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1 Introduction

Let us consider the following wave equation:



✷y(t, x) = a1(t, x)y + a2(t, x)yt + 〈 a3(t, x),∇y 〉, (t, x) ∈ Q,

y(t, x) = 0, (t, x) ∈ Σ,
y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ Ω.

(1.1)

Here x = (x1, · · · , xn), ✷y = ytt − ∆y, Q �= (0, T ) × Ω, Σ = (0, T ) × ∂Ω, T > 0, Ω ⊂ lRn is a
bounded domain which is either convex or of class C1,1. Let G be a subdomain of Ω. In this paper,
we will establish observability estimate for (1.1) by internal observation in the subdomain G. By
this we mean an estimate of |(y0, y1)|H1

0 (Ω)×L2(Ω) by a suitable norm of y|(0,T )×G.
Moreover we consider a special case of (1.1):




✷w(t, x) = a(t, x)w, (t, x) ∈ Q,

w(t, x) = 0, (t, x) ∈ Σ,
w(0, x) = w0(x), wt(0, x) = w1(x), x ∈ Ω.

(1.2)
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Concerning (1.2), under some further conditions, we can sharpen the observability inequality and
even establish the observability inequality by weaker norms.

We remark that observability inequality is essential for the exact controllability by the duality
argument (e.g. Lions [9]). Moreover, this kind of inequality is very closely related to some inverse
problems (see Puel and Yamamoto [13], Yamamoto [14], [15], [16]).

As for the observability by means of boundary data, there are many papers and we are obliged
to refer to a very restricted list of papers: Bardos, Lebeau and Rauch [1], Ho [4], Komornik [6], [9]
and the readers can further consult the references therein. However, for the observability inequality
by internal observation, to our best knowledge, there are only a few papers ([9], Liu [10], Liu and
Yamamoto [11] and Zhang [17])considering this problem for some special cases of equation (1.1)
and subdomain G.

By the character of equation (1.1) as hyperbolic equation, T and G must satisfy some conditions
for the observability and such conditions are characterized as the geometric optics condition ([1]).
However, the geometric optics condition in [1] (see also Burq [2] for further development) requires
some extra regularity conditions on the coefficients in (1.1) and the domain Ω. Such extra regularity
is not suitable for further discussions on controllability for semilinear wave equation and an inverse
problem of determining non-smooth functions (see Section 3).

Hence some geometrical sufficient condition for G and T which is valid in the non-smooth case,
is very desirable. As so oriented work, we refer to [9] and [11], where the main ingredient is a
classical multiplier method. Furthermore, we refer to Liu [10] as for a different method. In this
paper, we will use a Carleman-type estimate, which is due to Lavrentiev, Romanov and Shishat.skìi
[8], and apply some argument in Cheng, Isakov, Yamamoto and Zhou [3], Kazemi and Klibanov
[5], Lasiecka, Triggiani and Zhang [7] to derive the desired observability inequality.

The rest of this paper is organized as follows. In Section 2, we state our main results. In Section
3, we apply our observability inequalities to exact controllability problem of linear and semilinear
wave equatins and an inverse wave sourse problem. Some preliminaries for the proof of our main
results are listed in Section 4. The next 3 sections, Sections 5–7, are devoted to prove our main
results.

2 Main Results

First of all, let us introduce some notations. For any M ∈ lRn and ε > 0, put Oε(M) = {y ∈
lRn | |y − x| < ε for some x ∈ M}. For some fixed xj

0 ∈ lRn and domains Ωj ⊂ Ω, 1 ≤ j ≤ J , put{
Γj = ∂Ωj ,

Γj0 = {x ∈ Γj | (x− xj
0) · νj(x) > 0}, (2.1)

where νj(x) is the unit normal vector to Γj at x pointing towards the exterior of Ωj . Throughout
this paper, C denotes an generic positive constant depending only on T , Ω, a(·) and/or ai(·)
(i = 1, 2, 3), which may change from line to line.

Next, let us pose the following assumption:

(H) Suppose G ⊆ Ω satisfies

G ⊇ Ω ∩Oδ

(
∪J

j=1 Γj0 ∪ (Ω \ ∪J
j=1Ω

j)
)

(2.2)
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for some fixed δ > 0, domains Ωj ⊆ Ω with Lipschitz boundary Γj satisfying

Ωi ∩ Ωj = ∅, 1 ≤ i < j ≤ J, (2.3)

J ∈ lN and points xj
0 ∈ lRn, 1 ≤ j ≤ J .

Also, we put 
 S

�
= ∪J

j=1Γj0 ∪
(
Ω \ ∪J

j=1Ω
j
)
,

Rj
1

�
= supx∈Ωj\Oδ(S) |x− xj

0|.
(2.4)

Our main results on observability inequalities are the following.

Theorem 2.1 Let (H) hold and T > 2max{Rj
1 | 1 ≤ j ≤ J}. Let a1(·) ∈ Ln+1(Q), a2(·) ∈ L∞(Q)

and a3(·) ∈ L∞(Q; lRn). Then there exists a constant C > 0 such that the weak solution y(·) ∈
C([0, T ];H1

0 (Ω)) ∩C1([0, T ]; L2(Ω)) of system (1.1) satisfies

|y0|2H1
0 (Ω)

+ |y1|2L2(Ω) ≤ C
∫ T
0

∫
G(y

2 + y2
t )dxdt,

∀ (y0, y1) ∈ H1
0 (Ω)× L2(Ω).

(2.5)

Theorem 2.2 Let (H) hold and T > 2max{Rj
1 | 1 ≤ j ≤ J}. Let a(·) = a(t, x) ≡ a(x) ∈

L∞(Ω) with a(x) ≤ 0. Then there exists a constant C > 0 such that the weak solution w(·) ∈
C([0, T ];H1

0 (Ω)) ∩C1([0, T ];L2(Ω)) of system (1.2) satisfies

|w0|2H1
0 (Ω)

+ |w1|2L2(Ω) ≤ C
∫ T
0

∫
G w2

t dxdt,

∀ (w0, w1) ∈ H1
0 (Ω)× L2(Ω).

