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Abstract. We consider a nonsymmetric first-order differential operator (Au)(x) =�
0 1

1 0

�
du
dx

(x) +P (x)u(x), 0 < x < 1, where P is a 2× 2 matrix whose components

are in L2(0, 1). We study an eigenvalue problem for A with boundary conditions at
x = 0, 1. We establish an asymptotic form of the eigenvalues and prove that the set

of the root vectors forms a Riesz basis in {L2(0, 1)}2. The key is a transformation
formula.

§1. Introduction and the main result for the eigenvalue problem.

We consider a nonsymmetric first-order differential operator in (0, 1):

(1.1) (Au)(x) =
(

0 1
1 0

)
du

dx
(x) + P (x)u(x). 0 < x < 1,

where u(x) =
(
u1(x)
u2(x)

)
and

P (x) =
(
p11(x) p12(x)
p21(x) p22(x)

)
,

where pk� ∈ L2(0, 1), 1 ≤ k, � ≤ 2, are complex-valued functions. We define an

operator A in {L2(0, 1)}2 by

(1.2) (Au)(x) = (Au)(x), 0 < x < 1,
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2 I. TROOSHIN AND M. YAMAMOTO

D(A) = {u ∈ {H1(0, 1)}2;u2(0) coshµ− u1(0) sinhµ = 0,

u2(1) cosh ν + u1(1) sinh ν = 0}.(1.3)

Throughout this paper, we set i =
√−1, µ, ν ∈ C, and L2(0, 1) and H1(0, 1) are

the Lebesgue space and the Sobolev space of complex-valued functions.

The eigenvalue problem for A can describe proper vibrations with damping both

in the medium and at the boundary points:

d2u

dx2
(x) + λp1(x)u(x) + p2(x)

du

dx
(x) = λ2u(x), 0 < x < 1

du

dx
(0) + λhu(0) =

du

dx
(1) + λHu(1) = 0,

where h 
= ±1, H 
= ±1. In fact, setting U(x) =
(
u1(x)
u2(x)

)
=

(
λu(x)
du
dx (x)

)
, we rewrite

the system as


(
0 1
1 0

)
dU

dx
(x) +

(
p1(x) p2(x)

0 0

)
U(x) = λU(x), 0 < x < 1

u2(0) + hu1(0) = u2(1) +Hu1(1) = 0,

which is an eigenvalue problem for A with P (x) =
(
p1(x) p2(x)

0 0

)
.

In this paper, we establish an asymptotic form of the eigenvalues of A and prove

that the set of the root vectors of A forms a Riesz basis in {L2(0, 1)}2. Such

spectral properties are essential for control problems (e.g. Russell [6]) and inverse

problems (e.g. Cox and Knobel [1], Yamamoto [13]) and our result admits the

generalisation of those results for A with L2-coefficients. Here a Riesz basis means

a basis equivalent to an orthonormal basis (e.g., Gohberg and Krĕın [3]), and we

call u 
= 0 a root vector of an operator A for λ if (A − λ)mu = 0 for some m ∈ N.

Moreover {ϕn}n∈Z is a Riesz basis in {L2(0, 1)}2 if and only if each u ∈ {L2(0, 1)}2

has a unique expansion u =
∑∞

n=−∞ cnϕn with cn ∈ C, n ∈ Z and

M−1
∞∑

n=−∞
|cn|2 ≤ ‖u‖2

{L2(0,1)}2 ≤M

∞∑
n=−∞

|cn|2,
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where a constant M > 0 is independent of u.

Henceforth we set

(1.4) θ1(x) =
1
2

∫ x

0

(p12(y) + p21(y))dy, θ2(x) =
1
2

∫ x

0

(p11(y) + p22(y))dy,

for 0 ≤ x ≤ 1. We are ready to state our main result:

Theorem.

(i) The spectrum σ(A) of the operator defined by (1.1) - (1.3) consists entirely of

geometrically simple eigenvalues with finite algebraic multiplicities.

There exist N ∈ N and Σ1,Σ2 ⊂ σ(A), such that σ(A) = Σ1 ∪ Σ2, Σ1 ∩ Σ2 = ∅

and the following properties hold:

(1)

Σ1 ⊂
{
λ; Im |(λ− θ2(1) + µ+ ν)| ≤

(
N − 1

2

)
π

}

and the sum of the algebraic multiplicities of the eigenvalues in Σ1 is 2N−1.

