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Abstract. We prove that the image of the natural homomorphism from the
Sp-invariant part of the cohomology of the abelianization of the Torelli group,
which is expressed as a quotient of the polynomial algebra generated by con-
nected trivalent graphs, to the cohomology of the moduli space of smooth
projective curves coincides exactly with the tautological algebra generated by
the Mumford-Morita-Miller classes. Furthermore, we give an explicit algo-
rithm to determine the cohomology class corresponding to any given trivalent
graph. This is based on some contraction formula concerning the cohomology
of the mapping class group with symplectic coefficients together with a simple

formula relating the IH moves of trivalent graphs to certain operation in the
tautological algebra.

Proofs are given twofold. The first proof is given in the framework of
group cohomology with twisted coefficients while the second one is given in
the context of symplectic representation theory. Thereby we show an exact
correspondence between the two different approaches to the tautological alge-
bra.
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1. Statement of the main results

Let Mg be the moduli space of smooth projective curves of genus g and let Mg

be the mapping class group of a closed oriented surface Σg of genus g. As is well
known, there exists a close connection between these two objects. More precisely,
Mg acts on the Teichmüller space Tg of genus g properly discontinuously and the
quotient space Tg/Mg can be naturally identified with Mg. As was essentially
established by Teichmüller, the space Tg is contractible (in fact homeomorphic to
R6g−6 for g ≥ 2) so that we have a canonical isomorphism

H∗(Mg;Q) ∼= H∗(Mg;Q).

Let π : Cg→Mg be the universal family of curves over the moduli space.
The corresponding orbifold fundamental groups are given by the group extension
π1Σg→Mg,∗→Mg where Mg,∗ denotes the mapping class group of Σg relative to
a base point. We have also a canonical isomorphism H∗(Cg;Q) ∼= H∗(Mg,∗;Q).
Let e ∈ H2(Mg,∗;Q) be the universal Euler class of the tangent bundle along the
fiber of the universal Σg-bundle and let ei ∈ H2i(Mg;Q) be the i-th Mumford-
Morita-Miller classes (see [58][44][43]). Actually Mumford defined these classes at
the level of the rational Chow algebras of the moduli spaces. Namely he defined
classes KCg/Mg

∈ A1(Cg), κi ∈ Ai(Mg) and called them tautological classes. The
cohomology classes e, ei are nothing but their images in the rational cohomology
(up to signs). The tautological algebras R∗(Cg) and R∗(Mg) of the moduli spaces
are defined to be the subalgebras of the rational Chow algebras generated by the
above tautological classes (see [41][7][18][25]). Similarly we define the tautological
algebras R∗(Mg,∗) and R∗(Mg) of the mapping class groups to be the subalgebras
of H∗(Mg,∗;Q) and H∗(Mg;Q) generated by the classes e, e1, e2, · · · . These are
simply the projected images of the original tautological algebras in the rational
cohomology.
Let H denote the first integral homology H1(Σg;Z) of Σg and let HQ = H ⊗ Q.

The intersection number induces a non-degenerate skew symmetric bilinear form
on HQ and the automorphism group of HQ preserving this form is the symplectic
group Sp(HQ). Let Λ3HQ denote the third exterior power of HQ. Then HQ can be
considered as a natural submodule of Λ3HQ by the embedding HQ � u �→ u ∧ ω0 ∈
Λ3HQ where ω0 ∈ Λ2HQ is the symplectic class. We denote the quotient Λ3HQ/HQ

simply by UQ. UQ is an irreducible representation of the algebraic group Sp(HQ)
corresponding to the Young diagram [13] (see [16][55][56] for details of symplectic
representation theory related to the mapping class group and [8] for generalities).
Extending earlier results in [52][53], the second author constructed in [56] a

morphism

π1Σg −−−−→ [12]×̃HQ� �
Mg,∗

ρ2−−−−→
((
[12]⊕ [22]

)
×̃torelliΛ3HQ

)
� Sp(HQ)� �

Mg −−−−→
ρ2

(
[22]×̃UQ

)
� Sp(HQ)

(1)
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of group extensions where we use the symbol ×̃ to indicate central extensions.
The top horizontal homomorphism in the above diagram is the second term in the
Malcev completion of π1Σg and the targets of the other two homomorphisms ρ2
are semi-direct products of Sp(HQ) with two step nilpotent groups whose extension
classes are given by certain Sp-submodules [22] ⊂ H2(UQ) = Λ2U∗

Q and [1
2]torelli ⊕

[22] ⊂ H2(Λ3HQ) = Λ2(Λ3H∗
Q) (see the above cited papers for details). By a

general property of cohomology of semi-direct products (see §3), the diagram (1)
induces the following commutative diagram

(
Λ∗(Λ3H∗

Q)
)Sp ρ∗

2−−−−→ H∗(Mg,∗;Q)� �(
Λ∗U∗

Q

)Sp −−−−→
ρ∗
2

H∗(Mg;Q),

(2)

where the superscript Spmeans the Sp-invariant part of the corresponding Sp(HQ)-
module. Now let

(
[12]torelli ⊕ [22]

)
and ([22]) be the ideals of Λ∗(Λ3H∗

Q) and Λ
∗U∗

Q

generated by [12]torelli ⊕ [22] and [22] respectively. Then it can be shown that the
images under the homomorphisms ρ∗2 in (2) of both subspaces(

[12]torelli ⊕ [22]
)Sp ⊂

(
Λ∗(Λ3H∗

Q)
)Sp

([22])Sp ⊂
(
Λ∗U∗

Q

)Sp

are trivial (see Proposition 3.2). Since there exist canonical isomorphisms(
Λ∗(Λ3H∗

Q)
)Sp

/
(
[12]torelli ⊕ [22]

)Sp ∼=
(
Λ∗(Λ3H∗

Q)/
(
[12]torelli ⊕ [22]

))Sp

(
Λ∗U∗

Q

)Sp
/([22])Sp ∼=

(
Λ∗U∗

Q/([22])
)Sp

,

we obtain the following commutative diagram

(
Λ∗(Λ3H∗

Q)/
(
[12]torelli ⊕ [22]

))Sp ρ∗
2−−−−→ H∗(Mg,∗;Q)� �(

Λ∗U∗
Q/([22])

)Sp −−−−→
ρ∗
2

H∗(Mg;Q).

(3)

Now our first main result is the following.

Theorem 1.1. The images of the homomorphisms ρ∗2 in (3) are exactly the tauto-
logical algebras R∗(Mg,∗) and R∗(Mg) so that we have the following commutative
diagram (

Λ∗(Λ3H∗
Q)/
(
[12]torelli ⊕ [22]

))Sp ρ∗
2−−−−→ R∗(Mg,∗)� �(

Λ∗U∗
Q/([22])

)Sp −−−−→
ρ∗
2

R∗(Mg).

(4)

Moreover, in the stable range (namely in degrees ≤ 2
3g), both homomorphisms ρ∗2

are isomorphisms.
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The spaces of Sp-invariants appearing in (2) can be described explicitly by ap-
plying Weyl’s classical representaion theory. Let G2k denote the set of all the
isomorphism classes of connected trivalent graphs with 2k vertices and let G02k be
the subset of G2k consisting of those trivalent graphs without loops where a loop
means an edge both of whose endpoints are the same vertex. We set G (resp. G0)
to be the disjoint union of G2k (resp. G02k) for all k ≥ 1. Then we can construct
canonical surjections from the polynomial algebras generated by trivalent graphs
to the Sp-invariant subspaces making the following diagram commutative.

Q[Γ ;Γ ∈ G] Φα−−−−→
(
Λ∗(Λ3H∗

Q)
)Sp� �

Q[Γ ;Γ ∈ G0] −−−−→
Φβ

(
Λ∗U∗

Q

)Sp

(5)

(see [53] and §2, §3 below for details). By combining (2)(4)(5), we obtain our second
main theorem.

Theorem 1.2. The homomorphisms ρ∗2 in (4), where we let the genus g run over
all values ≥ 2, can be realized at the cocycle level by the following commutative
diagram

Q[Γ ;Γ ∈ G] Φα−−−−→ Q[g][e, e1, e2, · · · ]� �
Q[Γ ;Γ ∈ G0] −−−−→

Φβ

Q[g][e1, e2, · · · ].

(6)

Here the targets express polynomial algebras generated by the classes e, e1, e2, · · ·
with coefficients in the polynomial algebra Q[g] on the genus g. Moreover, for
any trivalent graph Γ , there is an explicit recursive algorithm to determine the
cohomology classes αΓ ∈ Q[g][e, e1, e2, · · · ] and βΓ ∈ Q[g][e1, e2, · · · ].
Here and henceforth, for each connected trivalent graph Γ we denote by αΓ and

βΓ the images of Γ by the maps Φα and Φβ respectively. (However, in §2 and §3,
we will use the same letters αΓ , βΓ also for the corresponding group cocycles). For
the disjoint union Γ � Γ ′ of any two trivalent graphs Γ and Γ ′, we set

αΓ�Γ ′ = αΓαΓ ′ , βΓ�Γ ′ = βΓβΓ ′

(cf. Lemma 2.1). It should be mentioned that the cohomology classes αΓ and βΓ

do depend on the genus g. In fact, their coefficients are non-constant elements of
Q[g]. However, if we expand the coefficients in “(−2g)-adic” way, then the resultant
coefficients turn out to be independent of the genus and have certain geometrical
meaning in the context of trivalent graphs (see §8 for details). These results are
based on the following explicit formulas.

Theorem 1.3. (i) For any connected trivalent graph Γ with 2k vertices, we have

αΓ = (−1)kek + e(lower terms in e, e1, e2, · · · ).
(ii) Let Γ (k) be the connected trivalent graph with 2k vertices depicted in Figure
1.1. Then we have∑∞

k=1
tkαΓ (k) = e0 −

((
1 + 2te
1 + 3te

)2
+

te

1 + 3te
e∗

(
−t

1 + 2te

))−1
e∗

(
−t

1 + 2te

)
,
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k + 1 times︷ ︸︸ ︷
⊂⊃−−⊂⊃−−⊂⊃−−⊂⊃− · · ·−⊂⊃−−⊂⊃

Figure 1.1. Trivalent graphs Γ (k)

where e0 = 2− 2g and

e∗

(
−t

1 + 2te

)
=
∑∞

k=0
ek

(
−1

1 + 2te

)k

.

(iii) Let Γ1, Γ2 be two trivalent graphs with 2k vertices and suppose that Γ2 can be
obtained from Γ1 by applying an IH (or equivalently a Whitehead) move. Namely
there exists a subgraph shaped like the letter I in Γ1 such that Γ2 is obtained by
replacing the subgraph I ⊂ Γ1 by a subgraph shaped like the letter H. Let τ1 and τ2
be the corresponding edges of Γ1 and Γ2 respectively. Then we have

αΓ1 − αΓ2 = e(αΓ2\τ2 − αΓ1\τ1)

where Γi \ τi (i = 1, 2) denotes the trivalent graph with (2k − 2) vertices obtained
from Γi by removing the edge τi. Here if a disjoint circle, denoted by Γ0, appears
in the new graphs, then we set αΓ0 = −2g.

We can see the effect of the formula (iii) in Theorem 1.3 above in the following
simple example.

Example 1.4. Let Γ1 be a trivalent graph with two vertices which has two loops
and let Γ2 be a trivalent graph with two vertices without loop, namely a theta
graph. Then it was proved in [47][50] that

αΓ1 = −e1 − 4g(g − 1)e, αΓ2 = −e1 + 6ge

(see also [19] for a proof in the context of algebraic geometry). Now there is an
embedding I ⊂ Γ1 such that Γ2 is obtained from Γ1 by replacing I by H . Then
Γ2 \ τ2 is a circle while Γ1 \ τ1 is the disjoint union of two circles. On the other
hand, we have

αΓ1 − αΓ2 = e
(
−2g − (−2g)2

)
= e(αΓ2\τ2 − αΓ1\τ1)

which checks our formula in this case.

Main part of the results of §2 − §7 and §13 of the present paper has been an-
nounced in [35] while those of §9− §12 appear here for the first time.

2. Descriptions of

(
Λ∗(Λ3H∗

Q)
)Sp

and (Λ∗U∗
Q)

Sp
in terms of graphs

Let Ig,∗ and Ig be the Torelli groups corresponding toMg,∗ andMg respectively.
Namely they are subgroups consisting of elements which act on H trivially. Then
it is one of the fundamental results of Johnson that

H1(Ig,∗;Q) ∼= Λ3HQ, H1(Ig;Q) ∼= UQ

for any g ≥ 3 (see [28][30]). In this section, we describe the Sp(2g,Q)-invariant
part of the rational cohomology algebras H∗(Λ3H ;Q) = H∗(Λ3HQ) ∼= Λ∗(Λ3H∗

Q)
and H∗(U ;Q) = H∗(UQ) ∼= Λ∗U∗

Q of the above Sp-modules explicitly. To do so, we
use a fundamental result of Weyl in the classical representation theory. It turned
out that this is a specific case of Kontsevich’s general framework given in [37][38].
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We consider Λ3H as a natural Sp-submodule of H⊗3 by the injection Λ3H ⊂
H⊗3 defined by

Λ3H � a1 ∧ a2 ∧ a3 �−→
∑

σ∈S3

sgnσ aσ(1) ⊗ aσ(2) ⊗ aσ(3) ∈ H⊗3

where ai ∈ H . Here Sn is the n-th symmetric group and sgn σ denotes the sign
of the permutation σ. It should be remarked that Λ3H is a direct summand of
H⊗3 as a Z-module. Similarly we consider Λ2k(Λ3H) as a natural Sp-submodule
of H⊗6k defined by the injection

Λ2k(Λ3H) � ξ1 ∧ · · · ∧ ξ2k �−→
∑

σ∈S2k

sgn σ ξσ(1) ⊗ · · · ⊗ ξσ(2k) ∈ H⊗6k

where ξi ∈ Λ3H .
Now let V be a set consisting of 2k vertices with labels {1, 2, · · · , 2k} and let C

be a graph with k edges such that the set of vertices of C is exactly equal to V . In
other words, C is nothing but a way of making k parings out of labeled 2k vertices
so that if we write EC for the set of edges of C, then we can write

EC =
{

{is, js}; s = 1, · · · , k
}

where
{is, js; s = 1, · · · , k} = {1, 2, · · · , 2k}.

We always assume that is < js for all s. We can imagine such a graph C visually
by putting the 2k vertices on a straight line in numerical order and join each pair
{is, js} by a curved edge. We call such a graph a linear chord diagram because if
we close the straight line to obtain a circle, then we obtain the usual chord diagram
which appears in the theory of Vassiliev’s knot invariants (see [2]). For any linear
chord diagram C, let

aC ∈ (H⊗2k
Q )Sp(7)

be the invariant tensor defined by permuting the tensor product (ω0)⊗k in such a
way that the s-th part (ω0)s goes to (HQ)is ⊗ (HQ)js , where (HQ)i denotes the i-th
component of H⊗2k

Q , and multiplied by the factor sgnC. Here sgn C is the sign of
the permutation (

1 2 · · · 2k − 1 2k
i1 j1 · · · ik jk

)
.

Each linear chord diagram C also defines an Sp(2g;Z)-invariant homomorphism

αC : H⊗2k−→Z(8)

by the rule
αC(u1 ⊗ · · · ⊗ u2k) = sgnC

∏
s

uis · ujs .

Now let C be a linear chord diagram with 6k vertices with labels {1, 2, · · · , 6k}.
Then we can construct another graph ΓC by joining three vertices of C with labels
3i + 1, 3i + 2, 3i + 3 to a single point for all i = 0, 1, · · · , 2k − 1. Clearly ΓC is a
trivalent graph with 2k vertices. Conversely we can lift any trivalent graph Γ with
2k vertices to a linear chord diagram C with 6k vertices such that ΓC = Γ .
Now it is easy to see that the restriction of αC to the submodule Λ2k(Λ3H) ⊂

H⊗6k depends only on the associated trivalent graph ΓC . Hence, if we are given
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a trivalent graph Γ with 2k vertices, then we can define an Sp(2g,Z)-invariant
homomorphism

αΓ : Λ2k(Λ3H)−→Q

by setting

αΓ =
1

(2k)!
αC

where C is any lift of Γ . We put the factor (2k)! for later use (see Lemma 2.1
below). We can consider αΓ as a 2k-cocycle of the abelian group Λ3H because we
have a natural embedding

Hom(Λ2k(Λ3H),Q) ⊂ Z2k(Λ3H ;Q)

given by

f(ξ1, · · · , ξ2k) = f(ξ1 ∧ · · · ∧ ξ2k) (f ∈ Hom(Λ2k(Λ3H),Q), ξi ∈ Λ3H)

where Z2k(Λ3H ;Q) denotes the set of Q-valued 2k-cocycles of Λ3H . Throughout
this paper, we always use the Alexander-Whitney cup product on the cocycle level.

Lemma 2.1. Let Γ and Γ ′ be two trivalent graphs with 2k and 2% vertices, respec-
tively. Then the disjoint union Γ �Γ ′ is a trivalent graph with 2k+2% vertices. In
such a situation, two cocycles αΓ�Γ ′ and αΓ ∪αΓ ′ are cohomologous to each other.

Proof. Choose linear chord diagrams C,C′ which are lifts of Γ, Γ ′ respectively.
Then the sum C + C′ which is defined by putting the first vertex of C′ right after
the last vertex of C is a lift of Γ � Γ ′. We have

αΓ�Γ ′(ξ1, · · · , ξ2k+2�)

=
1

(2k + 2%)!