(2.6)

Theorem 2.3 Let (H) hold and T > 2max{Rj
1 | 1 ≤ j ≤ J}. Let a(·) ∈ L∞(Q). Then there exists

a constant C > 0 such that the weak solution w(·) ∈ C([0, T ];L2(Ω))∩C1([0, T ];H−1(Ω)) of system
(1.2) satisfies

|w0|2L2(Ω) + |w1|2H−1(Ω) ≤ C
∫ T
0

∫
G w2dxdt,

∀ (w0, w1) ∈ L2(Ω)×H−1(Ω).
(2.7)

The proof of Theorems 2.1–2.3 will be given in Sections 5–7. Now several remarks are in order.

Remark 2.1 We remark that (2.6) does not hold for the the general case, even if a0(�= 0) is a
constant and G = Ω. For example, take µ as the eigenvalue of the following problem{

−∆ξ = µξ in Ω,
ξ|∂Ω = 0,

(2.8)

where ξ(�= 0) is the corresponding eigenvector. Then, one sees easily that ξ solves system (1.2) with
the initial data (w0, w1) and a(·) replaced by (ξ, 0) and µ respectively. However (2.6) is false for
this ξ.

Remark 2.2 The constant C in (2.5)–(2.7) can be estimated explicitly with respect to a(·) and/or
ai(·) (i = 1, 2, 3), in the style of [17].

Remark 2.3 Theorems 2.2–2.3 cover the main results in [11] and [17].
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3 Application to exact controllability problems and inverse source

problem

We denote by 1lG the characteristic function of G. First of all, applying the duality argument (see
[9] and [18]) and using Theorem 2.3, one obtains immediately the following two exact controllability
results.

Theorem 3.1 Let (H) hold and T > 2max{Rj
1 | 1 ≤ j ≤ J}. Let a(·) ∈ L∞(Q). Then for any

(y0, y1), (z0, z1) ∈ H1
0 (Ω) × L2(Ω), there is a control u(·) ∈ L2(Q) such that the weak solution of

the following equation



✷y(t, x) = a(t, x)y + 1lG(x)u(t, x), (t, x) ∈ Q,

y(t, x) = 0, (t, x) ∈ Σ,
y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ Ω

(3.1)

satisfies
y(T, x) = z0(x), yt(T, x) = z1(x), x ∈ Ω. (3.2)

Theorem 3.2 Let (H) hold and T > 2max{Rj
1 | 1 ≤ j ≤ J}. Let f(·) ∈ C1(lR1) with f ′(·) ∈

L∞(lR1). Then for any (y0, y1), (z0, z1) ∈ H1
0 (Ω)×L2(Ω), there is a control u(·) ∈ L2(Q) such that

the weak solution of the following equation



✷y(t, x) = f(y) + 1lG(x)u(t, x), (t, x) ∈ Q,

y(t, x) = 0, (t, x) ∈ Σ,
y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ Ω

(3.3)

satisfies
y(T, x) = z0(x), yt(T, x) = z1(x), x ∈ Ω. (3.4)

Next let us consider an inverse problem of determining a wave sourse term. More precisely, for
any fixed {

λ ∈ C1[0, T ] and λ(0) �= 0;
a ∈ L∞(Ω),

(3.5)

we consider the following equation:



✷y(t, x) = a(x)y + λ(t)f(x), (t, x) ∈ Q,

y(t, x) = 0, (t, x) ∈ Σ,
y(0, x) = yt(0, x) = 0, x ∈ Ω,

(3.6)

where f ∈ L2(Ω) is unknown. The sourse term λ(t)f(x) is assumed to cause the vibration and we
hope to determine f = f(x) from the interior observation y|(0,T )×G. Similar inverse problems are
discussed in Puel and Yamamoto [13], Yamamoto [14], [15], [16] where boundary observations are
used. By Theorem 2.3 and similar to [14], one gets easily the following stability result for the above
inverse source problem.
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Theorem 3.3 Let (H) hold and T > max{Rj
1 | 1 ≤ j ≤ J}. Let λ and a satisfy (3.5). Then there

exists a constant C = C(T,Ω, G, a, λ) > 0 such that

C−1|f |2L2(Ω) ≤
∫ T

0

∫
G
y2

ttdxdt ≤ C|f |2L2(Ω), ∀ f ∈ L2(Ω), (3.7)

where y( = y(f)) ∈ C([0, T ];H2(Ω)∩H1
0 (Ω))∩C1([0, T ];H1

0 (Ω))∩C2([0, T ];L2(Ω)) is the solution
of system (3.6).

Remark 3.1 The condition λ(0) �= 0 in (3.5) can be replaced by dkλ
dtk

(0) �= 0 with some k ∈ lN; but
we do not treat this case in this paper (see Yamamoto [15] in the case of boundary observations).

4 Some Preliminaries

In order to prove Theorems 2.1–2.3, we need some preliminaries.
First of all, the following lemma is a special case of LEMMA 1 on pp. 124 in [8].

Lemma 4.1 Let λ > 0, α ∈ (0, 1), and



ϕ = ϕ(t, s, x) = |x− x0|2 − α(t− T/2)2 − α(s− T/2)2,
η = λ

2ϕ, θ = eη ,

Ψ = (n− 1 + α)λ.
(4.1)

Let v = v(t, s, x) ∈ C2(lR× lR× lRn). Then

θ2(vtt + vss −∆v)2

≥ 2(1 − α)λθ2(v2
t + v2

s +
∑

i v
2
xi
) + θ2Bv2

+
{
2θ2

[
ηt(v2

t + v2
s − ∑

j v
2
xj
)− 2vt(ηtvt + ηsvs − ∑

j ηxjvxj)

+(Ψ− 2A)vtv + (At − 2ηtA)v2
]}

t

+
{
2θ2

[
ηs(v2

t + v2
s − ∑

j v
2
xj
)− 2vs(ηtvt + ηsvs − ∑

j ηxjvxj)

+(Ψ− 2A)vsv + (As − 2ηsA)v2
]}

s

−∑
i

{
2θ2

[
ηxi(v

2
t + v2

s − ∑
j v

2
xj
)− 2vxi(ηtvt + ηsvs − ∑

j ηxjvxj)

+(Ψ− 2A)vxiv + (Axi − 2ηxiA)v
2
]}

xi

,

(4.2)

where
A = λ2

[
α2(t− T/2)2 + α2(s− T/2)2 − |x− x0|2

]
(4.3)

and
B = 4(1 + α)λ3

[
|x− x0|2 − α2(t− T/2)2 − α2(s− T/2)2

]
−

[
8α2 + 4n+ (n+ α− 1)2

]
λ2.

