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Abstract

In this paper, we estimate the degree of symmetry and the semi-simple
degree of symmetry of certain fiber bundles by virtue of the rigidity the-
orem with respect to the harmonic map due to Schoen and Yau. As a
corollary of this estimate, we compute the degree of symmetry and the
semi-simple degree of symmetry of certain product manifolds. In addition,
by Albanese map, we estimate the degree of symmetry and the semi-simple
degree of symmetry of a compact smooth manifold under some topological
assumptions.

1 Introduction

LetMn be a compact connected smooth n-manifold and N(Mn) the degree of
symmetry ofMn, that is, the maximum of the dimensions of the isometry groups
of all possible Riemannian metrics on Mn. (All the manifolds of this paper are to
be compact and smooth.) Of course, N(M) is the maximum of the dimensions
of the compact Lie groups which can act effectively and smoothly on M . The
following is well known:

N(Mn) ≤ n(n+ 1)/2. (1)

In addition, if the equality holds, thenMn is diffeomorphic to the standard sphere
Sn or the real projective spaceRP n. In [10] H. T. Ku, L. N. Mann, J. L. Sicks and
J. C. Su obtained similar results on a product manifoldMn =Mn1

1 ×Mn2
2 (n ≥ 19)

where Mi is a compact connected smooth manifold of dimension ni: they showed
that

N(M) ≤ n1(n1 + 1)/2 + n2(n2 + 1)/2, (2)
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spin manifold, Â-genus, KO-characteristic number, first Betti number.
This research was partially supported by the Japanese Government scholarship.

1



and that if the equality holds, then Mn is a product of two spheres, two real
projective spaces or a sphere and a real projective space. A preliminary lemma
for the proof of Ku-Mann-Sicks-Su’s results claims that if Mn (n ≥ 19) is a
compact connected smooth n-manifold which is not diffeomorphic to the complex
projective space CPm (n = 2m), then

N(Mn) ≤ k(k + 1)/2 + (n− k)(n− k + 1)/2 (3)

holds for each k ∈ N such that the k-th Betti number bk of M is nonzero. Then
we see that when a compact oriented smooth manifold M of dimension 4m ≥ 20
has nonzero signature σ(M), then the following holds:

N(M) ≤ N(CP 2m) = 4m(m+ 1). (4)

The equality in (4) was also showed by Ku-Mann-Sicks-Su in [10]. The semi-
simple degree of symmetry Ns(M) [4] is defined similarly, where we consider only
actions of semi-simple compact Lie groups on M . It is clear that (1) also holds
for the semi-simple degree of symmetry if the manifold has dimension ≥ 2. D.
Burghelea and R. Schultz showed [4] Ns(M

n) = 0 if there exist α1, · · · , αn in
H1(Mn;R) with α ∪ · · · ∪ αn �= 0.

Ku-Mann-Sicks-Su’s estimates (2) and (3) and Burghelea-Schultz’s result on
the degree of symmetry and the semi-simple degree of symmetry of a manifold
mainly depend on its topological structure. On the other hand, when we consider
if there exists a nontrivial S1-action or S3-action on a manifold, we meet some
obstructions from its differential structure. Here a nontrivial S3-action on a
manifold means [11] that a Lie group S3 or SO(3) acts effectively and smoothly
on it. Let us see some examples as follows:

A spin manifold is an oriented Riemannian manifold with a spin structure on
its tangent bundle (cg [11]). A famous theorem of M. Atiyah and F. Hirzebruch
[2] claims that a spin manifold has degree of symmetry 0 if the index of the
Dirac operator on it, or equivalently, its Â-genus, is nonzero. Let X be a spin
manifold of dimension 8q + 1 (resp. 8q + 2), Atiyah and Singer [3] showed that
the real dimension (resp. complex dimension) (mod 2) of the space of harmonic
spinors X can be identified with a certain KO-characteristic number α(X) of the
spin-cobordism class of X. Let Θn be the group of homotopy n-spheres. This
KO-characteristic number was shown by Milnor and Adams to give a nontrivial
homomorphism α : Θn → Z2 for n = 8q + 1 or 8q + 2 (cf [1], [15]). Since for
n = 8q + 1 or 8q + 2, the homotopy n-spheres which bound spin manifolds form
a subgroup BSpinn of index 2 in Θn, we see that Ker α = BSpinn. For the
α-invariant is additive with respect to connected sums of manifolds, it is always
possible to change the differentiable structure of a spin manifold X, in dimension
8q+1 or 8q+2, to make α(X) nonzero. It follows from Lawson and Yau [13] that
if α(X) is nonzero, then there exists no nontrivial smooth effective S3 action on
X, or equivalently, the only compact, connected effective transformation groups
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on X are tori, from which the followings hold:

N(X) ≤ dim X, Ns(M) = 0. (5)

Definition 1.1 We call a manifold significant if and only if it is oriented and
has nonzero signature. A manifold is said to be Â-nontrivial if and only if it is
spin and has nonzero Â-genus. A manifold X is said to be α-nontrivial if and
only if it is spin, of dimension 8q + 1 or 8q + 2, and α(X) �= 0, where q may be
zero.

Definition 1.2 We call a manifold S3-trivial if and only if there exists no smooth
and effective S3-action on it, or equivalently, its semisimple degree of symmetry
is zero.

Remark 1.1 Both Â-nontrivial manifolds and α-nontrivial manifolds are S3-
trivial. Lawson and Yau [13] showed that if a compact manifold doesn’t admit a
Riemannian metric of positive scalar curvature, then it is S3-trivial.

One of the purposes of this paper is to make some estimate for certain nontriv-
ial compact fiber bundles and generalize partially Ku-Mann-Sicks-Su’s estimates
(2). In particular, we obtain a bundle version of (4) and the results by Atiyah-
Hirzebruch and Lawson-Yau when taking the special fibers as in Definition 1.1
and 1.2.

Theorem 1.1 Let V be a compact manifold which can be equipped with a real
analytic metric of nonpositive curvature and E a compact smooth fiber bundle
over V such that the fiber F of E is connected. Then the followings hold:

N(E) ≤ dim F (dim F + 1)/2 +N(V ), Ns(E) ≤ dim F (dim F + 1)/2. (6)

Particularly,
(i) suppose E is oriented and F is a significant manifold of dimension ≥ 19.
Then the following holds:

N(E) ≤ dim F (dim F + 4)/4 +N(V ). (7)

(ii) Suppose E is spin and F is an Â-nontrivial manifold. Then E is S3-trivial
and the following holds:

N(E) ≤ N(V ). (8)

(iii) Suppose E is spin and F is an α-nontrivial manifold. Then E is S3-trivial
and the following holds:

N(E) ≤ dim F +N(V ). (9)

(iv) Suppose Σn is an exotic n-sphere which does not bound a spin manifold and
V is spin. Then Σn × V is not diffeomorphic to Sn × V .
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Remark 1.2 By a result in [12] we know the dimension of isometry group of
V is rank of the center of π1(V ). On the other hand from [5] we know that if
a compact connected Lie group acting smoothly and effectively on a compact
aspherical manifold A, then it is a torus of dimension ≤ rank of the center of
π1(A). Combining these two results, we immediately see the degree of symmetry
of V is equal to rank of the center of π1(V ).

Remark 1.3 In Theorem 1.1, V cannot be replaced by an arbitrary compact
manifold because the Hopf bundle S1 → S3 → S2 forms a counterexample.

Remark 1.4 Let T 2 be a two dimensional torus and K a Klein bottle. Then
N(T 2) = 2 and N(K) = 1 hold. Therefore we see that the connectivity of fiber
F is necessary for the first inequality in (6) in Theorem 1.1.

By the definition of degree of symmetry, it is easy to see that for a prod-
uct manifold M1 ×M2, where Mi is a compact connected smooth manifold, the
following holds:

N(M1 ×M2) ≥ N(M1) +N(M2). (10)

Combining (6), (7) and (8) with (10), we immediately obtain the following

Corollary 1.1 Let V be a compact manifold which can be equipped with a real
analytic metric of nonpositive curvature. Then the following holds:

N(Sn × V ) = N(Sn) +N(V ), Ns(S
n × V ) = Ns(S

n). (11)

Suppose V is oriented. Then the inequality

N(CP 2m × V ) = N(CP 2m) +N(V ),

holds provided 4m ≥ 20. Moreover if V is spin and X is Â-nontrivial, then the
following holds:

N(X × V ) = N(V ).

