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Abstract. In the linear theory of elasticity we consider a bounded, compressible, and

isotropic body whose mechanical behavior is described by the Lamé system with density
and Lamé coefficients depending on the space variables. Assuming null surface displace-

ment on the whole boundary, we first prove an estimate of the surface traction in terms

of the energy of the solution and the body force. Then, under suitable restrictions on the
density and the Lamé coefficients, we show that, in the absence of body forces, the elastic

energy can be controlled by the surface traction exerted on a suitable sub-boundary pro-
vided that the final observability time is sufficiently large. The latter condition is related

with the density, the Lamé coefficients, and the geometry of the body. These inequalities

are applied to an inverse source problem for the Lamé system.

§1. Introduction. Let us consider an elastic, compressible and isotropic body which
occupies a bounded domain Ω ⊂ R

n, n ≥ 2, with boundary ∂Ω of class C2, whose
outward unit normal is indicated by ν. This body has mass density ρ and, referring
to the linear elasticity theory (see, e.g., [6]), its elastic behavior is characterized by the
Lamé coefficients λ and µ. Here we assume that ρ, λ, and µ are smooth enough and
depend on the space variable x = (x1, . . . , xn) ∈ R

n. We now denote by u(x, t) =
(u1(x, t), . . . , un(x, t)) the displacement field with respect to a fixed unstrained state
at point x, at time t, and we introduce the linear strain tensor and the stress-strain
relationship. In order to do that, we first need some matrix notation, namely, if A is
an n × n matrix, its trace is indicated by TrA, while AT is the transposed matrix.
Moreover, for any pair of n×n matrices A and B, we indicate by A ·B the usual scalar
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matrix product and we set |A| = √
(A ·A). We use the same notation for vectors;

while AB and Ay, y ∈ R
n, will simply indicate the standard matrix and matrix-vector

products, respectively.
The linear strain tensor is defined by

Sym∇u =
1
2
(∇u+∇uT

)
where ∇u is the Jacobian matrix of u. Then, the stress tensor σ(u) is given by the
constitutive law

σ(u) = λ(Tr∇u)δ + 2µSym∇u

being δ the Kronecker tensor.
Suppose now that the body is subject to a body force F. Hence, the evolution of u

over a time interval (0, T ), T > 0, is governed by the so-called Lamé system

(1.1) ρu′′ = L(u) + F, in Ω× (0, T )

where prime stands for the time derivative and L is the second-order linear differential
operator given by

(1.2) L(u) = ∇ · σ(u) = (λ+ µ)∇(Tr∇u) + µ∆u+ (∇λ)Tr∇u+ 2(Sym∇u)∇µ.

Here ∇· is the spatial divergence operator.
Supposing that the body displacement field is null over the whole boundary, we are

led to associate with (1.1) the following initial and boundary conditions

u(x, 0) = u0(x), u′(x, 0) = u1(x), x ∈ Ω(1.3)

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T )(1.4)

where u0 and u1 are given data.
If ρ, λ, and µ are smooth and strictly positive, then standard assumptions on F and

on the initial data ensure that there is a unique solution u to (1.1) which satisfies (1.3)
and (1.4).

We now introduce the elastic energy E associated with the Lamé system (1.1), namely

(1.5) E(t) =
1
2

∫
Ω

{
2µ(x)|Sym∇u(x, t)|2 + λ(x)|Tr∇u(x, t)|2 + ρ(x)|u′(x, t)|2} dx.

Our main result is a pair of inequalities which relates the surface traction σ(u)ν to
E(0) and F (see [5]). More precisely, according to the terminology used in [12], the
first (direct) inequality controls the L2−norm of σ(u)ν on ∂Ω× (0, T ) by E(0) and the
L2−norm of the body force F. The second main result is an inverse inequality which
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allows us to estimate E(0) with the L2−norm of σ(u)ν on Γ× (0, T ), provided that T is
large enough, Γ is a subset of ∂Ω properly chosen, and ρ, λ, µ fulfill suitable restrictions.
These inequalities can be considered as a first step towards the solution to an open
problem in exact controllability formulated by J.-L. Lions (see [12, Ch. IV, Problème
ouvert 6, p. 321]) in the case of Dirichlet-type action. Indeed, taking advantage of such
inequalities one can implement the Hilbert Uniqueness Method (HUM) for the isotropic
Lamé system with nonconstant coefficients (see [12]). In the case of constant coefficients,
direct and inverse inequalities for the Lamé system have been proved in [12] (see also
[8] and, for nonsmooth domains, [13]), while for anisotropic cases we refer to [2, 14, 15].

The present results generalize the ones obtained in [4] where µ was assumed to be con-
stant (see [4, Lemma 2.3]). This generalization may appear trivial but, as we shall see, it
requires some work. The argument is always based on the so-called multiplier method
(see, e.g., [7, 9, 11, 12]) which has to be suitably adapted to the Lamé system with
variable coefficients (cf. also [3] for a related result obtained by different techniques).

In [4] (see also [16]) inverse and direct inequalities along with HUM techniques were
applied to the following inverse source problem for the Lamé system. Suppose that the
body force F : Ω× (0, T ) → R

n has the form

(1.6) F(x, t) := ϕ(t)f(x) (x, t) ∈ Ω× (0, T )

where ϕ : (0, T ) → R is a given and smooth function, while the spatial part f : Ω → R
n

is unknown. In this case our problem can be viewed as an approximated model for
elastic wave generated from a point dislocation source (see, e.g., [1, Ch. 4]). Then f
has to be identified from the knowledge of the surface traction g = σ(u)ν exerted on
a portion Γ of the boundary ∂Ω over the time interval (0, T ), provided that u solves
(1.1) and (1.3)-(1.4). As far as this problem is concerned, the main results obtained
in [4] can be summarized as follows. The linear mapping G : f �→ g has a continuous
inverse, f can be reconstructed by means of the eigenfunctions associated with the linear
operator −ρ−1L with homogeneous Dirichlet boundary conditions, and the range of the
adjoint operator G� can be partially characterized. We show that all these results can
be extended to the present case.

The plan of the paper goes as follows. In the next Section 2 we present our inequalities
and some related remarks. Then, Section 3 is devoted to the proofs of two energy-type
integral identities which play a basic role in proving the direct and inverse inequalities.
This will be done in Sections 4 and 5, respectively. The final Section 6 is concerned
with the application to the inverse source problem described above.

§2. Main results. Let us set

H = (L(Ω))n, V = (H1
0 (Ω))

n
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and recall that V ∗ ≡ (H−1(Ω))n, V ∗ being the dual space of V . Also, we set

W = V ∩ (H2(Ω))n.