∑
σ∈S2k+2�

sgnσ αC+C′
(
ξσ(1) ⊗ · · · ⊗ ξσ(2k+2�)

)
=
(2k)!(2%)!
(2k + 2%)!

∑
(2k,2�)−shuffles

sgnσ αΓ

(
ξσ(1), · · · , ξσ(2k)

)
· αΓ ′
(
ξσ(2k+1), · · · , ξσ(2k+2�)

)
where an element σ ∈ S2k+2� is called a (2k, 2%)-shuffle if

σ(1) < σ(2) < · · · < σ(2k) and

σ(2k + 1) < · · · < σ(2k + 2%).

Here we have used the fact that sgn(C + C′) = sgnC sgnC′. Observe that

αΓ (ξ1, · · · , ξ2k) · αΓ ′(ξ2k+1, · · · , ξ2k+2�) = αΓ ∪ αΓ ′(ξ1, · · · , ξ2k+2�)

because the degree of the cocycle αΓ is even for any Γ . It is easy to see that for
any (2k, 2%)-shuffle σ, the correspondence

(Λ3H)2k+2� �(ξ1, · · · , ξ2k+2�) �−→
sgnσ αΓ

(
ξσ(1), · · · , ξσ(2k)

)
· αΓ ′
(
ξσ(2k+1), · · · , ξσ(2k+2�)

)
defines a cocycle of the group Λ3H which is cohomologous to the cup product
αΓ ∪ αΓ ′ . Since the number of (2k, 2%)-shuffles is exactly equal to (2k+2�)!

(2k)!(2�)! , we can
conclude that αΓ�Γ ′ is cohomologous to αΓ ∪ αΓ ′ .
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Let G2k denote the set of isomorphism classes of connected trivalent graphs with
2k vertices and let

G =
∐
k≥1

G2k

be the disjoint union of G2k for all k ≥ 1. We consider the polynomial algebra

Q[Γ ;Γ ∈ G]
generated by the elements of G. In view of Lemma 2.1, we can define an algebra
homomorphism

Φα : Q[Γ ;Γ ∈ G]−→H∗(Λ3H ;Q) ∼= Hom(Λ∗(Λ3HQ),Q)

by sending each element Γ ∈ G2k to the cohomology class [αΓ ] ∈ H2k(Λ3H ;Q)
which is represented by the cocycle αΓ of the group Λ3H . Since HQ is the funda-
mental representation of the group Sp(2g;Q), this group acts on the cohomology
group H∗(Λ3H ;Q) naturally. By the definition of the homomorphism Φα, it is clear
that its image ImΦα lies in the Sp(2g;Q)-invariant part of H∗(Λ3H ;Q).

Proposition 2.2. The homomorphism

Φα : Q[Γ ;Γ ∈ G]−→Hom(Λ∗(Λ3HQ),Q)Sp ∼=
(
Λ∗(Λ3H∗

Q)
)Sp

defined above is surjective and is an isomorphism for degrees ≤ 2
3g.

Proof. The surjectivity follows from a classical result of Weyl which shows that any
Sp-invariant homomorphism H⊗2r

Q →Q can be described as a linear combination of
various iterated contractions using the intersection pairing µ : HQ ⊗ HQ→Q.
We prove the latter statement. If we assume that 2k ≤ 2

3g, then we have 6k ≤ 2g.
It follows that the number of members of any symplectic basis of H , which is 2g,
is greater than or equal to 6k. As is well known, the number of ways of 3k-fold
iterated contractionsH⊗6k→Q, or equivalently the number of linear chord diagrams
with 6k vertices, is equal to (6k − 1)!!. It is now a simple matter to observe that
we can choose an appropriate set of permutations of certain 6k members out of a
symplectic basis of H so that it can serve as the dual basis of the above set of linear
chord diagrams under the natural pairing between the two sets. Since Λ2k(Λ3HQ)
is an Sp direct summand of H⊗6k

Q , we have the desired result. The above argument,
in fact, proves that

dim(H⊗2r
Q )Sp = (2r − 1)!!

for any r and for all g ≥ r.

Next we describe H∗(U ;Q)Sp ∼= H∗(UQ)Sp where U = Λ3H/H . UQ is also an
Sp(2g;Q)-module. We define an Sp(2g;Q)-equivariant homomorphism

q : Λ3HQ−→Λ3HQ(9)

by setting

q(ξ) = ξ − 1
2g − 2

Cξ ∧ ω0 (ξ ∈ Λ3HQ).

Here C : Λ3H→H is the contraction given by

C(u ∧ v ∧ w) = 2{(u · v)w + (v · w)u+ (w · u)v} (u, v, w ∈ H)

and ω0 ∈ Λ2H is the symplectic class (in homology) defined as

ω0 = x1 ∧ y1 + · · ·+ xg ∧ yg
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where x1, · · · , xg, y1, · · · , yg is any symplectic basis of H . It is easy to see that the
homomorphism q annihilates any element of HQ so that it induces an Sp-embedding

q : UQ−→Λ3HQ.

In fact Im q = KerC ⊗ Q and we have a canonical decomposition of the Sp(2g,Q)-
module

Λ3HQ
∼= UQ ⊕ HQ

into irreducible direct summands.
A loop is an edge connecting a single vertex as before. It is straightforward to

see that if a trivalent graph Γ ∈ G2k has a loop, then

αΓ (ξ1, · · · , ξ2k) = 0 (ξi ∈ Λ3HQ)

whenever at least one ξi is contained in Im q ⊂ Λ3HQ.
With these facts in mind, we define G02k ⊂ G2k to be the subset consisting of

connected trivalent graphs without loops. We write

G0 =
∐
k≥1

G02k

for the disjoint union of G02k for all k ≥ 1 and consider the polynomial algebra

Q[Γ ;Γ ∈ G0]

generated by the elements of G0. Now we define a homomorphism

Φβ : Q[Γ ;Γ ∈ G0]−→H∗(UQ)Sp ∼= Hom(Λ∗UQ,Q)Sp

by sending each element Γ ∈ G02k to the homomorphism

βΓ : Λ2kUQ
Λ2kq−→Λ2k(Λ3HQ)

αΓ−→Q

which is the composition of αΓ followed by Λ2kq.

Proposition 2.3. The above homomorphism

Φβ : Q[Γ ;Γ ∈ G0]−→Hom(Λ∗UQ,Q)Sp ∼=
(
Λ∗U∗

Q

)Sp

is surjective and is an isomorphism for degrees ≤ 2
3g.

Proof. We have a natural Sp-isomorphism

H∗(Λ3HQ) ∼= H∗(UQ)⊗ H∗(HQ)

so that H∗(UQ) is a direct summand of H∗(Λ3HQ). Hence the result follows from
the definition of Φβ and Proposition 2.2.

If we idetify UQ with Im q ⊂ Λ3HQ, then we can describe βΓ as a certain linear
combination

βΓ = αΓ +
∑
i

ciαΓi (ci ∈ Q)

where each Γi has at least one loop. The coefficients ci can be explicitly determined.
They depend on the genus g but the dependence is only a matter of form. More
precisely, the (−2g)-adic expansion of ci is independent of g for any i.
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3. Construction of cocycles of the mapping class groups

We begin by recalling the following morphism

π1Σg −−−−→ H� �
Mg,∗

ρ1−−−−→ 1
2Λ

3H � Sp(2g,Z)� �
Mg −−−−→

ρ1

1
2Λ

3H/H � Sp(2g,Z)

(10)

of group extensions which was constructed in [53] and is a projection of the mor-
phism (1) in §1 (see also Hain’s closely related works [14][15] in the context of
algebraic geometry). Here the top horizontal homomorphism is the abelianization
and the other two homomorphisms ρ1 are described as follows. Namely certain
crossed homomorphisms

k̃ : Mg,∗−→1
2
Λ3H

k̃ : Mg−→1
2
Λ3H/H

are defined and we have

ρ1(ϕ) = (k̃(ϕ), ρ0(ϕ)) (ϕ ∈ Mg,∗ or Mg)

where ρ0 : Mg−→Sp(2g,Z) is the classical homomorphism.
Since the targets of the homomorphisms ρ1 above are semi-direct products, we

discuss a few general facts concerning cohomology of groups which are semi-direct
products. For a group G and a (left) G-module M , we denote by C∗(G;M) the
standard normalized cochain complex of G with values in M and by Z∗(G;M) the
set of cocycles in C∗(G;M). See, for example, [26]. Suppose a group Q acts on a
group N , namely there is given a homomorphism of groups Q → Aut(N). Then a
group law on the product set N × Q is defined by

(n1, q1)(n2, q2) = (n1q1(n2), q1q2) , (n1, n2 ∈ N, q1, q2 ∈ Q).

We denote by N � Q the set N × Q with this group law and call it the semi-direct
product of N and Q. We have a natural extension of groups

1−→N
i−→N � Q

π−→Q−→1

where i(n) = (n, 1) and π(n, q) = q for n ∈ N , q ∈ Q. It admits a canonical
splitting homomorphism s : Q → N � Q given by s(q) = (1, q).
Let M be an N � Q-module. For an r-cochain c ∈ Cr(N ;M) we define its

natural extension c̃ ∈ Cr(N � Q;M) by setting

c̃
(
(n1, q1), (n2, q2), · · · , (nr, qr)

)
=c
(
n1, q1(n2), q1q2(n3), . . . , q1q2 · · · qr−1(nr)

)(11)

for ni ∈ N, qi ∈ Q. It is easy to see that if we restrict this extending operation to
the Q-invariant cochains, then the resultant map

C∗(N ;M)Q � c �→ c̃ ∈ C∗(N � Q;M)
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is a cochain map which is multiplicative with respect to the Alexander-Whitney
cup product. For example, when M = H1(N ;Z), the natural map 1H : N →
N/[N,N ] = H1(N ;Z) defined by n �→ [n] = n mod [N,N ] induces a 1-cocycle
introduced by the second author in [47]

k0 := 1̃H ∈ Z1(N � Q;H1(N ;Z))(12)

which is explicitly given by

k0(n, q) = [n] ∈ H1(N ;Z), ((n, q) ∈ N � Q).

Consider the case where N is abelian. Suppose that there is given a homomorphism
ρ : G→N � Q from a group G to the semi-direct product N � Q. Then ρ can be
expressed as ρ = (f, ρ̄). Here f : G→N is a 1-cocycle of G with values in the G-
module N where the action is given through the homomorphism ρ̄ : G→Q. Then,
for the trivial module Q, we have a linear map

f∗ : Hom(Λ∗N,Q)Q ↪→ Z∗(N ;Q)Q−→Z∗(N � Q;Q)
ρ∗

−→Z∗(G;Q)

This means any Q-invariant linear form on the exterior product Λ∗N induces a
cocycle of G in a natural way. The cocycle f∗c ∈ Zr(G;Q) induced by c ∈
Hom(ΛrN,Q)Q is explicitly given by

(f∗c)(g1, g2, . . . , gr) = c (f(g1), ρ̄(g1)f(g2), · · · , ρ̄(g1 · · · gr−1)f(gr))
= c∗f r(g1, g2, . . . , gr) (gi ∈ G)

where f r ∈ Zr(G; ΛrN) means the r-th power of the 1-cocycle f with respect
to the Alexander-Whitney cup product, and c∗ : C∗(G; ΛrN)→C∗(G;Q) denotes
the cochain map induced by the G-homomorphism c : ΛrN→Q. Consequently we
obtain

[f∗c] = c∗[f ]r ∈ Hr(G;Q).

Now if we apply the above procedure to the homomorphisms ρ1 in (10) and
combine it with the results of §2, we obtain the following commutative diagram.

Q[Γ ;Γ ∈ G] Φα−−−−→ Hom(Λ∗(Λ3HQ),Q)Sp k̃∗
−−−−→ Z∗(Mg,∗;Q)� � �

Q[Γ ;Γ ∈ G0] Φβ−−−−→ Hom(Λ∗UQ,Q)Sp k̃∗
−−−−→ Z∗(Mg;Q).

As was already mentioned in §1, for each trivalent graph Γ with 2k vertices,
we denote simply by αΓ and βΓ the cocycles of Mg,∗ and Mg constructed above.
Then, summing up the above arguments, we obtain the following proposition which
gives explicit formulas for these cocycles.

Proposition 3.1. Let Γ be a trivalent graph with 2k vertices. Choose a linear
chord diagram C with 6k vertices such that the associated trivalent graph ΓC is
equal to Γ . Then we have

αΓ (ϕ1, · · · , ϕ2k) =
1

(2k)!

∑
σ∈S2k

sgnσ αC(ξσ(1) ⊗ · · · ⊗ ξσ(2k))

where ϕi ∈ Mg,∗ (i = 1, · · · , 2k), ξi = ρ0(ϕ1 · · ·ϕi−1)k̃(ϕi) and αC : H⊗6k
Q →Q is

the homomorphism given in (8), §2.
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Similarly we have

βΓ (ϕ1, · · · , ϕ2k) =
1

(2k)!

∑
σ∈S2k

sgnσ αC(q(ξσ(1))⊗ · · · ⊗ q(ξσ(2k)))

where ϕi ∈ Mg (i = 1, · · · , 2k) and ϕ̃i ∈ Mg,∗ is any element such that ϕ̃i projects
to ϕi under the natural projection Mg,∗→Mg. Also ξi = ρ0(ϕ̃1 · · · ϕ̃i−1)k̃(ϕ̃i) and
q : Λ3HQ→Λ3HQ is the homomorphism given in (9), §2.

Proposition 3.2. Under the homomorphisms(
Λ∗(Λ3H∗

Q)
)Sp ρ∗

2−→H∗(Mg,∗;Q) and
(
Λ∗U∗

Q

)Sp ρ∗
2−→H∗(Mg;Q)

in (2), the Sp-invariant parts of the ideals
(
[12]torelli ⊕ [22]

)
and ([22]) go to zero.

Proof. The same argument as in §7 of [53] shows that the above homomorphisms
ρ∗2 factor as

(
Λ∗(Λ3H∗

Q)
)Sp −−−−→ H∗(([12]⊕ [22])×̃torelliΛ3HQ)Sp −−−−→ H∗(Mg,∗;Q)� � �(

Λ∗U∗
Q

)Sp −−−−→ H∗([22]×̃UQ)Sp −−−−→ H∗(Mg;Q).

On the other hand, clearly the ideals generated by [12]torelli ⊕ [22] and [22] vanish
in H∗(([12] ⊕ [22])×̃torelliΛ3HQ) and H∗([22]×̃UQ) respectively. The claim follows
from this immediately.

4. Twisted Mumford-Morita-Miller classes and H∗(Mg,∗; Λ∗H)

Let Mg,1 be the mapping class group of Σg fixing an embedded disk D2 ⊂ Σg

pointwise, and Mg,∗ the fiber product Mg,∗ ×Mg Mg,∗ induced by the forgetful
homomorphism Mg,∗→Mg. It is easy to see that the correspondence Mg,∗ �
(ϕ,ψ) �→ (ψϕ−1, ϕ) ∈ π1Σg � Mg,∗ defines an isomorphism.
As in [47], let us consider the 1-cocycle

k0 : Mg,∗ = π1Σg � Mg,∗−→H1(π1Σg) = H

defined in (12) which is explicitly given by k0(ϕ,ψ) = [ψϕ−1] for (ϕ,ψ) ∈ Mg,∗. Let
π : Mg,∗→Mg,∗ (resp. π̄ : Mg,∗→Mg,∗) be the first (resp. the second) projection
so that we have the fiber square

Mg,∗
π̄−−−−→ Mg,∗

π

� �
Mg,∗ −−−−→ Mg.

(13)

Now we write simply ē for (π̄)∗(e) ∈ H2(Mg,∗;Z) and we consider the cohomology
class ēik0

j ∈ H2i+j(Mg,∗; ΛjH). We define

mi,j = π!(ēik0j) ∈ H2i+j−2(Mg,∗; ΛjH)(14)

for i, j ≥ 0 and i+ j ≥ 2, where π! : Hk(Mg,∗;M)→Hk−2(Mg,∗;M) is the Gysin
homomorphism (or the integration along the fibers of the map π). We call them
the twisted Mumford-Morita-Miller classes. In fact, when j = 0 and i ≥ 1, we have
mi+1,0 = ei.
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On the mapping class group Mg,1 these classes are nothing but the cohomology
classes (−1)jmi,j introduced by the first author in [34], where they are called the
generalized Morita-Mumford classes. In order to verify this, we introduce the map-
ping class group M2

g of Σg fixing two distinct points p0, p1 ∈ Σg pointwise. Choose
a simple curve % in Σg connecting p1 to p0. Define a 1-cocycle ω� ∈ Z1(M2

g;H) by

ω�(ϕ) = ϕ(%)− % ∈ H

for ϕ ∈ M2
g. Here ϕ(%) − % is regarded as a 1-cycle on Σg. In [34] the generalized

Morita-Mumford class mi,j ∈ H∗(Mg,1; ΛjH) was defined to be the Gysin image of
the cohomology class eiω�

j ∈ H∗(M1
g,1,Mg,1×Z; ΛjH). Here M1

g,1 is the mapping
class group of Σg relative to an embedded disk and a fixed point outside of it. The
product Mg × Z is embedded into M1

g,1 as the “boundary” of M1
g,1 (p.140, [34]).

On the other hand, let π : M2
g→Mg,∗ (resp. π̄ : M2

g→Mg,∗) be the homo-
morphism defined by forgetting the point p1 (resp. p0). Consider a diffeomorphism
ψ� : (Σg, p1)→(Σg, p0) given by sliding the point p1 along the curve %. We introduce
a homomorphism

α� : M2
g−→Mg,∗(15)

by the correspondence ϕ �→ (π(ϕ), ψ�π̄(ϕ)ψ�
−1). Then we have a commutative

diagram

M1
g,1 −−−−→ M2

g
α�−−−−→ Mg,∗

π

� π

� π

�
Mg,1 −−−−→ Mg,∗ Mg,∗.