Remark 1.5 Corollary 1.1 shows the estimates (6), (7) and (8) in Theorem 1.1
are sharp for bundles with fibers as sphere, significant manifold and Â-nontrivial
manifold respectively.

From (3) we see that if Mn (n ≥ 19) is a compact connected smooth n-
manifold with nonzero first Betti number, then the following holds:

N(Mn) ≤ n(n − 1)/2 + 1.

The other of the purposes of this paper is to refine this inequality and Burghelea-
Schultz’s result:
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Theorem 1.2 Let M be an n-dimensional compact smooth manifold with nonzero
first Betti number b1.
(i) Suppose that there exists one dimensional real cohomology classes α1, · · ·, αk

such that α1 ∪ · · · ∪ αk does not vanish in Hk(M ;R). Then the followings hold:

N(M) ≤ (n − k + 1)(n− k)/2 + k, Ns(M) ≤ (n− k + 1)(n− k)/2.

(ii) Suppose b1 ≥ i = 1 or 2. Then the followings hold:

N(M) ≤ (n − i+ 1)(n− i)/2 + i, Ns(M) ≤ (n− i+ 1)(n− i)/2.

Particularly, if n− i = 1, then Ns(M) = 0.
(iii) Suppose b1 ≥ 3. Then the following holds:

N(M) ≤
{
(n− 2)(n− 1)/2, if n ≥ 5,
4, if n = 4.

(12)

This paper is organized as follows. In Section 2, we prepare for the following
sections. Particularly, if there exists a nontrivial harmonic map from a compact
Riemannian manifold M to a compact manifold of nonpositive curvature, we
can estimate the dimension of isometry group of M from above (cf Lemma 2.1
and Lemma 2.2). In Section 3, from the assumptions in Theorem 1.1, we show
the nontriviality of the harmonic map homotopic the fibration map from E to
V and prove Theorem 1.1 by the cobordism theory. In Section 4, we show the
nontriviality of the Albanese map from M to a b1(M)-dimensional flat torus and
prove Theorem 1.2.

Acknowledgements: The author is very grateful to Professors Takushiro
Ochiai and Hitoshi Arai for constant encouragement. He is very happy to express
his gratitude to Prof. Mikio Furuta for telling him the proof of Proposition 3.1
and introducing him to the semi-simple degree of symmetry. He would like to
thank Doctors Naoya Ando, Tetsuhiro Moriyama and Weixiao Shen for answering
his questions.

2 Preliminaries

2.1 The isometry group of a Riemannian manifold and

the harmonic map due to Schoen and Yau

For a compact Riemannian manifold M let I(M), I0(M) be the isometry group
of M and its identity component respectively. The following is known:

Proposition 2.1 (cf Theorem 4 in [19]) Suppose M, N are compact real analytic
Riemannian manifolds and N has nonpositive sectional curvatures. Suppose h :
M → N is a surjective harmonic map and its induced map h∗ : π1(M) → π1(N)
is also surjective. Then the space of surjective harmonic maps homotopic to h is
represented by {β ◦ h|β ∈ I0(N)}.
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We shall prove

Lemma 2.1 Under the hypotheses of Proposition 2.1 it follows that

dim I0(M) ≤ (m− n+ 1)(m− n)/2 + dim I0(N),

where m = dim M and n = dim N .