(2) Σ2 consists of eigenvalues {λn}|n|≥N with algebraic multiplicty 1 and λn is

in a neighbourhood of θ2(1) − µ− ν + nπi for every |n| ≥ N .

Moreover with a suitable numbering {λn}n∈Z of σ(A), the eigenvalues have an

asymptotic form

(1.5) λn = θ2(1) − µ− ν + nπi+ δn where

∞∑
n=−∞

|δn|2 <∞.

(ii) The set of all the root vectors {ϕn}n∈Z of A is a Riesz basis in {L2(0, 1)}2.

Our theorem generalises the previous results by Cox and Knobel [1], Russell [6]

and Trooshin and Yamamoto [11]. More precisely, in the case of P ∈ {C1[0, 1]}4,

Russell [6] shows our theorem without proof. The proof for P ∈ {C1[0, 1]}4 is found
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in [11]. In [1], the asymptotic behaviour of the eigenvalues and the Riesz basis are

proved in the case of Lipschitz continuous P and special boundary conditions, that

is, µ = ν = 0 or πi/2.

For the completeness of the eigenvectors of a nonsymmetric system and closely

related eigenvalue problems for pencils of ordinary differential operators, we can

further refer to Cox and Zuazua [2], Rykhlov [7], Shkalikov [8], Shubov [9], Shubov,

Martin, Dauer and Belinskiy [10], Vagabov [12].

This paper is composed of four sections. In Section 2, we show ingredients for

the proof of the theorem. In Sections 3 and 4, we prove the first and the second

parts of the theorem, respectively.

§2. Transformation formula.

Let

(2.1) Ω = {(x, y); 0 < y < x < 1}

and

(2.2) B =
(

0 1
1 0

)
, E =

(
1 0
0 1

)
.

We put

(2.3) R(x) = e−θ1(x)

(
cosh θ2(x) − sinh θ2(x)
− sinh θ2(x) cosh θ2(x)

)
, 0 ≤ x ≤ 1,

where θ1(x), θ2(x) are defined by (1.4).

Lemma 2.1. For any λ ∈ C, µ ∈ C and P ∈ {L2[0, 1]}4, let ϕ = ϕ(x, λ) =(
ϕ1(x, λ)
ϕ2(x, λ)

)
satisfy

(2.4)



B
dϕ

dx
(x) + P (x)ϕ(x) = λϕ(x), 0 < x < 1

ϕ1(0, λ) = coshµ, ϕ2(0, λ) = sinhµ.
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Then

(2.5) ϕ(x, λ) = R(x)
(

cosh(λx+ µ)
sinh(λx+ µ)

)
+

∫ x

0

K(x, y)
(

cosh(λy + µ)
sinh(λy + µ)

)
dy,

for 0 ≤ x ≤ 1, all λ ∈ C and µ ∈ C. Here R is defined by (2.3) and K ∈ {L2(Ω)}4

is independent of λ and dependent on P and µ such that K(1, ·) ∈ {L2(0, 1)}4.

Remark. This lemma is valid in a general case of P ∈ {L1(0, 1)}4 with K ∈

{L1(Ω)}4 and K(1, ·) ∈ {L1(0, 1)}4.

Proof. This lemma was already proved in the case of P ∈ {C1[0, 1]}4 by Yamamoto

[13].

To prove the lemma for P ∈ {L2(0, 1)}4, let us note that there exist 2×2 matrix

functions Pn ∈ {C1[0, 1]}4 such that limn→∞ ‖P − Pn‖{L2(0,1)}4 = 0.

We directly see that the solution ϕ(x, λ) of the Cauchy problem (2.4) satisfies

the following integral Volterra equation

(2.6) ϕ(x, λ) =
(

coshµ
sinhµ

)
+

∫ x

0

B(λE − P (s))ϕ(s, λ)ds.

It easily follows that for any fixed λ ∈ C, we have

(2.7) lim
n→∞ ‖ϕ(·, λ) − ϕn(·, λ)‖{L2(0,1)}2 = 0,

where ϕn(x, λ) =
(
ϕn

1 (x, λ)
ϕn

2 (x, λ)

)
is the solution to the Cauchy problem

(2.8)



B
dϕn

dx
(x) + Pn(x)ϕn(x) = λϕn(x), 0 < x < 1

ϕn
1 (0, λ) = coshµ, ϕn

2 (0, λ) = sinhµ.