(16)

Consequently the following lemma implies that the cohomology class mi,j defined
in the present paper essentially coincides with the former one.

Lemma 4.1. We have

α∗
� (k0) = −ω� ∈ Z1(M2

g;H).

Proof. For any ϕ ∈ M2
g, we have

α∗
� (k0) =k0

(
π(ϕ), ψ�π̄(ϕ)ψ�

−1)
=
[
ψ�π̄(ϕ)ψ�

−1π(ϕ)−1
]
=
[
ψ�ψϕ(�)

−1] = [%ϕ(%)−1] = [% − ϕ(%)
]

=− ω�(ϕ)

completing the proof.

In [42] Looijenga obtained a remarkable result that the rational stable cohomol-
ogy of Mg with coefficients in any finite dimensional irreducible representation of
the algebraic group Sp(2g,Q) is isomorphic to a free module over the stable rational
cohomology of Mg together with a description of its free basis. His proof as well
as construction of cohomology classes are based on geometric considerations on the
moduli orbifold of algebraic curves including, in particular, a theorem in Hodge
theory. As for Mg, this result cannot be generalized to integral symplectic coeffi-
cients. In fact, for example, the second integral cohomology of Mg with coefficients
in H does not admit the stability [46].
On the basis of Looijenga’s noteworthy idea [42] that the stable cohomology with

symplectic coefficients is computed only from the Harer stability theorem [21] with
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trivial coefficients, the first author has deduced the following result: the stable in-
tegral cohomology of Mg,1 with coefficients in H⊗n is a free module over the stable
integral cohomology of Mg,1, and certain algebraic combinations of the (modified)
twisted Mumford-Morita-Miller classes can serve as its (topologically constructed
and new) free basis [33]. Here the Lyndon-Hochschild-Serre spectral sequence for
a pair of groups introduced in [34] is used instead of geometric considerations in-
cluding Hodge theory.
Since it has been found out that the twisted Mumford-Morita-Miller classes can

be defined also on Mg,∗, all the results obtained in [33] hold for the mapping class
group Mg,∗. For example, we have

Theorem 4.2. If the total degree is smaller than g/2, then we have

H∗(Mg,∗; Λ∗HQ) = H∗(Mg,∗;Q)⊗
(
⊗i,jQ[mi,j ]

)
where the indices run over the set {(i, j); i ≥ 0, j ≥ 1 and i+ j ≥ 2}.
The above results show that we have obtained explicit basis for these free modules

in terms of the twisted Mumford-Morita-Miller classes defined above.

5. Thom isomorphism theorem for Mg,∗ and splitting of H∗(Mg,∗;M)

Let EDiff+ Σg→BDiff+ Σg be the universal Σg-bundle over the classifying space
BDiff+ Σg of oriented Σg-bundles. Then the fiber product

EDiff+ Σg ×BDiff+ Σg EDiff+ Σg

is an Eilenberg-MacLane space K(Mg,∗, 1) and its diagonal set is a “submanifold”
of codimension 2. Hence we can define the Thom class ν ∈ H2(Mg,∗;Z), namely
the Poincaré dual of the diagonal set (see [46]). The cohomology class ν may be
constructed also in the following algebraic way.
Let M2

g be the mapping class group of Σg fixing ordered 2 points p0 and p1
as in §4. Choose a simple curve % in Σg connecting p1 to p0 and consider the
homomorphism α� : M2

g→Mg,∗ introduced in (15), §4. In §§5-7 we write simply π1
and π01 for π1(Σg, p1) and π1(Σg − {p0}, p1), respectively. Let Rg denote the kernel
of the inclusion homomorphism

Rg = Ker(π01→π1).

The kernel of π : M2
g→Mg,∗ is naturally identified with π01 . Hence we obtain a

morphism of group extensions
1 −−−−→ Rg −−−−→ π01 −−−−→ π1 −−−−→ 1∥∥∥ � ψ�

�
1 −−−−→ Rg −−−−→ M2

g
α�−−−−→ Mg,∗ −−−−→ 1.

(17)

Let M be an Mg,∗-module. We regard it as an Mg,∗-module by the homomor-
phism π : Mg,∗→Mg,∗. Since the group Rg is a subgroup of a free group π01 , we
have Hp(Rg;M) = 0 for any p ≥ 2. Hence

Hp(Rg;M)π1 = 0(18)

for any p ≥ 1, and the second transgression of the Lyndon-Hochschild-Serre spectral
sequence of the extension Rg→π01→π1 is an M2

g-equivariant isomorphism

d2
′ : H1(Rg;M)π1

∼=−→H2(π1;M).
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Especially ifM is a trivial module Z, then any element ofH2(π1;Z) isM2
g-invariant.

Hence we have H1(Rg;Z)M
2
g = H1(Rg;Z)π

0
1 so that the morphism (17) induces a

commutative diagram

H0(Mg,∗;H1(Rg;Z))
d2−−−−→ H2(Mg,∗;Z)∥∥∥ ψ�

∗
�

H0(π1;H1(Rg;Z))
d2

′
−−−−→ H2(π1;Z).

(19)

Thus there exists a unique element ν0 ∈ H0(Mg,∗;H1(Rg;Z)) satisfying the equal-
ity < ψ�

∗d2ν0, [Σg] >= 1. The cup product

ν0∪ :M
∼=−→H1(Rg;M)π1(20)

is an Mg,∗-isomorphism for any Mg,∗-module M . We define the cohomology class
ν ∈ H2(Mg,∗;Z) by

ν = d2ν0 ∈ H2(Mg,∗;Z).

It satisfies

π!ν = 1(21)

and plays the role of the Thom class in the context of mapping class groups as
follows.

Theorem 5.1 (Thom isomorphism theorem). Let M be an Mg,∗-module.
(i) We have a split exact sequence

0−→Hp(Mg,∗;M) ν∪−→Hp+2(Mg,∗;M)
α∗

�−→Hp+2(M2
g;M)−→0.

(ii) For any u ∈ H∗(Mg,∗;M), we have

νu = νπ∗s∗u ∈ H∗(Mg,∗;M)

where s : Mg,∗→Mg,∗ denotes the diagonal map defined by ϕ �→ (ϕ,ϕ). This means
that the cohomology class ν has its “support” in the “diagonal” s(Mg,∗) ⊂ Mg,∗.
(iii)

s∗ν = e ∈ H2(Mg,∗;Z).

Proof. By (18) the Lyndon-Hochschild-Serre spectral sequence of the extension
π1→Mg,∗

π−→Mg,∗ with values inH1(Rg;M) collapses, namely, the homomorphism

π∗ : Hp(Mg,∗;H1(Rg;M)π1)
∼=−→Hp(Mg,∗;H1(Rg;M))(22)

is an isomorphism. This together with (20) implies that the cup product

ν0∪ : H∗(Mg,∗;M)
∼=−→H∗(Mg,∗;H1(Rg;M)), v �→ ν0π

∗(v)(23)

is an isomorphism.
We first prove (i). Since the group Rg is free, the lower extension in (17) induces

the Gysin exact sequence

· · · −→Hp(Mg,∗;H1(Rg;M)) d2−→Hp+2(Mg,∗;M)α�
∗

−→Hp+2(M2
g;M)−→ · · · .
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Substituting the isomorphism (23) into the above sequence, we obtain the exact
sequence to be proved. By (21) we have

π!d2(ν0 ∪ π∗v) = π!(ν ∪ π∗v) = v

for any v ∈ Hp(Mg,∗;M), which gives a natural splitting of the sequence. This
proves (i).
Next we consider (ii). It follows from the isomorphism (22) that the map

π∗ : H∗(Mg,∗;H1(Rg;M)) → H∗(Mg,∗;H1(Rg;M))

is a surjection. Hence π∗s∗ is equal to the identity on H∗(Mg,∗;H1(Rg;M)).
Therefore ν0u = π∗s∗(ν0u) = ν0π

∗s∗u, which implies

νu = d2(ν0u) = d2(ν0π∗s∗u) = νπ∗s∗u

thus proving (ii).
Finally we prove (iii). Choose an embedded disk D2 ⊂ Σg containing the simple

curve %. Then we have a morphism of extensions

Z −−−−→ Mg,1 −−−−→ Mg,∗

ψ

� ψ

� s

�
Rg −−−−→ M2

g
α�−−−−→ Mg,∗

which induces the following commutative diagram

H0(Mg,∗;H1(Rg))
d2−−−−→ H2(Mg,∗)

ψ∗
� s∗

�
H0(Mg,∗;H1(Z)) d2−−−−→ H2(Mg,∗).

We have ψ∗ν0 = λ1Z ∈ H1(Z) for some λ ∈ Z. Hence

s∗ν = s∗d2ν0 = d2ψ
∗(ν0) = λd21 = λe ∈ H2(Mg,∗;Z).

If we restrict this formula to π1 � π1 ⊂ π1 � Mg,∗ = Mg,∗ and apply the usual
Thom isomorphism theorem on Σg ×Σg, we obtain λ = 1. Thus we have s∗ν = e ∈
H2(Mg,∗;Z). This completes the proof of (iii) and hence that of the theorem.

Next we show that there exist certain canonical decompositions of cohomology
groups of mapping class groups.
In [45] Proposition 3.1, the second author proved that the cohomology of the

total space of any oriented Σg-bundle with values in Z[1/(2g − 2)] has a canonical
decomposition. Here we refine this result slightly, which would clarify the behavior
of the twisted Mumford-Morita-Miller classes.
Let h : Π → Mg be a homomorphism from a group Π into the mapping class

group Mg. The fiber product Π∗ = Π×Mg Mg,∗ admits an extension of groups

1−→π1
ι−→Π∗

π−→Π−→1.(24)

Let A be a commutative ring with a unit. We denote HA = H ⊗Z A = H1(Σg;A),
which has the intersection pairing µ : HA ⊗AHA → A. For any A[Π]-module M we
identify the cohomology group H1(π1;M) with HA ⊗AM by the A[Π]-isomorphism

µ′ : HA ⊗A M−→H1(π1;M) = HomA(HA,M)
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which is defined by µ′(v)(u) = (µ⊗1M )∗(u⊗v) for u ∈ HA and v ∈ HA ⊗AM . For
the rest of this section we write simply HA ⊗ M for HA ⊗A M . As in the previous
sections, we use the notation 1H also for the abelianization map in H1(π1;HA) as
well as the identity map of H . When M = H , we have µ′(ω0) = −1H where ω0 is
the symplectic form ω0 =

∑g
i=1xi ⊗ yi − yi ⊗ xi ∈ H⊗2 as before.

Proposition 5.2. Suppose that there exists a cohomology class θ ∈ H2(Π∗;A) such
that

π!(θ) = 〈ι∗θ, [Σg]〉 = 1 ∈ H0(Π;A).
We denote

θ′ = θ − π∗π!(θ2)
which also satisfies π!(θ′) = 1. Then we have the following.
(i) For any A[Π]-module M , the Lyndon-Hochschild-Serre spectral sequence of the
extension (24) collapses at the E2-term, and the cohomology group H∗(Π∗;M) nat-
urally decomposes as

H∗(Π∗;M) ∼= H∗−2(Π;M)⊕ H∗−1(Π;HA ⊗ M)⊕ H∗(Π;M).

(ii) There exists a unique element χ ∈ H1(Π∗;HA) satisfying

ι∗χ = 1H ∈ H1(π1;HA), and π!(θχ) = π!(θ′χ) = 0 ∈ H1(Π;HA).

(iii) The homomorphism ε : H∗−1(Π;HA ⊗ M)→H∗(Π∗;M) given by

ε(v) = (µ ⊗ 1M )∗(χ ⊗ π∗v) (v ∈ H∗−1(Π;HA ⊗ M))(25)

is a left inverse of the edge homomorphism π : Kerπ!→E∗−1,1
∞ = H∗−1(Π;HA⊗M ).

(iv) Explicitly, for any u ∈ H∗(Π∗;M), we have

u = θ′π∗π!(u)− (µ ⊗ 1M )∗ (χ ⊗ π∗π!(χ ⊗ u)) + π∗π!(θu)

= θπ∗π!(u)− (µ ⊗ 1M )∗ (χ ⊗ π∗π!(χ ⊗ u)) + π∗(π!(θu)− π!(θ2)π!(u)).

Proof. We have
π!(θπ∗v) = π!(θ′π∗v) = v ∈ H∗(Π;M)

for all v ∈ H∗(Π;M). This means that the map

ψ2 : H∗−2(Π;M) → H∗(Π∗;M)

defined by v �→ θ′π∗v is a right inverse of the Gysin map π! and that the map

ϕ0 : H∗(Π∗;M) → H∗(Π;M)

defined by u �→ π!(θu) is a left inverse of the map π∗. Especially the map π! is
surjective and the map π∗ is injective. Hence the Lyndon-Hochschild-Serre spectral
sequence of the extension (24) collapses at the E2-term.
The map ψ2 induces the decomposition H∗(Π∗;M) = H∗−2(Π;M) ⊕ Kerπ!,

while the short exact sequence

0−→H∗(Π;M) π∗
−→Kerπ!

π	−→E∗−1,1
2 = H∗−1(Π;HA ⊗ M)−→0

splits by the map ϕ0 restricted to Kerπ!. Hence

π : Kerπ! ∩Kerϕ0
∼=−→H∗−1(Π;HA ⊗ M)(26)

is an isomorphism. This proves (i).
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Now we consider the case M = HA. The map

ι∗ = π! : H1(Π∗;HA)−→H1(π1;HA)Π = H0(Π;HA ⊗ HA)

is surjective by (i), so that there exists an element χ̃ ∈ H1(Π∗;HA) satisfying ι∗χ̃ =
1H . If we set χ = χ̃ − π∗π!(θχ̃), then we have ι∗χ = 1H and π!(θχ) = π!(θ′χ) = 0.
If there is another χ′ satisfying the same conditions as χ, then the difference

χ′ − χ is contained in Ker ι∗ = π∗(H1(Π;HA)). It follows that there exists an
element v ∈ H1(Π;HA) such that χ′ − χ = π∗(v). But we have v = π!(θπ∗(v)) =
π!(θχ′)− π!(θχ) = 0. This proves (ii).
Next we consider (iii). Since π!(χ) = π!(θχ) = 0, we have ε(H∗−1(Π;HA⊗M)) ⊂

Kerπ! ∩Kerϕ0. Moreover we have
π (χ) = ι∗(χ) = (µ′)−1(1H) = −ω0 ∈ H0(Π;H⊗2

A ).(27)

Hence

π ε(v) = π (µ ⊗ 1M )∗(χ ⊗ π∗v) = (1H ⊗ µ ⊗ 1M )∗(π (χ)⊗ v) = v

for any v ∈ H∗−1(Π;HA ⊗ M). This proves (iii).
Finally we prove (iv). We observe

π!(χ⊗2) = ω0 ∈ H0(Π;H⊗2
A ).(28)

In fact, we denote by T ′ : HA
⊗4→HA

⊗4 the switch map v1 ⊗ v2 ⊗ v3 ⊗ v4 �→
−v1 ⊗ v3 ⊗ v2 ⊗ v4 (vi ∈ HA). From the multiplicativity of the Lyndon-Hochschild-
Serre spectral sequence, we have

π!(χ⊗2) = 〈ι∗(χ)⊗ ι∗(χ), [Σg]〉 = 〈1H ⊗ 1H , [Σg]〉
=(µ ⊗ 1HA

⊗2)T ′ ((µ′)−1(1H)⊗ (µ′)−1(1H)
)

=(µ ⊗ 1HA
⊗2)T ′ (ω0 ⊗ ω0) = ω0.

Let u be any element of H∗(Π∗;M). By what we have shown above there exist
u0 ∈ H∗(Π;M), u1 ∈ H∗−1(Π;HA ⊗ M) and u2 ∈ H∗−2(Π;M) such that

u = θ′π∗(u2) + (µ ⊗ 1M )∗(χ ⊗ π∗(u1)) + π∗u0.

Clearly we have π!u = u2. Since π!(θθ′) = π!(θχ) = 0, π!(θu) = u0. Moreover

π!(χ ⊗ u) = π!(χ ⊗ (µ ⊗ 1M )∗(χ ⊗ π∗(u1))) = (1H ⊗ µ ⊗ 1M )∗π!(χ⊗2 ⊗ π∗(u1))

= (1H ⊗ µ ⊗ 1M )∗(ω0u1) = −u1

by (28). This proves (iv) completing the proof of the proposition.

Now we consider the case Π = Mg,∗. Then Π∗ = Mg,∗ and the Thom class
ν ∈ H2(Mg,∗;Z) satisfies π!ν = 1 by Theorem 5.1.

Theorem 5.3. For any Mg,∗-module M the cohomology group H∗(Mg,∗;M) de-
composes as

H∗(Mg,∗;M) ∼= H∗(Mg,∗;M)⊕ H∗−1(Mg,∗;H ⊗ M)⊕ H∗−2(Mg,∗;M).