Proof. Taking an element α ∈ I0(M), we obtain a surjective harmonic map h◦α
homotopic to h. By Proposition 2.1, we see that there exists ρ(α) ∈ I0(N) such
that h ◦ α = ρ(α) ◦ h. We see that ρ : I0(M)→ I0(N) is a homomorphism. The
proof is completed if we show that Ker ρ, which acts smoothly and effectively
on M , has dimension not greater than (m − n + 1)(m − n)/2. By Theorem
4.27 in [9], we see that the sum of the principal orbits of Ker ρ action is an
open dense subset of M . Since h is a surjective smooth map, we see by Sard’s
theorem that the preimage of the regular value set of h is a nonempty open set
in M . Therefore there is a point p ∈ M so that (Ker ρ)(p) is a principal orbit
and the fiber h−1(h(p)) has dimension m − n. The equation h ◦ β = h for all
β ∈ Ker ρ shows that (Ker ρ)(p) is a submanifold of the fiber h−1[h(p)] and has
dimension≤ m− n. Since Ker ρ acts effectively on its principal orbit, Ker ρ has
dimension ≤ (m− n+ 1)(m− n)/2.

2.2 The isometry group of a Riemannian manifold and

the Albanese map

For a compact oriented Riemannian manifoldM with nonzero first Betti number
b1(M), let H be the real vector space of all harmonic 1-forms on M and ν the
natural projecion from the universal covering M̃ of M . For x0 ∈ M̃ , set p0 =
ν(x0). We define a smooth map ã : M̃ → H∗ from M̃ to the dual space H∗ of H
by a line integral

ã(x)(ω) =
∫ x

x0

ν∗ω.

For σ ∈ π1(M)
ã(σx) = ã(x) + ψ(σ)

holds, where ψ(σ)(ω) =
∫ σx0
x0

ν∗ω, so that ψ is a homomorphism from π1(M) into
H∗ as an additive group. It is a fact that ∆ = ψ(π1(M)) is a lattice in the
vector space H∗, and clearly this vector space has a natural Euclidean metric
from the global inner prduct of forms on M . With the quotient metric, we call
the torus A(M) = H∗/∆ the Albanese torus of Riemannian manifold M . By
the above relation between ã and ψ, we obtain a map a : M → A(M) satisfying
ã(x) ∈ a ◦ ν(x) for any x ∈ M̃ . We call the map a the Albanese map. From the
very construction of a, we see that the map it induces on fundamental groups

a∗ : π1(M)→ π1(A(M))
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is surjective and that a∗ maps the space of harmonic 1-forms on A(M) isomor-
phically onto H. By Corollary 1 in [17], the Albanese map is harmonic. We shall
prove

Lemma 2.2 Let M be an n-dimensional oriented compact Riemannian manifold
and a : M → A(M) its Albanese map. Let da denote the differential of a and set

ra := max{rank da(p)|p ∈ M}.
Then dim I0(M) ≤ (n− ra + 1)(n− ra)/2 + ra.

Proof. We have only to consider the dimension of I0(M), the identity component
of I(M). For any γ ∈ I0(M), a ◦ γ is also a harmonic mapping from M to the
Albanese torus A(M) and homotopic to a. Hence there is a translation ρ(γ) of
the torus A(M) such that

a ◦ γ = ρ(γ) ◦ a .

Then we have a homomorphism ρ : I0(M) → T b1, where the torus T b1 is the
translation group of Albanese torus A(M). Let U be a non-empty open set of M
such that the followings hold:
(a) on U the rank of da is euqal to ra;
(b) for any point p ∈ U , a−1(a(p)) is a (n − ra)-dimensional submanifold of M .
Similarly to the proof of Lemma 2.1, we can see that there is a point p ∈ U such
that (Ker ρ)(p) is a principal orbit and the fiber a−1(a(p)) has dimension n − r.
The equation a ◦ β = a for all β ∈ Ker ρ shows that (Ker ρ)(p) is a subset of
the fiber a−1[a(p)] and has dimension ≤ n− r. Since Ker ρ acts effectively on its
principal orbit, Ker ρ has dimension ≤ 1

2
(n− r+1)(n− r). As a subgroup of the

translation group of A(M), Im ρ acts freely on the image of a so that Im ρ has
dimension ≤ dim a(M) = r. The proof is completed.

3 Proof of Theorem 1.1

We firstly prove a topological result on fiber bundles.

Proposition 3.1 Let p0 : E → B be a fiber bundle over a compact connected
smooth manifold B such that the fiber of E is also connected. Suppose p1 : E → B
is a map homotopic to p0. Then p1 is surjective.