Assume

(2.1) ρ, λ, µ ∈ C1(Ω; (0,+∞))

and let

(2.2) ρ0 = min
x∈Ω

ρ(x), ρ1 = max
x∈Ω

ρ(x), µ0 = min
x∈Ω

µ(x).

The following proposition is well-known and can be proved by the Fourier method or
the semigroup theory, as in the case of the wave equation (see, e.g., [12, Chap. I, 3.2]).

Proposition 2.1. Let (2.1) and

(2.3) u0 ∈ V, u1 ∈ H, F ∈ L1(0, T ;H)

hold. Then there is a unique u ∈ C0([0, T ];V ) ∩ C1([0, T ];H) which satisfies equation

(1.1) in V ∗, for almost all t in (0, T ) and initial conditions (1.3).

We now state the direct inequality which yields a so-called hidden regularity property
of the solution u. Indeed, we have

Theorem 2.2. Let (2.1) and (2.3) hold. Then there is a positive constant C =
C(Ω, T, ρ, λ, µ) such that

(2.4) ‖σ(u)ν‖L2(0,T ;(L2(∂Ω))n) ≤ C
(√

E(0) + ‖F‖L1(0,T ;H)

)
.

To introduce the inverse inequality, we choose a point x0 ∈ R
n and set (see [12,

Chap. I, Sec. 5] for more details)

m(x) = x− x0 ∀x ∈ R
n.

Then we consider the subset of ∂Ω:

Γ+(x0) = {x ∈ ∂Ω : m(x) · ν(x) > 0}

and we define
R0 = R0(x0) = ‖m‖(L∞(Ω))n .

The inverse inequality is given by
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Theorem 2.3. Let (2.1) and (2.3) hold with F ≡ 0. Suppose there is a positive

constant γ0 such that

(2.5) min
Ω

{
1 + ρ−1∇ρ ·m, 1− λ−1∇λ ·m, 1− µ−1∇µ ·m} ≥ γ0

and let

(2.6) T > T0 :=
2ρ1R0

γ0
√

ρ0µ0
.

Then there exists a positive constant C = C(Ω, T, x0, ρ, λ, µ) such that

(2.7)
√

E(0) ≤ C‖σ(u)ν‖L2(0,T ;(L2(Γ+(x0))n).

Remark 2.4. If ρ, λ, and µ are constants, we can take γ0 = 1 and condition (2.6) reduces
to

T > 2R0

√
ρ

µ

which says that T should be greater than twice the traveling time of the secondary wave
(compare with [12, Chap. IV, Théorème 1.1] where ρ = 1).

Remark 2.5. If µ is constant as supposed in [4], then estimates similar to (2.4) and (2.7)
hold, the only difference being that σ(u)ν is replaced by the normal derivative (∇u)ν.
This fact is related to the structure of the elastic energy which, in the present case, does
not allow to control the L2−norm of (∇u)ν directly (see (3.5) and Section 5 below).
However, one can prove that the L2−norm of (∇u)ν is equivalent to the L2−norm of
σ(u)ν whenever u satisfies (1.4) and µ as well as nλ+ 2µ are strictly positive in Ω (see
Lemma 4.3).

§3. Integral identities.
Here we prove two integral identities. The former is the usual energy identity, while
the latter is obtained via the multiplier method. However, we need to recall first the
following regularity result about problem (1.1) and (1.3)-(1.4).

Proposition 3.1. Let (2.1) and

(3.1) u0 ∈ W, u1 ∈ V

(3.2) F ∈ W 1,1(0, T ;H)

hold. Then there is a unique function u ∈ C0([0, T ];W ) ∩ C1([0, T ];V ) ∩ C2([0, T ];H)
which satisfies equation (1.1) almost everywhere in Ω × (0, T ) and initial conditions

(1.3).

The energy identity is given by
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Lemma 3.2. Let (2.1) and suppose u0, u1, F sufficiently smooth to ensure the exis-

tence of a function u ∈ C0([0, T ]; (H2(Ω)n))∩C1([0, T ]; (H1(Ω)n))∩C2([0, T ];H) which
satisfies (1.1) and (1.3). Then, for any t ∈ [0, T ],

(3.3) E(t) = E(0)+
∫ t

0

∫
∂Ω

(σ(u(x, t))ν(x))·u′(x, t) dSdt+
∫ t

0

∫
Ω

F(x, t) ·u′(x, t)dxdt.

Proof. Suppose that the initial data and F satisfy (3.1) and (3.2) so that, in particular,
u′ ∈ C0([0, T ];V ). Then, choosing u′ as test function, from (1.1) in V ∗ we deduce∫

Ω

ρu′′ · u′dx =
∫

Ω

L(u) · u′dx+
∫

Ω

F · u′dx

from which we deduce

d

dt
E(t) =

∫
∂Ω

(σ(u)ν) · u′dS +
∫

Ω

F · u′dx, t ≥ 0.

being dS the Lebesgue (n − 1)− dimensional surface measure. Thus, integrating with
respect to time from 0 to t yields (3.3). A density argument completes the proof. �

Here is our basic integral identity.

Lemma 3.3. Let (2.1) hold and suppose that u0, u1, F are sufficiently smooth to ensure

the existence of a function u ∈ C0([0, T ]; (H2(Ω)n))∩C1([0, T ]; (H1(Ω)n))∩C2([0, T ];H)
which satisfies (1.1) and (1.3). Then, for any given h ∈ C2(Ω;Rn), we have

[∫
Ω

ρu′ · (∇u)hdx

]T
0

+E(0)T

+
1
2

∫ T

0

∫
Ω

[ρ(Tr∇h− 1)|u′|2

+λ(Tr∇u){Tr ((∇u)(∇h))− (Tr∇u)(Tr∇h)}
+2µ{Sym∇u · Sym ((∇u)(∇h))− |Sym∇u|2Tr∇h}]dxdt

+
1
2

∫ T

0

∫
Ω

{(∇ρ · h)|u′|2 − (∇λ · h)|Tr∇u|2 − 2(∇µ · h)|Sym∇u|2}dxdt

+
1
2

∫ T

0

∫
Ω

[λ(Tr∇u){Tr ((∇u)(∇h))− Tr∇u}

+2µ{(Sym∇u) · Sym ((∇u)(∇h))− |Sym∇u|2}]dxdt

+
∫ T

0

(∫ t

0

∫
Ω

F(x, η) · u′(x, η)dxdη
)

dt−
∫ T

0

∫
Ω

F · (∇u)hdxdt

=−
∫ T

0

(∫ t

0

∫
∂Ω

σ(u)(x, η)ν(x) · u′(x, η)dSdη

)
dt
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+
1
2

∫ T

0

∫
∂Ω

{ρ|u′|2 − λ|Tr∇u|2 − 2µ|Sym∇u|2}(h · ν) dSdt

+
∫ T

0

∫
∂Ω

(∇u)h · σ(u)ν dSdt.