Explicitly, for any u ∈ H∗(Mg,∗;M), we have

u = ν′π∗π!(u)− (µ ⊗ 1M )∗ (k0 ⊗ π∗π!(k0 ⊗ u)) + π∗s∗u

= νπ∗π!(u)− (µ ⊗ 1M )∗ (k0 ⊗ π∗π!(k0 ⊗ u)) + π∗(s∗(u)− eπ!(u))

where ν′ = ν − π∗(e) ∈ H2(Mg,∗;Z).
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Proof. The cohomology class k0 ∈ H1(Mg,∗;H) satisfies ι∗(k0) = 1H and π!(νk0) =
π!(νπ∗s∗(k0)) = 0 by Theorem 5.1, (iii). We have

ν − π∗π!(ν2) = ν − π∗π!(νπ∗s∗(ν)) = ν − π∗π!(νπ∗(e)) = ν − π∗(e) = ν′.

Now π!(νu) = π!(νπ∗s∗u) = s∗u by Theorem 5.1, (ii). Thus the theorem follows
from Proposition 5.2 immediately.

Recall the exact sequence in Theorem 5.1

0−→H∗−2(Mg,∗;M) ν∪−→H∗(Mg,∗;M)α�
∗

−→H∗(M2
g;M)−→0

where α� : M2
g → Mg,∗ is the homomorphism introduced in (15), §4. The

forgetful extension π01→M2
g→Mg,∗ induces the Gysin map π : H∗(M2

g;M) →
H∗−1(Mg,∗;H ⊗ M).

Lemma 5.4. For any u ∈ H∗(Mg,∗;M) we have

π α�
∗(u) = −π!(k0 ⊗ u) ∈ H∗−1(Mg,∗;H ⊗ M).

Proof. By Theorem 5.3

u = νπ!(u)− (µ ⊗ 1M )∗ (k0 ⊗ π∗π!(k0 ⊗ u)) + π∗(s∗(u)− eπ!(u)).

Since α�
∗(ν) = 0 and π π

∗ = 0, we have

π α�
∗(u) = −π α�

∗(µ ⊗ 1M )∗ (k0 ⊗ π∗π!(k0 ⊗ u))

= −(1H ⊗ µ ⊗ 1M )∗π (k0)π!(k0 ⊗ u)

= (1H ⊗ µ ⊗ 1M )∗(ω0 ⊗ π!(k0 ⊗ u)) = −π!(k0 ⊗ u)

as was to be shown.

As in [45] Proposition 3.1, in the case Π = Mg, we have π!
(
(2− 2g)−1e

)
= 1 ∈

H0(Mg;Z[1/(2− 2g)]). We denote

e′′ =(2 − 2g)−1e − (2− 2g)−2e1 ∈ H2(Mg,∗;Z[1/(2− 2g)])

χ =(2 − 2g)−1m1,1 ∈ H2(Mg,∗;HZ[1/(2−2g)]).

Here m1,1 is a generator of H1(Mg,∗;H) ∼= Z (see [46], where m1,1 is denoted by
k). Then we have π!(e′′) = 1 and ι∗χ = 1H . Since H1(Mg;H) = 0 (see [45]), we
have π!(e′′χ) = 0. Consequently we have the following result.

Theorem 5.5. Let A be the commutative ring Z[1/(2−2g)] and M be any A[Mg]-
module. Then the cohomology group H∗(Mg,∗;M) decomposes as

H∗(Mg,∗;M) ∼= H∗(Mg;M)⊕ H∗−1(Mg;HA ⊗ M)⊕ H∗−2(Mg;M).

Explicitly, for any u ∈ H∗(Mg,∗;M), we have

u = e′′π!u − (µ ⊗ 1M )∗ (χ ⊗ π∗π!(χ ⊗ u)) + (2− 2g)−1π∗π!(eu).
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6. Contraction formula

The purpose of this section is to prove that the twisted Mumford-Morita-Miller
classesmi,j on the mapping class groupMg,∗ are stable under the operation induced
by any contraction of coefficients which is derived from the intersection pairing
µ : H ⊗ H → Z.
The key to computing contractions of twisted Mumford-Morita-Miller classes

mi,j ’s is the following theorem due to the second author [46]. Here we give an
alternative proof of it.

Theorem 6.1 ([46], Theorem 1.3).

µ∗(k0⊗2) = 2ν − e − ē ∈ H2(Mg,∗;Z).

Proof. LetMg,2 be the mapping class group of Σg relative to two disjoint embedded
disks D2 � D2 ⊂ Σg. The main ingredient of this proof is

µ∗(k0⊗2) = 0 ∈ H2(Mg,2;Z).(29)

In fact, in view of the Gysin sequences and Theorem 5.1, (i), the kernel of the
homomorphism

H2(Mg,∗;Z) → H2(Mg,2;Z)

induced by the forgetful homomorphism Mg,2→M2
g
α�→Mg,∗ is generated by the

classes ν, e and ē. Hence, if (29) is established, we have µ∗(k0⊗2) = aν + be + cē

for some a, b, c ∈ Z. On the other hand we have s∗µ∗(k0⊗2) = 0 and π!µ∗(k0⊗2) =
π̄!µ∗(k0⊗2) = 2g by (28). Hence we obtain a = 2, b = c = −1.
To prove (29) we construct a 1-cochain c ∈ C1(Mg,2;Z), which cobounds µ∗(k0⊗2),

in a geometrical way.
Choose two parallel simple paths % and %′ connecting the two embedded disks.

For any mapping class ϕ ∈ Mg,2 we may consider the algebraic intersection number
ϕ(%) · %′ of two simple paths ϕ(%) and %′. Now we define a 1-cochain

c : Mg,2−→Z

by setting ϕ �→ % · ϕ(%′). Then we have
µ∗(k0⊗2)(ϕ1, ϕ2) = k0(ϕ1) · ϕ1k0(ϕ2) = (% − ϕ1(%)) · ϕ1(%′ − ϕ2(%′))

= % · ϕ2(%′)− % · ϕ1ϕ2(%′) + % · ϕ1(%′) = dc(ϕ1, ϕ2).

This means µ∗(k0⊗2) = 0 ∈ H2(Mg,2;Z), as was to be shown.

Thus any contraction of a single twisted Mumford-Morita-Miller class is ex-
pressed by an algebraic combination of other such classes. On the other hand, let
M1 and M2 be two Mg,∗-modules. Then we consider the contraction map

1⊗ µ ⊗ 1 : (M1 ⊗ H)⊗ (H ⊗ M2) → M1 ⊗ M2

which is given by ξ ⊗ x ⊗ y ⊗ η �→ µ(x ⊗ y)ξ ⊗ η.

Theorem 6.2 (Contraction Formula). Let ui ∈ H∗(Mg,∗;Mi) (i = 1, 2) be any
two elements. Then we have the equality

(1⊗ µ ⊗ 1)∗(π!(u1 ⊗ k0)π!(k0 ⊗ u2))

=− π!(u1u2) + s∗(u1)π!(u2) + π!(u1)s∗(u2)− eπ!(u1)π!(u2)

as an element of H∗(Mg,∗;M1 ⊗ M2).
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Proof. By what was shown in [26], Theorem 3 in Chapter II, p.126, the identification
of the Lyndon-Hochschild-Serre spectral sequence

ρ : Hpi(Mg,∗;Hqi(π1Σg)⊗ Mi)−→Epi,qi

2 (Mi)

of the extension π1Σg→Mg,∗→Mg,∗ preserves the cup product up to sign. More
precisely, if ûi ∈ Hpi(Mg,∗;H ⊗ Mi), we have

ρ(û1 ∪ û2) = (−1)p1ρ(û1) ∪ ρ(û2) ∈ Ep1+p2,2
2 (M1 ⊗ M2),

namely,
π!(ε(û1)ε(û2)) = (−1)p1(1⊗ µ ⊗ 1)∗ ((T ′

∗û1)û2)

in Hp1+p2(Mg,∗;M1⊗M2), where T ′ : H⊗M1→M1⊗H is the switch map given by
x⊗ ξ �→ ξ ⊗x and ε : Hpi(Mg,∗;H ⊗Mi)→Hpi+1(Mg,∗;Mi) is the homomorphism
introduced in Proposition 5.2 (iii).
Let ui be an element of Hpi+1(Mg,∗;Mi). Clearly we have π!(k0 ⊗ ui) ∈

Hpi(Mg,∗;H ⊗ Mi) and (−1)p1+1T ′∗π!(k0 ⊗ u1) = π!(u1 ⊗ k0). By Theorem 5.3
we have

−επ!(k0 ⊗ ui) = ui − ν′π∗π!(ui)− π∗s∗(ui).

Consequently we obtain

(1⊗ µ ⊗ 1)∗(π!(u1 ⊗ k0)π!(k0 ⊗ u2))

=− π! (ε(π!(k0 ⊗ u1))ε(π!(k0 ⊗ u2)))

=− π! ((u1 − ν′π∗π!(u1)− π∗s∗(u1))(u2 − ν′π∗π!(u2)− π∗s∗(u2)))

=− π!(u1u2) + s∗(u1)π!(u2) + π!(u1)s∗(u2)− eπ!(u1)π!(u2)

as was to be shown.

This implies that any contraction of two twisted Mumford-Morita-Miller classes
can be expressed by an algebraic combination of other twisted Mumford-Morita-
Miller classes.

7. Representation of the crossed homomorphism k̃ in terms of k0

In this section we express the crossed homomorphism

k̃ : Mg,∗−→1
2
Λ3H

which is the main ingredient of the representation ρ1 : Mg,∗→ 1
2Λ

3H � Sp(2g,Z),
in terms of the twisted Mumford-Morita-Miller classes introduced in §4. More
precisely, we prove

Proposition 7.1. We have the equality

m0,3 = −6 k̃ ∈ H1(Mg,∗; Λ3H).

The Sp(2g,Z)-module Λ3H is embedded into H ⊗ Λ2H by

x ∧ y ∧ z �→ x ⊗ y ∧ z + y ⊗ z ∧ x+ z ⊗ x ∧ y

(see [28]). It induces an injective homomorphism

H1(Mg,∗; Λ3H) → H1(Mg,∗;H ⊗ Λ2H)
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which sends the element m0,3 = π!(k03) ∈ H1(Mg,∗; Λ3H) to

3π!(k0 ⊗ k0
2) ∈ H1(Mg,∗;H ⊗ Λ2H)

because of the anti-commutativity of the cup product. On the other hand we have

π!(k0 ⊗ k0
2) = −π ι

∗(k02) ∈ H1(Mg,∗;H ⊗ Λ2H)

by Lemma 5.4. Here π : H∗(M2
g : Λ

2H) → H∗−1(Mg,∗;H ⊗ Λ2H) denotes the
Gysin map associated to the extension π1(Σ0g) → M2

g → Mg,∗. Furthermore we
have a natural isomorphism H1(Mg,∗;H ⊗Λ2H) ∼= H1(Mg,1;H ⊗Λ2H) and hence
it suffices to prove it on the mapping class group Mg,1. Therefore Proposition 7.1
is reduced to the following proposition.

Proposition 7.2. We have the equality

π ι
∗(k02) = 2 k̃ ∈ H1(Mg,1;H ⊗ Λ2H).

Proof. Since the fundamental group π1(Σ0g) is free, we have H2(π1(Σ0g); Λ
2H) = 0.

This implies that there exists a 1-cochain θ ∈ C1(π1(Σ0g); Λ
2H) which satisfies

(1H)2 = −dθ, namely

θ(γγ′) = θ(γ) + θ(γ′) + [γ] ∧ [γ′] ∈ Λ2H(30)

for any γ, γ′ ∈ π1(Σg
0). Especially we have

θ([γ, γ′]) = θ(γγ′γ−1γ′−1) = 2[γ] ∧ [γ′].

Explicitly the cochain θ can be constructed by making use of the Magnus ex-
pansion of the free group π1(Σ0g) described by the free differential calculus of Fox
as follows. Choose a symplectic generating system {αi, βi}g

i=1 of π1(Σ
0
g). Then the

map θ : π1(Σ0g)→Λ2H is defined by

θ(γ) =
g∑

i=1

[ ∂γ

∂αi

]
∧ [αi] +

[ ∂γ
∂βi

]
∧ [βi] ∈ Λ2H

for γ ∈ π1(Σ0g), where ∂/∂αi and ∂/∂βi denote the free differentials and [ ] :
Z[π1(Σ0g)]→H denotes the homomorphism induced by the abelianization π1(Σ0g)→H.
The crossed homomorphism k̃ can be represented in terms of the cochain θ (see

also [36]). Here we regard k̃ as a crossed homomorphism ofMg,1 into Hom(H, 12Λ
2H).

We define the twisted product 1
2Λ

2H×̃H to be the product set 1
2Λ

2H × H
equipped with the group law

(ξ, u)(η, v) = (ξ + η +
1
2
u ∧ v, u+ v) (ξ, η ∈ 1

2
Λ2H,u, v ∈ H).

By (30), the correspondence

N2 � γ �→ (
1
2
θ(γ), [γ]) ∈ 1

2
Λ2H×̃H

is an isomorphism of groups. Here N2 denotes the quotient group of π1(Σ0g) by its
second commutator subgroup [π1(Σ0g), Γ1(π1(Σ0g))] where Γ1(π1(Σ0g)) is the com-
mutator subgroup of π1(Σ0g). Hence, by the definition given in [52], the crossed
homomorphism k̃ is given by(1

2
θ(ϕ(γ)), ϕ[γ]

)
=
(
k̃(ϕ)(ϕ[γ]) +

1
2
ϕ(θ(γ)), ϕ[γ]

)
,



COHOMOLOGY OF THE MODULI SPACE OF CURVES 23

namely,

k̃(ϕ)(ϕ[γ]) =
1
2
θ(ϕ(γ)) − 1

2
ϕ(θ(γ))

for any ϕ ∈ Mg,1 and γ ∈ π1(Σ0g). For example if ϕ belongs to the Torelli group
Ig,1, we have

k̃(ϕ)(ϕ[γ]) =
1
2
θ(ϕ(γ)γ−1) = ϕ(γ)γ−1 mod Γ1(π1(Σ0g)) ∈ Λ2H

by (30).
Now we consider the mapping class group M1

g,1 of Σg relative to an embedded
disk and a fixed point outside of it. It is easy to see that the forgetful homomorphism
M1

g,1→Mg,1 is a split extension so that we may regard Mg,1 as a subgroup of M1
g,1

and the group M1
g,1 is decomposed into the semi-direct product

M1
g,1

∼= π1(Σg
0)� Mg,1.

This enables us to consider the cochain θ̃ ∈ C1(M1
g,1; Λ

2H) given by

θ̃(γϕ) = θ(γ), (γ ∈ π1(Σ0g), ϕ ∈ Mg,1)

as in (11). Then we have

dθ̃(γ1ϕ1, γ2ϕ2) = ϕ1θ(γ2)− θ(γ1ϕ1(γ2)) + θ(γ1)

=ϕ1θ(γ2)− θ(ϕ1(γ2))− [γ1] ∧ [ϕ1(γ2)]
=− 2k̃(ϕ1)(φ1[γ2]) + (k02)(γ1ϕ1, γ2ϕ2)

for any γ1, γ2 ∈ π1(Σ0g) and ϕ1, ϕ2 ∈ Mg,1. Hence, if we define f ∈ C2(M1
g,1; Λ

2H)
by setting

f(γ1ϕ1, γ2ϕ2) = −2k̃(ϕ1)(ϕ1[γ2]),
f is a 2-cocycle and

ι∗(k02) = [f ] ∈ H2(M1
g,1; Λ

2H).
By [26], Proposition 3 in Chapter II, the Gysin image π ι

∗f is given by

(π ι
∗f)(ϕ)(γ) = −f (ϕ,ϕ−1(γ)) = 2k̃(ϕ)(γ) (γ ∈ π1(Σ0g), ϕ ∈ Mg,1).

Therefore π ι
∗k02 = π ι

∗[f ] = 2k̃ ∈ H1(Mg,1;H ⊗Λ2H), as was to be shown. This
completes the proof of Proposition 7.2 and hence that of Proposition 7.1.

8. Proof of the main results and algorithm for determining αΓ

In this section we first prove Theorems 1.2 and 1.3 and then give an algorithm
for determining the characteristic class αΓ (g) ∈ Q[e, e1, e2, · · · ] for any trivalent
graph Γ ∈ G.
In order to prove the results, we construct a twisted cohomology class α(Γ ) of

the group Mg,∗ for any finite graph Γ with endpoints. Here an endpoint means a
vertex of degree 1. If we denote by ν = ν(Γ ) the number of the endpoints, then
α(Γ ) is defined as an element of H∗(Mg,∗;HQ

⊗ν). In the case Γ is a trivalent
graph, the cohomology class α(Γ ) coincides with what we have constructed in the
previous sections.
Let Γ be a finite graph with endpoints, and vi, 1 ≤ i ≤ m, the vertices of Γ of

degree ≥ 2. We assign each vertex vi the twisted Mumford-Morita-Miller class

−π!

(
k0

⊗di

)
= − 1

di!
m0,di ∈ Hdi−2(Mg,∗; ΛdiHQ) ⊂ Hdi−2(Mg,∗;HQ

⊗di),
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where di is the degree of vi. When n = 3 it is equal to the cohomology class of the
crossed homomorphism k̃. The Euler characteristic χ(Γ ) of the graph Γ satisfies

−2χ(Γ ) + ν(Γ ) =
∑m

i=1
(di − 2).

So we obtain a twisted cohomology class∏m

i=1

(
−π!

(
k0

⊗di

))
∈ H−2χ(Γ )+ν(Γ )(Mg,∗;HQ

⊗Σm
i=1di).

In a similar way to the construction in §2 we can construct an Sp(2g;Z)-invariant
homomorphism

αΓ : H⊗Σm
i=1di−→H⊗ν(Γ ).