(4.4)

Furthermore, we need the following simple result (see for example [17]).
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Lemma 4.2 Let 0 ≤ s1 < s2 < t2 < t1 ≤ T .
(1) If a1(·) ∈ Ln+1(Q), a2(·) ∈ L∞(Q) and a3(·) ∈ L∞(Q; lRn), then

∫ t2

s2

|y(t, ·)|2H1
0 (Ω)dt ≤ C

∫ t1

s1

[
|y(t, ·)|2L2(Ω) + |yt(t, ·)|2L2(Ω)

]
dt (4.5)

for some constant C = C(|a1|Ln+1(Q), |(a2, a3)|L∞(Q;lRn+1), T, s1, s2, t1, t2), where y(·) is the weak
solution of system (1.1).

(2) If a(·) ∈ L∞(Q), then
∫ t2

s2

|wt(t, ·)|2H−1(Ω)dt ≤ C

∫ t1

s1

|w(t, ·)|2L2(Ω)dt (4.6)

for some constant C = C(|a|L∞(Q), T, s1, s2, t1, t2), where w(·) is the weak solution of system (1.2).

Finnally, denote

E(t) �
=

1
2

[
|yt(t, ·)|2L2(Ω) + |y(t, ·)|2H1

0 (Ω)

]
, E(t)

�
=

1
2

[
|wt(t, ·)|2H−1(Ω) + |w(t, ·)|2L2(Ω)

]
(4.7)

where y(·) and w(·) are the weak solution of systems (1.1) and (1.2), respectively. The usual energy
estimate yields that

Lemma 4.3 It holds

E(t) ≤ CE(s), E(t) ≤ CE(s), ∀ t, s ∈ [0, T ] (4.8)

for some constant C > 0 depending on ai (i = 1, 2, 3) and a, respectively.

5 Proof of Theorem 2.1

By the density argument, it suffices to prove the theorem for y ∈ C2(Q). We take µj ∈ C∞
0 (lRn)

such that 0 ≤ µj ≤ 1, {
µj = 1 on Ωj \ P0,

µj = 0 in P1.
(5.1)

Here (recall (2.4) for S)

P0
�= Oδ0(S) ⊃ P1

�= Oδ1(S) (5.2)

where 0 < δ1 < δ0 < δ. Then ( recall assumption (H) for G)

G ⊃ P0 ∩Ω ⊃ P1 ∩ Ω. (5.3)

For any fixed ε > 0, we choose χ ∈ C∞
0 (lR; [0, 1]) such that

χ(t) =

{
0, 0 ≤ t ≤ ε

2 , T − ε
2 ≤ t ≤ T,

1, ε ≤ t ≤ T − ε.
(5.4)

Set
y1

j = χµjy, y0
j = (1− χ)µjy, (5.5)
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where y is the weak solution of (1.1). Noting that Γj0 ⊂ P1 (recall (2.1) for Γj0), we see that

∂y1
j

∂νj
= 0 on (0, T )× Γj0. (5.6)

For any fixed c > 0, we set

Qj(c) = {(t, x) ∈ (0, T ) × Ωj;ϕj(t, x) ≥ c}, (5.7)

where
ϕj(t, x)

�= |x− xj
0|2 − β(t− T/2)2 (5.8)

with 0 < β < 1. By our assumption on T , we may choose an β ∈ (0, 1) such that

ϕj(0, x) = ϕj(T, x) < 0, 1 ≤ j ≤ J, x ∈ Ωj \ Oδ(S). (5.9)

Now, let us use inequality (4.2) in Lemma 4.1 with ϕ = ϕ(t, s, x) replaced by ϕj = ϕj(t, x) and
v replaced by y1

j = y1
j (t, x). Note that in this case both ϕ and v do not depend on s. Integrating

(4.2) on Qj(c), using integration by parts, and by (5.1), (5.4), (5.5), (5.6) and (5.9), we get

λ

∫
Qj(c)

θ2[(y1
j )

2
t +

∑
i

(y1
j )

2
xi
]dxdt+ λ3

∫
Qj(c)

θ2(y1
j )

2dxdt ≤ C

∫
Qj(c)

(θ✷y1
j )

2dxdt (5.10)

for large λ > 0, where θ = eλϕj/2.
By the first equation of (1.1), we see that y1

j satisfies

✷y1
j = ã1(t, x)y + ã2(t, x)yt + 〈 ã3(t, x),∇y 〉, (5.11)

where

ã1 = µjχa1 + µjχtt − χ∆µj, ã2 = µjχa2 + 2µjχt, ã3 = µjχa3 − 2χ∇µj. (5.12)

By our assumption on ai (i = 1, 2, 3), it is easy to see that

ã1 ∈ Ln+1(Q), ã2 ∈ L∞(Q), ã3 ∈ L∞(Q; lRn). (5.13)

Now, by (5.11) and (5.13), using Hölder inequality and Sobolev embedding theorem, one gets∫
Qj(c)

(θ✷y1
j )

2dxdt ≤ C
[ ∫

Qj(c)
θ2(y2

t +
∑

i

y2
xi
)dxdt+ λ2

∫
Qj(c)

θ2y2dxdt
]
. (5.14)

Adding the both sides of (5.10) by

λ

∫
Qj(c)

θ2[(y0
j )

2
t +

∑
i

(y0
j )

2
xi
]dxdt+ λ3

∫
Qj(c)

θ2(y0
j )

2dxdt,

noting µjy = y0
j + y1

j and using (5.14), we obtain

λ
∫
Qj(c)

θ2[(µjy)2t +
∑

i(µ
jy)2xi

]dxdt+ λ3
∫
Qj(c)

θ2(µjy)2dxdt

≤ C
[ ∫

Qj(c)
θ2(y2

t +
∑

i y
2
xi
)dxdt+ λ2

∫
Qj(c)

θ2y2dxdt

+λ
∫
Qj(c)

θ2[(y0
j )

2
t +

∑
i(y

0
j )

2
xi
]dxdt+ λ3

∫
Qj(c)

θ2(y0
j )

2dxdt
]
.