Proof. The proof is an application of the Serre spectral sequence. Suppose
there exists a point x ∈ B such that the image of p1 : E → B lies in the
space B ′ := B − {x}. Then the composition of p1 : E → B with the inclusion
i : B ′ → B is homotopic to the projection map p0 of the fiber bundle p0 : E → B.
It is known that there exists a fibration (in the sense of Serre) p2 : E

′ → B ′ and
a map f : E ′ → E such that f is a homotopy equivalence and the compostion
p1 ◦ f is homotopic to p2. Let F, F ′ and H∗

a, H∗
b be the homotopy fibers and the
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Serre local systems of the fiber bundles p0 : E → B and p2 : E
′ → B ′ respectively.

Then for these two fiber bundles we have two spectral sequences

(a) : Ep,q
2 = Hp(B;Hq

a)→ H∗(E)

and
(b) : Ep,q

2 = Hp(B ′;Hq
b)→ H∗(E ′)

repectively, where we use cohomology groups with coefficients Z/2Z. Since f :
E ′ → E is a fiber bundle map (in the sense of homotopy) over the map i : B ′ → B,
we also have a natural map between the spectral sequences φ : (a) → (b). For
n = dim B and k = dim F , we compare the En,k

∞ -terms of (a) and (b) by
the map φ. The En,k

∞ -term of (a) is Z/2Z, which is naturally isomorphic to
Hn+k(E). The En,k

∞ -term of (b) is 0, whose proof is put in the next paragragh.
Hence the map φ on the En,k

∞ -term is 0, which implies that the natural map
f∗ : Hn+k(E) → Hn+k(E ′) is trivial. This contradicts that f : E → E ′ is a
homotopy equivalence.

Now we prove that the En,k
∞ -term of (b) is 0. We have only to show that the

En,k
2 -term of (b) is 0, which is just a special case of the equality

Hn(B ′;S) = 0
for any local system S with coefficients Z/2Z over B ′. Since B is a smooth
compact connected manifold of dimension n, we claim that B has a cell structure
with only one n-cell. In fact if taking a decomposition of B by polyhedra such
that the number of the n-cells is minimum, then we see that the number of the
n-cell is one. Otherwise, since B is connected, then there exists two n-cells which
have a common (n − 1)-dimensional cell. Deleting the common (n − 1)-cell, we
obtain another decomposition of B by polyhedra with less number of n-cells.
Contradiciton! It is clear that B ′ = B − {x} has the homotopy type of the
(n − 1)-skeleton Bn−1 of this decomposition. Calculating H∗(Bn−1;S) by this
cell decomposition, we immediately see Hn(Bn−1;S) = 0 and complete the proof.

Proof of Theorem 1.1: We remark that if a Lie group acts smoothly on
a manifold, then there exists an analytic structure on this manifold such that the
Lie group acts on it analytically. Hence the degree of symmetry of E is also equal
to the maximum of the dimensions of the isometry groups of all real analytic
Riemannian metrics on E.

For the proof of the first inequality in (6), we have only to show that for any
real analytic Riemannian metric on E, the inequality

dim I0(E) ≤ dim F (dim F + 1)/2 +N(V )

holds. The projection p : E → V of the fiber bundle induces a surjective map
from π1(E) to π1(V ) since the fiber F is connected. Using an well-known result
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by J. Eells and J. Sampson, we see that there exist harmonic maps homotopic to
p. By Proposition 3.1, we see that each of them is surjective. Combining Remark
1.2 and Lemma 2.1, we obtain the above inequality. For the proof of the second
inequality in (6), we have only to show that for a semi-simple compact Lie group
G which acts isometrically on the analytic Riemannian manifold E, the following
estimate holds:

dim G ≤ dim F (dim F + 1)/2. (13)

Since any Lie group homomorphism from G to a torus is trivial, it is followed
that

dim G ≤ dim Ker ρ,

where ρ : G → I0(V ) is the homomporhism constructed in the proof of Lemma
2.1. we obtain (13) by the estimate of dim Ker ρ in the proof of Lemma 2.1.