It contracts one H in ΛdiHQ and another H in ΛdjHQ by the intersection form µ
if an edge connects the vertices vi1 and vi2 . Now we define the cohomology class
α(Γ ) by

α(Γ ) = αΓ ∗
(∏m

i=1

(
−π!

(
k0

⊗di

)))
∈ H−2χ(Γ )+ν(Γ )(Mg,∗;HQ

⊗ν(Γ )).

The sign of the cohomology class depends on the numbering of the vertices.
We have no need to consider vertices of degree 2. In other words, the cohomology

class ±α(Γ ) depends only on the topological type of Γ . In fact, −π!(k0⊗2) ∈
H0(Mg,∗;H⊗2) corresponds to the identity 1H of H by the intersection form µ.
From what we have shown in §3, if Γ is a trivalent graph (without endpoints), the
cohomology class α(Γ ) coincides with αΓ ∈ H∗(Mg,∗;Q) in the previous sections.
The contraction formulae given in §6 imply that the cohomology class α(Γ ) is an

algebraic combination of the Euler class e and the twisted Mumford-Morita-Miller
classesmi,j ’s. Thus, for any finite graph Γ without endpoints, α(Γ ) is a polynomial
of the Euler class e and the Mumford-Morita-Miller classes ei = mi+1,0’s. This
proves Theorem 1.2.

Proof of Theorem 1.3.
In this proof we regard the symplectic form ω0 as an element of H⊗2 given by

ω0 =
∑g

i=1
(xi ⊗ yi − yi ⊗ xi) ∈ H⊗2,

where {xi, yi} is a symplectic basis of H . From (28) we have

ω0 = π!
(
k0

⊗2) ∈ H0(Mg,∗;H⊗2) ⊂ H⊗2.

Moreover we identify H⊗2 with End(H) by the intersection form µ. Then the
symplectic form ω0 corresponds to the negative of the identity −1H ∈ End(H), and
the graded algebra H∗(Mg,∗;H⊗2) acts on the graded module H∗(Mg,∗;H).
We first prove (ii). Let t be an indeterminate. We define B ∈ H2(Mg,∗;H⊗2),

e∗(t) ∈ H∗(Mg,∗;Z)[[t]] and v(t) ∈ H∗(Mg,∗;H)[[t]] by

B := −π!(ēk0⊗2),

e∗(t) :=
∑∞

i=0
eit

i = π!

(
ē

1− tē

)
and

v(t) := −π!

(
tēk0
1− tē

)
= −

∞∑
i=1

mi,1t
i,
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respectively. Then, making use of the contraction formula (Theorem 6.2), we obtain

(1− tB)v(t) = −
(
(1− te)−1 − tee∗(t)

)
tm1,1.

µ∗ (m1,1 ⊗ v(t)) = (1− te)e∗(t)− e0
(
(1− te)−1 − tee∗(t)

)
.

(31)

In fact, we have

(1− tB)v(t) = v(t)− t(1⊗ µ)∗

(
π!(ēk0 ⊗ k0)π!

(
k0

tē

1− tē

))
=− π!

(
tē

1− tē
k0

)
+ tπ!

(
tē2

1− tē
k0

)
− tπ!(ēk0)

te

1− te
+ teπ!(ēk0)π!

(
tē

1− tē

)
=− π!(tēk0)− tπ!(ēk0)

te

1− te
+ teπ!(ēk0)π!

(
tē

1− tē

)
=−
(

1
1− te

− eπ!

(
tē

1− tē

))
tπ!(ēk0) = −

(
(1− te)−1 − tee∗(t)

)
tm1,1.

Similarly we can deduce the latter equality in (31) as follows.

µ∗ (m1,1 ⊗ v(t)) = −µ∗

(
π!(ēk0)π!

(
k0

tē

1− tē

))
=π!

(
tē2

1− tē

)
− eπ!

(
tē

1− tē

)
− e0

te

1− te
+ ee0π!

(
tē

1− tē

)
=e∗(t)− e0 − tee∗(t)− e0

1
1− te

+ e0 + ee0te∗(t)

=(1− te)e∗(t)− e0
(
(1− te)−1 − tee∗(t)

)
.

The formulae (31) imply

µ∗
(
m1,1(1− tB1)−1tm1,1

)
= e0 −

(
(1− te)−2 − te(1− te)−1e∗(t)

)−1
e∗(t).

Now the cohomology class in H2(Mg,∗;H⊗2) indicated by the trivalent graph
−⊂⊃− is equal to −B − 2e · 1H , so that the cohomology class αΓ(i) is equal to
µ∗
(
m1,1(−B − 2e · 1H)i−1m1,1

)
. Hence we have∑∞

i=1
tiαΓ(i) =

∑∞
i=1

tiµ∗
(
m1,1(−B − 2e · 1H)i−1m1,1

)
=tµ∗

(
m1,1(1 + 2te+ tB)−1m1,1

)
=− µ∗

(
m1,1

(
1−
(

− t

1 + 2te

)
B

)−1(
− t

1 + 2te

)
m1,1

)

=e0 −
((

1 + 2te
1 + 3te

)2
+

te

1 + 3te
e∗

(
−t

1 + 2te

))−1
e∗

(
−t

1 + 2te

)
,

as was to be shown.
Next we prove (iii). The trivalent graphs H and I define twisted cohomology

classes αH and αI in H2(Mg,∗;H⊗4), respectively. Let T : H⊗4 → H⊗4 be an
Sp-equivariant map given by

T (a1 ⊗ a2 ⊗ a3 ⊗ a4) = a1 ⊗ a3 ⊗ a2 ⊗ a4
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(ai ∈ H). Then αI = −T∗ (αH) because of the graded commutativity of the cup
product. Hence the assertion (iii) is reduced to the following formula

αH + T∗ (αH) = −e ((ω0 ⊗ ω0) + T∗ (ω0 ⊗ ω0))(32)

in H2(Mg,∗;H⊗4). By the contraction formula (Theorem 6.2) we obtain

αH =(1 ⊗ µ ⊗ 1)
(
π!(k0⊗2 ⊗ k0)π!(k0 ⊗ k0

⊗2)
)

=− π!
(
k0

⊗4)− e π!
(
k0

⊗2)⊗ π!
(
k0

⊗2)
=− π!

(
k0

⊗4)− e ω0 ⊗ ω0.

On the other hand, we have T∗
(
k0

⊗4) = −k0
⊗4 in H4(Mg,∗;H⊗4). Therefore we

have αH + T∗ (αH) = −e (ω0 ⊗ ω0)− e T∗ (ω0 ⊗ ω0), as was to be shown.
Finally (i) follows from (ii) and (iii) immediately because by (ii), the leading

term of αΓ (k) is equal to (−1)kek while by (iii), for any connected trivalent graph
Γ , the leading term of αΓ depends only on the number of vertices of Γ .

Next we consider how the cohomology class α(Γ ) behaves under a certain modi-
fication of the graph Γ . We call an edge internal if it connects two vertices of degree
≥ 2 and is not a loop. Let τ be an internal edge of Γ . Then the quotient graph
Γ/τ obtained by collapsing the edge τ is homotopy equivalent to the original graph
Γ . We denote by Γ \ τ the finite graph obtained from Γ by removing the edge τ .
Clearly ν(Γ/τ) = ν(Γ \ τ) = ν(Γ ), and −χ(Γ ) = −χ(Γ/τ) = −χ(Γ \ τ) + 1. Then
we have

Proposition 8.1.

α(Γ ) = α(Γ/τ) + eα(Γ \ τ) ∈ H−2χ(Γ )+ν(Γ )(Mg,∗;H⊗ν(Γ )).

Proof. The contraction formula (Theorem 6.2) implies

(1⊗ µ ⊗ 1)∗
(
(−π!(k0⊗m1 ⊗ k0))(−π!(k0 ⊗ k0

⊗m2))
)

= −π!(k0⊗(m1+m2))− e(−π!(k0⊗m1))(−π!(k0⊗m2))

for m1,m2 ≥ 1. It can be visualized as in Figure 8.1. This proves the proposition.

= + e

Figure 8.1. Collapsing an internal edge.

The bouquet Γ̌m ofm+1 circles may be considered as one of the most degenerate
graphs. We define the cohomology class ěm ∈ H2m(Mg,∗;Z) by

ěm = α(Γ̌m) = −π!
(
µ∗(k0⊗2)m+1

)
= (−1)mπ!

(
(ē+ e − 2ν)m+1

)
.
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We have ě0 = −2g, ě1 = −e1 + 4ge = −e1 − 2(−2g)e, and

(−1)měm = em +
∑m−1

k=1

(
m+ 1
k + 1

)
em−kek +

(
(m+ 1)(2− 2g)− 2m+1

)
em

for m ≥ 1.
We modify any finite graph without endpoints Γ to a disjoint union of some

bouquets with coefficients in the polynomials of the Euler class e by collapsing all
the internal edges, so that we obtain the cohomology class α(Γ ) by substituting
the cohomology classes ěm into the bouquets Γ̌m.
As an example we consider the trivalent graph Γ4−3 of degree 4 in Figure 8.3.

The cohomology class α(Γ4−3) may be computed as in Figure 8.2. This means

αΓ4−3 = ě2 + 2eě1 + eě0ě1 + e(e+ 1)ě20 = e2 + ee1(5− 2g) + e2(2− 2g)(−8g − 1)

(see the third row of Table 8.1).

We now describe the algorithm for determining the cohomology class αΓ ∈
Q[g][e, e1, e2, · · · ] for any trivalent graph Γ . It is an inductive procedure depending
on the number 2k of vertices of Γ . If k = 1, we already know the answer (see
Example 1.4). Suppose that we have known the answer for any Γ whose number
of vertices is less than 2k (k > 1). Then we can determine αΓ for any Γ with 2k
vertices as follows. If Γ is not connected, then we know αΓ because α is multi-
plicative with respect to the disjoint union of graphs. By Theorem 1.3 (ii) proved
above, we know αΓ (k). On the other hand, it is easy to see that any two connected
trivalent graphs with the same numbers of vertices can be connected to each other
by finitely many IH moves. Hence the claim follows by applying Theorem 1.3 (iii)
and the induction assumption.
There are 5 and 17 isomorphism classes of connected trivalent graphs with 2k

vertices for k = 2 and k = 3 respectively. They are depicted in Figure 8.3 and
Figure 8.4.
We can compute the corresponding characteristic classes by applying the above

algorithm. They are given in Table 8.1 and Table 8.2.



28 NARIYA KAWAZUMI AND SHIGEYUKI MORITA

= + e

= + e + e + e2

= + e + e

+ e + e2

= + 2e + e

+ e + e2

Figure 8.2. Computation of α(Γ4−3).

By using Theorem 1.3, we can show that the coefficients of the polynomials αΓ

satisfy certain interesting property. For example, we have the following result.
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4− 1 4− 2 4− 3

4− 4 4− 5

Figure 8.3. Connected trivalent graphs with 4 vertices

Table 8.1. αΓ for connected trivalent graphs with 4 vertices

e2 ee1 e2

1 1 6 4g2 − 20g − 2
2 1 6 −22g − 2
3 1 −2g + 5 16g2 − 14g − 2
4 1 −4g + 4 −8g3 + 20g2 − 10g − 2
5 1 −6g + 3 −16g3 + 24g2 − 6g − 2

Table 8.2. αΓ for connected trivalent graphs with 6 vertices

e3 ee2 ee21 e2e1 e3

1 −1 −9 0 4g − 28 −32g2 + 68g + 18
2 −1 −9 0 6g − 27 8g3 − 36g2 + 64g + 18
3 −1 −8 −1 16g − 22 −64g2 + 48g + 16
4 −1 −9 0 2g − 29 −20g2 + 74g + 18
5 −1 −9 0 −30 −4g2 + 82g + 18
6 −1 −9 0 −30 84g + 18
7 −1 2g − 8 0 16g − 22 8g3 − 68g2 + 44g + 16
8 −1 2g − 8 0 18g − 21 16g3 − 72g2 + 40g + 16
9 −1 2g − 8 0 14g − 23 −64g2 + 48g + 16
10 −1 2g − 7 −1 −4g2 + 24g − 17 32g3 − 76g2 + 30g + 14
11 −1 4g − 7 0 −4g2 + 26g − 16 48g3 − 84g2 + 22g + 14
12 −1 4g − 7 0 −4g2 + 24g − 17 40g3 − 80g2 + 26g + 14
13 −1 4g − 6 −1 −12g2 + 28g − 13 −16g4 + 64g3 − 76g2 + 16g + 12
14 −1 4g − 6 −1 −8g2 + 32g − 12 64g3 − 88g2 + 12g + 12
15 −1 6g − 6 0 −12g2 + 30g − 12 −16g4 + 80g3 − 84g2 + 8g + 12
16 −1 6g − 5 −1 −20g2 + 32g − 9 −32g4 + 96g3 − 76g2 + 2g + 10
17 −1 8g − 4 −1 −32g2 + 32g − 6 −64g4 + 128g3 − 64g2 − 8g + 8

Proposition 8.2. Let Γ be a connected trivalent graph with 2k vertices. Let us
write

αΓ = (−1)kek + eα
(k−1)
Γ + · · ·+ ekα

(0)
Γ
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6− 1 6− 2 6− 3 6− 4

6− 5 6− 6 6− 7 6− 8

6− 9 6− 10 6− 11 6− 12

6− 13 6− 14 6− 15

6− 16 6− 17

Figure 8.4. Connected trivalent graphs with 6 vertices

where α
(i)
Γ ∈ Q[g][e1, e2. · · · ]. Also let us write

α
(i)
Γ =

∑
J

fJ(g)e
j1
1 · · · eji

i

where J = (j1, · · · , ji) runs through all multi-indices whose entries are non-negative
integers such that j1 + 2j2 + · · ·+ iji = i. For each J , let

fJ(g) = a0 + a1(−2g) + · · ·+ as(−2g)s + · · ·
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be the (−2g)-adic expansion of fJ(g) and set |fJ (g)| =
∑

s as. Then for each
i = 0, · · · , k − 1, the sum ∑

J

|fJ(g)|

does not depend on the choice of Γ .

Proof. As was already mentioned, any two connected trivalent graphs with the
same numbers of vertives can be connected by finitely many IH moves. Hence it
suffices to show that the numbers

∑
J |fJ(g)| do not change under any IH move.

By a direct computation, we can check that the claim holds for small degrees (see
Example 8.3 below). Then the general case follows by induction on the number of
vertices using Theorem 1.3 (iii).

Example 8.3. For trivalent graphs with two vertices as in Exapmle 1.4, we have

αΓ1 = −e1 + {−(−2g)2 − 2(−2g)}e, αΓ2 = −e1 − 3(−2g)e.
Hence the sums of the coefficients of the (−2g)-adic expansions are −1, −3 for e1, e,
respectively. The coefficients of the (−2g)-adic expansions of polynomials in Table
8.1 are given in Table 8.3.

Table 8.3. Coefficients of (−2g)-adic expansion

e2 ee1 e2

1 1 6 1, 10, −2
2 1 6 11, −2
3 1 1, 5 4, 7, −2
4 1 2, 4 1, 5, 5, −2
5 1 3, 3 2, 6, 3, −2

Hence the sums of these coefficients for e2, ee1, e
2 are 1, 6, 9, respectively, which

are independent of the graph Γ . Similar computation for Table 8.2 shows that
the sums of the (−2g)-adic coefficients for e3, e(e2 + e21), e2e1, e3 are given by
−1, −9, −30, −24, respectively, which are also independent of the graph. Further
computation for the case of 8 vertices shows that the sums are 1, 12, 58, 140, 45 for
the coefficients of ei(polynomials in ej) (i = 0, 1, · · · , 4) respectively.

Remark 8.4. We can consider any coefficient of the polynomial αΓ as an invariant
defined for trivalent graphs. However the set of all such coefficients is far from being
a complete set of invariants. For example, as mentioned above there are 5 and 17
isomorphism classes of connected trivalent graphs with 4 and 6 vertices, while the
numbers of linearly independent coefficients are 4 and 8 respectively. Observe that
the sum of the third and the fifth rows in Table 8.3 is equal to twice the fourth
row. It might be worthwhile to investigate these coefficients from the viewpoint of
classification of trivalent graphs.

9. Characterization of e ∈ H2(Mg,∗;Q) in terms of

(
Λ2(Λ3HQ)

)Sp

In the following three sections §9 ∼ §11, we describe another approach to our
main results, namely from the viewpoint of symplectic representation theory. In
particular, we prove Theorem 1.1 in this context. It is based on an analysis of the
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relation between IH moves of trivalent graphs and the ideal
(
[12]torelli ⊕ [22]

)
of

Λ∗(Λ3H∗
Q).

As the first step, we describe invariant tensors of Λ2(Λ3HQ) explicitly and by
using them we characterize the Euler class e ∈ H2(Mg,∗;Q) (see Corollary 9.6).
Let

p : H⊗6
Q −→Λ2(Λ3HQ)

be the canonical projection. We define two linear chord diagrams Z1, Z2 with 6
vertices by

Z1 = {{1, 2}, {3, 4}, {5, 6}}, Z2 = {{1, 6}, {2, 5}, {3, 4}}.(33)

Then the associated graphs ΓZ1 and ΓZ2 are trivalent graphs with 2 vertices: the
former has 2 loops while the latter is the theta graph which were already introduced
in Example 1.4. It is easy to see that two elements aΓZ1

, aΓZ2
form a basis of(

Λ2(Λ3HQ)
)Sp ∼= Q2. Passing to the dual, two elements αΓZ1

, αΓZ2
form a basis of

Hom(Λ2(Λ3HQ),Q)Sp. Explicitly we have

αΓZ1

(
(a1 ∧ a2 ∧ a3) ∧ (b1 ∧ b2 ∧ b3)

)
=
∑

σ,τ∈S3

sgnσ sgn τ (aσ(1) · aσ(2))(bτ(1) · bτ(2))(aσ(3) · bτ(3))

αΓZ1

(
(a1 ∧ a2 ∧ a3) ∧ (b1 ∧ b2 ∧ b3)

)
=−

∑
σ,τ∈S3

sgn σ sgn τ (aσ(1) · bτ(1))(aσ(2) · bτ(2))(aσ(3) · bτ(3))

where ai, bi ∈ HQ.
As in [55], we denote by D�(2k) the set of all linear chord diagrams with 2k

vertices.