(5.15)
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By (5.1) and (5.3), from (5.15), we get

λ
∫
Qj(c)

θ2(y2
t +

∑
i y

2
xi
)dxdt+ λ3

∫
Qj(c)

θ2y2dxdt

≤ C
[ ∫

Qj(c)
θ2(y2

t +
∑

i y
2
xi
)dxdt+ λ2

∫
Qj(c)

θ2y2dxdt

+λ
∫ T
0

∫
G θ2(y2

t +
∑

i y
2
xi
)dxdt+ λ3

∫ T
0

∫
G θ2y2dxdt

+λ
∫
Qj(c)

θ2[(y0
j )

2
t +

∑
i(y

0
j )

2
xi
]dxdt+ λ3

∫
Qj(c)

θ2(y0
j )

2dxdt
]
.

(5.16)

Taking λ > 0 large, we can absorb the first term at the right side into the left side to obtain∫
Qj(c)

θ2(y2
t +

∑
i y

2
xi
)dxdt

≤ C
[ ∫ T

0

∫
G θ2(y2

t +
∑

i y
2
xi
)dxdt+ λ2

∫ T
0

∫
G θ2y2dxdt

+
∫
Qj(c)

θ2[(y0
j )

2
t +

∑
i(y

0
j )

2
xi
]dxdt+ λ2

∫
Qj(c)

θ2(y0
j )

2dxdt
]
.

(5.17)

for large λ > 0. By (5.4) we have y0
j (t, x) = 0 for (t, x) ∈ (ε, T − ε)× Ω, and hence (5.17) gives

∫
Qj(c)

θ2(y2
t +

∑
i y

2
xi
)dxdt

≤ C
[ ∫ T

0

∫
G θ2(y2

t +
∑

i y
2
xi
)dxdt+ λ2

∫ T
0

∫
G θ2y2dxdt

+
∫ ε
0

∫
Ωj θ2[(y0

j )
2
t +

∑
i(y

0
j )

2
xi
]dxdt+ λ2

∫ ε
0

∫
Ωj θ2(y0

j )
2dxdt

+
∫ T
T−ε

∫
Ωj θ2[(y0

j )
2
t +

∑
i(y

0
j )

2
xi
]dxdt+ λ2

∫ T
T−ε

∫
Ωj θ2(y0

j )
2dxdt

]
.

(5.18)

For simplicity, we assume that xj
0 ∈ lRn \ Ωj (j = 1, 2, · · · , J). For the case xj

0 ∈ Ωj for some
j ∈ {1, 2, · · · , n}, we can modify an argument in [12] (see case 2 in the proof of Theorem 5.1 in [12])
and adjust the argument to our case; hence, we do not give the details. Now, by xj

0 �∈ Ωj, we have

ϕj(x, T/2) > 0, x ∈ Ωj, 1 ≤ j ≤ J.

Hence by (5.9) we can choose small ε > 0 such that

ϕj < −ε on
(
(0, ε) ∪ (T − ε, T )

)
× Ωj \ Oδ(S) (5.19)

and
ϕj > ε on (−ε+ T/2, ε + T/2) × Ωj \ Oδ(S) (5.20)

for 1 ≤ j ≤ J .
We set c = ε. Then

(−ε+ T/2, ε + T/2)× Ωj \ Oδ(S) ⊂ Qj(ε) \ Oδ(S).

Therefore ∫
Qj(c)

θ2(y2
t +

∑
i

y2
xi
)dxdt ≥

∫ ε+T/2

−ε+T/2

∫
Ωj\Oδ(S)

θ2(y2
t +

∑
i

y2
xi
)dxdt (5.21)

Hence, in terms of (5.19)–(5.21), the inequality (5.18) yields

eλε
∫ ε+T/2
−ε+T/2

∫
Ωj\Oδ(S)(y

2
t +

∑
i y

2
xi
)dxdt

≤ C
[ ∫ T

0

∫
G θ2(y2

t +
∑

i y
2
xi
)dxdt+ λ2

∫ T
0

∫
G θ2y2dxdt

+e−λε
( ∫ ε

0

∫
Ω(y

2
t +

∑
i y

2
xi
)dxdt+ λ2

∫ ε
0

∫
Ω y

2dxdt

+
∫ T
T−ε

∫
Ω(y

2
t +

∑
i y

2
xi
)dxdt+ λ2

∫ T
T−ε

∫
Ω y

2dxdt
)]
.

(5.22)
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Summing up over j = 1, ..., J and noting that ∪J
j=1Ω

j ∪G ⊃ Ω, we have

eλε
∫ ε+T/2
−ε+T/2

∫
Ω(y

2
t +

∑
i y

2
xi
)dxdt

≤ C
[ ∑J

j=1

( ∫ T
0

∫
G θ2(y2

t +
∑

i y
2
xi
)dxdt+ λ2

∫ T
0

∫
G θ2y2dxdt

)
+e−λε

( ∫ ε
0

∫
Ω(y

2
t +

∑
i y

2
xi
)dxdt+ λ2

∫ ε
0

∫
Ω y

2dxdt

+
∫ T
T−ε

∫
Ω(y

2
t +

∑
i y

2
xi
)dxdt+ λ2

∫ T
T−ε

∫
Ω y

2dxdt
)]
.

