0 (Ω)) ≤

∣∣∣∂y
∂ν

∣∣∣
L2(Σ)

≤ C(|y1|L2(Ω) + |y0|H1
0 (Ω)),

∀ (y1, y0) ∈ L2(Ω) ×H1
0 (Ω),

(3.3)
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where y ∈ C([0, T ];H1
0(Ω)) ∩ C1([0, T ];L2(Ω)) is the weak solution of (3.1).

Theorem 3.2 Let (3.2) hold. Let G = Ω∩Oδ(∂Ω) for some δ > 0 and T > supx∈Ω\G |x−x0|.
Then there exists a positive constant C such that

C−1(|y1|L2(Ω) + |y0|H1
0 (Ω)) ≤ |y|H1(0,T ;L2(G)) ≤ C(|y1|L2(Ω) + |y0|H1

0 (Ω)),

∀ (y1, y0) ∈ L2(Ω) ×H1
0(Ω),

(3.4)

where y ∈ C([0, T ];H1
0(Ω)) ∩ C1([0, T ];L2(Ω)) is the weak solution of (3.1).

The proof of Theorems 3.1–3.2 will be given in subsections 3.3–3.4.

Remark 3.1 As for observability inequalities (or equivalently, exact controllability) for equa-

tions with memory terms, we refer to [6], [7], [10], [14], [22]. Compared with the results in

these references, our observability estimates (Theorems 3.1–3.2) are more suitable to our

inverse problems and are generalization in some cases.

3.2 Some preliminaries

In order to prove Theorems 3.1–3.2, we need some preliminaries. For any fixed




a0 ∈ L∞(Q), b0 ∈ L∞((0, T ) ×Q);

aα ∈ C1(Q) and bα ∈ C1([0, T ] ×Q) for any |α| = 1,
(3.5)

let us consider the following hyperbolic equation with memory




utt − ∆u =
∑
|α|≤1

[
aα(t, x)Dαu(t, x) +

∫ t

0
bα(t, s, x)Dαu(s, x)ds

]
+ h(t, x) in Q,

u = 0 on Σ,

u(0, x) = u0(x), ut(0, x) = u1(x) x ∈ Ω.

(3.6)

First of all, by means of Galerkin’s method and an energy estimate, one has the following

result.

Lemma 3.1 Let (3.5) hold, (u0, u1) ∈ H1
0 (Ω) × L2(Ω) and h ∈ L1(0, T ;L2(Ω)). Then (3.6)

admits a unique weak solution u ∈ C([0, T ];H1
0(Ω))∩C1([0, T ];L2(Ω)). Furthermore it holds

|u|C([0,T ];H1
0(Ω))∩C1([0,T ];L2(Ω)) ≤ C(|u0|H1

0 (Ω) + |u1|L2(Ω) + |h|L1(0,T ;L2(Ω)). (3.7)
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By [11] and Lemma 3.1, one easily sees that

Lemma 3.2 Let (3.5) hold, (u0, u1) ∈ H1
0 (Ω) × L2(Ω) and h ∈ L1(0, T ;L2(Ω)). Then the

weak solution u of (3.6) satisfies
∂u

∂ν
∈ L2(Σ).

Furthermore ∣∣∣∂u
∂ν

∣∣∣
L2(Σ)

≤ C(|u0|H1
0 (Ω) + |u1|L2(Ω) + |h|L1(0,T ;L2(Ω)). (3.8)

Next, by the transposition method and Lemma 3.1, we obtain

Lemma 3.3 Let (3.5) hold, (u0, u1) ∈ L2(Ω) × H−1(Ω) and h ∈ L1(0, T ;H−1(Ω)). Then

(3.6) admits a unique weak solution u ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)). Furthermore

|u|C([0,T ];L2(Ω))∩C1([0,T ];H−1(Ω)) ≤ C(|u0|L2(Ω) + |u1|H−1(Ω) + |h|L1(0,T ;H−1(Ω)). (3.9)

Moreover, we need the following result.