Lemma 9.1. Let C,C′ ∈ D�(2k) be two linear chord diagrams with 2k vertices.
Then

αC(aC′) = (−1)k−r(2g)r

where r = r(C,C′) is the number of connected components of the union C ∪ C′.

Proof. To prove this, we recall a result of [57], Lemma 3.3. Let i, j be two indices
with 1 ≤ i < j ≤ 2k and let pij : H⊗2k

Q →H⊗2k
Q be the map defined by first taking

the contraction of the i-th and the j-th entries by the intersection pairing and then
putting ω0 there. More precisely

pij(a1 ⊗ · · · ⊗ a2k) = (ai · aj)
g∑

s=1

{
a1 ⊗ · · · ⊗ xs ⊗ · · · ⊗ ys ⊗ · · · ⊗ a2k

− a1 ⊗ · · · ⊗ ys ⊗ · · · ⊗ xs ⊗ · · · ⊗ a2k
}
.

Let C ∈ D�(2k) be any linear chord diagram. Then for any two indices i, j with
1 ≤ i < j ≤ 2k, we have

pij(aC) =

{
2g aC {i, j} ∈ C

−aC′ {i, j} /∈ C.

where C′ is the linear chord diagram defined as follows. Let j′, i′ be indices such
that {i, j′}, {i′, j} ∈ C. Then

C′ = C \ {{i, j′}, {i′, j}} ∪ {{i, j}, {i′, j′}}.
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Now we prove the assertion using the above result. If r = k, namely if C = C′,
then clearly αC(aC′) = (2g)k. If r < k, then by the above formula the factor −1
arises k − r times while the factor 2g arises r times. This completes the proof.

Let the symmetric group S6k of degree 6k act naturally on H⊗6k
Q and hence on

D�(6k). We consider the subgroup Gk = (S3)2k�S2k ofS6k, which is a semi-direct
product of 2k-copies of S3 with S2k, whose i-th S3 acts on the (3i, 3i+ 1, 3i+ 2)
components of H⊗6k

Q and S2k acts on these 2k summands isomorphic to H⊗3
Q by

permutations.

Lemma 9.2. Let Γ, Γ ′ be two trivalent graphs with 2k vertices and let C,C′ ∈
D�(6k) be their arbitrary lifts respectively. Then

αΓ (aΓ ′) =
1

(2k)!

∑
σ∈Gk

αC(aσ(C′)) =
1

(2k)!

∑
σ∈Gk

ασ(C)(aC′).

Proof. The first equality follows from

αΓ (aΓ ′) =αΓ

(
p(aC′)

)
=

1
(2k)!

αC

(
i ◦ p(aC′)

)
=

1
(2k)!

∑
σ∈Gk

αC

(
aσ(C′)

)
.

The second equality is clear.

Proposition 9.3. The matrix
(
αΓZi

(aΓZj
)
)
(i, j = 1, 2) is given by(

4(2g)3 − 16(2g)2 + 16(2g) −12(2g)2 + 24(2g)
−12(2g)2 + 24(2g) 6(2g)3 − 18(2g)2 + 12(2g)

)
and its determinant is

283(g − 2)(g − 1)2g2(2g + 1).

Proof. We use Lemma 9.2. By an obvious skew symmetricity of our computation
with respect to the former and the latter 3-components of H⊗6

Q , we have only to
compute the values of αCi on each element in the orbits of aCj under the action of
(S3)2. By explicit graphic computation, we find that the number r of connected
components of Ci ∪ σ(Cj) (σ ∈ (S3)2) takes the values 3, 2, 1, on 4, 16, 16 elements
in the orbit, respectively, for i = j = 1. Similarly r = 3, 2, 1 on 0, 12, 24 elements
in the orbit for i = 1, j = 2 and 6, 18, 12 elements in the orbit for i = 2, j = 2. The
assertion then follows from Lemma 9.1.

Remark 9.4. The above value of determinant is consistent with the stable range of
the cohomology group H2(Λ2(Λ3HQ)) ∼= Q2 which is g ≥ 3. If g = 2, two elements
αΓZ1

, αΓZ1
are linearly dependent which reflects the fact that e1 = 0 in this case.

Let a(g), b(g), c(g), d(g) be the entries of the matrix appearing in Proposition 9.3
and also let D(g) be its determinant. Thus

a(g) = 4(2g)3 − 16(2g)2 + 16(2g), b(g) = c(g) = −12(2g)2 + 24(2g)
d(g) = 6(2g)3 − 18(2g)2 + 12(2g), D(g) = 283(g − 2)(g − 1)2g2(2g + 1).
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Proposition 9.5. The projection p : Λ2(Λ3HQ)→
(
Λ2(Λ3HQ)

)Sp to the Sp-invariant
part is given by

p(ξ)

=D(g)−1
{(

d(g)αΓZ1
(ξ)− c(g)αΓZ2

(ξ)
)
aΓZ1

+
(
−b(g)αΓZ1

(ξ) + a(g)αΓZ2
(ξ)
)
aΓZ2

}
for all g ≥ 3 where ξ ∈ Λ2(Λ3HQ).

Proof. This follows directly from Proposition 9.3.

We define
Γe = ΓZ1 − ΓZ2 , aΓe = aΓZ1

− aΓZ2
.

Here the subscript e indicates the Euler class e ∈ H2(Mg,∗;Z). This is because it
was proved in [50] [53] that

αΓe = −2g(2g + 1)e.

Corollary 9.6. If an element ξ ∈ Λ2(Λ3HQ) satisfies

αΓZ1
(ξ) = 2s, αΓZ2

(ξ) = −3s
for some s, then

p(ξ) =
s

8(g − 1)g(2g + 1)
aΓe .

Proof. Computation shows that

2d(g) + 3c(g) = 2b(g) + 3a(g) = 253(g − 2)(g − 1)g.

Then the assertion follows from Proposition 9.5.

10. IH moves of trivalent graphs and representation theory

In this section, we give a complete description of the linear map

fIH : H⊗4
Q −→Λ2(Λ3HQ)

introduced by Garoufalidis and Nakamura in [11]. It expresses the IH moves of
trivalent graphs in the context of symplectic representation theory. Explicitly it is
defined as

fIH(a) =
g∑

i=1

{(a1 ∧ a2 ∧ xi) ∧ (yi ∧ a3 ∧ a4)− (a1 ∧ a2 ∧ yi) ∧ (xi ∧ a3 ∧ a4)}

−
g∑

i=1

{(a1 ∧ a3 ∧ xi) ∧ (yi ∧ a4 ∧ a2)− (a1 ∧ a3 ∧ yi) ∧ (xi ∧ a4 ∧ a2)}

where a = a1⊗a2⊗a3⊗a4 ∈ H⊗4
Q . For later use (in the computations of Table 11.1

and Table 11.2 in the next section), we denote the i-th term (where i = 1, 2, 3, 4)
in the above expression by ãi so that fIH(a) = ã1 + ã2 + ã3 + ã4. We summarize
their result concerning fIH as follows.

Proposition 10.1 ([11]). For any element a ∈ H⊗4
Q , fIH(a) is invariant under the

variable changes a1 ↔ a4, a2 ↔ a3 and a1, a4 ↔ a2, a3 so that fIH factors through
S2(S2HQ) where S denotes the symmetric power. The irreducible decomposition of
this Sp-module is given by

[4]⊕ [22]⊕ [12]⊕ [0]
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(for any g ≥ 4) and under the composed map

p ◦ fIH : H⊗4
Q −→Λ2(Λ3HQ)−→Λ2UQ,

the first summand goes to 0 while the other three summands remain nontrivially in
Λ2UQ.

Now to analize the effect of IH (or equivalently Whitehead) moves on the char-
acteristic classes of moduli space of curves through the homomorphism Φα in (6),
we have to investigate the map fIH thoroughly. More precisely, as for the sum-
mand [22] there is nothing to add because the multiplicity of [22] in Λ2(Λ3HQ)
is one (see [53]). However there are 3 and 2 copies of [12] and [0], respectively,
in Λ2(Λ3HQ) (see the above cited paper) so that we have to determine the exact
places of fIH([12]) and fIH([0]).
First we deal with the trivial summand [0]. Recall from the previous section that

we have the element aΓe = aΓZ1
− aΓZ2

.

Proposition 10.2. The image of the trivial summand [0] ⊂ S2(S2HQ) under the
map fIH is the subspace of

(
Λ2(Λ3HQ)

)Sp ∼= Q2 spanned by the element aΓe .

Proof. Since the image is 1-dimensional, it is enough to compute one particular
nontrivial element. We choose a = x1 ⊗ y1 ⊗ x1 ⊗ y1 ∈ H⊗4

Q for such an element.
Then

fIH(a) =
g∑

i=1

{
(x1 ∧ y1 ∧ xi) ∧ (yi ∧ x1 ∧ y1)− (x1 ∧ y1 ∧ yi) ∧ (xi ∧ x1 ∧ y1)

}
.

Hence
αΓZ1

(fIH(a)) = 8(g − 1), αΓZ2
(fIH(a)) = −12(g − 1).

In view of Corollary 9.6, this implies that the Sp-invariant component of fIH(a) is
a non-zero multiple of the element aΓe . This completes the proof.

Next the effect of the map fIH on the [12]-component was determined in [56] as
follows.

Proposition 10.3 ([56]). The image of the summand [12] ⊂ S2(S2HQ) under the
map fIH coincides exactly with the Torelli summand [12]torelli ⊂ Λ2(Λ3HQ).

Here [12]torelli ⊂ Λ2(Λ3HQ) denotes the Poincaré dual of the original Torelli
summand [12]torelli ⊂ Λ2(Λ3H∗

Q) in cohomology (we use the same symbol).
Thus we find that the graphic operation of IH moves on trivalent graphs fits

algebraic structure of the Torelli group (as well as that of the mapping class group)
perfectly through symplectic representation theory.

11. Alternative proof of the main results

In this section, we give an alternative proof of our main result in the context
of symplectic representation theory. In particular we prove Theorem 1.1 in the
context of symplectic representation theory. The main ingredient of our first proof
in §6 was the contraction formula (Theorem 6.2) and we obtain Theorem 1.3 by
applying it. In contrast with this, the key to the second proof is Proposition 11.1
below which is an enhancement of Theorem 1.3, (iii).
Let Γ1, Γ2 be two trivalent graphs with 2k vertices. Assume that they are related

by an IH-move in the sense of Garoufalidis and Nakamura [11], namely there is
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an embedding I ⊂ Γ1 such that Γ2 is obtained from Γ1 by replacing I in Γ1 by H .
In classical terms, IH-moves are nothing but the Whitehead moves. Let τ1 and τ2
be the corresponding edges of Γ1 and Γ2 respectively. We would like to analize the
difference aΓ1 − aΓ2 ∈ (Λ2k(Λ3HQ))Sp.

Proposition 11.1. Let Γi (i = 1, 2) be two trivalent graphs with 2k vertices which
are related by an IH move and let τi ⊂ Γi be the corresponding edges. Then the
element

αΓ1 − αΓ2 − 1
2g(2g + 1)

αΓe

(
αΓ1\τ1 − αΓ2\τ2

)
∈ (Λ2k(Λ3H∗

Q))
Sp

belongs to the ideal
(
[12]torelli ⊕ [22]

)
.

In view of Proposition 3.2 together with the fact that αΓe = −2g(2g + 1)e, we
obtain another proof of Theorem 1.3, (iii) as an immediate consequence of the above
proposition.

Proof of Proposition 11.1.
We first lift Γ1 to a linear chord diagram C1 with 6k vertices in such a way that

{3, 4} ∈ C1 and the projection of the corresponding chord is equal to the edge τ1.
Let

aC1 ∈ (H⊗6k
Q )Sp

be the invariant tensor associated to C1. Then we have

aΓ1 = p(aC1)

where p : H⊗6k
Q →Λ2k(Λ3HQ) is the canonical projection. Now let

fW : H⊗4
Q −→H⊗4

Q

be the Sp-equivariant map defined by

fW (a1 ⊗ a2 ⊗ a3 ⊗ a4) = a1 ⊗ a2 ⊗ a3 ⊗ a4 − a1 ⊗ a3 ⊗ a4 ⊗ a2

(ai ∈ HQ). It represents the essential part of the map fIH . We consider H⊗4
Q as

a direct summand of H⊗6k
Q by sending the (1, 2, 3, 4) factor of the former space to

the (1, 2, 5, 6) factor of the latter space. We set

f̃W = fW ⊗ id : H⊗6k
Q −→H⊗6k

Q .

Then it is easy to see that

f̃W (aC1) = aC1 − aC2

whereC2 is the linear chord diagram obtained by applying the permutation (2, 5, 6) �→
(6, 2, 5) to C1. It follows that ΓC2 = Γ2 and hence

p(f̃W (aC1)) = aΓ1 − aΓ2 .

Now consider the partial projection

p ⊗ p : H⊗6k
Q = H⊗6

Q ⊗ H
⊗(6k−6)
Q −→Λ2(Λ3HQ)⊗ Λ2k−2(Λ3HQ)

where we project the first 6 and the remaining (6k−6) factors of H⊗6k
Q to Λ2(Λ3HQ)

and Λ2k−2(Λ3HQ) respectively.
Consider the following composition of various Sp-equivariant maps
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H⊗6
Q ⊗ H

⊗(6k−6)
Q � aC1�f̃W

�
H⊗6

Q ⊗ H
⊗(6k−6)
Q � aC1 − aC2�p⊗p

�
Λ2(Λ3HQ)⊗ Λ2k−2(Λ3HQ) � p ⊗ p(aC1 − aC2)�wedge product �

Λ2k(Λ3HQ) � aΓ1 − aΓ2

(34)

under which the element aC1 goes to aΓ1 −aΓ2 . Now let a = a1⊗a2⊗a3⊗a4 ∈ H⊗4
Q

be any element and set ã = a ⊗ ω0 ∈ H⊗4
Q ⊗′ H⊗2

Q = H⊗6
Q where ⊗′ means that the

(1, 2, 3, 4, 5, 6) components go to (1, 2, 5, 6, 3, 4) components. Then we have

p ◦ (fW ⊗ id)(ã) = fIH(a).

Hence, by applying Proposition 10.1, Proposition 10.2 and Proposition 10.3, we can
conclude that the element aΓ1 −aΓ2 is divisible by αΓe modulo the ideal

(
[12]torelli⊕

[22]
)
. In view of Proposition 10.2, to determine the αΓe -factor we have only to

compute αΓZ1
(ã) where a runs through the first 4 components of each monomial

in aC1 . Table 11.1 and Table 11.2 indicate all possible cases where this value may
not vanish.

Table 11.1. αΓZ1
(ã)

a1 a2 a3 a4 αΓZ1
(ã1) αΓZ1

(ã2) αΓZ1
(ã3) αΓZ1

(ã4) αΓZ1
(ã)

1 xj yj xk yk 4(g − 2) 4(g − 2) 0 8 8(g − 1)
2 yj xj xk yk −4(g − 2) −4(g − 2) −4 −4 −8(g − 1)
3 xj yj yk xk −4(g − 2) −4(g − 2) −4 −4 −8(g − 1)
4 yj xj yk xk 4(g − 2) 4(g − 2) 8 0 8(g − 1)
5 xj yj xj yj 4(g − 1) 4(g − 1) 0 0 8(g − 1)
6 yj xj xj yj −4(g − 1) −4(g − 1) −4(g − 1) −4(g − 1) −16(g − 1)
7 xj yj yj xj −4(g − 1) −4(g − 1) −4(g − 1) −4(g − 1) −16(g − 1)
8 yj xj yj xj 4(g − 1) 4(g − 1) 0 0 8(g − 1)
1′ xj xk yj yk 0 8 4(g − 2) 4(g − 2) 8(g − 1)
2′ yj xk xj yk −4 −4 −4(g − 2) −4(g − 2) −8(g − 1)
3′ xj yk yj xk −4 −4 −4(g − 2) −4(g − 2) −8(g − 1)
4′ yj yk xj xk 8 0 4(g − 2) 4(g − 2) 8(g − 1)
5′ xj xj yj yj 0 0 4(g − 1) 4(g − 1) 8(g − 1)
8′ yj yj xj xj 0 0 4(g − 1) 4(g − 1) 8(g − 1)

In Table 11.1, we assume j $= k in the cases 1, 2, 3, 4, 1′, 2′, 3′, 4′ and there are no
6′, 7′ because they are the same as 6, 7 respectively.
There are other cases where it may not be quite trivial whether the values of

αΓZ1
(ã) are zero or not. We list them in Table 11.2. In the cases 9, 10, 11, 12, we

assume that j $= k.
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Table 11.2. Other cases

a1 a2 a3 a4 αΓZ1
(ã1) αΓZ1

(ã2) αΓZ1
(ã3) αΓZ1

(ã4) αΓZ1
(ã)

9 xj yk xk yj 4 4 0 −8 0
10 yj xk yk xj 4 4 −8 0 0
11 xj xk yk yj 0 −8 4 4 0
12 yj yk xk xj −8 0 4 4 0
9′ xj yj xj yj 0 0 0 0 0
10′ yj xj yj xj 0 0 0 0 0
11′ xj xj yj yj 0 0 0 0 0
12′ yj yj xj xj 0 0 0 0 0

Thus we can conclude that, in all cases other than those listed in Table 11.1, the
images of them in Λ2(Λ3HQ) have no component in the trivial summand [0].
Summing up the above computation, we obtain Table 11.3 which is a complete

list of elements of H⊗4
Q whose images in Λ2(Λ3HQ) have non-trivial components in

[0]. In Table 11.3, we do not assume that j $= k and the value −16(g−1) of αΓZ1
(ã)

on the element named number 6 (resp. 7) in Table 11.1 are shared evenly by s2
and t2 (resp. s3 and t3).

