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ALGEBRAIC FORMULAE FOR THE
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Abstract. Let Fn be a free group with n fixed generators, which we assume

are linearly ordered. In a previous paper [M], a curious mapping I : Fn → Fn

was introduced pictorially. It is a “square root ”of the inner automorphism of Fn

induced by the “smallest ”generator. In the present paper, two algebraic formulae

will be given, by which one can compute the mapping I purely algebraically.

1. Introduction

Let Fn denote a free group with n fixed generators x1, x2, . . . , xn, which are

referred to as the preferred generators. We assume that these generators are

linearly ordered:

x1 < x2 < · · · < xn.

In what follows the “smallest” generator x1 will play a special role, and it will

be denoted by a special letter q:

q = x1.

The present paper is concerned with a curious mapping

I : Fn → Fn ,

which was introduced in [M] pictorially in connection with the conjugation for-

mula for the mapping class group of a punctured sphere. In that paper, the map-

ping I was called the “quantum inverse”, but here we will call it the q-inverse for

simplicity. The purpose of this paper is to give two different algebraic formulae,

each of which allows one to compute this mapping I purely algebraically.

The q-inverse I has several interesting properties:
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(1) For each element W ∈ Fn,

I(I(W )) = q−1Wq.

In other words, I is a “square root” of the inner automorphism of Fn induced by

q. In particular, I is a bijection.

(2) I is stable: Let Fm be another free group with preferred generators y1, y2,

. . . , ym which are linearly ordered:

y1 < y2 < · · · < ym.

Let h : Fn → Fm be an embedding which preserves q and the order of the

preferred generators. More precisely, let h : Fn → Fm be a homomorphism

satisfying the following conditions:

h(x1) = y1,

h(xi) = yσ(i), σ(i) ∈ {2, . . . ,m} (i = 2, . . . , n), and

σ(i) < σ(j) for i < j.

Then the following diagram commutes:

Fn
I−−−−→ Fn

h

� �h

Fm −−−−→
I

Fm

(2′) Let E be a subset of {x2, . . . , xn} and πE : Fn → Fn/N(E) the projection

to the quotient group by the normal subgroup N(E) generated by E. Then the

following diagram commutes:

Fn
I−−−−→ Fn

πE

� �πE

Fn/N(E) −−−−→
I

Fn/N(E)

(3) Substitution q = 1 reduces I(W ) to the classical inverseW−1. More precisely,
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the following diagram commutes:

Fn
I−−−−→ Fn

πq

� �πq

Fn/N(q) −−−−→
inverse

Fn/N(q)

where N(q) is the normal subgroup generated by q, and πq : Fn → Fn/N(q) is

the quotient homomorphism.

(4) (“The law of conservation of energy”) For each W ∈ Fn, we have eq(W ) =

eq(I(W )), where eq(W ) is the sum of the exponents of q in the word expression

of W .

Here are some examples of computations, where y and z stand for any two

preferred generators xi and xj such that x1(= q) < xi(= y) < xj(= z).

I(qk) = qk, ∀k ∈ Z,

I(yk) = qk(q−1y−1)k, ∀k ∈ Z

I(yz) = z−1y−1,

I(zy) = qy−1q−1z−1qyq−1y−1,

I(zyz2) = q2z−1q−1z−1y−1zqz−1q−1z−1yzqzq−1z−1q−1z−1y−1.

2. Two definitions of I

Let P be a set of n+1 interior points p0, p1, . . . , pn of a 2-disk D arranged on

a line in this order. By a cord on (D,P ), we mean an embedded curve α in the

interior of D such that α∩P = ∂α = {pi, pj} for some i, j with i 	= j. For a cord

α on (D,P ), let τ(α) be a counter-clockwise 180◦-twist along α interchanging

the end-points of α executed in a sufficiently small disk neighborhood of α. This

defines a map

τ : C(D,P )→ M(D,P )

from C(D,P ), the set of isotopy classes of cords on (D,P ), to M(D,P ), the

mapping class group of (D,P ) relative to ∂D. We use the same symbol α for a

cord α and its isotopy class [α] unless it makes any confusion.

The group M(D,P ) is identified with the braid group Bn+1 so that each

standard generator σi (i = 0, . . . , n − 1) of Bn+1 corresponds to the mapping
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class ζi of τ(αi), where αi is the line segment between pi and pi+1.

Let Ai,j (i < j) be Artin’s pure braid generator

Ai,j = σ−1
i σ−1

i+1 . . . σ
−1
j−2σ

2
j−1σj−2 . . . σi+1σi

= σj−1σj−2 . . . σi+1σ
2
i σ

−1
i+1 . . . σ−1

j−2σ
−1
j−1.