Lemma 3.4 Let (3.5) hold, (u0, u1) ∈ L2(Ω) ×H−1(Ω) and h = 0. Denote

w = w(t, x)
�
=

∫ t

0
u(s, x)ds, (t, x) ∈ Q, (3.10)

where u is the weak solution of (3.6). Then w ∈ C([0, T ];H 1
0(Ω)) ∩ C1([0, T ];L2(Ω)). Fur-

thermore

|w|C([0,T ];H1
0(Ω))∩C1([0,T ];L2(Ω)) ≤ C(|u0|L2(Ω) + |u1|H−1(Ω)). (3.11)

Proof. Denote

ψ(t, x)
�
= w(t, x) + ξ(x), (t, x) ∈ Q, (3.12)

where ξ ∈ H1
0 (Ω) solves 


∆ξ = u1 in Ω,

ξ = 0 on ∂Ω.
(3.13)

Integrating the first equation of (3.6) from 0 to t, noting that u = wt = ψt and using

integration by parts, we see that

ψtt − ∆ψ

=
∫ t

0

[
a0(s, x)u(s, x) +

∫ s

0
b0(s, τ, x)u(τ, x)dτ

]
ds

+
∑
|α|=1

∫ t

0

[
aα(s, x)Dαψs(s, x) +

∫ s

0
bα(s, τ, x)Dαψτ (τ, x)dτ

]
ds

= F(ψ) + H,

(3.14)
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where

F(ψ) = F(ψ)(t, x)
�
=

∑
|α|=1

{
aα(t, x)Dαψ(t, x) −

∫ t

0

[
aα,s(s, x) +

∫ t

s
bα,s(τ, s, x)dτ

−bα(s, s, x)
]
Dαψ(s, x)ds

} (3.15)

and

H = H(t, x)
�
=

∫ t

0

[
a0(s, x) +

∫ t

s
b0(τ, s, x)dτ

]
u(s, x)ds

− ∑
|α|=1,α0=0

[
aα(0, x) +

∫ t

0
bα(τ, 0, x)dτ

]
Dαξ(x)

−
{
a(1,0,···,0)(0, x) +

∫ t

0
b(1,0,···,0)(τ, 0, x)dτ

}
u0(x).

(3.16)

Thus one sees that ψ solves



ψtt − ∆ψ = F(ψ) + H in Q,

ψ = 0 on Σ,

ψ(0, x) = ξ(x), ψt(0, x) = u0(x) x ∈ Ω.

(3.17)

By (3.13), (3.16) and Lemma 3.3, we have

|H|C([0,T ];L2(Ω)) ≤ C(|u0|L2(Ω) + |u1|H−1(Ω)). (3.18)

Thus, by (3.17)–(3.18) and Lemma 3.1, we obtain

|ψ|C([0,T ];H1
0(Ω))∩C1([0,T ];L2(Ω))

≤ C(|ξ|H1
0(Ω) + |u0|L2(Ω) + |H|L1(0,T ;L2(Ω)) ≤ C(|u0|L2(Ω) + |u1|H−1(Ω)).

(3.19)

Now the desired result follows from (3.19) and (3.12) immediately.

The following result is known, which can be found, for example, in [23].

Lemma 3.5 Let (3.5) hold, bα = 0 for all |α| ≤ 1, h = 0 and (u0, u1) ∈ H1
0 (Ω) × L2(Ω).

Let T > diam Ω. Then there is a constant C > 0 such that the weak solution u ∈
C([0, T ];H1

0(Ω)) ∩ C1([0, T ];L2(Ω)) of (3.6) satisfies

|u0|H1
0 (Ω) + |u1|L2(Ω) ≤ C

∣∣∣∂u
∂ν

∣∣∣
L2(Σ)

, ∀ (u0, u1) ∈ H1
0 (Ω) × L2(Ω). (3.20)

Finally, we show

Lemma 3.6 Let (3.5) hold, T > diam Ω, (u0, u1) ∈ L2(Ω)×H−1(Ω) and h = 0. Suppose that

the weak solution u ∈ C([0, T ];L2(Ω))∩C1([0, T ];H−1(Ω)) of (3.6) satisfies u = 0 in (0, T )×
G, where G

�
= Ω ∩ Oδ(∂Ω) for some δ > 0. Then u ∈ C([0, T ];H1

0(Ω)) ∩ C1([0, T ];L2(Ω)).
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Proof. We borrow an idea from [6]–[7]. Choose an open subset Ω0 such that Ω0 ⊂ Ω and

Ω \ Ω0 ⊂ G, and let

uε(t, x) = (u ∗ ρε)(t, x)
�
=

∫
lRn

u(t, x− η)ρε(η)dη,

where ρε ∈ C∞
0 (lRn) is the Friedrichs mollifier. We take ε > 0 so small that supp uε ⊂

[0, T ] × Ω0. It is easy to see that uε satisfies

uε
tt − ∆uε =

∑
|α|≤1

[
aα(t, x)Dαuε(t, x) +

∫ t

0
bα(t, s, x)Dαuε(s, x)ds

]
+ Hε(t, x), (3.21)

where

Hε(t, x)
�
=

∑
|α|≤1

[(
(aαD

αu) ∗ ρε − aα(t, x)Dαuε(t, x)
)

+
∫ t

0

(
(bα(t, s, ·)Dαu(s, ·)) ∗ ρε − bα(t, s, x)Dαuε(s, x)

)
ds

]
.