(3.4)

Consequently, if (3.1)-(3.2) hold and u ∈ C0([0, T ];W )∩C1([0, T ];V )∩C2([0, T ];H) is
the unique solution to (1.1) and (1.3), then (3.4) reduces to[∫

Ω

ρu′ · (∇u)hdx

]T
0

+E(0)T

+
1
2

∫ T

0

∫
Ω

[ρ(Tr∇h− 1)|u′|2

+λ(Tr∇u){Tr ((∇u)(∇h))− (Tr∇u)(Tr∇h)}
+2µ{Sym∇u · Sym ((∇u)(∇h))− |Sym∇u|2Tr∇h}]dxdt

+
1
2

∫ T

0

∫
Ω

{(∇ρ · h)|u′|2 − (∇λ · h)|Tr∇u|2 − 2(∇µ · h)|Sym∇u|2}dxdt

+
1
2

∫ T

0

∫
Ω

[λ(Tr∇u){Tr ((∇u)(∇h))− Tr∇u}

+2µ{(Sym∇u) · Sym ((∇u)(∇h))− |Sym∇u|2}]dxdt

+
∫ T

0

(∫ t

0

∫
Ω

F(x, η) · u′(x, η)dxdη
)

dt−
∫ T

0

∫
Ω

F · (∇u)hdxdt

=− 1
2

∫ T

0

∫
∂Ω

{λ|Tr∇u|2 + 2µ|Sym∇u|2}(h · ν) dSdt

+
∫ T

0

∫
∂Ω

(∇u)h · σ(u)ν dSdt.

(3.5)

Proof. Scalar multiplication of (1.1) by (∇u)h yields

(3.6) ρu′′ · (∇u)h = L(u) · (∇u)h+ F · (∇u)h.

Some somewhat lengthy calculations are now in order.
Since ∇(w · v) = (∇w)Tv + (∇v)Tw, we have ∇(|u′|2) = 2(∇u′)Tu′ and

ρu′ · (∇u′)h = ρ(∇u′)Tu′ · h =
1
2
(∇|u′|2) · ρh

=
1
2
Tr∇(|u′|2ρh)− 1

2
Tr∇(ρh)|u′|2

=
1
2
Tr∇(|u′|2ρh)− 1

2
{∇ρ · h+ ρ(Tr∇h)}|u′|2.
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Then, noting that

ρu′′ · (∇u)h =
∂

∂t
(ρu′ · (∇u)h)− ρu′ · (∇u′)h,

we deduce

ρu′′ · (∇u)h =
∂

∂t
(ρu′ · (∇u)h)

− 1
2
Tr∇(|u′|2ρh) + 1

2
{∇ρ · h+ ρ(Tr∇h)}|u′|2.(3.7)

Henceforth, [. . . ]ij and [. . . ]j stand for the (ij)−component and the j− component of
the matrix and the vector under consideration, respectively.

On the other hand, recalling the symmetry of σ(u), observe that (cf. (1.2))

L(u) · (∇u)h =
n∑

i,j=1

∂

∂xj
[σ(u)]ij · [(∇u)h]i

=
n∑

i,j=1

∂

∂xj
([σ(u)]ij[(∇u)h]i)−

n∑
i,j=1

[σ(u)]ij
∂

∂xj
([(∇u)h]i),(3.8)

thus we obtain

(3.9) L(u) · (∇u)h = Tr∇(σ(u)(∇u)h)− σ(u) · ∇{(∇u)h}.

Since

[∇((∇u)h))]ij =
n∑

k=1

∂

∂xj

(
∂ui

∂xk
hk

)
= ∇([∇u]ij) · h+ [(∇u)(∇h)]ij,

we deduce
Tr∇((∇u)h) = ∇(Tr∇u) · h+∇u · (∇h)T

and

[Sym∇((∇u)h)]ij =
n∑

k=1

∂

∂xk
([Sym∇u]ij)hk + [Sym ((∇u)(∇h))]ij .

Therefore, taking advantage of the symmetry of σ(u), we have

σ(u) · ∇((∇u)h)

=σ(u) · Sym∇((∇u)h)

=λ(Tr∇u)Tr [Sym∇((∇u)h)] + 2µ(Sym∇u) · Sym∇((∇u)h)

=λ(Tr∇u){∇(Tr∇u) · h+Tr ((∇u)(∇h))}
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+2µ
n∑

i,j,k=1

[Sym∇u]ij
∂

∂xk
[Sym∇u]ijhk + 2µ(Sym∇u) · Sym ((∇u)(∇h))

=λ(Tr∇u)Tr ((∇u)(∇h)) + 2µ(Sym∇u) · Sym ((∇u)(∇h))

+λ(Tr∇u)∇(Tr∇u) · h+ µ

n∑
i,j,k=1

∂

∂xk
([Sym∇u]ij)2hk

=λ(Tr∇u)Tr ((∇u)(∇h)) + 2µ(Sym∇u) · Sym ((∇u)(∇h))

+
1
2
λ∇(|Tr∇u|2) · h+ µ∇(|Sym∇u|2) · h.

Observe now that

1
2
λ∇(|Tr∇u|2) · h =

1
2
Tr∇(λ|Tr∇u|2h)− 1

2
|Tr∇u|2Tr∇(λh)

=
1
2
Tr∇(λ|Tr∇u|2h)− 1

2
|Tr∇u|2(∇λ · h+ λTr∇h)

and

µ∇(|Sym∇u|2) · h = Tr∇(µ|Sym∇u|2h)− |Sym∇u|2(∇µ · h+ µTr∇h).

