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ALGEBRAIC FORMULAE FOR THE
¢-INVERSE IN A FREE GROUP

K.HABIRO, S KAMADA, Y.MATSUMOTO anD K.YOSHIKAWA

ABsTRACT. Let Fj, be a free group with n fixed generators, which we assume
are linearly ordered. In a previous paper [M], a curious mapping I : F,, — F,
was introduced pictorially. It is a “square root ”of the inner automorphism of F),
induced by the “smallest ”generator. In the present paper, two algebraic formulae
will be given, by which one can compute the mapping I purely algebraically.

1. INTRODUCTION

Let F,, denote a free group with n fixed generators x1,xs,...,x,, which are
referred to as the preferred generators. We assume that these generators are
linearly ordered:

T <X <+ - < Ty.
In what follows the “smallest” generator x; will play a special role, and it will
be denoted by a special letter ¢:
q=11.
The present paper is concerned with a curious mapping
1:F,—F,,

which was introduced in [M] pictorially in connection with the conjugation for-
mula for the mapping class group of a punctured sphere. In that paper, the map-
ping I was called the “quantum inverse”, but here we will call it the ¢-inverse for
simplicity. The purpose of this paper is to give two different algebraic formulae,
each of which allows one to compute this mapping I purely algebraically.

The g-inverse I has several interesting properties:
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(1) For each element W € F,,,

In other words, I is a “square root” of the inner automorphism of F,, induced by

q. In particular, I is a bijection.

(2) I is stable: Let F,, be another free group with preferred generators yi, yo,

..y Ym which are linearly ordered:

1 <Yz < - < Ynm-

Let h : F,, — F,, be an embedding which preserves ¢ and the order of the
preferred generators. More precisely, let h : F,, — F,, be a homomorphism

satisfying the following conditions:

h(ml) = Y1,
h(zi) = Yori), 0(1) €{2,... ,m} (i=2,...,n), and
o(i) < o(j) for i < j.

Then the following diagram commutes:

F, ;)Fn

") [
F, — F,,
I

(2) Let E be a subset of {zs,...,2,} and ng : F,, — F,/N(E) the projection
to the quotient group by the normal subgroup N(F) generated by E. Then the

following diagram commutes:

F, — F,

| |

Fa/N(E) —— Fa/N(E)

(3) Substitution ¢ = 1 reduces I(W) to the classical inverse W 1. More precisely,
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the following diagram commutes:

F, — F,

g |7

F./N(q) —— Fn/N(q)

inverse
where N(g) is the normal subgroup generated by ¢, and 7, : F,, — F,/N(q) is
the quotient homomorphism.
(4) (“The law of conservation of energy”) For each W € F,,, we have e (W) =
eq(I(W)), where e,(WW) is the sum of the exponents of ¢ in the word expression
of W.
Here are some examples of computations, where y and z stand for any two

preferred generators x; and z; such that z1(=¢q) < z;(=y) < zj(= 2).

2yz ) — qzz_1q_1z_1y_lzqz_1q_1z_1yzqzq_lz_lq_lz_ly_l.

2. TwO DEFINITIONS OF [

Let P be a set of n+ 1 interior points pg, p1, - .., pn of a 2-disk D arranged on
a line in this order. By a cord on (D, P), we mean an embedded curve « in the
interior of D such that a N P = da = {p;, p; } for some i, j with ¢ # j. For a cord
a on (D, P), let 7(a) be a counter-clockwise 180°-twist along « interchanging
the end-points of a executed in a sufficiently small disk neighborhood of . This

defines a map
7:C(D,P)— M(D,P)

from C(D, P), the set of isotopy classes of cords on (D, P), to M (D, P), the
mapping class group of (D, P) relative to 9D. We use the same symbol « for a
cord a and its isotopy class [a] unless it makes any confusion.

The group M (D, P) is identified with the braid group B,i; so that each

standard generator o; (i = 0,...,n — 1) of B, 41 corresponds to the mapping
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class (; of 7(a;), where «; is the line segment between p; and p;11.