Table 11.3. Non zero terms

a1 a2 a3 a4 Table 11.1 αΓZ1
(ã)

s1 xj yj xk yk 1, 5 8(g − 1)
s2 yj xj xk yk 2, 6 −8(g − 1)
s3 xj yj yk xk 3, 7 −8(g − 1)
s4 yj xj yk xk 4, 8 8(g − 1)
t1 xj xk yj yk 1′, 5′ 8(g − 1)
t2 yj xk xj yk 2′, 6 −8(g − 1)
t3 xj yk yj xk 3′, 7 −8(g − 1)
t4 yj yk xj xk 4′, 8′ 8(g − 1)

Now it is easy to see that the terms s1 ∼ s4 in Table 11.3 corresponds to αΓ1\τ1
while the terms s1 ∼ s4 corresponds to −αΓ2\τ2 (the minus sign comes from the
sign of the permutation (1234) �→ (1324)). In both cases, the value αΓZ1

is equal to
8(g−1). Hence by Corollary 9.6, the coefficient is equal to 1

2g(2g+1) . This completes
the proof.

Proof of Theorem 1.1 in the context of symplectic representation theory.
First we prove that the images of the homomorphisms ρ∗2 in (3) coincide exactly

with the tautological algebras R∗(Mg,∗),R∗(Mg) based on Proposition 11.1 and
its corollary (Theorem 1.3, (iii)). We use induction on degrees. The case of degree 2
was already proved in [47][50]. On the other hand, it was proved in [53] that for any
genus g and degree 2i, there exists a degree 2i homogeneous element of Q[Γ ;Γ ∈ G]
such that the associated characteristic class is equal to a non-zero multiple of ei.
It is easy to see that this element must contain at least one connected trivalent
graph with 2i vertices as a non-trivial term and the sum of the coefficients of such
connected graphs is non-zero. Then the induction proceeds again by the fact that
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any two connected trivalent graphs with the same number of vertices are connected
by finitely many IH moves together with Theorem 1.3, (iii).
Next we prove that the homomorphisms ρ∗2 are isomorphisms in the stable range.

It is a consequence of the above argument that the dimensions of the degree 2i parts
of the left hand sides of diagram (4) cannot exceed those of the degree 2i parts of
the polynomial algebras Q[e, e1, e2, · · · ] and Q[e1, e2, · · · ] respectively. On the other
hand, we already know that the tautological algebras have no relations in the stable
range (see [43][45]). The claim now follows. The precise value of the stable range
≤ 2

3g is due to Harer’s improved stability theorem in [23].

Remark 11.2. Garoufalidis and Nakamura claim in [11] that there exsits a canonical
isomorphism

Q[Γ ;Γ ∈ G0]/(IH0) ∼= Λ∗UQ/([22])
in the stable range where IH0 denotes the ideal generated by IH0 moves which
are IH moves of certain restricted types. Unfortunately, there seems to be a gap
in their proof, because even if we consider only IH0 moves, the image of the ideal
(IH0) under the canonical map contains the summands [0] and [12] other than [22].
In fact, if their claim were true, it would imply that the leading term of our beta
class βΓ depends only on the number of vertices of Γ and not on its shape. However
this is not true (see (35) in §12). Nevertheless we emphasize that our consideration
is based on their beautiful idea to relate IH moves of trivalent graphs to symplectic
representation theory through their map fIH . (See [12] for a correction of [11]).

12. Unstable relations in the tautological algebras for small g

In this section, we make explicit computations for the case of degree 4 to illustrate
our method. Thereby we obtain unstable relations in degree 4 of the tautological
algebras R∗(Mg) and R∗(Mg,∗) for g = 2, 3, 4, 5.
First we briefly summarize the case of degree 2. The dimensions of the Sp-

invariant part of the module

Λ2(Λ3HQ) = Λ2UQ ⊕
(
UQ ⊗ HQ

)
⊕ Λ2HQ

are given in the following table

g Λ2UQ

(
UQ ⊗ HQ

)
Λ2HQ total

2 0 0 1 1
≥ 3 1 0 1 2

A basis of (Λ2(Λ3HQ))Sp for g ≥ 3 can be given as follows. Let Z1, Z2 be the
linear chord diagrams with 6 vertices defined in (33). Then the associated trivalent
graphs are Γ1, Γ2 given in Example 1.4. Then of course βΓ1 = 0 because Γ1 has
loops. By applying the results in [57], we obtain

βΓ2 = αΓ2 +
6

2(2g − 2)
αΓ1 = −2g + 1

2g − 2
e1.

If g = 2, then Λ3H = H so that U = 0. Hence βΓ2 = 0 in this case. In view of
the above formula for the β-class, we obtain the well known fact that e1 = 0 in
H2(M2;Q).
Next we consider the case of degree 4. The dimensions of the Sp-invariant part

of the module

Λ4(Λ3HQ) = Λ4UQ ⊕
(
Λ3UQ ⊗ HQ

)
⊕
(
Λ2UQ ⊗ Λ2HQ

)
⊕
(
UQ ⊗ Λ3HQ

)
⊕ Λ4HQ
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are given in the following table

g Λ4UQ

(
Λ3UQ ⊗ HQ

) (
Λ2UQ ⊗ Λ2HQ

) (
UQ ⊗ Λ3HQ

)
Λ4HQ total

2 0 0 0 0 1 1
3 1 0 1 1 1 4
4 2 0 2 1 1 6
5 2 1 2 1 1 7

≥ 6 3 1 2 1 1 8

A basis of (Λ4(Λ3HQ))Sp for g ≥ 6 can be given as follows. Let Λi (i = 1, · · · , 5)
be the connected trivalent graphs with 4 vertices given in Figure 8.3. Also set

Λ6 = Z2 � Z2, Λ7 = Z1 � Z2, Λ8 = Z1 � Z1.

Then {aΛi ; i = 1, · · · , 8} form a basis of (Λ4(Λ3HQ))Sp (g ≥ 6). We know αΛi by
Table 8.1. By the results in [57], the β-class can be evaluated as

βΛ1 =
g(g + 1)2

(g − 1)3
e2 +

5g2 + 2g − 1
4(g − 1)4

e21

βΛ2 =
g(g + 1)(g + 2)

(g − 1)3
e2 +

3(g + 1)(4g − 1)
8(g − 1)4

e21

(35)

and of course we have

βΛ6 =
(
βΓ2

)2 = (2g + 1)2

4(g − 1)2
e21.

Thus we have a relation

βΛ6 = 2(2g + 1)
{

− (g + 2)βΛ1 + (g + 1)βΛ2

}
between the β-classes.
To obtain unstable relations in degree 4, we consider the following 8 elements

in Λ4(Λ3H) each with an indication of genera where it is defined. They should
correspond to the values of dim(Λ4(Λ3H))Sp for g = 2, 3, 4, 5 and g ≥ 6 listed
above.

ξ1 =(x1 ∧ y1 ∧ x2) ∧ (x1 ∧ y1 ∧ y2) ∧ (x2 ∧ y2 ∧ x1) ∧ (x2 ∧ y2 ∧ y1) (g ≥ 2)

ξ2 =(x1 ∧ x2 ∧ x3) ∧ (y1 ∧ y2 ∧ y3) ∧ (x1 ∧ y2 ∧ y3) ∧ (y1 ∧ x2 ∧ x3) (g ≥ 3)

ξ3 =(x1 ∧ y1 ∧ x2) ∧ (y2 ∧ x3 ∧ y3) ∧ (y3 ∧ x1 ∧ x2) ∧ (x3 ∧ y1 ∧ y2) (g ≥ 3)

ξ4 =(x1 ∧ y1 ∧ x2) ∧ (y2 ∧ x1 ∧ x3) ∧ (y1 ∧ y3 ∧ x1) ∧ (y1 ∧ x2 ∧ y2) (g ≥ 3)

ξ5 =(x1 ∧ x2 ∧ x3) ∧ (y1 ∧ y2 ∧ y3) ∧ (x1 ∧ y2 ∧ y4) ∧ (y1 ∧ x2 ∧ x4) (g ≥ 4)

ξ6 =(x1 ∧ y1 ∧ x3) ∧ (x2 ∧ y2 ∧ x4) ∧ (x1 ∧ x2 ∧ y3) ∧ (y1 ∧ y2 ∧ y4) (g ≥ 4)

ξ7 =(x1 ∧ x2 ∧ x5) ∧ (x3 ∧ x4 ∧ y5) ∧ (y1 ∧ y2 ∧ y3) ∧ (y4 ∧ x1 ∧ y1) (g ≥ 5)

ξ8 =(x1 ∧ x2 ∧ x3) ∧ (y1 ∧ y2 ∧ y3) ∧ (x4 ∧ x5 ∧ x6) ∧ (y4 ∧ y5 ∧ y6) (g ≥ 6)
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Then the (8, 8)-matrix whose (i, j)-entry is equal to 24αΛj (ξi) is described as

ξ α1 α2 α3 α4 α5 α6 α7 α8

ξ1 -32 48 -32 128 -192 288 -192 128
ξ2 -48 48 0 0 0 288 0 0
ξ3 -16 24 0 -16 0 0 96 0
ξ4 0 -24 24 -48 48 0 0 0
ξ5 -32 24 0 0 0 288 0 0
ξ6 16 0 -16 16 0 0 0 0
ξ7 0 -24 8 0 0 0 0 0
ξ8 0 0 0 0 0 288 0 0

and its determinant is equal to 235 · 35. Here we simply write αi for αΛi .
Now we are ready to compute.

(I) The case of g = 5. In this case, dim(Λ4(Λ3HQ))Sp = 7 which is just 1 smaller
than the stable dimension so that we have a unique relation. More precisely, we
must omit the element ξ8 from the above table so that there arises a linear relation
between the elements αi. By an explicit computation, we find that the element

r1 = 8α1 +
16
3

α2 + 16α3 + 8α4 +
8
3
α5 +

4
9
α6 +

4
3
α7 + α8

vanishes for g = 5. If we replace each αi in the above element r1 by the correspond-
ing polynomials in e, e1, e2 for g = 5:

α1 =e2 + 6ee1 − 2e2 α5 =e2 − 27ee1 − 1432e2

α2 =e2 + 6ee1 − 112e2 α6 =e21 − 60ee1 + 900e2

α3 =e2 − 5ee1 + 328e2 α7 =e21 + 50ee1 − 2400e2

α4 =e2 − 16ee1 − 552e2 α8 =e21 + 160ee1 + 6400e
2,

we obtain

r1 = 40e2 +
25
9

e21.

We can now conclude that

72e2 + 5e21 = 0 (g = 5)

which coincides with the equality

κ21 =
72
5

κ2

given already in Faber’s paper [7] (note that κi = (−1)i+1ei).

(II) The case of g = 4. In this case dim(Λ4(Λ3HQ))Sp = 6 so that we have two
relations. More precisely, we must omit two elements ξ7, ξ8 from the above table.
Then by an explicit computation, we find that the following two elements

r2 =12α1 + 8α2 + 18α3 + 6α4 + α5 + 2/3α6 + α7

r3 =8α1 + 16/3α2 + 8α3 − 4/3α5 + 4/9α6 − α8
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vanish for g = 4. If we replace each αi in the above elements r2, r3 by the corre-
sponding polynomials in e, e1, e2 for g = 4:

α1 =e2 + 6ee1 − 18e2 α5 =e2 − 21ee1 − 666e2

α2 =e2 + 6ee1 − 90e2 α6 =e21 − 48ee1 + 576e2

α3 =e2 − 3ee1 + 198e2 α7 =e21 + 24ee1 − 1152e2

α4 =e2 − 12ee1 − 234e2 α8 =e21 + 96ee1 + 2304e
2,

we obtain two equalities

45e2 +
5
3
e21 − 35ee1 − 210e2 = 0

20e2 − 5
9
e21 − 100

3
ee1 − 200e2 = 0.

From these, we can conclude that the following two relations

32e2 + 3e21 = 0

7e2 − 9ee1 − 54e2 = 0

hold for g = 4. The first relation coincides with

κ21 =
32
3

κ2

given in [6] (see also [7]). Here it is amusing to observe that the fiber integral of
the second equality above yields a trivial identity 54e1 − 54e1 = 0, while that of

e(7e2 − 9ee1 − 54e2) = 0

yields
−42e2 − 9e21 − 54e2 = −3(32e2 + 3e21) = 0

which is the same as the first relation.

(III) The case of g = 3. In this case, dim(Λ4(Λ3HQ))Sp = 4 so that we have 4
relations. Similar computations as above yield the following relations

e21 = 0, ee1 + 4e2 = 0.

We can also show that e3 = 0 by our method, but we omit the details here. See [5]
for the structure of the Chow algebra.

(IV) The case of g = 2. In this case, we can obtain the well-known facts

e1 = 0, e2 = 0.

The details are also omitted.
See [57] for further unstable relations in the tautological algebras.

13. Further implications of the main results

In this section, we describe further results which can be obtained by combining
our main results (Theorem 1.1 and Theorem 1.3) with Hain’s important results in
[14][16].
LetMg,1 be the mapping class group of Σg relative to an embedded diskD2 ⊂ Σg

and let {Mg,1(k)}k be the filtration of Mg,1 induced by the lower central series of
the fundamental group of Σ0g = Σg \ IntD2 as follows. For any group G, we denote
by Γk(G) the k-th term in the lower central series of G defined as Γ0(G) = G and
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Γk(G) = [G,Γk−1(G)] (k ≥ 1). Then Mg,1(k) is the subgroup of Mg,1 consisting
of all elements which act on the k-th nilpotent quotient Γk−1(π1Σ0g)/Γk(π1Σ0g) of
π1Σ0g trivially. In particular, Mg,1(1) is the Torelli group Ig,1 ⊂ Mg,1. We also
have similar filtrations {Mg,∗(k)}k and {Mg(k)}k for Mg,∗ and Mg respectively
(see [51][53][55] for details).
There is another filtration {M′

g,1(k)}k of Mg,1 where M′
g,1(1) = Ig,1 and for

k ≥ 2, M′
g,1(k) is defined to be the (k − 1)-th term Γk−1(Ig,1) in the lower central

series of the Torelli group Ig,1. Johnson [29] showed that M′
g,1(k) ⊂ Mg,1(k) for

all k and asked whether they coincide after tensoring with Q or not. It was proved
in [48] that M′

g,1(3) has an infinite index in Mg,1(3) and Hain [14] proved that the
same is true for all k ≥ 3. There are similar filtrations {M′

g,∗(k)}k, {M′
g(k)}k for

Mg,∗, Mg and similar results as above also hold for them.
Associated to these filtrations, we can consider the direct limits

H∗
c (Mg,1;Q) = lim

k→∞
H∗(Mg,1/Mg,1(k);Q)

H∗
c′(Mg,1;Q) = lim

k→∞
H∗(Mg,1/M′

g,1(k);Q)

of the cohomology of the successive quotients. We call them the continuous coho-
mology of the mapping class group. There are natural increasing filtrations on these
continuous cohomology groups which are induced by the original (decreasing) fil-
trations by subgroups of Mg,1. We denote by H∗

c (Mg,1;Q)k (resp. H∗
c′(Mg,1;Q)k)

the (k + 1)-th term in these filtrations. Thus

H∗
c (Mg,1;Q)k = Im(H∗(Mg,1/Mg,1(k + 1);Q)→H∗

c (Mg,1;Q))

and similarly for H∗
c′(Mg,1;Q)k. We call H∗

c (Mg,1;Q)k, H∗
c′(Mg,1;Q)k the contin-

uous cohomology of order k.
For any k ≥ 2, we have an extension

1−→Ig,1/Mg,1(k)−→Mg,1/Mg,1(k)−→Sp(2g,Z)−→1(36)

where Ig,1/Mg,1(k) turns out to be a nilpotent group. Now it is easy to see that
the natural injective homomorphism Mg,1 ⊂ Mg+1,1 sends the subgroup Mg,1(k)
to Mg+1,1(k). Hence we obtain the following induced morphism of extensions:

Ig,1/Mg,1(k) −−−−→ Ig+1,1/Mg+1,1(k)� �
Mg,1/Mg,1(k) −−−−→ Mg+1,1/Mg+1,1(k)� �

Sp(2g,Z) −−−−→ Sp(2g + 2,Z)

(37)

Recall from [51][53][55] that the graded module ⊕k≥1(Mg,1(k)/Mg,1(k+1)) has
a natural structure of a graded Lie algebra over Z. In fact, the Johnson homomor-
phisms give rise to an embedding of it into the Lie algebra consisting of derivations
of the free Lie algebra generated by H1(Σg;Z) which kill the symplectic class, as
a Lie subalgebra. Now it is an important consequence of the result of Hain in [14]
that this Lie subalgebra tensored by Q is generated by the degree 1 summand which
is isomorphic to Λ3HQ as a representation of the algebraic group Sp(2g,Q). In fact,
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Hain proved in the above cited paper that the natural homomorphism