Then we infer

σ(u) · (∇(∇u)h) =
1
2
{λ(Tr∇u)Tr ((∇u)(∇h)) + 2µ(Sym∇u) · Sym ((∇u)(∇h))}

+
1
2
Tr∇{(λ|Tr∇u|2 + 2µ|Sym∇u|2)h}

−1
2
{(∇λ · h)|Tr∇u|2 + 2(∇µ · h)|Sym∇u|2}

+
1
2
{λ(Tr∇u)[Tr ((∇u)(∇h))− (Tr∇u)(Tr∇h)]

+2µ[(Sym∇u) · Sym ((∇u)(∇h))− |Sym∇u|2Tr∇h]}.(3.10)

We now integrate (3.7) over Ω× (0, T ). Using the divergence theorem, we obtain

∫ T

0

∫
Ω

ρu′′ · (∇u)hdxdt

=
[∫

Ω

ρu′ · (∇u)hdx

]T
0

− 1
2

∫ T

0

∫
∂Ω

ρ|u′|2h · ν dSdt

+
1
2

∫ T

0

∫
Ω

(∇ρ · h)|u′|2dxdt+ 1
2

∫ T

0

∫
Ω

ρ(Tr∇h− 1)|u′|2dxdt

+
1
2

∫ T

0

∫
Ω

ρ|u′|2dxdt.(3.11)
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On the other hand, on account of (3.9)-(3.10), a further use of the divergence theorem
allows us to deduce∫ T

0

∫
Ω

L(u) · (∇u)hdxdt+
∫ T

0

∫
Ω

F · (∇u)hdxdt

=
∫ T

0

∫
∂Ω

(σ(u)(∇u)h) · νdSdt

−1
2

∫ T

0

∫
Ω

(λ|Tr∇u|2 + 2µ|Sym∇u|2)dxdt

−1
2

∫ T

0

∫
Ω

λ(Tr∇u){Tr ((∇u)(∇h))− Tr∇u}dxdt

−1
2

∫ T

0

∫
Ω

2µ{(Sym∇u) · Sym((∇u)(∇h))− |Sym∇u|2}dxdt

−1
2

∫ T

0

∫
∂Ω

(λ|Tr∇u|2 + 2µ|Sym∇u|2)(h · ν)dSdt

+
1
2

∫ T

0

∫
Ω

{(∇λ · h)|Tr∇u|2 + 2(∇µ · h)|Sym∇u|2}dxdt

−1
2

∫ T

0

∫
Ω

λ(Tr∇u){Tr ((∇u)(∇h))− (Tr∇u)(Tr∇h)}dxdt

−1
2

∫ T

0

∫
Ω

2µ{(Sym∇u) · Sym((∇u)(∇h))− |Sym∇u|2Tr∇h}dxdt

+
∫ T

0

∫
Ω

F · (∇u)hdxdt.

(3.12)

A combination of (3.6) with (3.11) and (3.12) leads us to the following identity[∫
Ω

ρu′ · (∇u)hdx

]T
0

+
1
2

∫ T

0

∫
Ω

(ρ|u′|2 + λ|Tr∇u|2 + 2µ|Sym∇u|2)dxdt

+
1
2

∫ T

0

∫
Ω

{(∇ρ · h)|u′|2 − (∇λ · h)|Tr∇u|2 − 2(∇µ · h)|Sym∇u|2}dxdt

+
1
2

∫ T

0

∫
Ω

[ρ(Tr∇h− 1)|u′|2 + λ(Tr∇u){Tr ((∇u)(∇h))− (Tr∇u)(Tr∇h)}

+2µ{(Sym∇u) · Sym ((∇u)(∇h))− |Sym∇u|2Tr∇h}]dxdt

+
1
2

∫ T

0

∫
Ω

λ(Tr∇u){Tr ((∇u)(∇h))− Tr∇u}dxdt

+
1
2

∫ T

0

∫
Ω

2µ{(Sym∇u) · Sym ((∇u)(∇h))− |Sym∇u|2}dxdt

−
∫ T

0

∫
Ω

F · (∇u)hdxdt
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=
1
2

∫ T

0

∫
∂Ω

(ρ|u′|2 − λ|Tr∇u|2 − 2µ|Sym∇u|2)(h · ν)dSdt

+
∫ T

0

∫
∂Ω

((∇u)h) · σ(u)ν dSdt.

(3.13)

Recalling (1.5) and Lemma 3.2, we observe that

[the second term on the left hand side of (3.13)] =
∫ T

0

E(t)dt

=E(0)T +
∫ T

0

(∫ t

0

∫
∂Ω

σ(u)ν · u′dSdη

)
dt+

∫ T

0

(∫ t

0

∫
Ω

F · u′dxdη
)

dt.

(3.14)

Finally, identity (3.4) follows from substituting (3.14) into (3.13). Clearly, (3.5) follows
directly from (3.4) since u satisfies (1.4). �

§4. Proof of Theorem 2.2. Let us suppose for the moment that (3.1) and (3.2) hold
so that u ∈ C2([0, T ];W )∩ C1([0, T ];V ) ∩ C2([0, T ];H) by Proposition 3.1.

Let us recall the following (see, for example, [9, pp. 18-19] or [12, pp. 29-30]).

Lemma 4.1. If ∂Ω is of class C2, then there exists h0 ∈ C1(Ω;Rn) such that

h0(x) = ν(x) on ∂Ω.

The proof of Theorem 2.2 is achieved by setting h = h0 in identity (3.5), but this
procedure requires some work which is distributed in the following three lemmas.

First, to estimate the last boundary integral in (3.5), we need to find a convenient
expression for (∇u)ν · σ(u)ν.
Lemma 4.2. Let (2.1) and (3.1)-(3.2) hold. Then

(4.1) (∇u)ν · σ(u)ν = λ|Tr∇u|2 + 2µ|Sym∇u|2 on ∂Ω× (0, T ).

Before stating our second technical lemma, we introduce the tensor product a ⊗ b
between two vectors a = (a1, . . . , an)T and b = (b1, . . . , bn)T, that is

(4.2) a ⊗ b = (aibj)1≤i,j≤n.

Note that a⊗ b is an n× n matrix.

Lemma 4.3. Let (2.1) hold. Define an n× n matrix B(x) for any x ∈ ∂Ω by setting

(4.3) B(x)a = λ(x)(a · ν(x))ν(x) + 2µ(x){Sym (a⊗ ν(x))}ν(x),
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for any a ∈ R
n and x ∈ ∂Ω. Then

(4.4) B−1(x) exists for any x ∈ ∂Ω

(4.5) B(x)a · a ≥ c0
2
|a|2, ∀ a ∈ R

n, ∀x ∈ ∂Ω

and

(4.6) B((∇u)ν) = σ(u)ν on ∂Ω× (0, T ).

Proof of Lemma 4.2. Thanks to (1.4), we have

(4.7) ∇u = {(∇u)ν} ⊗ ν a.e. on ∂Ω× (0, T )

and

(4.8) Tr∇u = (∇u)ν · ν a.e. on ∂Ω× (0, T ).

In fact, setting u = (u1, ..., un)T and ν = (ν1, ..., νn)T, we see that boundary condition
(1.4) implies

∇ui =


∂ui

∂x1

...
∂ui

∂xn

 = (∇ui · ν)ν =
[
∂ui

∂ν

]
ν, 1 ≤ i ≤ n

almost everywhere on ∂Ω× (0, T ). Therefore we have

∇u =

 (∇u1)T
...