Let us denote by Kn(x, y) the kernel of the transformation operator of the problem

(2.8) and let Rn be defined by (2.3) for Pn ∈ {C1[0, 1]}4.
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It is easy to see that ‖Rn −R‖{L2(0,1)}4 → 0 as n→ ∞. Moreover, in [13], it is

proved that:

(2.9) Kn
11(x, y) =

1
2

[Ln
2 (x, y) + Ln

3 (x, y)], Kn
12(x, y) =

1
2

[Ln
1 (x, y) + Ln

4 (x, y)],

(2.10) Kn
21(x, y) =

1
2

[Ln
4 (x, y) − Ln

1 (x, y)], Kn
22(x, y) =

1
2

[Ln
3 (x, y) − Ln

2 (x, y)]

and Ln(x, y) =



Ln

1 (x, y)
Ln

2 (x, y)
Ln

3 (x, y)
Ln

4 (x, y)


 are the solutions of the Volterra integral equations:

Ln(x, y) =rn
1

(
x+ y

2

)
+ rn

2

(
x− y

2

)
+

∫ x+y
2

y

Qn
1 (s)Ln(x+ y − s, s)ds

+
∫ y

0

Qn
2 (s)Ln(x− y + s, s)ds+

∫ x−y
2

0

Qn
3 (s)Ln(x− y − s, s)ds.

Furthermore, by [13], we see that the elements of 4×4 matrices Qn
j (s) are linear

combinations of the entries of the matrix Pn and limn,m→∞ ‖Qn
j −Qm

j ‖{L2(Ω)}16 = 0

for j = 1, 2, 3, and rn
i ∈ {C1[0, 1]}4 such that limn,m→∞ ‖rn

i − rm
i ‖{L2(0,1)}4 = 0. It

follows from these observations that limn,m→∞ ‖Kn −Km‖{L2(Ω)}4 = 0.

The completeness of the space {L2(Ω)}4 implies that there is a limit function of

the sequence {Kn}n∈N, which we denote by K(x, y). Let us set

(2.11) ϕ̂(x, λ) = R(x)
(

cosh(λx+ µ)
sinh(λx+ µ)

)
+

∫ x

0

K(x, y)
(

cosh(λy + µ)
sinh(λy + µ)

)
dy.

It is easy to see that limn→∞ ‖ϕ̂(·, λ) − ϕn(·, λ)‖{L2(0,1)}2 = 0. By (2.7), it means

that ϕ̂(x, λ) = ϕ(x, λ) almost everywhere on (0, 1) and consequently, as continuous

functions, everywhere on [0, 1].

To prove that K(1, ·) ∈ {L2(0, 1)}4, we should repeat the above argument for

fixed x = 1.
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§3. Proof of the first part of Theorem.

We divide the proof into five steps.

First Step. We show

Lemma 3.1. The spectrum σ(A) consists entirely of countable isolated eigenvalues

with finite algebraic multiplicities.

Proof of Lemma 3.1. The proof is similar to Lemma 3.1 in [11] and for complete-

ness, we will give it. We define by U = U(x, λ) = (Uk�(x, λ))1≤k,�≤2 the solution

to the Cauchy problem

B
dU

dx
(x) + P (x)U(x) = λU(x), 0 < x < 1

U(0) =
(

1 0
0 1

)
.

Here and henceforth we set

B0 =
(− sinhµ coshµ

0 0

)
, B1 =

(
0 0

sinh ν cosh ν

)
.

Then we can ditectly show that v =
(
v1
v2

)
∈ D(A) if and only if

v ∈ {H1(0, 1)}2, B0v(0) +B1v(1) = 0.

On the other hand, in view of variation of constants, the general solution to

(A− λ)v =
(
B
d

dx
+ P (x) − λ

)
v = f

with f ∈ {L2(0, 1)}2, is given by

v(x) = U(x, λ)η + U(x, λ)
∫ x

0

U(y, λ)−1Bf(y)dy,

where η ∈ C2 is arbitrary. To satisfy v ∈ D(A), we have to choose η such that

(B0 +B1U(1, λ))η +B1U(1, λ)
∫ 1

0

U(y, λ)−1Bf(y)dy = 0.
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If det(B0 +B1U(1, λ)) 
= 0, then such η exists:

η = −(B0 +B1U(1, λ))−1B1U(1, λ)
∫ 1

0

U(y, λ)−1Bf(y)dy

and we can write

v(x) = −U(x, λ)(B0 +B1U(1, λ))−1B1U(1, λ)
∫ 1

0

U(y, λ)−1Bf(y)dy

+U(x, λ)
∫ x

0

U(y, λ)−1Bf(y)dy.