Artin [A] proved that the subgroup ofM(D,P ) generated by A0,j (j = 1, . . .n)

is a free group isomorphic to π1(D − {p1, . . . , pn}, p0). Setting xj = A0,j , we

sometimes identify this subgroup of M(D,P ) with the free group Fn generated

by xj (j = 1, . . . n), see Figures 1 and 2.

Figure1

Figure2

We will adopt the convention that the mapping class group M(D,P ) acts

on (D,P ) from the right. Thus for a cord α ∈ C(D,P ) and a mapping class

f ∈ M(D,P ), the notation (α)f will denote the image of α under the action of

f . For each W ∈ Fn ⊂ M(D,P ), let η(W ) be the cord (or its isotopy class)

(α0)W in this notation. This defines a map

η : Fn → C(D,P )01,

where C(D,P )01 is the subset of C(D,P ) consisting of the isotopy classes of

cords α with ∂α = {p0, p1}.

Proposition 2.1 ([M]). The map η : Fn → C(D,P )01 induces a bijection

η : 〈q〉\Fn → C(D,P )01

from the right coset 〈q〉\Fn to C(D,P )01.

Since (α0)q = α0 in C(D,P )01, η : 〈q〉\Fn → C(D,P )01 is well-defined.

We will describe the inverse map: Consider mutually disjoint half lines labelled

x1, . . . , xn starting from p1, . . . , pn as in Figure 3. Assume that a cord α intersects

these half lines transversely and assign each intersection point the label of the

half line. Trace the curve α from p1 to p0, and we obtain a word W by reading

the labels on the intersection points, together with the signs of the intersections
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as their exponents. The word W as an element of 〈q〉\Fn is uniquely determined

by the isotopy class of the cord α.

Figure3

Using the bijection η : 〈q〉\Fn → C(D,P )01, we define a map I : Fn → Fn

as follows: Let W be an element of Fn and α a cord on (D,P ) with η(W ) = α.

Apply ζ0 (= τ(α0)) to the cord α, and we have another cord α′ = (α)ζ0 with the

same property ∂α′ = {p0, p1}. By the inverse map of η, the cord α′ corresponds

to an element [W ′] of 〈q〉\Fn. Take a unique representative W ′ of [W ′] such that

eq(W ) = eq(W ′).

Definition. For each W ∈ Fn, there exists a unique element W ′ ∈ Fn such

that (η(W ))ζ0 = η(W ′) and eq(W ) = eq(W ′). Then I(W ) is defined to be W ′.

For example, a wordW = x2x4 is represented by a cord illustrated in Figure 3.

Applying a disk twist ζ0 to this cord, we have a cord as in Figure 4, which

represents [x−1
4 x−1

2 ] of 〈q〉\Fn. Thus I(x2x4) = x−1
4 x−1

2 . It is easily seen that

I(xi) = x−1
i for each i with 2 ≤ i ≤ n; nevertheless I(x1) = x1.

Figure4

In terms of the mapping class group M(D,P ), this definition of I is inter-

preted as follows: For an element W ∈ Fn ⊂ M(D,P ), the conjugate W−1ζ0W

is a disk twist τ(α), where α = (α0)W . If we consider a further conjugation

ζ−1
0 W−1ζ0Wζ0, this is again a disk twist τ(α′), where α′ = (α)ζ0. Proposi-

tion 2.1 implies that there is a unique element W ′ ∈ Fn such that η(W ′) = α′

and eq(W ′) = eq(W ), which is I(W ). It is obvious that

ζ−1
0 W−1ζ0Wζ0 = ζ−1

0 τ(α)ζ0

= τ((α)ζ0)

= τ(α′)

=W ′−1
ζ0W

′.

The second definition of I. For each elementW ∈ Fn, there exists uniquely

an element W ′ ∈ Fn such that ζ−1
0 W−1ζ0Wζ0 = W ′−1

ζ0W
′ in M(D,P ) and

eq(W ) = eq(W ′). Then I(W ) is defined to be W ′.
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3. The first algebraic formula

In what follows, we work in the braid group Bn+1 instead ofM(D,P ). Identify

the free group Fn generated by xj (j = 1, . . . , n) with the subgroup of Bn+1

generated by A0,j (j = 1, . . . , n) so that xj = A0,j (see Figure 1). We denote by

σ the standard generator σ0 of Bn+1. By ab, we mean the conjugate b−1ab.