(∇un)T

 =

 (∇u1 · ν)νT

...
(∇un · ν)νT

 = [(∇ui · ν)νj ]1≤i,j≤n

(4.9)

almost everywhere on ∂Ω× (0, T ). On account of (4.2), this gives (4.7). Moreover, since
ννT = 1, we have

(∇u)ν =

 (∇u1 · ν)νT

...
(∇un · ν)νT

 ν =

 (∇u1 · ν)
...

(∇un · ν)

 ,

so that, owing to (4.9),

(∇u)ν · ν = (∇u1 · ν)ν1 + · · ·+ (∇un · ν)νn = Tr∇u
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almost everywhere on ∂Ω× (0, T ). Thus, (4.7) and (4.8) follow.
Recalling the definition of σ(u) and (4.8), we obtain

(∇u)ν · σ(u)ν = (∇u)ν · {λ(Tr∇u)ν + 2µ(Sym∇u)ν}
=λ(Tr∇u)((∇u)ν · ν) + 2µ(∇u)ν · (Sym∇u)ν

=λ|Tr∇u|2 + 2µ(∇u)ν · (Sym∇u)ν(4.10)

almost everywhere on ∂Ω× (0, T ).
On the other hand, by (4.7), noting that (a ⊗ b) ·A = a ·Ab, we have

|Sym∇u|2 = 1
4
|∇u+ (∇u)T|2 =

1
2
(|∇u|2 + (∇u)T · (∇u))

=
1
2
((∇u)ν ⊗ ν) · ∇u+

1
2
(ν ⊗ (∇u)ν) · ∇u

=
1
2
((∇u)ν · (∇u)ν) +

1
2
((∇u)ν · (∇u)Tν)

=
1
2
(∇u)ν · (∇u+ (∇u)T)ν = (∇u)ν · (Sym∇u)ν,

which combined with (4.10) yields (4.1). �

Proof of Lemma 4.3. Let In be the n× n identity matrix. Since

(Sym (a⊗ ν))ν · a = (Sym(a ⊗ ν)) · (a⊗ ν) = |Sym(a ⊗ ν)|2

by direct calculations, we obtain

(4.11) Ba · a = λ|a · ν|2 + 2µ|Sym(a ⊗ ν)|2.
Let us set

A = Sym(a ⊗ ν)

and

(4.12) D = A− 1
n
(TrA)In

Then TrD = 0, so that

(4.13) D · In = 0

by the identity D · In = TrD. Therefore (4.11)-(4.13) imply

Ba · a = λ|TrA|2 + 2µ
∣∣∣∣ 1n (TrA)In +D

∣∣∣∣2
=λ|TrA|2 + 2µ

(∣∣∣∣ 1n (TrA)In

∣∣∣∣2 + |D|2 + 2
n
(TrA)In ·D

)

=(nλ+ 2µ)
1
n
|TrA|2 + 2µ|D|2 ≥ c0

n
|TrA|2 + c0|D|2.
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Note that in the last inequality, we have used (2.1). Recalling (4.12), we have A =
D + 1

n (TrA)In, so that c0|A|2 = c0
n |TrA|2 + c0|D|2 by (4.13). Therefore

Ba · a ≥ c0|Sym(a ⊗ ν)|2.

On the other hand, we have

|Sym (a⊗ ν)|2 = 1
4
(|a⊗ ν|2 + 2(a⊗ ν) · (ν ⊗ a) + |ν ⊗ a|2)

=
1
4
(|a|2 + 2|a · ν|2 + |a|2) ≥ 1

2
|a|2.

Thus (4.5) holds.
Direct calculations verify that Ba ·b = Bb · a for any a,b ∈ R

n. This means that B

is a symmetric matrix. Consequently, (4.5) implies (4.4).
Finally, by (4.7) and (4.8) we deduce

B((∇u)ν) = λ{(∇u)ν · ν}ν + 2µ{Sym((∇u)ν ⊗ ν)}ν
=λ(Tr∇u)ν + 2µ{Sym(∇u)}ν = σ(u)ν a.e. on ∂Ω× (0, T )

and the proof of Lemma 4.3 is complete. �
The next technical lemma is concerned with the control of E by a simpler energy-type

functional.

Lemma 4.4. Let (2.1) and (2.3) hold. Set

(4.14) G(t) =
1
2

∫
Ω

{µ0|∇u(x, t)|2 + (λ(x) + µ0)|Tr∇u(x, t)|2 + ρ(x)|u′(x, t)|2}dx

for u satisfying (1.4). Then there exists a constant C = C(µ) > 0 such that

(4.15) G(t) ≤ E(t) ≤ C(µ)G(t), 0 ≤ t ≤ T.

Proof. Since

(4.16) 2|Sym∇u|2 = |∇u|2 + |Tr∇u|2 +Tr∇{(∇u)u− (Tr∇u)u},

we have (cf. (2.2))∫
Ω

2µ|Sym∇u|2dx ≥
∫

Ω

2µ0|Sym∇u|2dx

=
∫

Ω

(µ0|∇u|2 + µ0|Tr∇u|2)dx+
∫

Ω

µ0Tr∇{(∇u)u− (Tr∇u)u}dx

=
∫

Ω

(µ0|∇u|2 + µ0|Tr∇u|2)dx.
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In the last equality we have used the divergence theorem and (1.4). Hence we have
E(t) ≥ G(t), 0 ≤ t ≤ T . On the other hand,∫

Ω

2µ|Sym∇u|2dx ≤ C(µ)
∫

Ω

|∇u|2dx,

and (4.15) follows. �
We are now able to conclude the proof of Theorem 2.2. Recalling Lemma 4.1, we set

h = h0 in (3.5). Then, using Lemma 4.2 and Lemma 4.3, we obtain

[the right hand side of (3.5)] =
1
2

∫ T

0

∫
∂Ω

σ(u)ν · (∇u)νdSdt

=
1
2

∫ T

0

∫
∂Ω

B((∇u)ν) · (∇u)νdSdt

≥c0
4

∫ T

0

∫
∂Ω

|(∇u)ν|2dSdt ≥ C

∫ T

0

∫
∂Ω

|σ(u)ν|2dSdt.(4.17)

Here and henceforth C > 0 denotes a generic constant depending only on Ω, T , λ, µ, ρ,
but independent of u.

On the other hand, by Lemma 3.2, for any fixed δ > 0, we have

E(t) ≤ E(0) + ‖F‖L1(0,T ;H)‖u′‖L∞(0,T ;H)

≤E(0) +
1
2δ

‖F‖2
L1(0,T ;H) +

δ

2
‖u′‖2

L∞(0,T ;H)

≤E(0) +
1
2δ

‖F‖2
L1(0,T ;H) + Cδ sup

0≤t≤T
E(t).(4.18)

Then, taking for instance δ = 1
2C , we infer

(4.19) sup
0≤t≤T

E(t) ≤ C‖F‖2
L1(0,T ;H) + CE(0).