Therefore if det(B0 + B1U(1, λ0)) 
= 0 for some λ0 ∈ C, then (A − λ0)−1 is a

compact operator from {L2(0, 1)}2 to itself. This implies that σ(A) consists of

isolated eigenvalues with finite algebraic multiplicities (e.g. Kato [4]). Hence it is

sufficient to verify that there exists λ0 ∈ C such that det(B0 + B1U(1, λ0)) 
= 0.

Setting µ = 0 and µ = π
2
i in Lemma 2.1, we obtain

U(x, λ) =R(x)
(

coshλx sinhλx
sinhλx coshλx

)

+
∫ x

0

K(x, y)
(

coshλy sinhλy
sinhλy coshλy

)
dy, 0 ≤ x ≤ 1, λ ∈ C.

Here we note that cosh(λx + π
2
i) = i sinhλx and sinh(λx + π

2
i) = i coshλx. Set

λ = α+ 2mπi with fixed α ∈ C and m ∈ N.

Then, since K(1, ·) ∈ {L2(0, 1)}4 by Lemma 2.1, it follows from the Riemann-

Lebesgue lemma that

(B0 +B1U(1, α+ 2mπi))k� =
(
B0 +B1R(1)

(
coshα sinhα
sinhα coshα

))
k�

+ o(1),

as |m| → ∞ for 1 ≤ k, � ≤ 2.

Therefore

(3.1) det(B0 +B1U(1, λ)) = det
(
B0 +B1R(1)

(
coshα sinhα
sinhα coshα

))
+ o(1)
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as |m| → ∞. On the other hand, we directly verify that

B0 +B1R(1)
(

coshα sinhα
sinhα coshα

)

=
( − sinhµ coshµ
e−θ1(1) sinh(α− θ2(1) + ν) e−θ1(1) cosh(α− θ2(1) + ν)

)
,

so that

det
(
B0 +B1R(1)

(
coshα sinhα
sinhα coshα

))
= −e−θ1(1) sinh(α− θ2(1) + µ+ ν).

Therefore, choosing α 
= θ2(1) − ν − µ+ �πi, for any � ∈ Z, we obtain that

det
(
B0 +B1R(1)

(
coshα sinhα
sinhα coshα

))

= 0.

In view of (3.1), det(B0 +B1U(1, λ0)) 
= 0 for λ0 = α+2mπi with sufficiently large

m ∈ N. Thus the proof of Lemma 3.1 is complete.

Second Step. In view of Lemma 3.1, we can denote the set of the eigenvalues of

A by {λn}n∈Z. The number λ is an eigenvalue of the operator A if and only if

(3.2) Φ(λ) ≡
(
ϕ(1, λ),

(
sinh ν
cosh ν

))
= 0,

where ϕ(x, λ) is the solution of the Cauchy problem (2.4). Here and henceforth

(·, ·) denotes the scalar product in R
2. It follows from (2.5) that

(3.3) Φ(λ) = e−θ1(1) sinh(λ+ µ+ ν − θ2(1)) + Φ1(λ),

where

(3.4) Φ1(λ) =
(∫ 1

0

K(1, y)
(

cosh(λy + µ)
sinh(λy + µ)

)
dy,

(
sinh ν
cosh ν

))
.

We set

a0 = −µ− ν + θ2(1).
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It is known by the Luzin theorem that for any ε > 0, one can find a bounded

step matrix-function Kε(y) such that

∫ 1

0

|K(1, y) −Kε(y)|dy ≤ ε.