(5.23)

By Lemma 4.3 and (5.23), we obtain

eλεE(0) ≤ C
[ ∑J

j=1

( ∫ T
0

∫
G θ2(y2

t +
∑

i y
2
xi
)dxdt+ λ2

∫ T
0

∫
G θ2y2dxdt

)
+(1 + λ2)e−λεE(0)

]
.

(5.24)

Taking λ > 0 large, we conclude from (5.24) that

E(0) ≤ C

∫ T

0

∫
G
(y2 + y2

t + |∇y|2)dxdt. (5.25)

We note that, from the above argument, it is easy to see that for any sufficiently small ε̃, (5.25)
can be sharpened as

E(0) ≤ C

∫ T−ε̃

ε̃

∫
G̃
(y2 + y2

t + |∇y|2)dxdt, (5.26)

where G̃
�
= Ω ∩ Oδ̃(S) with any fixed δ̃ ∈ (δ0, δ).

Now, we choose a function h = h(x) ∈ C∞(lRn; [0, 1]) such that
{

h(x) ≡ 1, x ∈ G̃,

h(x) ≡ 0, x ∈ Ω \G. (5.27)

Put
ζ = ζ(t, x)

�
= t(T − t). (5.28)

By (1.1) and (5.27)–(5.28), we get

∫ T
0

∫
G hζy[a1y + a2yt + 〈 a3,∇y 〉] =

∫ T
0

∫
G hζy✷ydxdt

= − ∫ T
0

∫
G yt(hζty + hζyt))dxdt

+
∫ T
0

∫
G hζ|∇y|2dxdt+ ∫ T

0

∫
G ζ(∇y) · (∇h)ydxdt

≥ − ∫ T
0

∫
G yt(hζty + hζyt)dxdt

+1
2

∫ T
0

∫
G hζ|∇y|2dxdt− C

∫ T
0

∫
G y2dxdt.

(5.29)

However ∫ T
0

∫
G hζy[a1y + a2yt + 〈 a3,∇y 〉]

≤ 1
4

∫ T
0

∫
G hζ|∇y|2dxdt+ C

∫ T
0

∫
G(y

2 + y2
t )dxdt.

(5.30)

Thus, by (5.27)–(5.30), we get

∫ T−ε̃

ε̃

∫
G̃
|∇y|2dxdt ≤ C

∫ T

0

∫
G
(y2 + y2

t )dxdt. (5.31)

Thus, combining (5.26) and (5.31), one obtains the desired inequality immediately.
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6 Proof of Theorem 2.3

For simplicity, we assume that xj
0 ∈ lRn \ Ωj (j = 1, 2, · · · , J). For the case xj

0 ∈ Ωj for some
j ∈ {1, 2, · · · , n}, we can modify an argument in [12] (see case 2 in the proof of Theorem 5.1 in [12])
and adjust the argument to our case; hence, we do not give the details. We divide the proof into
several steps.

Step 1. Let us introduce some notations and some transformations. For simplicity, we assume
that J = 2. Recall assumption (H) for δ and (2.4) for S and Rj

1. By T > 2max1≤j≤J R
j
1, one can

find a δ̃ ∈ (0, δ) (close to δ) such that

T > 2R̃j
1

�= max
1≤j≤J

max
x∈Ωj\Oδ̃(S)

|x− xj
0|. (6.1)

Denote 


Ω̃j �
= Ωj \ Oδ̃(S),

Rj
0

�
= minx∈Ω̃j |x− xj

0|, R0 = min1≤j≤J R
j
0,

Q �= (0, T ) × (0, T )× Ω, S �= (0, T ) × (0, T )× ∂Ω,

Qj �= (0, T )× (0, T ) × Ω̃j, Sj �= (0, T )× (0, T ) × ∂Ω̃j,

Ti
�= T/2 − εiT, T ′

i
�= T/2 + εiT,

Qj
i
�= (Ti, T

′
i )× (Ti, T

′
i )× Ω̃j, Sj

i
�= (Ti, T

′
i )× (Ti, T

′
i )× ∂Ω̃j .

(6.2)

where j ∈ {1, 2}, i ∈ {1, 2, 3}, and 0 < ε1 < ε2 < ε3 < 1/2 will be given later.
Since xj

0 ∈ lRn \Ωj , we see that R0 > 0. By (6.1), we can choose a sufficiently small c ∈ (0, R0)
and an α ∈ (0, 1) such that

(R̃j
1)

2 < c2 + α(T/2)2. (6.3)

For any b > 0, set{
ϕj = ϕj(t, s, x) = |x− xj

0|2 − α(t− T/2)2 − α(s− T/2)2,
Qj(b) = {(t, s, x) ∈ (−∞,∞)× (−∞,∞)× Ω̃j |ϕj(t, s, x) > b2}. (6.4)

Now take ε2 ∈ (0, 1/2) sufficiently close to 1/2 such that (recall c ∈ (0, R0))

Qj(c) ⊂ Qj
2. (6.5)

Noting that {T/2} × {T/2} × Ω̃j ⊂ Qj(c), thus for any small ε > 0, there is an ε1 ∈ (0, ε2) such
that (recall (6.2))

Qj
1 ⊂ Qj(c+ 2ε) ⊂ Qj(c+ ε) ⊂ Qj(c). (6.6)

Now, take 0 < δ1 < δ0 < δ̃ and ξ ∈ C∞
0 (lRn; [0, 1]) such that{

ξ ≡ 1 on Ω̃1 \ Oδ0(S);
ξ ≡ 0 on Ω̃1 ∩Oδ1(S).

(6.7)

Denote
G1

�
= Ω̃1 ∩Oδ1(S). (6.8)

Then it is easy to see that
G1 ⊂ G. (6.9)
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Set
p = p(t, x) = ξ(x)w(t, x), (t, x) ∈ Q. (6.10)

where w is the weak solution of (1.2). Then it is easy to see that (j = 1, 2)


✷p = ap− (∆ξ)w − (∇ξ) · (∇w), in (0, T ) × Ω̃1

p = 0, on (0, T ) × ∂Ω̃1

p ≡ 0, in (0, T ) × (Ω̃1 ∩ Oδ1(S))
(6.11)

We need the following simple transformation. Put
 z(t, s, x)

�
=

∫ t
s p(τ, x)dτ, ∀ (t, s, x) ∈ Q,

φ(t, s, x)
�
=

∫ t
s w(τ, x)dτ, ∀ (t, s, x) ∈ Q.