Tg,1−→Ug,1(38)

from the Malcev completion Tg,1 of the Torelli group Ig,1 to the prounipotent radical
Ug,1 of his relative completion of the mapping class group Mg,1 is surjective. By
the universality of the relative completion, there is a natural homomorphism

Ug,1−→ lim←−(Ig,1/Ig,1(k))⊗ Q(39)

which is also surjective. Hence the composition of the two homomorphisms (38)
and (39) is surjective. Then the above fact follows by considering the induced
homomorphism between their Lie algebras and then their asociated graded Lie
algebras, because the graded Lie algebra associated to the Lie algebra of Tg,1 is
generated by elements of degree 1 (for any g ≥ 3).
It follows by induction on k that the natural injection

(Mg,1(k)/Mg,1(k + 1))⊗ Q→(Mg+1,1(k)/Mg+1,1(k + 1))⊗ Q

stabilizes as rational representations of the symplectic groups Sp(2g,Q) for suffi-
ciently large g. Then if we consider the spectral sequence of the rational coho-
mology of the morphism (37) and use the spectral sequence comparison theorem
together with the Borel vanishing theorem [3][4] concerning the stable cohomology
of Sp(2g,Z) with non-trivial rational representations as coefficients, we can deduce
for any k that H∗(Mg,1/Mg,1(k);Q) stabilizes. More precisely, the E2 term of the
spectral sequence of the rational cohomology of the extension (36) is equal to

H∗(Sp(2g,Z);Q)⊗ H∗(Ig,1/Mg,1(k);Q)Sp

in a suitable stable range. On the other hand, Hain also proved in [16] that the
extension (36) splits over the rationals. Hence the argument in [53] implies that
H∗(Ig,1/Mg,1(k);Q)Sp survives to the E∞ term so that it can be considered as a
subgroup of H∗(Mg,1/Mg,1(k);Q). Hence the spectral sequence collapses and we
have an isomorphism

H∗(Mg,1/Mg,1(k);Q) ∼= H∗(Sp(2g,Z);Q)⊗ H∗(Ig,1/Mg,1(k);Q)Sp(40)

in the same stable range. Thus we obtain a natural homomorphism

lim
k→∞

H∗(Ig,1/Mg,1(k);Q)Sp−→H∗(Mg,1;Q).(41)

It also follows from Hain’s general theory in [17] as is mentioned in [18]. It follows
easily from the above facts that the continuous cohomology H∗

c (Mg,1;Q)k of order
k also stabilizes (with respect to the genus). We call the limit

lim
g→∞H∗

c (Mg,1;Q)k

with respect to g the continuous cohomology of order k of the mapping class group
and denote it by H∗

c (M∞,1;Q)k. We call the union of increasing groups

H∗
c (M∞,1;Q) =

⋃
k≥1

H∗
c (M∞,1;Q)k

the stable continuous cohomology of the mapping class group.

Remark 13.1. (i) The natural surjection

lim
g→∞H∗(Mg,1/Mg,1(k + 1);Q)−→H∗

c (M∞,1;Q)k
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is not injective in general. For example, if k = 1 the former is isomorphic to

Q[c1, c3, · · · ]⊗ Q[Γ ;Γ ∈ G]
while the latter is isomorphic to

Q[c1, c3, · · · ]⊗ Q[b1, b2, · · · ]
as will be shown below.
(ii) Although, for any k, H∗

c (Mg,1;Q)k does stabilizes in each degree with respect to
g, it is unclear whether H∗

c (Mg,1;Q) actually stabilizes in each degree or not. This
is because the stable range depends on k so that for a fixed degree r, Hr

c (Mg,1;Q) =⋃
k Hr

c (Mg,1;Q)k may not stabilize.

Now recall that Miller proved in [43] that the (ordinary) stable cohomology
H∗(M∞,1;Q) of the mapping class group has a natural stucture of a commuta-
tive and cocommutaive graded Hopf algebra so that it is the tensor product of the
polynomial algebra generated by primitive elements of even degrees and the exte-
rior algebra generated by primitive elements of odd degrees. Here the coalgebra
structure is induced by natural homomorphisms

Mg,1 × Mg′,1−→Mg+g′,1

which are induced by boundary connected sum of surfaces with one boundary com-
ponent. Observe that the subgroup Mg,1(k) × Mg′,1(k) goes to Mg+g′,1(k) un-
der the above homomorphism. Using this fact, we can modify Miller’s argument
in the context of the stable continuous cohomology of Mg,1 and conclude that
H∗

c (M∞,1;Q)k also has a natural structure of a commutative and cocommutative
graded Hopf algebra for any k.
Borel [3][4] proved that limg→∞ H∗(Sp(2g,Z);Q) = Q[c1, c3, . . . ] where ci de-

notes the i-th Chern class of the dual of the universal bundle over the classifying
space of Sp(2g,Z). Here, instead of ci, we consider the Newton classes si which
are certain polynomials in the Chern classes, because ci is not primitive (except
for c1) while the Newton classes are. Then clearly limg→∞ H∗(Sp(2g,Z);Q) =
Q[s1, s3, . . . ] and si are all primitive elements.
Now for each i, we consider the cohomology class αΓ where Γ is a connected

trivalent graph with 2i vertices (see §3). In view of Theorem 1.3, (i), the pullback
of αΓ to H∗(Mg,1;Q) does not depend on the choice of the graph and it represents
the class (−1)iei there. Clearly this cohomology class can be considered as an
element of the stable continuous cohomology of Mg,1, in fact as an element of
H2i

c (M∞,1;Q)1, for it comes from H2i(Ig,1(1)/Mg,1(2);Q)Sp and is stable with
respect to g. Furthermore, by the argument in the proof of Proposition 3.2, the
class αΓ does not depend on the choice of the graph even as an element of the
continuous cohomology H∗

c (Mg,1;Q). We denote it by

bi ∈ H2i
c (M∞,1;Q)1 ⊂ H2i

c (M∞,1;Q).

It is easy to deduce from the definition of αΓ that bi is primitive (this explains
why it is a multiple of ei and does not contain decomposable terms as a polynomial
of ej ’s). It was proved in [58][44][43] that e2i−1 = 2i

Bi
s2i−1 where Bi denotes the

i-th Bernoulli number. Hence the images of b2i−1 and s2i−1 in the ordinary stable
cohomology of Mg,1 are linearly dependent. However, we will see in a moment that
they are linearly independent as elements of the stable continuous cohomology of
Mg,1.
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With these terminologies, we have the following result which was obtained with
Hain and Looijenga (cf. [18], Theorem 9.11 and Theorem 10.7, for a somewhat
different formulation).

Theorem 13.2. (i) The continuous cohomology H∗
c (Mg,1;Q)k of order k of Mg,1

with respect to the filtration {Mg,1(k)}k stabilizes for any k and the stable contin-
uous cohomology

H∗
c (M∞,1;Q) =

⋃
k

H∗
c (M∞,1;Q)k

has a natural structure of a commutative and cocommutative graded Hopf algebra.
Furthermore the first term H∗

c (M∞,1;Q)1 is isomorphic to the polynomial algebra

Q[s1, s3, · · · , b1, b2, · · · ]
where s2i−1 and bi are all primitive elements.
(ii) The image of the natural homomorphism

H∗
c (M∞,1;Q)−→H∗(M∞,1;Q)

is equal to the subalgebra Q[e1, e2, · · · ] generated by the Mumford-Morita-Miller
classes and the ideal of the left hand side generated by the classes e2i−1 − 2i

Bi
s2i−1

(i = 1, 2, · · · ) goes to zero under the above homomorphism.

Proof. We first prove (i). By the above discussion, we have only to prove that the
two classes s2i−1 and b2i−1 are linearly independent as elements of H∗

c (M∞,1;Q)
for any i. Assume the contrary. Then, for sufficiently large k and g, s2i−1 and
b2i−1 must be linearly dependent as elements of H∗(Mg,1/Mg,1(k);Q). Since the
restriction of s2i−1 to

H4i−2(Ig,1/Mg,1(k);Q)Sp ⊂ H4i−2(Mg,1/Mg,1(k);Q)

(cf. (40)) is trivial, so is the restriction of b2i−1. But then the image of b2i−1 in
H∗(Mg,1;Q) must be zero which is a contradiction.
Next we prove (ii). Hain proved in [16] that, associated to any complex structure

on Σg, there is defined a mixed Hodge structure on limk→∞ H∗(Ig,1/Mg,1(k);Q)Sp

and each of the following two homomorphisms

H∗(Λ3HQ)Sp−→ lim
k→∞

H∗(Ig,1/Mg,1(k);Q)Sp−→H∗(Mg,1;Q)(42)

is a morphism of mixed Hodge structures. Furthermore the first homomorphism
in (42) surjects onto the lowest weight subalgebra of the middle term. On the
other hand, Pikaart [61] proved that the mixed Hodge structure on Hk(Mg,1;Q)
is pure of weight k for 2k + 1 ≤ g. If we combine these results with Theorem 1.1,
which shows that the image of the composite of the two maps in (42) is exactly the
subalgebra generated by the classes ei, we obtain the required result.

Remark 13.3. We may say that the second statement of the above theorem serves
as a supporting evidence for the well-known conjecture that the stable rational
cohomology of the mapping class group is isomorphic to the polynomial algebra
generated by the classes ei. We mention that this conjecture has been proved to
be true for degrees ≤ 4 by Harer [20][22][24] and for degree 5 by Arbarello and
Cornalba [1]. See also [31][32] for another evidence for the conjecture.

In the above discussion, we can replace {Mg,1(k)}k by the other filtration
{M′

g,1(k)}k and we have the following result concerning it.
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Theorem 13.4. The continuous cohomology of order k H∗
c′(Mg,1;Q)k of Mg,1

with respect to the filtration {M′
g,1(k)}k stabilizes for any k and the stable contin-

uous cohomology

H∗
c′(M∞,1;Q) =

⋃
k

H∗
c′(M∞,1;Q)k

has a natural structure of a commutative and cocommutative graded Hopf algebra.
Furthermore the first term H∗

c′(M∞,1;Q)1 is isomorphic to the polynomial algebra

Q[s1, s3, · · · , b2, b3, · · · ].

Proof. The proof is similar to that of Theorem 13.2. We only mention the different
points. This time we use the fundamental theorem of Hain [16] which gives an
explicit finite presentation of the Lie algebra associated to the Malcev completion of
the Torelli group (with any decoration). Clearly the natural injection Ig,1→Ig+1,1

sends the subgroup Γk(Ig,1) to Γk(Ig+1,1) for any k. Hence we obtain the induced
homomorphism

(Γk(Ig,1)/Γk+1(Ig,1))⊗ Q−→(Γk(Ig+1,1)/Γk+1(Ig+1,1))⊗ Q.

Hain’s theorem mentioned above implies that the above homomorphism stabilizes
as representations of Sp(2g,Q) in the stable range. Then a similar argument as
before applied to (37) with Mg,1(k) replaced by M′

g,1(k) proves the first half of
the theorem.
For the latter half, we again use Hain’s theory of relative Malcev completion of

the mapping class group in [14]. It is a consequence of the result of [48][49] that
the two classes b1 and −12s1 coincide in H∗

c′(M∞,1;Q)1. It remains to prove that
b2i−1 and s2i−1 are linearly independent in it for any i > 1. As mentioned before
(see (38)(39)), Hain constructed a sequence of natural homomorphisms

Tg,1 = lim←−(Ig,1/M′
g,1(k))⊗ Q−→Ug,1−→ lim←−(Ig,1/Mg,1(k))⊗ Q

of prounipotent groups and proved that the former is a central extension byQ whose
extension class is the pullback of b1 in H2

c (Ug,1) (for any g ≥ 3). Furthermore it
was shown that the natural homomorphism (41) factors as

lim
k→∞

H∗(Ig,1/Mg,1(k);Q)Sp−→H∗
c (Ug,1;Q)Sp−→H∗(Mg,1;Q).(43)

Now assume that b2i−1 and s2i−1 are linearly dependent in H∗
c′(M∞,1;Q). Then

b2i−1 must vanish in limk→∞ H∗(Ig,1/M′
g,1(k);Q)

Sp because s2i−1 is clearly zero
there. Hence the image of it in H∗

c (Ug,1;Q) lies in the kernel of the homomorphism

H∗
c (Ug,1)−→ lim

k→∞
H∗(Ig,1/M′

g,1(k);Q).

On the other hand, the Gysin exact sequence of the central extension

0−→Q−→ lim←−(Ig,1/M′
g,1(k))⊗ Q−→Ug,1−→1

implies that the kernel is precisely the ideal generated by the class b1. Hence we
can write b2i−1 = b1x for some x ∈ H∗

c (Ug,1). But this contradicts the fact that
the image of b2i−1 under the latter homomorphism of (43) in H∗(Mg,1;Q), namely
−e2i−1, is primitive. This completes the proof.
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Let us restrict Theorem 13.4 to the Torelli group. Then the above discussion
implies that, for any k, the natural homomorphism

H∗
c (Ig+1,1;Q)

Sp
k −→H∗

c (Ig,1;Q)
Sp
k

stabilizes in each degree with respect to g. HereH∗
c (Ig,1;Q)k denotes the continuous

cohomology of Ig,1 of order k with respect to its own lower central series (see [16]
for general facts concerning the continuous cohomology). Hence we can consider
the limit

H∗
c (I∞,1;Q)

Sp
k = lim

g→∞H∗
c (Ig,1;Q)

Sp
k

and we call the union

H∗
c (I∞,1;Q)Sp =

⋃
k

H∗
c (I∞,1;Q)

Sp
k

the Sp-invariant stable continuous cohomology of the Torelli group. Obviously the
restriction induces a homomorphism

Q[b1, b2, · · · ]−→H∗
c (I∞,1;Q)

Sp
1

and we know by a result in [48][49] that b1 goes to zero.

Theorem 13.5. (i) The Sp-invariant part H∗
c (Ig,1;Q)

Sp
k of the continuous coho-

mology H∗
c (Ig,1;Q)k of order k of the Torelli groups Ig,1 stabilizes for any k and

the Sp-invariant stable continuous cohomology

H∗
c (I∞,1;Q)Sp

has a natural structure of a commutative and cocommutative graded Hopf algebra.
Furthermore the first term is given by

H∗
c (I∞,1;Q)

Sp
1

∼= Q[b2, b3, · · · ].
(ii) In the continuous cohomology H∗

c (Ig,1;Q), the class bi does not vanish for any
i > 1 in degrees ≤ 2

3g. Hence the natural homomorphism

H∗
c (Ig,1;Q)−→H∗(Ig,1;Q)

from the continuous cohomology to the ordinary cohomology has a big kernel because
it contains the ideal generated by all odd classes b3, b5, · · · except for the first one
b1.

Remark 13.6. The above result suggests (but not prove) that the secondary char-
acterstic classes of surface bundles introduced in [54] are non-trivial.

Remark 13.7. If we compare Hain’s presentation of the Lie algebras associated to
the Malcev completions of Ig,1 and Ig, it is not difficult to show that the natural
homomorphism

H∗
c (Ig;Q)

Sp
k −→H∗

c (Ig,1;Q)
Sp
k

induced by the projection Ig,1→Ig is an isomorphism in a suitable stable range.
Hence the above Theorem 13.5 with Ig,1 replaced by Ig also holds.

Conjecture 13.8. The Sp-invariant part H∗(Ig;Q)Sp of the rational cohomology
of the Torelli groups stabilizes with respect to g so that the Sp-invariant stable
cohomology limg→∞ H∗(Ig;Q)Sp is defined. Furthermore we have an isomorphism

lim
g→∞H∗(Ig;Q)Sp ∼= Q[e2, e4, · · · ].
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Remark 13.9. It is an important open problem to determine whether the even
classes e2i are non-trivial in H∗(Ig;Q) or not.

14. Concluding remarks

Remark 14.1. In this paper, we considered cocycles of the mapping class group
which are derived from Sp-invariant elements of the cohomology of the abelianiza-
tion of the Torelli group and completely clarified their properties. It is an important
problem to generalize these results to other cohomology classes which may be ob-
tained from the homomorphism

lim
k→∞

H∗(Ig,1/Mg,1(k);Q)Sp−→H∗(Mg,1;Q).

For example, we may ask whether Looijenga’s unstable cohomology class for genus
3 moduli space given in [40] can be detected by the above homomorphism or not.

Remark 14.2. Garoufalidis and Levine [9] proved that the filtration, introduced by
Ohtsuki [59] (see also [60]), on the vector space generated by oriented homology 3-
spheres can be described by the lower central series of the Torelli group Ig. Moreover
they showed in [10] a relation between the finite type invariants of homology 3-
spheres and the graded module associated to the lower central series of Ig. Also we
learned from J. Murakami that the restriction to Ig of the projective representation
of the mapping class group associated to the universal perturbative 3-manifolds
invariants due to Le, Murakami and Ohtsuki [39] is a unipotent representation
after taking canonical truncations. Hence it should be described in terms of the
Malcev completion of the Torelli group, though explicit description is far from being
understood.
On the other hand, Theorem 13.5 shows that the Torelli group has a deeper

structure than what is reflected in its Malcev completion because the natural ho-
momorphism from the continuous cohomology to the ordinary cohomology of the
Torelli group has a big kernel. In view of the well-known close connection between
the structure of the Torelli group and the set of homology 3-spheres, it might be
natural to expect that there exist some unknown invariants of these manifolds which
reflect the structure of the Torelli group other than its nilpotent quotients.
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