(3.22)

By means of the Friedrichs lemma (e.g. Vol. III (p. 9) in [2]), we have

|(a0u) ∗ ρε − a0u
ε|L2(Ω) + |(b0u) ∗ ρε − b0u

ε|L2(Ω) ≤ C|u|L2(Ω) (3.23)

and ∑
|α|=1

[
|(aαD

αu) ∗ ρε − aαD
αuε|L2(Ω) + |(bαD

αu) ∗ ρε − bαD
αuε|L2(Ω)

]

≤ C
∑
|α|=1

|Dαu|H−1(Ω).
(3.24)

Here and henceforth C > 0 denotes a generic constant which is independent of ε > 0.

By (3.23)–(3.24) and Lemma 3.3, for all small ε > 0, we obtain

|Hε|C[0,T ];L2(Ω)) ≤ C. (3.25)

We decompose uε as

uε �
= pε + qε, (3.26)

where pε and qε are the solutions of




pε
tt − ∆pε =

∑
|α|≤1

aαD
αpε + Hε +

∑
|α|≤1

∫ t

0
bα(t, s, x)Dαuε(s, x)ds in Q,

pε = 0 on Σ,

pε(0, x) = pε
t(0, x) = 0 x ∈ Ω

(3.27)
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and 


qε
tt − ∆qε =

∑
|α|≤1

aαD
αqε in Q,

qε = 0 on Σ,

qε(0, x) = uε(0, x), qε
t (0, x) = uε

t(0, x) x ∈ Ω

(3.28)

respectively.

Denote

Rε = Rε(t, x)
�
=

∑
|α|≤1

∫ t

0
bα(t, s, x)Dαuε(s, x)ds,

wε = wε(t, x)
�
=

∫ t

0
uε(s, x)ds.

(3.29)

Then

Rε =
∫ t

0
b0(t, s, x)uε(s, x)ds +

∑
|α|=1

∫ t

0
bα(t, s, x)Dαwε

s(s, x)ds

=
∫ t

0
b0(t, s, x)uε(s, x)ds +

∑
|α|=1

bα(t, t, x)Dαwε(t, x)

−b(1,0,···,0)(t, 0, x)uε(0, x) − ∑
|α|=1

∫ t

0
bα,s(t, s, x)Dαwε(s, x)ds.

(3.30)

Now, by (3.21), (3.25), (3.29)–(3.30) and Lemma 3.4, we have

|Hε + Rε|L1(0,T ;L2(Ω)) ≤ C. (3.31)

Thus, applying Lemmas 3.1–3.2 to (3.27), for all small ε > 0, we obtain

|pε|C([0,T ];H1
0 (Ω))∩C1([0,T ];L2(Ω)) +

∣∣∣∂p
ε

∂ν

∣∣∣
L2(Σ)

≤ C. (3.32)

On the other hand, applying Lemma 3.5 to (3.28), noting that pε = −qε in (0, T )× (Ω \
Ω0)), and using (3.32), we conclude that

|qε|C([0,T ];H1
0 (Ω))∩C1([0,T ];L2(Ω)) ≤ C

∣∣∣∂q
ε

∂ν

∣∣∣
L2(Σ)

= C
∣∣∣∂p

ε

∂ν

∣∣∣
L2(Σ)

≤ C (3.33)

for all small ε > 0. Hence it follows from (3.26) and (3.32)– (3.33) that for any small ε > 0

one has

|uε|C([0,T ];H1
0(Ω))∩C1([0,T ];L2(Ω)) ≤ C, (3.34)

which yields the desired result.
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3.3 Proof of Theorem 3.1

Step 1. Let us decompose the solution y of (3.1) as

y = p + q, (3.35)

where p and q are the solutions of




ptt − ∆p =
∑
|α|≤1

[
Aα(t, x)Dαp(t, x) +

∫ t

0
Bα(t, s, x)Dαy(s, x)ds

]
in Q

p = 0 on Σ

p(0, x) = pt(0, x) = 0 x ∈ Ω

(3.36)

and 


qtt − ∆q =
∑
|α|≤1

Aα(t, x)Dαq(t, x) in Q

q = 0 on Σ

q(0, x) = y0(x), qt(0, x) = y1(x) x ∈ Ω

(3.37)

respectively.