Let A;; (i < j) be Artin’s pure braid generator

S -1 2 , , ,
Ajj=0; 0, 0 905 10j-2...0i410;

. ) . 2 _—1 -1 -1
=04j-104j-2...0{410; Ji—l—l .. 'Jj—QJj—l'

Artin [A] proved that the subgroup of M (D, P) generated by Ao ; (j = 1,...n)
is a free group isomorphic to m1(D — {p1,...,Pn},po). Setting z; = Ay ;, we
sometimes identify this subgroup of M (D, P) with the free group F,, generated
by z; (j =1,...n), see Figures 1 and 2.

Figurel

Figure2

We will adopt the convention that the mapping class group M (D, P) acts
on (D, P) from the right. Thus for a cord o € C(D, P) and a mapping class
f € M(D, P), the notation («)f will denote the image of a under the action of
f. For each W € F,, C M(D,P), let n(W) be the cord (or its isotopy class)

(cvo)W in this notation. This defines a map
n: Fn - C(D,P)Ol,

where C(D, P)g; is the subset of C'(D, P) consisting of the isotopy classes of
cords a with da = {po, p1}-

Proposition 2.1 ([M]). The map n : F,, — C(D, P)o1 induces a bijection

n:{@)\Fn — C(D, P)oy
from the right coset (q)\F,, to C(D, P)o1.

Since (ap)g = ag in C(D,P)o1, n : (¢)\F, — C(D,P)p1 is well-defined.
We will describe the inverse map: Consider mutually disjoint half lines labelled
Z1,..., Ty, starting from pq,...,p, asin Figure 3. Assume that a cord « intersects
these half lines transversely and assign each intersection point the label of the
half line. Trace the curve « from p; to py, and we obtain a word W by reading

the labels on the intersection points, together with the signs of the intersections
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as their exponents. The word W as an element of (¢)\F, is uniquely determined

by the isotopy class of the cord «.

Figure3

Using the bijection 7 : (¢)\Fn — C(D, P)o1, we define a map I : F,, — F,
as follows: Let W be an element of F,, and a a cord on (D, P) with n(W) = «a.
Apply (o (= 7(ap)) to the cord «, and we have another cord o’ = («)(y with the
same property 0o’ = {po,p1}. By the inverse map of n, the cord o’ corresponds
to an element [W'] of (¢)\F,,. Take a unique representative W' of [IW’] such that
e4(W) = e (W).

Definition. For each W € F,,, there exists a unique element W’ € F;, such
that (n(W))Co = n(W’) and e,(W) = ey(W'). Then I(W) is defined to be W’.

For example, a word W = xsx4 is represented by a cord illustrated in Figure 3.
Applying a disk twist (p to this cord, we have a cord as in Figure 4, which
represents [z ‘x5 '] of (¢)\F,. Thus I(zyx4) = x; 25", It is easily seen that

I(z;) = xi_l for each i with 2 < i < n; nevertheless I(x1) = 1.

Figured

In terms of the mapping class group M (D, P), this definition of I is inter-
preted as follows: For an element W € F,, C M(D, P), the conjugate W =1(,W
is a disk twist 7(a), where @ = (ag)W. If we consider a further conjugation
Co "W W, this is again a disk twist 7(a’), where o/ = (a)Cy. Proposi-
tion 2.1 implies that there is a unique element W’ € F,, such that n(W’) = o/
and ey(W') = e, (W), which is I(W). It is obvious that

G W HGW e = ¢ M@)o
= 7((2)<o)
=7(a’)
=W oW,
The second definition of /. For each element W € F,,, there exists uniquely

an element W’ € F, such that (g 'W =1 W ¢y = W' W in M(D, P) and
eq(W) = eq(W’). Then I(W) is defined to be W'.
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3. THE FIRST ALGEBRAIC FORMULA

In what follows, we work in the braid group B,,+1 instead of M (D, P). Identify
the free group F), generated by z; (j = 1,...,n) with the subgroup of B,
generated by Ao, (j =1,...,n) so that z; = Ay, (see Figure 1). We denote by
o the standard generator oy of B, 1. By a®, we mean the conjugate b~ lab.