We can further interpret the definition of I : Fn → Fn in terms of Bn+1 :

The third definition of I. For each element W ∈ Fn, there exists a unique

element W ′ ∈ Fn such that σWσ = σW ′
and eq(W ) = eq(W ′). Then I(W ) is

defined to be W ′.

For an element W ∈ Fn ⊂ Bn+1, let

BW : Bn+1 → Bn+1

denote the inner-automorphism induced by Wσ, namely

BW (b) = bW σ

.

Since Wσ is a pure braid and Fn is closed under conjugation by a pure braid,

BW (V ) belongs to Fn for any V ∈ Fn. Thus restricting BW to Fn, we have a

homomorphism

BW : Fn → Fn.

It is obvious that BW1W2(V ) = BW2(BW1(V )). Thus we have a “right represen-

tation”

B : Fn → Aut(Fn), W �→ BW .

To calculate BW (V ) for W,V ∈ Fn it will be sufficient to calculate BW (V ) in

the case when W and V are preferred generators of Fn and their inverses. By

direct calculations, we have the following results:

Lemma 3.1.

Bxj
(xε

i) = B−1

x−1
j

(xε
i) =




xjq
εx−1

j , i = 1,

q−1xε
iq, j = 1,

xε
i , 1 < i < j,

xiqx
ε
iq

−1x−1
i , 1 < i = j,

(xjqx
−1
j q−1)xε

i(qxjq
−1x−1

j ), 1 < j < i,
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and

Bx−1
j
(xε

i) = B−1
xj
(xε

i) =




q−1x−1
j qεxjq, i = 1,

qxε
iq

−1, j = 1,
xε

i , 1 < i < j,

q−1xε
iq, 1 < i = j,

(q−1x−1
j qxj)xε

i(x
−1
j q−1xjq), 1 < j < i.

Corollary 3.2. The homomorphism BW : Fn → Fn preserves eq; namely

eq(BW (V )) = eq(V ) for any V ∈ Fn.

Theorem 3.3. I : Fn → Fn is a crossed anti-homomorphism twisted by the right

representation B : Fn → Aut(Fn) :

I(W1W2) = I(W2)BW2(I(W1)).

Proof.

σ(W1W2)σ = σW1σW σ
2

= σI(W1)W
σ
2

= σW σ
2 BW2 (I(W1))

= σI(W2)BW2 (I(W1))

Since eq(I(W2)BW2(I(W1))) = eq(I(W2)) + e0(I(W1)) = eq(W1W2), we have

I(W1W2) = I(W2)BW2(I(W1)). �
This theorem, together with I(q) = q and I(xi) = x−1

i , (i = 2, . . . , n), allows

us to compute I(W ) algebraically. In the next section we give another algebraic

formula for the q-inverse, which seems more naturally fitted to the q-inverse.

4. The second algebraic formula

For each j (j = 1, . . . , n), we put

x̂j =
{
1 for j = 1,
A0,jA1,j (= xjσxjσ

−1 = σ−1xjσxj) for j > 1.

Figure5



8 K.HABIRO, S.KAMADA, Y.MATSUMOTO AND K.YOSHIKAWA

For an element W of Fn ⊂ Bn+1, we denote by Ŵ the element of Bn+1 that is

obtained from W by replacing each letter xj by x̂j . In particular, x̂−1
j = (x̂j)−1.

We note that if πq(W ) = πq(W ′) then Ŵ = Ŵ ′.

For an element W ∈ Fn, let

CW : Bn+1 → Bn+1

denote the inner-automorphism induced by Ŵ , namely,

CW (b) = Ŵ−1bŴ .

Since Ŵ is a pure braid, CW (V ) belongs to Fn for any V ∈ Fn. Thus restricting

CW to Fn, we have a homomorphism

CW : Fn → Fn.

It is obvious that CW1W2(V ) = CW2(CW1(V )). Thus we have a right representa-

tion

C : Fn → Aut(Fn), W �→ CW .

By direct calculations, we have the following results:

Lemma 4.1.

Cxj
(xε

i) = C−1

x−1
j

(xε
i) =




xε
i , i = 1 or j = 1,

x−1
j xε

ixj , 1 < i < j,

qxε
iq

−1, 1 < i = j,

(qx−1
j q−1)xε

i(qxjq
−1), 1 < j < i,

and

Cx−1
j
(xε

i) = C−1
xj
(xε

i) =




xε
i , i = 1 or j = 1,

(q−1xjq)xε
i(q

−1x−1
j q), 1 < i < j,

q−1xε
iq, 1 < i = j,

xjx
ε
ix

−1
j , 1 < j < i.