Hence Lemma 4.4 yields

(4.20) sup
0≤t≤T

G(t) ≤ C‖F‖2
L1(0,T ;H) + CE(0),

namely, using the Poincaré inequality,

(4.21) ‖u′‖2
L∞(0,T ;H) + ‖u‖2

L∞(0,T ;V ) ≤ C‖f‖2
L1(0,T ;H) + CE(0).

Consequently, (2.1) and (4.21) entail

(4.23) [the left hand side of (3.5)] ≤ C(‖f‖2
L1(0,T ;L2(Ω)n) + E(0)).

Thus, a combination of (4.17) and (4.23) gives (2.4) under the regularity assumptions
(3.1)-(3.2). A density argument completes the proof. �

Remark 4.5. From the proof of Lemma 4.4 we deduce that if µ is constant as in [4],
then G ≡ E.



16 M. GRASSELLI, M. IKEHATA, AND M. YAMAMOTO

§5. Proof of Theorem 2.3. Let us suppose for the moment that (3.1) holds so that
u ∈ C0([0, T ];W ) ∩ C1([0, T ];V ) ∩ C2([0, T ];H). Take h(x) = m(x) = x − x0 in (3.5).
Then, on account of Lemma 4.2, we obtain[∫

Ω

ρu′ · (∇u)mdx

]T

0

+
1
2

∫ T

0

∫
Ω

{nρ|u′|2 + (2− n)(λ|Tr∇u|2 + 2µ|Sym∇u|2)}dxdt

+
1
2

∫ T

0

∫
Ω

{(∇ρ ·m)|u′|2 − (∇λ ·m)|Tr∇u|2 − 2(∇µ ·m)|Sym∇u|2}dxdt

=
1
2

∫ T

0

∫
∂Ω

((∇u)ν · σ(u)ν)(m · ν)dSdt.

(5.1)

Here we have used the identity

(m · ν)(∇u)ν = (∇u)m

which follows from substitution of (4.7) in (∇u)m.
Moreover, multiplying both the hand sides of (1.1) by n−1

2 u, and integrating over
Ω× (0, T ), we deduce (recall that F ≡ 0)

0 =
∫ T

0

∫
Ω

n− 1
2

ρu′′ · udxdt−
∫ T

0

∫
Ω

n− 1
2

L(u) · udxdt.

Thus, integrating by parts with respect to time the first term and using the divergence
theorem in the second one (cf. also (1.4)), we infer

0 =
[∫

Ω

ρu′ · n− 1
2

udx

]T

0

+
1
2

∫ T

0

∫
Ω

(1− n)ρ|u′|2dxdt

+
1
2

∫ T

0

∫
Ω

{λ(n− 1)|∇Tu|2 + 2µ(n− 1)|Sym∇u|2}dxdt.

Adding this identity to (5.1), we obtain[∫
Ω

ρu′ ·M(u)dx
]T

0

+
1
2

∫ T

0

∫
Ω

(ρ|u′|2 + λ|Tr∇u|2 + 2µ|Sym∇u|2)dxdt

+
1
2

∫ T

0

∫
Ω

{(∇ρ ·m)|u′|2 − (∇λ ·m)|Tr∇u|2 − 2(∇µ ·m)|Sym∇u|2}dxdt

=
1
2

∫ T

0

∫
∂Ω

((∇u)ν · σ(u)ν)(m · ν)dSdt

(5.2)
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where we have set
M(u) = (∇u)m+

n− 1
2

u.

Arguing as in [9, Lemma 3.2], we can prove the inequality (cf. (2.2))

(5.3)
∣∣∣∣∫

Ω

ρu′(x, t) ·M(u)(x, t)dx
∣∣∣∣ ≤ R0ρ1

2
√

ρ0µ0

∫
Ω

(ρ0|u′(x, t)|2 + µ0|∇u(x, t)|2)dx

for 0 ≤ t ≤ T , where we recall that R0 = ‖m‖(L∞(Ω))n .
To obtain (5.3) we first show the following

(5.4) ‖M(u)(t)‖H ≤ ‖(∇u(t))m‖H .

Indeed, on account of (1.4), Green’s formula yields

‖M(u)(t)‖2
H − ‖(∇u(t))m‖2

H

=
∥∥∥∥(∇u(t))m+

n− 1
2

u(t)
∥∥∥∥2

H

− ‖(∇u(t))m‖2
H

=
∫

Ω

 n∑
i=1

∣∣∣∣∣∣
n∑

j=1

∂ui(x, t)
∂xj

mj +
n− 1
2

ui(x, t)

∣∣∣∣∣∣
2

−
n∑

i=1

∣∣∣∣∣∣
n∑

j=1

∂ui(x, t)
∂xj

mj

∣∣∣∣∣∣
2
 dx

=
∫

Ω


n∑

i,j=1

(n− 1)
∂ui(x, t)

∂xj
mjui +

n∑
i=1

(n− 1)2

4
(ui(x, t))2

 dx

=
∫

Ω


n∑

i,j=1

n− 1
2

mj
∂(ui(x, t))2

∂xj
+

n∑
i=1

(n− 1)2

4
(ui(x, t))2

 dx

=
∫

Ω

n∑
i=1

(
−n(n− 1)

2
+

(n− 1)2

4

)
(ui(x, t))2dx =

1− n2

4

∫
Ω

|u(x, t)|2dx ≤ 0.

Thus, using (5.4), we have∣∣∣∣∫
Ω

ρu′(t) ·M(u)(t)dx
∣∣∣∣ ≤ ρ1‖u′(t)‖H‖M(u)(t)‖H

≤ ρ1√
ρ0µ0

(
√

ρ0‖u′(t)‖H) (
√

µ0‖(∇u(t))m‖H)

≤ ρ1√
ρ0µ0

(
R0

2
ρ0‖u′(t)‖2

H +
µ0

2R0
‖(∇u(t))m‖2

H

)
which entails (5.3).

Observe that (3.3) implies E(t) = E(0) since F ≡ 0 and (1.4) holds. Then, thanks
to Lemma 4.4 and (5.3), we deduce from (5.3)

(5.5)
∣∣∣∣∫

Ω

ρu′(x, t) ·M(u)(x, t)dx
∣∣∣∣ ≤ ρ1√

ρ0µ0
R0E(0), 0 ≤ t ≤ T.