By (3.37) and Lemma 3.5, one has

|y0|H1
0 (Ω) + |y1|L2(Ω) ≤ C

∣∣∣∂q
∂ν

∣∣∣
L2(Σ)

. (3.38)

Thus, by (3.35), we obtain

|y0|H1
0 (Ω) + |y1|L2(Ω) ≤ C

[∣∣∣∂y
∂ν

∣∣∣
L2(Σ)

+
∣∣∣∂p
∂ν

∣∣∣
L2(Σ)

]
. (3.39)

However, by (3.36) and Lemma 3.2, we have

∣∣∣∂p
∂ν

∣∣∣
L2(Σ)

≤ C|H|L1(0,T ;L2(Ω)), (3.40)

where

H = H(t, x)
�
=

∑
|α|≤1

∫ t

0
Bα(t, s, x)Dαy(s, x)ds. (3.41)

Denote

w = w(t, x)
�
=

∫ t

0
y(s, x)ds. (3.42)

11



Then

H =
∫ t

0
B0(t, s, x)y(s, x)ds +

∑
|α|=1

∫ t

0
Bα(t, s, x)Dαws(s, x)ds

=
∫ t

0
B0(t, s, x)y(s, x)ds +

∑
|α|=1

[
Bα(t, t, x)Dαw(t, x)

−B(1,0,···,0)(t, 0, x)y0(x) −
∫ t

0
Bα,s(t, s, x)Dαw(s, x)ds.

(3.43)

Thus, by (3.43) and Lemma 3.4, one sees that

|H|L1(0,T ;L2(Ω) ≤ C(|y0|L2(Ω) + |y1|H−1(Ω)). (3.44)

Now, combining (3.39)–(3.40) and (3.44), we obtain

|y0|H1
0 (Ω) + |y1|L2(Ω) ≤ C

[∣∣∣∂y
∂ν

∣∣∣
L2(Σ)

+ |y0|L2(Ω) + |y1|H−1(Ω)

]
. (3.45)

Step 2. Let us prove that

|y0|L2(Ω) + |y1|H−1(Ω) ≤ C
∣∣∣∂y
∂ν

∣∣∣
L2(Σ)

. (3.46)

We will use the compactness/uniqueness argument. Assume that (3.46) is false. Then, by

(3.45), there is a sequence {ym
0 , y

m
1 }∞m=1 ⊂ H1

0 (Ω) × L2(Ω) such that

|ym
0 |L2(Ω) + |ym

1 |H−1(Ω) = 1 for all m, (3.47)

∣∣∣∂y
m

∂ν

∣∣∣
L2(Σ)

→ 0 as m → ∞, (3.48)

(ym
0 , y

m
1 ) → (y∞0 , y∞1 ) weakly in H1

0 (Ω) × L2(Ω) as m → ∞, (3.49)

(ym, ym
t ) → (y∞, y∞t ) weakly∗ in L∞(0, T ;H1

0(Ω) × L2(Ω)) as m → ∞, (3.50)

where ym is the weak solution of (3.1) with initial data (ym
0 , ym

1 ), and y∞ is the weak solution

of (3.1) with initial data (y∞0 , y∞1 ). By (3.47)–(3.50) and (3.45), we obtain




∂y∞
∂ν

= 0,

|y∞0 |L2(Ω) + |y∞1 |H−1(Ω) = 1.
(3.51)

Define

G �
=

{
y ∈ C([0, T ];H1

0(Ω)) ∩ C1([0, T ];L2(Ω))
∣∣∣ y is the weak solution of (3.1)

and ∂y
∂ν

= 0 on Σ
}
.

(3.52)
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It is easy to see that G is a Banach space equipped with the norm of C([0, T ];H1
0(Ω)) ∩

C1([0, T ];L2(Ω)). By (3.45), one sees easily that G is finite dimensional. Let us adopt an

argument in [1] to show that G = {0}. By (3.2) and Lemma 3.6, we see that ∂
∂xj0

is a linear

operator from G into G. Choose any element v of G. Then
(

∂
∂xj0

)k

v ∈ G for any k ∈ lN.

Since G is finite dimensional, there is an integer N ≥ 1 such that

( ∂

∂xj0

)N
v + c1

( ∂

∂xj0

)N−1
v + · · · + cNv = 0 in Q (3.53)

for some constants c1, · · · , cN . Noting that ∂v
∂ν

= 0 on Σ, similarly to [7], one sees that v = 0

in Q. Consequently we obtain

G = {0}. (3.54)

However (3.51) contradicts (3.54). Thus the proof of (3.46) is complete. Combining

(3.45) and (3.46), we conclude the desired estimates.

From the proof of Theorem 3.1, it is easy to see that we have actually proved the following

new unique continuation property for a class of hyperbolic equations with memory.