(6.12)

Then z(·) satisfies


ztt + zss −∆z =
∫ t
s a(τ, x)p(τ, x)dτ − (∆ξ(x))φ− (∇ξ(x)) · (∇φ) in Q1

z = 0 on S1

z ≡ 0 in (0, T ) × (0, T )× (Ω̃1 ∩ Oδ1(S)).
(6.13)

Finally, choose χ(·) ∈ C∞(lRn+2; [0, 1]) such that

χ(t, s, x) =

{
1, for (t, s, x) ∈ Q1(c+ 2ε),
0, for (t, s, x) ∈ Q1

2 \ Q1(c+ ε).
(6.14)

Put
v(t, s, x) = χ(t, s, x)z(t, s, x), (t, s, x) ∈ Q1, (6.15)

where χ(·) is defined in (6.14), z(·) is defined in (6.12). By (6.13)–(6.14) and (6.5), we see that v(·)
satisfies 


vtt + vss −∆v = F (t, s, x) in Q1

2,

v = 0 on S1
2 ,

v ≡ 0 in (0, T )× (0, T ) × (Ω̃1 ∩ Oδ1(S))
(6.16)

where
F (t, s, x) = χ(t, s, x)

( ∫ t
s a(τ, x)p(τ, x)dτ

−(∆ξ(x))φ(t, s, x) − (∇ξ(x)) · (∇φ(t, s, x))
)

+
[
χtt(t, s, x) + χss(t, s, x)−∆χ(t, s, x)

]
z

+2χt(t, s, x)zt + 2χs(t, s, x)zs − 2∇χ(t, s, x) · ∇z.

(6.17)

Step 2. Let us use inequality (4.2) in Lemma 4.1 with ϕ replaced by ϕ1 (recall (6.4)) and v

given by (6.15). Integrating (4.2) on Q1
2 (recall (6.2) for Q1

2), by (6.5), (6.14) and (6.16), and using
integration by parts, we get

2(1 − α)λ
∫
Q1(c) θ

2(v2
t + v2

s +
∑

i v
2
xi
)dxdtds+

∫
Q1(c) θ

2Bv2dxdtds

≤ ∫
Q1

2
θ2|F (t, s, x)|2dxdtds, (6.18)

where θ and B are given in (4.1) and (4.4) (with ϕ replaced by ϕ1) respectively, F (t, s, x) is defined
by (6.17). However, by (6.7) and (6.14) we see that{

ξxi = ξxixi = 0 in Ω̃1 \G1, i = 1, 2, · · · , n;
χt = χs = χxi = χtt = χss = χxixi = 0 in Q1(c+ 2ε), i = 1, 2, · · · , n. (6.19)
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Thus, by (6.17) and (6.19), noting that p(τ, x) = zt(τ, s, x) = −zs(t, τ, x) (recalling (6.12)), we get∫
Q1

2
θ2|F (t, s, x)|2dxdtds

≤ C
∫
Q1

2
θ2

∣∣∣ ∫ t
s a(τ, x)zt(τ, s, x)dτ

∣∣∣2dxdtds+ CeCλ
∫ T ′

2
T2

∫ T ′
2

T2

∫
G1

(φ2 + |∇φ|2)dxdtds
+Ce(c+2ε)2λ

∫
Q1

2
(z2

t + z2
s +

∑
i z

2
xi
)dxdtds

= C
∫
Q1

2
θ2

∣∣∣ ∫ t
T/2 a(τ)zt(τ)dτ +

∫ s
T/2 a(τ)zs(τ)dτ

∣∣∣2dxdtds
+CeCλ

∫ T ′
2

T2

∫ T ′
2

T2

∫
G1

(φ2 + |∇φ|2)dxdtds
+Ce(c+2ε)2λ

∫
Q1

2
(z2

t + z2
s +

∑
i z

2
xi
)dxdtds

≤ C
{ ∫

Q1
2
θ2

[∣∣∣ ∫ t
T/2 z

2
t (τ)dτ

∣∣∣ + ∣∣∣ ∫ s
T/2 z

2
s (τ)dτ

∣∣∣]dxdtds
+eCλ

∫ T ′
2

T2

∫ T ′
2

T2

∫
G1

(φ2 + |∇φ|2)dxdtds
+e(c+2ε)2λ

∫
Q1

2
(z2

t + z2
s +

∑
i z

2
xi
)dxdtds

}
.

(6.20)

However, similar to [17], one get∫
Q1

2

θ2
[∣∣∣ ∫ t

T/2
z2
t (τ)dτ

∣∣∣ + ∣∣∣ ∫ s

T/2
z2
s(τ)dτ

∣∣∣]dxdtds ≤ C

∫
Q1

2

θ2(z2
t + z2

s )dxdtds. (6.21)

Now, combining (6.20)–(6.21), we get (recall (6.3 for T2 and T ′
2)∫

Q1
2
θ2|F z|2dxdtds

≤ C
[ ∫

Q1
2
θ2(z2

t + z2
s )dxdtds+ eCλ

∫ T ′
2

T2

∫ T ′
2

T2

∫
G1

(φ2 + |∇φ|2)dxdtds
+e(c+2ε)2λ

∫
Q1

2
(z2

t + z2
s +

∑
i z

2
xi
)dxdtds

= C
[ ∫

Q1(c+2ε) +
∫
Q1

2\Q1(c+2ε)

)
θ2(z2

t + z2
s )dxdtds

+eCλ
∫ T ′

2
T2

∫ T ′
2

T2

∫
G1

(φ2 + |∇φ|2)dxdtds
+e(c+2ε)2λ

∫
Q1

2
(z2

t + z2
s +

∑
i z

2
xi
)dxdtds

]
≤ C

[ ∫
Q1(c+2ε) θ

2(z2
t + z2

s)dxdtds+ eCλ
∫ T ′

2
T2

∫ T ′
2

T2

∫
G1

(φ2 + |∇φ|2)dxdtds
+e(c+2ε)2λ

∫
Q1

2
(z2

t + z2
s +

∑
i z

2
xi
)dxdtds

]
.