18 M. GRASSELLI, M. IKEHATA, AND M. YAMAMOTO

Consider now (5.2) and recall that (m ·ν) ≤ 0 on ∂Ω\Γ+(x0). Using (2.5) and (5.5),
we derive

1
2
γ0

∫ T

0

∫
Ω

(ρ|u′|2 + λ|Tr∇u|2 + 2µ|Sym∇u|2)dxdt− 2ρ1R0√
ρ0µ0

E(0)

≤C

∫ T

0

∫
Γ+(x0)

((∇u)ν · σ(u)ν)(m · ν)dSdt.(5.6)

Finally, owing to Lemma 3.2 with F = 0 (cf. also (1.4)) and Lemma 4.3, we have

(5.7)
(
γ0T − 2ρ1R0√

ρ0µ0

)
E(0) ≤ C

∫ T

0

∫
Γ+(x0)

|σ(u)ν|2dSdt.

and the proof follows from (2.6) provided that (3.1) hold. A standard density argument
shows that (2.7) still holds when (3.1) is replaced by (2.3) with F ≡ 0.

§6. Applications to an inverse source problem. Here Theorems 2.2 and 2.3 are
applied to the inverse source problem described in the Introduction. We need first
to recall the following result which can be easily deduced from Proposition 2.1 and
Theorem 2.2 (see also [4] and [16]).

Proposition 6.1. Let (2.1) and

(6.1) u0 ∈ V, Lu0 ∈ H, u1 ∈ V

(6.2) F ∈ W 1,1(0, T ;H)

hold. Then there is a unique function u ∈ C1([0, T ];V ) ∩ C2([0, T ];H) which satisfies

equation (1.1) almost everywhere in Ω × (0, T ) and initial conditions (1.3). Moreover,

there is a positive constant C = C(Ω, T, ρ, λ, µ) such that

‖σ(u)ν‖H1(0,T ;(L2(∂Ω))n)

≤ C
(‖u0‖V + ‖Lu0 + F(0)‖H + ‖u1‖V + ‖F‖W 1,1(0,T ;H)

)
.(6.3)

As a consequence, if F has the form (1.6) with, for instance,

(6.4) ϕ ∈ C1([0, T ]),

then, for any f ∈ H, there is a unique u = u(f) ∈ C1([0, T ];V ) ∩ C2([0, T ];H)) which
solves equation (1.1) with null initial conditions and satisfies (1.4).

Hence, for any given Γ ⊆ ∂Ω of positive Lebesgue measure, we can define a linear
mapping G : H → H1(0, T ; (L2(Γ))n) by setting

(6.5) G(f) = σ(u)ν a.e. on Γ× (0, T ),

which is continuous, thanks to Proposition 6.1. Suppose now that the surface traction is
measured on some Γ0 ⊆ ∂Ω over a time interval [0, T ] and let g = σ(u)ν on Γ0 × (0, T ).
The following result shows that f is uniquely determined by g, provided that Γ0 is
suitably chosen and T is sufficiently large.
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Theorem 6.2. Pick a point x0 ∈ R
n and consider Γ+(x0) ⊆ ∂Ω. Suppose that (2.5)

holds for some γ0 > 0 and let u0 = u1 ≡ 0. Assume in addition that F has the form

(1.6) with f ∈ H and ϕ satisfying (6.4) and

(6.6) ϕ(0) �= 0.

If

(6.7) T >
T0

2
,

then there exists a positive constant C = C(Ω, T, x0, ρ, λ, µ, ϕ) such that

(6.8) ‖f‖H ≤ C‖σ(u′(f))ν‖L2(0,T ;(L2(Γ+(x0)))n).

Remark 6.3. Here T0 > 0 is defined in (2.6). As is seen from the proof, the reverse
inequality to (6.8) holds. This means that the norm on the right hand side of (6.8) is
the best possible for estimating ‖f‖H .

Proof. On account of Proposition 2.1, we let v ∈ C0([0, T ];V ) ∩ C1([0, T ];H) be the
unique solution to the homogeneous Lamé system with null initial displacement and
v′(0) = f . Then, arguing as in [4] (see also [16]), we set

ũ = ϕ ∗ v, a.e. in Ω× (0, T ),

where ∗ stands for the usual time convolution product over (0, t), t ∈ [0, T ]. Of course,
due to (6.4), ũ ∈ C1([0, T ];V ) ∩ C2([0, T ];H). Also, by the uniqueness of the solution,
it is easy to realize that u(f) ≡ ũ. Hence

σ(u(f))ν = ϕ ∗ σ(v)ν, a.e. on ∂Ω× (0, T ),

so that we obtain the Volterra integral equation of the second kind (cf. (6.4) and (6.6))

(6.9) σ(u′(f))ν = ϕ(0)σ(v)ν + ϕ′ ∗ σ(v)ν, a.e. on ∂Ω× (0, T ).

Thus, due to (6.6), from (6.9) we can find a positive constant C = C(ϕ) such that, for
any Γ ⊆ ∂Ω,

(6.10) ‖σ(v)ν‖L2(0,T ;(L2(Γ))n) ≤ C‖σ(u′(f))ν‖L2(0,T ;(L2(Γ))n).

On the other hand, Theorem 2.3 yields

(6.11) ‖f‖H ≤ C‖σ(v)ν‖L2(0,T ;(L2(Γ+(x0)))n),
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provided that T satisfies (6.7). Indeed, since v(0) = 0, in (5.2) written for v we just
need the estimate (cf. (5.5))∣∣∣∣∣

[∫
Ω

ρv′ ·M(v)dx
]T

0

∣∣∣∣∣ ≤ ρ1√
ρ0µ0

R0E(0),

so that in place of (5.7) we have(
γ0T − ρ1R0√

ρ0µ0

)
E(0) ≤ C

∫ T

0

∫
Γ+(x0)

|σ(v)ν|2dSdt.

where
E(0) =

1
2

∫
Ω

ρ(x)|f(x)|2dx.

Therefore (6.8) follows from (6.10) and (6.11). �
Theorem 6.2 entails

Corollary 6.4. Under the assumptions of Theorem 6.2, let Γ+(x0) ⊆ Γ0. Then, for

any g ∈ H1(0, T ; (L2(Γ0))n), there is at most one f ∈ H such that G(f) = g provided

that T satisfies (6.7).

We now want to obtain a representation formula for f similar to [4, (3.18)] by using a
slightly different approach. We first recall that the positive, linear, unbounded, and self-
adjoint operator −L : D(−L) = W ⊂ H → H defined through L (cf. (1.2)) generates
a strongly continuous cosine operator C(t) on H, t ∈ R, and the corresponding sine
operator is defined by

(6.12) S(t)v =
∫ t

0

C(τ)v dτ

for any v ∈ H (see, e.g., [10, p. 171] and references therein).
Henceforth, by letting ρ = 1 for the sake of simplicity, thanks to [10, (3.5), (a) and

(c)], u(f) admits the explicit representation

(6.13) u(f)(t) =
∫ t

0

S(t− τ)ϕ(τ)f dτ t ∈ [0, T ].