For the proof of (i), (ii) and (iii) of Theorem 1.1, we also have only to prove
corresponding results for the isometry group with respect to any analytic Rieman-
nian metric on E. Let P = pt : E× [0, 1]→ V be the smooth homotopy between
the projection map p = p0 and a harmonic map p1 : E → V . By Proposition 3.1,
we see that pt : E → B is surjective for any t ∈ [0, 1]. Using the harmonic map
p1, by the same way in the proof of Lemma 2.1, we can construct a homomor-
phism ρ : I0(E)→ I0(V ) and find a point x ∈ E such that the followings hold:

(a) (Ker ρ)(x) is a principal orbit for the transformation group Ker ρ on E;
(b) p1(x) is the regular value of the homotopy map P and its preimage F by P
is a non-empty submanifold of E × [0, 1];
(c) F has boundary as the disjoint union of p−1

0 (p0(x)) ∼= F and p−1
1 (p1(x)) = F ′;

(d) (Ker ρ)(x) ⊂ F ′ and the group Ker ρ acts effectively on the manifold F ′.

Since the normal bundle of F in E× [0, 1] is trivial, F is oriented if E is oriented
and it is spin if E is spin. It implies that F and F ′ are oriented cobordant if E is
oriented and they are spin cobordant if E is spin. Since signature, Â-genus and
KO-characteristic number are invariants of oriented cobordism, spin cobordism
respectively, if F is significant, Â-nontrivial or α-nontrivial, so is F ′. Although
F ′ may be not connected, we see that there exists one component F ∗ of F ′ which
is significant, Â-nontrivial or α-nontrivial. For Ker ρ acts effectively on F ∗, if
F ∗ is significant, we can estimate its dimension by (4) and then obtain (i) of
Theorem 1.1. If F ∗ is Â-nontrivial, by Atiyah-Hirzebruch’s theorem we see that
Ker ρ is trivial and (ii) of Theorem 1.1 follows. The proof of (iii) of Theorem 1.1
is completed by Lawson-Yau’s result (cf (5)).

Finally taking Σn ×V as a trivial bundle over V in the above argument, since
the fiber F = Σn is spin cobordant to F ′, we see that F ′ does not bound spin
manifold. Since Ker ρ acts effectively on F ′, it follows by (1) that

dim Ker ρ ≤ N(F ′) < N(Sn) = n(n+ 1)/2.

Hence we see that N(Σn × V ) < N(Sn × V ), which completes the proof of (iv).
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4 Proof of Theorem 1.2

In order to prove Theorem 1.2, we need lemmas.

Lemma 4.1 Let π :M ′ → M be a finite covering between compact smooth man-
ifolds. Then we have N(M) ≤ N(M ′).

Proof. We can assume that π : M̃ → M is a Riemannian covering. It is enough
to show dim I(M) ≤ dim I(M ′). Since I(M) and I(M ′) are Lie groups of finite
dimension, we only need to compare the dimensions of their Lie algebras. Given
a Killing vector field V on M , the pullback of V by π is also a Killing field on
M ′ so that the Lie algebra of I(M) is a subalgebra of that of I(M ′).

Let π : X̃ → X be an n-sheeted covering space defined by an action of group
Γ on X̃. Then (cf [8], Proposition 3H.1) with coefficients in a field F whose
characteristic is 0 or a prime not dividing n, the map π∗ : Hk(X;F )→ Hk(X̃;F )
is injective with image the subgroup Hk(X̃ ;F )Γ consisting of classes α such that
γ∗(α) = α for all γ ∈ Γ. In particular, we see
Lemma 4.2 Let M be a non-orientable compact manifold, π : M ′ → M its
orientable double covering. Then
(1) b1(M) ≤ b1(M

′);
(2) If there exist k one dimensional real cohomology classes α1, · · · , αk of M such
that α1 ∪ · · · ∪ αk is not trivial in Hk(M ;R), there also exist k one dimensional
real cohomoly classes β1, · · · , βk whose cup product does not vanish in Hk(M ′;R).