Therefore

∣∣∣∣
(∫ 1

0

(K(1, y) −Kε(y))
(

cosh(λy + µ)
sinh(λy + µ)

)
dy,

(
sinh ν
cosh ν

))∣∣∣∣ ≤ 4εe|Reµ|+|Reν|e|Reλ|

for λ ∈ C. Since Kε is a bounded step function, there is a constant Cε > 0 such

that for any λ ∈ C

∣∣∣∣
(∫ 1

0

Kε(y)
(

cosh(λy + µ)
sinh(λy + µ)

)
dy,

(
sinh ν
cosh ν

))∣∣∣∣ ≤ Cε

|λ| exp(|Reλ|).

Thus we have proved an estimate on the whole λ-plane:

|Φ1(λ)| ≤ (4εe|Reµ|+|Reν| +
Cε

|λ| ) exp(|Reλ|).

Therefore it follows that for an arbitrary ε > 0, we can choose Λ > 0 such that

(3.5) |Φ1(λ)| ≤ ε exp(|Reλ|)

for all |λ| ≥ Λ.

Now we will show that there exists a constant K > 0 such that

(3.6) |Re (λn − a0)| ≤ K

for all the eigenvalues λn. Let us suppose contrarily. That is, we can take Cn > 0,

n ∈ N such that limn→∞Cn = ∞ and for n ∈ N, there is an eigenvalue λn such

that |Re (λn − a0)| > Cn. Then, without loss of generality, we can suppose that

there is a countable sequence of eigenvalues λkn
so that

(3.7) Re (λkn
− a0) > Cn, n ∈ N.
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In fact, otherwise, there exists a countable sequence of eigenvalues λkn
so that

Re (λkn
− a0) < −Cn and we can argue similary for that sequence.

It follows from (3.5) that for any ε > 0 we can choose N such that for any

kn ≥ N

(3.8) |Φ1(λkn
)| ≤ εeRe λkn , n ∈ N.

On the other hand, for sufficiently large kn, we see

(3.9) |e−θ1(1) sinh(λkn
− a0)| ≥ 1

4
|e−θ1(1)|e−|Re a0| exp(Reλkn

).

In fact, by (3.7), we have

| sinh(λkn
− a0)| =

1
2
e−Re (λkn−a0)|e2(λkn−a0) − 1|

≥1
2
e−Re (λkn−a0)(e2Re (λkn−a0) − 1) ≥ 1

2
e−Re (λkn−a0) × 1

2
e2Re (λkn−a0)

for large n.

Hence, by (3.8) and (3.9), for sufficiently large n, the number λkn
can not be a

zero of the function Φ(λ) = e−θ1(1) sinh(λ − a0) + Φ1(λ). This is a contradiction.

Therefore (3.6) is proved.

Third Step. In (3.6), we further choose K > 0 large enough, so that

|Φ1(λ)| < |e−θ1(1) sinh(λ− a0)|

for all λ with |Reλ| = K. This is proved similarly to (3.9), in view of (3.5). Then

we set

Kn = {λ; Re a0 −K − 1 < Re λ < Re a0 +K + 1,

Im a0 + nπ − π

2
< Imλ < Im a0 + nπ +

π

2
}.(3.10)
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We will show that

there is N ∈ N such that for any |n| ≥ N , there exists exactly

one eigenvalue in Kn with algebraic multiplicity one.
(3.11)

Noting that Kn = {λ+ nπi;λ ∈ K0}, by the definition (3.10) of K0, we have

(3.12) min
λ∈∂Kn

|e−θ1(1) sinh(λ− a0)| = min
λ∈∂K0

|e−θ1(1) sinh(λ− a0)| ≡ L > 0.

We see from the estimate (3.5) that we can choose N ∈ N such that

(3.13) sup
λ∈∂Kn

|Φ1(λ)| < L, |n| ≥ N.

In view of (3.12) and (3.13), we apply the Rouché theorem to Φ(λ) = e−θ1(1) sinh(λ−

a0) + Φ1(λ) and e−θ1(1) sinh(λ− a0) in Kn, so that the proof of (3.11) is complete.

By the choice of the constants K and N , we obtain

|Φ1(λ)| < |e−θ1(1) sinh(λ− a0)|

on the boundary of
⋃N−1

k=−N+1Kn. By the Rouché theorem, it means that there are

exactly 2N−1 eigenvalues including algebraic multiplicities inside of
⋃N−1

k=−N+1Kn.

Fourth Step. Next we show that the eigenvalues λn have an asymptotic form

(3.14) λn = nπi+ a0 + δn where δn = o(1) as |n| → ∞.