We can further interpret the definition of I : F,, — F}, in terms of B, 1 :

The third definition of I. For each element W € F,,, there exists a unique
element W’ € F, such that o7 = ¢"" and e, (W) = e,(W’). Then I(W) is
defined to be W’.

For an element W € F,, C B, 41, let
Bw : Bpy1 — Bria
denote the inner-automorphism induced by W, namely
By (b) ="

Since W7 is a pure braid and F;, is closed under conjugation by a pure braid,
Bw (V) belongs to F, for any V € F,. Thus restricting By to F,, we have a

homomorphism

Bw : F, — F,.

It is obvious that Byw,w, (V) = Bw,(Bw,(V)). Thus we have a “right represen-

tation”

B : F, — Aut(F,), W — Bw.

To calculate By (V') for W,V € F,, it will be sufficient to calculate By (V') in
the case when W and V' are preferred generators of F,, and their inverses. By

direct calculations, we have the following results:

Lemma 3.1.
1

(ziq°w; i=1,

q x5, j=1,
By, (z5) = B;j}l (z5) =< xf, 1<i<j,
xiqxgq_lxi_l, 1<i=7y,
( (ziqz; g s (quiq ey t),  1<j <4,
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and
(g 'z g x50, i=1,
qriq?, j=1,
B,-1(x5) = B, ! (xf) = { a5, 1<i<j,
q sy, 1<i=j
\ (q_lxj_quz:j)xg(:Cj_lq_lﬂijI)a 1<j<i.

Corollary 3.2. The homomorphism By : F,, — F,, preserves eq; namely

eq(Bw(V)) =eq(V) foranyV € F,.

Theorem 3.3. [ : F,, — F,, is a crossed anti-homomorphism twisted by the right

representation B : F, — Aut(F,) :
(W Wa) = I(Wa) Bus (I(W1)).

Proof.

O,(W1W2)O’ 0,W10'W;
— I (W)wWy7
— o W8 B, (I(W1))

= O'I(WQ)B‘/Vz (I(W1))

Since eq(I(Wa)Bw,(I(W1))) = eq(I(W2)) + eo(L(W1)) = eq(W1W3), we have
I(W1W3) = I(W2) Bw,(I(W1)). O

This theorem, together with I(q) = q and I(z;) = x{l, (i=2,...,n), allows
us to compute I (W) algebraically. In the next section we give another algebraic

formula for the g-inverse, which seems more naturally fitted to the g-inverse.

4. THE SECOND ALGEBRAIC FORMULA

For each j (j =1,...,n), we put

R {1 for j =1,
€T, =
I A()JAL]' (: :L‘jO'l‘ja'il = ailxjaa:j) for j > 1.

Figured
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For an element W of F,, C B,,+1, we denote by W the element of B, 41 that is

obtained from W by replacing each letter z; by ©;. In particular, z; " = (£;)~%.

J
We note that if 7,(W) = 7,(W’) then W = W".
For an element W € F;,, let

C’W : Bn—l—l - Bn—l—l
denote the inner-automorphism induced by W, namely,
Cy (b) = W 1bWWV.

Since W is a pure braid, Cw (V) belongs to F, for any V' € F,,. Thus restricting

Cw to F,,, we have a homomorphism
Cw : F, — F,.

It is obvious that Cy,w, (V) = Cw, (Cw, (V)). Thus we have a right representa-
tion
C: F, — Aut(F,), W — Cw.

By direct calculations, we have the following results:

Lemma 4.1.

xs, 1=1o0rj=1,
—1, ¢ .
. 1. T XX, 1 <1<y,
C:Ej (xz> = Cx}l (xz> = ]6 -1 . .
J qriq", 1<i=y,
(gr; g Has(qrig),  1<j<i,
and
x5, 1=1o0rj=1,
_ (¢ 'zj)zs(q 'z te),  1<i<,
Cpi(af) =Crl(af) =1 | . ’ o
3 q " xiq, L<u=y,
xjxgxgl, 1<y <.