Corollary 4.2. Let eq : Fn → Z and πq : Fn → Fn/N(q) be as before.

(1) The homomorphism CW : Fn → Fn preserves eq; namely

eq(CW (V )) = eq(V ) for any V ∈ Fn.

(2) If πq(W ) = πq(W ′), then CW = CW ′ .
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(3) πq(CW (V )) = πq(W−1V W ).

Theorem 4.3. I : Fn → Fn is a crossed homomorphism twisted by the repre-

sentation C : Fn → Aut(Fn) :

I(W1W2) = CW2(I(W1))I(W2).

Proof. It is obvious from Figure 5 that for any W ∈ Fn, Ŵ commutes with σ

in Bn+1. Thus we have

σ(W1W2)σ = σW1σσ−1
dW2dW2

−1
W2σ

= σW1σdW2σ−1
dW2

−1
W2σ

= σI(W1)dW2σ−1
dW2

−1
W2σ

= σ
dW2

−1
I(W1)dW2σ−1

dW2
−1

W2σ

= σCW2(I(W1))σ−1
dW2

−1
W2σ.

Assertion 4.4. σ−1Ŵ−1Wσ = I(W ) for any W ∈ Fn.

If this assertion is proved, then since eq(CW2(I(W1))I(W2)) = eq(W1W2), we

have I(W1W2) = CW2(I(W1))I(W2).

Now we prove Assertion 4.4. We have for any W ∈ Fn,

σWσ = σ
cW−1Wσ

= σσ−1
cW−1Wσ.

If σ−1Ŵ−1Wσ belongs to Fn, then since eq(σ−1Ŵ−1Wσ) = eq(W ), Assertion 4.4

holds.

We prove that σ−1V̂ −1V σ ∈ Fn for any V ∈ Fn by induction on the length of

V . If V is a generator or its inverse, it is directly seen that σ−1V̂ −1V σ ∈ Fn. If
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V = V1V2, then we have

σ−1V̂ −1V σ = σ−1V̂1V2

−1
V1V2σ

= σ−1V̂2

−1
V̂1

−1
V1V2σ

= σ−1V̂2

−1
σσ−1V̂1

−1
V1σσ

−1V2σ

= σ−1V̂2

−1
σz1σ

−1V2σ

= σ−1V̂2

−1
σσ−1V2σz1

σ−1V2σ

= σ−1V̂2

−1
V2σz1

σ−1V2σ

= z2z1
σ−1V2σ,

where zi = σ−1V̂i

−1
Viσ (i = 1, 2). By induction hypothesis, z1 and z2 belong to

Fn. Since σ−1V2σ is a pure braid, z1
σ−1V2σ belongs to Fn. Hence σ−1V̂ −1V σ ∈

Fn. �

IfW = 1, then by definition I(W ) = 1. IfW is a generator of Fn or its inverse,

then by a direct calculation we have

I(xε
i) =




qε if i = 1,
x−1

i if i 	= 1, ε = +1,
q−1xiq if i 	= 1, ε = −1.

If W is xε1
i1

. . . xεm
im
, then I(W ) is calculated by

I(W ) =
m∏

j=1

CWj
(I(xεj

ij
)),

where Wj = x
εj+1
ij+1

. . . xεm
im
for j = 1, . . . ,m − 1, and Wm = 1. This is the most

efficient formula known to the authors that fits to computer programing.

Proposition 4.5.

I(W1q
kW2) = I(W1W2)I(W2)−1qkI(W2).

In particular,

I(qkW ) = qkI(W ), and I(Wqk) = I(W )qk.

This proposition follows from Theorem 4.3. The detailed proof will be left to

the reader.
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Finally we give a relation among I, BW and CW .

Proposition 4.6.

CW (V ) = I(W )BW (V )I(W )−1.

Proof. By Theorems 3.3 and 4.3, we have I(W1W2) = I(W2)BW2(I(W1)) =

CW2(I(W1))I(W2) for any W1 and W2. Hence we have the relation. �

Proposition 4.7. CW commutes with I; namely, I(CW (V )) = CW (I(V )).

Proof. Note that Ŵ (W ∈ Fn) commutes with σ. Therefore we see that

σI(CW (V )) = σCW (V )σ

= σ
cW−1VcWσ

= σV σcW

= σI(V )cW

= σ
cW−1I(V )cW

= σCW (I(V )).

Since I and CW preserve eq , we have I(CW (V )) = CW (I(V )). �

Proposition 4.8.

CI(W ) = CW−1

Proof. Since πq(I(W )) = πq(W−1) (Property (3)), it is a direct consequence

of Corollary 4.2(2). �
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