For this, it is sufficient to prove that for any r > 0, there is a constant N such that

there is exactly one eigenvalue inside of the circle Cn = {λ : |nπi+ a0 − λ| ≤ r} if

|n| ≥ N .

Firstly we easily see that

min
λ∈∂Cn

|e−θ1(1) sinh(λ− a0)| = min
λ∈∂C0

|e−θ1(1) sinh(λ− a0)| ≡ l > 0.

In view of (3.5), we can repeat the argument in the third step and apply the Rouché

theorem to finish the proof of (3.14).
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Fifth Step. Let us show now that eigenvalues λn have an asymptotic form λn =

nπi+ a0 + δn where
∑∞

n=−∞ |δn|2 <∞.

Since Φ(λn) = 0, by (3.2) and (3.3), we have

e−θ1(1) sinh(λn − a0) = e−θ1(1)(−1)n sinh δn = −∆n,

where

∆n = Φ1(λn) =
(∫ 1

0

K(1, y)
(

cosh(λny + µ)
sinh(λny + µ)

)
dy,

(
sinh ν
cosh ν

))
.

Then we can write:

∆n =
∫ 1

0

g1(y)eλnydy +
∫ 1

0

g2(y)e−λnydy

with some g1, g2 ∈ L2(0, 1).

Therefore, by (3.14), we obtain

∆n =
∫ π

−π

f(y)e(n+σn)iydy,

where f ∈ L2(−π, π) is suitably given and σn = o(1) as |n| → ∞.

Now we are going to use the following theorem (pp. 108-109 in Paley and Wiener

[5]): If |γn − n| ≤ L < π−2, then a system {eiγnx}n∈Z constitutes a Riesz basis in

L2(−π, π).

It follows from this theorem and the asymptotics for eigenvalues that there exists

a natural number M such that a system {einx}|n|≤M ∪{ei(n+σn)x}|n|>M constitutes

a Riesz basis in L2(−π, π).

Hence
∑∞

n=−∞ |∆n|2 <∞ by f ∈ L2(−π, π). Consequently
∑∞

n=−∞ | sinh δn|2 <

∞. Noting that δn = sinh δn[1 + o(1)] by limλ→0

∣∣ sinh λ
λ

∣∣ = 1, it follows that

∑∞
n=−∞ |δn|2 <∞.
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§4. Proof of the second part of Theorem.

By the first part of Theorem, we can number the eigenvalues of A as follows:

σ(A) = {λn}|n|≥N ∪ {κ�}1≤�≤m with

(4.1)



λn = a0 + nπi+ δn, |n| ≥ N,

∑
|n|≥N

|δn|2 <∞,

|Im (κ� − a0)| ≤
(
N − 1

2

)
π, 1 ≤ � ≤ m.

Here λn is an eigenvalue with algebraic multiplicity one for |n| ≥ N , and κ� is an

eigenvalue with algebraic multiplicity χ� for 1 ≤ � ≤ m. We note that

(4.2)
m∑

�=1

χ� = 2N − 1.

We choose a basis {ψ�k}1≤k≤χ�
of the generalized eigenspace (i.e. the root subspace)

for κ�, 1 ≤ � ≤ m and number the sum of all the root vectors as {ψk}1≤k≤2N−1.

On the other hand, by Lemma 2.1, the function

(4.3) ϕn(x) = R(x)
(

cosh(λnx+ µ)
sinh(λnx+ µ)

)
+

∫ x

0

K(x, y)
(

cosh(λny + µ)
sinh(λny + µ)

)
dy,

for 0 ≤ x ≤ 1 and |n| ≥ N , is an eigenfunction of A for the eigenvalue λn.

We will prove that {ψk}1≤k≤2N−1 ∪ {ϕn}|n|≥N+1 is a Riesz basis in {L2(0, 1)}2.