(6.22)

Note that

B = 4(1 + α)λ3
[
|x− x1

0|2 − α2(t− T/2)2 − α2(s− T/2)2
]

−
[
8α2 + 4n+ (n+ α− 1)2

]
λ2

> 4(1 + α)c2λ3 −
[
8α2 + 4n+ (n+ α− 1)2

]
λ2, ∀ (t, s, x) ∈ Q1(c).

(6.23)

Thus, by (6.14) and (6.23), and taking λ > 0 large enough, we can find a constant c0 > 0 such that

2(1− α)λ
∫
Q1(c) θ

2(v2
t + v2

s +
∑

i v
2
xi
)dxdtds+

∫
Q1(c) θ

2Bv2dxdtds

≥ 2(1− α)λ
∫
Q1(c) θ

2(v2
t + v2

s +
∑

i v
2
xi
)dxdtds+ c0λ

3
∫
Q1(c) θ

2v2dxdtds

≥ 2(1− α)λ
∫
Q1(c+2ε) θ

2(z2
t + z2

s +
∑

i z
2
xi
)dxdtds.

(6.24)

Now, combining (6.18), (6.22) and (6.24), we arrive at

λ
∫
Q1(c+2ε) θ

2(z2
t + z2

s +
∑

i z
2
xi
)dxdtds

≤ C
[
eCλ

∫ T ′
2

T2

∫ T ′
2

T2

∫
G1

(φ2 + |∇φ|2)dxdtds+ ∫
Q1(c+2ε) θ

2(z2
t + z2

s )dxdtds

+e(c+2ε)2λ
∫
Q1

2
(z2

t + z2
s +

∑
i z

2
xi
)dxdtds

]
.

(6.25)
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Taking λ large enough, we get

λ
∫
Q1(c+2ε) θ

2(z2
t + z2

s +
∑

i z
2
xi
)dxdtds

≤ C
[
eCλ

∫ T ′
2

T2

∫ T ′
2

T2

∫
G1

(φ2 + |∇φ|2)dxdtds+ e(c+2ε)2λ
∫
Q1

2
(z2

t + z2
s +

∑
i z

2
xi
)dxdtds

]
.

(6.26)

However, by (4.1), (6.4) and (6.6), we have

∫
Q1(c+2ε) θ

2(z2
t + z2

s +
∑

i z
2
xi
)dxdtds ≥ e(c+2ε)2λ

∫
Q1(c+2ε)(z

2
t + z2

s +
∑

i z
2
xi
)dxdtds

≥ e(c+2ε)2λ
∫
Q1

1
(z2

t + z2
s +

∑
i z

2
xi
)dxdtds.

(6.27)

Thus, by (6.26)–(6.27), we arrive at

λ
∫
Q1

1
(z2

t + z2
s +

∑
i z

2
xi
)dxdtds

≤ C
[
eCλ

∫ T ′
2

T2

∫ T ′
2

T2

∫
G1

(φ2 + |∇φ|2)dxdtds+ ∫
Q1

2
(z2

t + z2
s +

∑
i z

2
xi
)dxdtds

]
.

(6.28)

Step 3. We now estimate “
∫
Q1

2

∑
i z

2
xi
dxdtds”. Let us fix a ε3 satisfying ε2 < ε3 < 1/2. Denote

η = η(t, s) �= (t− T3)(T ′
3 − t)(s− T3)(T ′

3 − s). (6.29)

By (6.13), we get

∫
Q1

3
ηz

[ ∫ t
s a(τ, x)p(τ, x)dτ − (∆ξ(x))φ − (∇ξ(x)) · (∇φ)

]
dxdtds

=
∫
Q1

3
ηz(ztt + zss −∆z)dxdtds

= − ∫
Q1

3

[
zt(ηtz + ηzt) + zs(ηsz + ηzs)

]
dxdtds

+
∫
Q1

3
η|∇z|2dxdtds+ ∫

Q1
3
(∇z) · (∇η)zdxdtds

≥ − ∫
Q1

3

[
zt(ηtz + ηzt) + zs(ηsz + ηzs)

]
dxdtds

+1
2

∫
Q1

3
η|∇z|2dxdtds− C

∫
Q1

3
z2dxdtds

≥ − ∫
Q1

3

[
zt(ηtz + ηzt) + zs(ηsz + ηzs)

]
dxdtds

+C
2

∫
Q1

2

∑
i z

2
xi
dxdtds− C

∫
Q1

3
z2dxdtds.

(6.30)

Thus by (6.30) and (6.19) and noting that p(τ) = zt(τ), we get

∫
Q1

2

∑
i z

2
xi
dxdtds ≤ C

[ ∫
Q1

3
(z2

t + z2
s + z2)dxdtds

+
∫ T ′

3
T3

∫ T ′
3

T3

∫
G1

(φ2 + |∇φ|2)dxdtds
]
.

(6.31)

Therefore by (6.28) and (6.31), we end up with

λ
∫
Q1

1
(z2

t + z2
s )dxdtds

≤ C
[
eCλ

∫ T ′
3

T3

∫ T ′
3

T3

∫
G1

(φ2 + |∇φ|2)dxdtds+ ∫
Q1

3
(z2

t + z2
s + z2)dxdtds

]
.