Lemma 4.3 Let M be an n-dimensional oriented compact Riemannian manifold
with nonzero first Betti number b1. Let a : M → A(M) be its Albanese map.
(1) Suppose there exist k integral one dimensional real cohomology classes α1, · · ·, αk

such that α1 ∪ · · · ∪ αk does not vanish in Hk(M ;R). Then ra ≥ k holds.
(2) Suppose b1 ≥ r = 1 or 2, then ra ≥ r holds.

Proof. (1) By the assumption, the Albanese map a of M induces a non-trivial
homomorphism a∗ : Hk(A(M);R) → Hk(M ;R), which implies that the rank of
da is at least k at some point p ∈ M .
(2) In case of r = 1 this statement is obvious. When b1 ≥ 2, it is implied by
the general unique continuation property of harmonic mappings (cf Theorem 3
in [18]). In fact, if the maximal rank of da is 1, a maps M onto a closed geodesic
of A(M) since a : M → A(M) is harmonic. This contradicts surjectivity of the
homomorphism a∗ : π1(M)→ π1(A(M)) ∼= Zb1.

Finally we arrive at the proof of Theorem 1.2.
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Proof of Theorem 1.2: By Lemma 4.1 together with Lemma 4.2, we may
assume M is an oriented Riemannian manifold and let a : M → a(M) denote
its Albanese map. We omit the proof of the estimates for semi-simple degree of
symmetry here since it is similar to that of the second inequality in (6.

From Lemma 2.2 together with Lemma 4.3, we see that one of the upper
bounds of dim I(M) is

max{1
2
(n− j + 1)(n− j) + j|j = k, k + 1, · · ·, n},

which is equal to (n− k + 1)(n− k)/2 + k. Hence we obtain (i) of Theorem 1.2.
By Lemma 2.2 and Lemma 4.3, we obtain (ii) of Theorem 1.2.
For the proof of (iii) of Theorem 1.2, We have only to consider the analytic

Riemannian metric on M . Since the first Betti number b1 is not less than 3, we
see by Lemma 4.3 that ra ≥ 2 holds. If ra ≥ 3, then from Lemma 2.2 we know

dim I(M) ≤ 1

2
(n− 2)(n− 3) + 3.

Suppose r = 2. We recall the homomorphism ρ from I0(M) to the translation
group T b1 of A(M) constructed in the proof of Lemma 2.2. We claim that the
homomorphism ρ is trivial so that

dim I0(M) = dim Ker ρ ≤ 1

2
(n− 1)(n− 2).

Otherwise, there is a translation group S1 acting freely and isometrically on the
image of a. Since both M and A(M) are real analytic, a theorem of Morrey
[16] shows that the harmonic mapping a is in fact real analytic. By well-known
theorems in real analytic geometry [14] we know that both M and A(M) can
be triangulated so that a(M) is a 2-dimensional compact connected simplicial
subcomplex of A(M). We write the orbit space of the free and isometric S1

actions on A(M) and a(M) by A(M)/S1 and a(M)/S1 respectively, in which the
former is in fact also a flat torus of dimension b1−1. Since the natural projection
map π : A(M) → A(M)/S1 is totally geodesic, we see that by a result in [6]
the composition map π ◦ a : M → A(M)/S1 is a harmonic map, whose image is
a(M)/S1, the orbit space of the free S1 action on the two dimensional simplicial
subcomplex a(M) of A(M). Hence a(M)/S1, the image of π ◦ a in A(M)/S1 has
dimensional 1 so that the differential of harmonic map π ◦ a has rank ≤ 1 at any
point ofM . By Theorem 3 in [18], we see that π◦amapsM onto a closed geodesic
of A(M)/S1, which means that a(M) is a 2-dimensional torus. This contradicts
the surjectivity of the homomorphism a∗ : π1(M) → π1(A(M)) ∼= Zb1(b1 ≥ 3).
Hence we obtain

dim I(M) ≤ max{1
2
(n− 3)(n− 2) + 3, 1

2
(n− 1)(n− 2)},

which implies (iii) of Theorem 1.2.

11



References

[1] J. F. Adams, On the groups J(X), Topology., 5 (1966), 21-71.

[2] M. F. Atiyah and F. Hirzebruch, Spin-Manifolds and Group Actions,
in: Essays on Topology and Related Topics. Memoires dédiés à Georges de
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