For this, we will apply the Bari theorem (e.g. Theorem 2.3 of Chapter VI in

Gohberg and Krĕın [3]). We introduce a sequence of functions

en(x) ≡R(x)
(

cosh(αnx+ µ)
sinh(αnx+ µ)

)

=R(x)
(

cosh(a0x+ µ) i sinh(a0x+ µ)
sinh(a0x+ µ) i cosh(a0x+ µ)

) (
cosnπx
sinnπx

)
, n ∈ Z.(4.4)

Here we set

(4.5) αn = a0 + nπi, n ∈ Z.
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Since {cosnπx}n≥0 and {sinnπx}n≥1 are orthogonal bases in L2(0, 1) respectively,

we see that
{(

cosnπx
sinnπx

)}
n∈Z

is an orthonormal basis in {L2(0, 1)}2. The 2 × 2

matrix

S(x) ≡ R(x)
(

cosh(a0x+ µ) i sinh(a0x+ µ)
sinh(a0x+ µ) i cosh(a0x+ µ)

)

is invertible for 0 ≤ x ≤ 1, so that the map y = Sϕ from {L2(0, 1)}2 to {L2(0, 1)}2

transforms the orthonormal basis
{(

cosnπx
sinnπx

)}
n∈Z

into {en}n∈Z ⊂ {L2(0, 1)}2.

Consequently

(4.6) {en}n∈Z is a Riesz basis in {L2(0, 1)}2

(e.g. Chapter VI, Section 2 of [3]).

Next we will show that

(4.7)
∑

|n|≥N

‖en − ϕn‖2
{L2(0,1)}2 <∞.

For this, we set

(4.8) fn(x) = R(x)
(

cosh(λnx+ µ)
sinh(λnx+ µ)

)
, |n| ≥ N.

By the mean value theorem, we can estimate

| cosh(αnx+ µ) − cosh(λnx+ µ)|

=| cosh(αnx+ µ) − cosh(αnx+ µ+ δnx)| ≤ Cδn

and

| sinh(αnx+ µ) − sinh(λnx+ µ)| ≤ Cδn,

for any 0 ≤ x ≤ 1 and |n| ≥ N . Hence, since
∑

|n|≥N |δn|2 <∞, we see that

(4.9)
∑

|n|≥N

‖en − fn‖2
{L2(0,1)}2 <∞.
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By (4.3), we note that

ϕn(x) − fn(x) =
∫ x

0

K(x, y)
(

cosh(λny + µ)
sinh(λny + µ)

)
dy.

Then we will prove that

(4.10)
∑

|n|≥N

‖ϕn − fn‖2
{L2(0,1)}2 <∞.

Repeating the argument of the fifth step in Section 3, we can show that

ϕn(x) − fn(x) =
∫ πx

−πx

F (x, y)e(n+σn)iydy,

where F ∈ {L2((0, 1) × (−π, π))}2 and σn = o(1) as |n| → ∞.

We have already proved in the fifth step in Section 3 (e.g. [5]) that there exists a

natural number M such that a system {einx}|n|≤M ∪ {ei(n+σn)x}|n|>M constitutes

a Riesz basis in L2(−π, π). Therefore

∑
|n|≥N

|ϕn(x0) − fn(x0)|2 ≤ C

∫ πx0

−πx0

|F (x0, y)|2dy,

for any x0 ∈ [0, 1] and consequentely

∑
|n|≥N

‖ϕn − fn‖2
{L2(0,1)}2 ≤ C

∫ 1

0

∫ π

−π

|F (x, y)|2dydx.

Thus (4.10) is proved and so (4.9)–(4.10) imply (4.7).

By (4.6) and (4.7), the Bari theorem completes the proof, if we verify

2N−1∑
k=1

αkψk +
∑

|n|≥N

βnϕn = 0, αk, βn ∈ C

implies αk = 0, 1 ≤ k ≤ 2N − 1 and βn = 0, |n| ≥ N .(4.11)

Let us define Pn = − 1
2πi

∫
Γn

(A − λ)−1dλ, |n| ≥ N , where Γn, |n| ≥ N are

sufficiently small circles centred at λn including no other points of σ(A). By Lemma
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3.1, such circles exist. Then Pnϕn = ϕn, Pnϕm = 0, Pnψk = 0, n 
= m, |n|, |m| ≥

N , 1 ≤ k ≤ 2N − 1 (e.g. Kato [4]). Therefore application of Pn, |n| ≥ N , to

(4.11) yields βnϕn = 0, |n| ≥ N , and so
∑2N−1

k=1 αkψk = 0. Therefore, since ψk,

1 ≤ k ≤ 2N − 1, are linearly independent, we see that αk = 0, 1 ≤ k ≤ 2N − 1 and

βn = 0, |n| ≥ N . Thus the verification of (4.11) is complete.
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