(6.32)

Step 4. We now estimate “
∫ T ′

3
T3

∫ T ′
3

T3

∫
G1

|∇φ|2dxdtds”. For this purpose, we choose a function
h = h(x) ∈ C∞(lRn; [0, 1]) such that

{
h(x) ≡ 1, x ∈ G1,

h(x) ≡ 0, x ∈ Ω \G. (6.33)
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Denote
ζ = ζ(t, x)

�
= t(T − t)s(T − s). (6.34)

Note that by (6.12), we see that φ satisfies{
φtt + φss −∆φ =

∫ t
s a(τ, x)φt(τ, x)dτ, (t, s, x) ∈ Q,

φ = 0 on S. (6.35)

Thus, by (6.33)–(6.35), we get
∫ T
0

∫ T
0

∫
G hζφ

∫ t
s a(τ)φt(τ)dτdxdtds

=
∫ T
0

∫ T
0

∫
G hζφ(φtt + φss −∆φ)dxdtds

= − ∫ T
0

∫ T
0

∫
G

[
φt(hζtφ+ hζφt) + φs(hζsφ+ hζφs)

]
dxdtds

+
∫ T
0

∫ T
0

∫
G hζ|∇φ|2dxdtds+ ∫ T

0

∫ T
0

∫
G ζ(∇φ) · (∇h)φdxdtds

≥ − ∫ T
0

∫ T
0

∫
G

[
φt(hζtφ+ hζφt) + φs(hζsφ+ hζφs)

]
dxdtds

+1
2

∫ T
0

∫ T
0

∫
G hζ|∇φ|2dxdtds− C

∫ T
0

∫ T
0

∫
G φ2dxdtds

≥ − ∫ T
0

∫ T
0

∫
G

[
φt(hζtφ+ hζφt) + φs(hζsφ+ hζφs)

]
dxdtds

+C
2

∫ T ′
3

T3

∫ T ′
3

T3

∫
G1

|∇φ|2dxdtds− C
∫ T
0

∫ T
0

∫
G φ2dxdtds.

(6.36)

Thus ∫ T ′
3

T3

∫ T ′
3

T3

∫
G1

|∇φ|2dxdtds ≤ C

∫ T

0

∫ T

0

∫
G
(φ2 + φ2

t + φ2
s)dxdtds. (6.37)

Combining (6.32) and (6.37), we conclude that

λ
∫
Q1

1
(z2

t + z2
s)dxdtds

≤ C
[
eCλ

∫ T
0

∫ T
0

∫
G(φ

2 + φ2
t + φ2

s)dxdtds+
∫
Q1

3
(z2

t + z2
s + z2)dxdtds

]
.

(6.38)

Step 5. Let us return to the function “w”. By (6.12), we get

λ

∫
Q1

1

[p2(t, x) + p2(s, x)]dxdtds ≤ C
[
eCλ

∫ T

0

∫
G
w2dxdt+

∫
Q
p2dxdt

]
. (6.39)

Howevr, by (6.7)–(6.10) and (6.39), we have

λ

∫ T ′
1

T1

∫
Ω1\G

w2dxdt ≤ C
[
eCλ

∫ T

0

∫
G
w2dxdt+

∫
Q
w2dxdt

]
. (6.40)

Similarly, we can prove that

λ

∫ T ′
1

T1

∫
Ω2\G

w2dxdt ≤ C
[
eCλ

∫ T

0

∫
G
w2dxdt+

∫
Q
w2dxdt

]
. (6.41)

By (6.40)–(6.41), we get

λ

∫ T ′
1

T1

∫
(Ω1∪Ω2)\G

w2dxdt ≤ C
[
eCλ

∫ T

0

∫
G
w2dxdt+

∫
Q
w2dxdt

]
. (6.42)

Now, adding both sides of (6.42) by λ
∫ T
0

∫
G w2dxdt, one end up with

λ

∫ T ′
1

T1

∫
Ω
w2dxdt ≤ C

[
eCλ

∫ T

0

∫
G
w2dxdt+

∫
Q
w2dxdt

]
. (6.43)
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On the other hand, choose s0 ∈ (T1, T/2) and s′0 ∈ (T/2, T ′
1). By (4.6) (in Lemma 4.2) and (6.43),

we obtain that

λ

∫ s′0

s0

[
|wt(t, ·)|2H−1(Ω) + |w(t, ·)|2L2(Ω)

]
dt ≤ C

[
eCλ

∫ T

0

∫
G
w2dxdt+

∫
Q
w2dxdt

]
. (6.44)

Thus

λ

∫ s′0

s0

E(t)dt ≤ C
[
eCλ

∫ T

0

∫
G
w2dxdt+

∫ T

0
E(t)dt

]
. (6.45)

where E(·) is defined by (4.7). Finally, by (4.8) (in Lemma 4.3), we see that

λE(0) ≤ C
[
eCλ

∫ T

0

∫
G
w2dxdt+E(0)

]
. (6.46)

Consequently, if we take
λ > 1 + C, (6.47)

where C is the constant appeared in (6.46), we get

λE(0) ≤ CeCλ
∫ T

0

∫
G
w2dxdt, ∀ λ > 1 + C. (6.48)

(6.48) is exactly the desired estimate. Thus the proof of Theorem 2.3 is completed.

7 Proof of Theorem 2.2

Denote
v

�
= wt (7.1)

Then, by equation (1.2) and noting that a(t, x) ≡ a(x) (i.e. a depending only on x), we get



✷v(t, x) = a(x)v, (t, x) ∈ Q

v(t, x) = 0, (t, x) ∈ Σ
v(0, x) = w1(x), vt(0, x) = ∆w0 + a(x)w0, x ∈ Ω

(7.2)

Thus, by Theorem 2.3 and (7.1)–(7.2), we get

|w1|2L2(Ω) + |∆w0 + aw0|2H−1(Ω) ≤ C
∫ T
0

∫
G w2

t dxdt,

∀ (w0, w1) ∈ L2(Ω)×H−1(Ω)
(7.3)

However, by our assumption on a, we see easily that

|∆w0 + aw0|2H−1(Ω)

= sup
{∫

Ω
(∆w0+aw0)fdx

|f |
H1

0
(Ω)

∣∣∣ 0 �= f ∈ H1
0 (Ω)

}
≥ −

∫
Ω

(∆w0+aw0)w0dx

|w0|H1
0
(Ω)

≥ |w0|H1
0 (Ω).

(7.4)

Now, combining (7.3)–(7.4), we obtain the desired result immediately. Thus the proof of Theorem
2.2 is completed.
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