Fix now Γ0 ⊂ ∂Ω of positive Lebesgue surface measure and introduce the Dirichlet
map D : θ → z where z solves the Dirichlet problem

−∇ · σ(z) = 0 in Ω

z|∂Ω =

{
θ on Γ0

0 on Γc
0.
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Arguing as in [10, pp. 171-172], one can prove that D : (L2(Γ0))n → (H1/2−2α(Ω))n ≡
D((−L)1/4−α) is continuous for any α ∈ (0, 1

4 ], and that the mapping Σ : D(−L) →
(L2(Γ0))n defined by

Σz = σ(z)ν a.e. on Γ0

can be represented as
Σ = D�L�

where the superscript - denotes the adjoint operator.
Taking advantage of Σ, we thus have an explicit representation of σ(u)ν (see [10,

proof of Thm. 3.7, p. 178])

(6.14) σ(u(f)(t))ν = D�L�

∫ t

0

S(t− τ)ϕ(τ)f dτ t ∈ [0, T ].

Thanks to Theorems 2.2-2.3 and the HUM techniques, we know that in the Cauchy
problem for the Lamé system (1.1) with F = 0, by a Dirichlet-type action, we have
partially exact controllability (contrôlabilité exacte elargie according to [12, Chap. I,
§9]), provided that T satisfies (6.7) (see [4, Thm. 2.5] and [12, Chap. IV]). This amounts
to say that, for any z̃0 ∈ H, there exists a unique w̃ ∈ L2(0, T ; (L2(Γ0))n), provided
that Γ+(x0) ⊆ Γ0, such that the solution ṽ to the Lamé system (1.1) with final and
boundary conditions

ṽ(T ) = 0 a.e. in Ω, ṽ′(T ) = 0 in V ∗

ṽ|∂Ω =

{
w̃ on Γ0

0 on Γc
0

fulfills
ṽ(0) = z̃0 a.e. in Ω.

Therefore, whenever Γ0 ⊆ Γ+(x0) and T satisfies (6.7), we can define an operator
Π : H → L2(0, T ; (L2(Γ0))n) by setting

(6.15) Πz̃0 = w̃.

Then, let us consider the set {zk}k∈N of eigenfunctions associated with the operator −L
and the corresponding Dirichlet controls

wk = Πzk.

We note that {zk}k∈N is an orthonormal basis in H. The controlled solution ṽk can be
represented as (cf. [10, (3.5), (a) and (b), p. 172])

ṽk(t) = L
∫ T

t

S(τ − t)Dwk(τ)dτ,
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so that
zk = J∗wk

where

(6.16) J∗wk = L
∫ T

0

S(τ)Dwk(τ)dτ

is the adjoint operator of the linear operator J : H → (L2(∂Ω))n (see [10, Corollaries 3.1
and 3.2, p. 173])

(6.17) J(y)(t) = D∗L∗S∗(t)y ∀y ∈ H.

Observe now that S(t) is self-adjoint for any t ≥ 0 since L is so. Hence, on account
of (6.12), (6.16) and (6.17), we have∫

Ω

f · zk dx

=
∫

Ω

J∗wk · f dx

=
∫ T

0

∫
Γ0

wk(τ) ·D∗L∗S∗(τ)f dSdτ

=
∫ T

0

∫
Γ0

wk(τ) ·D∗L∗
(∫ τ

0

C(η)fdη
)

dSdτ

=
∫ T

0

∫
Γ0

(∫ T

τ

wk(η)dη

)
·D∗L∗C(τ)f dSdτ.(6.18)

At the last equality, we used integration by parts in τ . Therefore, if we are able to find,
for any k ∈ N, a unique θk such that

(6.19)
∫ T

τ

ϕ(t− τ)θk(t)dt =
∫ T

τ

wk(η)dη a.e. on Γ0, ∀ τ ∈ [0, T ]

then, from (6.18) we deduce (cf. also (6.12) and (6.14))∫
Ω

f · zkdx

=
∫ T

0

∫
Γ0

(∫ T

τ

ϕ(t− τ)θk(t)dt

)
·D∗L∗C(τ)f dSdτ

=
∫ T

0

∫
Γ0

θk(t) ·
(
D∗L∗

∫ t

0

C(τ)ϕ(t− τ)fdτ
)

dSdt

=
∫ T

0

∫
Γ0

θk(t) · σ(u′(f)(t))ν dSdt.(6.20)
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Hence we can compute the Fourier coefficients of f with respect to the orthonormal
system {zk}k∈N. To this aim, let w ∈ L2(0, T ; (L2(Γ0))n) and consider the integral
equation

(6.21)
∫ T

τ

ϕ(t− τ)θ(t)dt =
∫ T

τ

w(η)dη a.e. on Γ0, ∀ τ ∈ [0, T ].

Differentiating the both members with respect to τ , we obtain (cf. (6.4))

−ϕ(0)θ(τ)−
∫ T

τ

ϕ′(t− τ)θ(t)dt = −w(τ) a.e. on Γ0, ∀ τ ∈ [0, T ].

Then, due to (6.4) and (6.6), we deduce that there is a unique

θ ∈ L2(0, T ; (L2(Γ0))n)

which solves equation (6.21). We thus set θ = Kw and we obtain a linear and continuous
operator K from L2(0, T ; (L2(Γ0))n) to itself. In particular, we have

(6.22) θk = Kwk ∀ k ∈ N.

Recalling now (6.19), we finally obtain, owing to (6.15),∫
Ω

f · zkdx

=
∫ T

0

∫
Γ0

KΠzk · σ(u′(f)(t))ν dSdt.

Summing up, we have thus proved the following

Theorem 6.5. Under the assumptions of Theorem 6.2, let ρ = 1 and Γ+(x0) ⊆
Γ0. Suppose moreover that there exists f ∈ H such that G(f) = g for some g ∈
H1(0, T ; (L2(Γ0))n) with T satisfying (6.7). Then

f =
+∞∑
k=0

φkzk

where

φk =
∫ T

0

∫
Γ0

KΠzk · g′ dSdt ∀ k ∈ N,

{zk}k∈N being the eigenfunctions of the operator −L.

To conclude, we mention that the same arguments used in [4, Sec. 6] lead us to
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Theorem 6.6. Under the assumptions of Theorem 6.2, let Γ+(x0) ⊆ Γ0. Then, re-

garding G as a linear operator from H to L2(0, T ; ((L2(Γ))n), we have

V ⊂ Range (G�) ⊂ (H1/2(Ω))n.
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