Theorem 3.3 Assume that (3.2)holds, T > diam Ω and (y0, y1) ∈ L2(Ω)×H−1(Ω). Suppose

that the weak solution y ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)) of (3.1) satisfies y = 0 in

(0, T ) ×G, where G
�
= Ω ∩ Oδ(∂Ω) for some δ > 0. Then y ≡ 0 in Q.

3.4 Proof of Theorem 3.2

We need the following observability inequality for a class of hyperbolic equations without

memory, which can be proved by Carleman estimates (e.g., [17]).

Lemma 3.7 Let (3.5) hold, bα = 0 for all |α| ≤ 1, h = 0 and (u0, u1) ∈ H1
0 (Ω) × L2(Ω).

Let G = Ω ∩ Oδ(∂Ω) for some δ > 0 and T > supx∈Ω\G |x − x0|. Then there is a constant
C > 0 such that the weak solution u ∈ C([0, T ];H1

0(Ω)) ∩ C1([0, T ];L2(Ω)) of (3.6) satisfies

|u0|H1
0 (Ω) + |u1|L2(Ω) ≤ C|u|H1(0,T ;L2(G)), ∀ (u0, u1) ∈ H1

0 (Ω) × L2(Ω). (3.55)

Now, by means of Lemma 3.7, similarly to Theorem 3.1, one can prove Theorem 3.2.
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4 Proof of the main results

Proof of Theorem 2.1. Denote

z = z(t, x)
�
=

y(t, x)

µ(t, x)
. (4.1)

Then, by (1.1), we see that z solves




ztt − ∆z = 51z + 52zt + 〈 53,∇z 〉+f in Q,

z = 0 on Σ,

z(0, x) = 0, zt(0, x) = g(x)
µ(0,x)

x ∈ Ω,

(4.2)

where 〈 ·, · 〉 denotes the scalar product in lRn, and




51 = 51(t, x)
�
= λ(t, x) + ∆µ(t,x)−µtt(t,x)

µ(t,x)
,

52 = 52(t, x)
�
= −2µt(t,x)

µ(t,x)
,

53 = 53(t, x)
�
= 2∇µ(t,x)

µ(t,x)
.

(4.3)

Now denote

Z = Z(t, x)
�
= zt(t, x). (4.4)

Then, by (4.2), it is easy to see that Z solves




Ztt − ∆Z = Q(Z) in Q,

Z = 0 on Σ,

Z(0, x) = Z0(x)
�
= g(x)

µ(0,x)
, Zt(0, x) = Z1(x)

�
= f(x) + �2(0,x)

µ(0,x)
g(x) x ∈ Ω,

(4.5)

where

Q(Z)
�
= (51 + 52,t)Z + 52Zt + 〈 53,∇Z 〉+51,t

∫ t

0
Z(s, x)ds + 〈 53,t,∇

∫ t

0
Z(s, x)ds 〉 .

However, applying Theorem 3.1 to (4.5), we obtain

C−1(|Z1|L2(Ω) + |Z0|H1
0 (Ω)) ≤

∣∣∣∂Z
∂ν

∣∣∣
L2(Σ)

≤ C(|Z1|L2(Ω) + |Z0|H1
0 (Ω)),

∀ (Z1, Z0) ∈ L2(Ω) ×H1
0 (Ω),

(4.6)

which implies the desired result immediately.

Proof of Theorem 2.2. By means of Theorem 3.2, similarly to Theorem 2.1, one can

prove Theorem 2.2. We omit the details.
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applications to an inverse source problem.

2001–17 Kangsheng Liu, Masahiro Yamamoto and Xu Zhang: Observability inequalities
by internal observation and its applications.

2001–18 Masahiro Yamamoto and Xu Zhang: Global uniqueness and stability for a class
of multidimesional inverse hyperbolic problems with two unknowns.

The Graduate School of Mathematical Sciences was established in the University of
Tokyo in April, 1992. Formerly there were two departments of mathematics in the Uni-
versity of Tokyo: one in the Faculty of Science and the other in the College of Arts and
Sciences. All faculty members of these two departments have moved to the new gradu-
ate school, as well as several members of the Department of Pure and Applied Sciences
in the College of Arts and Sciences. In January, 1993, the preprint series of the former
two departments of mathematics were unified as the Preprint Series of the Graduate
School of Mathematical Sciences, The University of Tokyo. For the information about
the preprint series, please write to the preprint series office.

ADDRESS:
Graduate School of Mathematical Sciences, The University of Tokyo
3–8–1 Komaba Meguro-ku, Tokyo 153, JAPAN
TEL +81-3-5465-7001 FAX +81-3-5465-7012