Corollary 4.2. Lete,: F, = Z and 7y : F,, — F,,/N(q) be as before.

(1) The homomorphism Cyw : F,, — F,, preserves eq; namely
eq(Cw (V) =eq(V) foranyV € F,.

(2) If Wq(W) = 7Tq(W1>, then CW = CW/.
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(3) mg(Cw (V) = mg(WIVIV).

Theorem 4.3. [ : F,, — F,, is a crossed homomorphism twisted by the repre-
sentation C : F,, — Aut(F),) :

I(W1W3) = Cw, (I(W1))I(W2).

Proof. 1t is obvious from Figure 5 that for any W € F,,;, W commutes with o
in By41. Thus we have
11
sWiW2)o _  Wioo WoWs ™ Wao
— O_Wlaﬁ/\ga_lﬁ-/;71W20
— W) Wae ™ W Wao
_ OVV\{lI(Wl)VV\za*VVZ”WW

151
— oCwy(I(W1))o Wy Wao

Assertion 4.4. ¢ 'W~1Wo = I(W) for any W € F,.

If this assertion is proved, then since ey (Cyy, (I(W1))I(W3)) = eq(W1Ws), we
have I(W1W2) = CW2 (I(Wl))I(WQ)

Now we prove Assertion 4.4. We have for any W € F,,,

-1
O_WO’ — O‘W Wo

_ Ua_lﬁ/\_lWU.

If o~ 'W~'Wo belongs to F,, then since eq(o'_lw_lwg) = e,(W), Assertion 4.4
holds.

We prove that o WW-o e F,, for any V € F), by induction on the length of

V. If V is a generator or its inverse, it is directly seen that o~ W-1Vs € F,. If
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V = V1 V5, then we have

17r—1 1o ¢
o VT Ve=0c""V1Vo ViVoo
11
=oc'Va Vi ViVao

=0 Vo oo Vi Vioco Vo

1

=0 Wy oz10 Vso

1 _ —1

— 0 1‘/2 oo 1‘/20_210' Voo
1 —1

— 0 1‘/2 ‘/20_210' Voo

—1
= 29217 V29,

~—1

where z; = 07V, V;o (i = 1,2). By induction hypothesis, z; and 22 belong to
F,,. Since 0~ V40 is a pure braid, 21‘7_1V2‘7 belongs to F;,. Hence o~ W-lVe e
F,. O

If W = 1, then by definition I(WW) = 1. If W is a generator of F,, or its inverse,

then by a direct calculation we have

q° if 1 =1,
I(xf) = x;* ifi#£1, e=+1,

(3

g lziq ifi#1le=—1.

If Wis z;! ...2z5™, then I(W) is calculated by
(W) =[] Ow, (1 (5)),
j=1

where W; = IZE co.xgm for j=1,...,m — 1, and Wy, = 1. This is the most

efficient formula known to the authors that fits to computer programing.

Proposition 4.5.
T(W1g"Wa) = T(W W) T(Wa) ™t gF T(Ws).
In particular,

I(¢"W) = ¢"I(W), and I(W¢")=I(W)q".

This proposition follows from Theorem 4.3. The detailed proof will be left to

the reader.
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Finally we give a relation among I, By and Cyy .

Proposition 4.6.
Cw (V) = I(W)Bw (V)I(W)™".

Proof. By Theorems 3.3 and 4.3, we have I[(W1Wy) = [(W3)Bw, (I1(W7)) =
Cw, (I(W1))I(Ws) for any W7 and Ws. Hence we have the relation. [

Proposition 4.7. Cy commutes with I; namely, I(Cw (V)) = Cw (I(V)).
Proof. Note that W (W € F,,) commutes with o. Therefore we see that
ACw (V) _ ;Cw(V)o
oW ' VWo
oVow
O_I(V)W
— W THI(V)W

_ GOw (V)

Since I and Cyy preserve e, we have I(Cyw (V)) = Cw (I(V)). O

Proposition 4.8.
C](W) == Cw—l

Proof. Since m,(I(W)) = m,(W =) (Property (3)), it is a direct consequence
of Corollary 4.2(2). O
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