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Abstract

We give a partial result toward the 11/8-conjecture concerning the second Betti number
and the signature of a closed spin 4-manifold. When the cup product structure on the first
cohomology satisfies some additional condition, a somewhat stronger inequality is obtained.
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1 Introduction

It is an open problem to determine which unimodular form of even type is realized as the
intersection of a closed spin 4-manifold. By using the classification of the unimodular form and
Rochlin’s theorem, this problem is summarized by an inequality in [14], which is now known as
the 11/8-conjecture. The first step toward this conjecture was Donaldson’s celebrated works
([3], [4]). The purpose of this paper is to improve the inequality shown by the first author in
[6].

Let X be a 4-dimensional closed oriented spin manifold. Rochlin’s theorem implies that
sign(X), the signature of X, is divisible by 16. Then the 11/8-conjecture reads as b+

2 (X) ≥
3(−sign(X)/16), where b+

2 (X) is the maximal dimension of the positive definite subspace of
H2(X,R) with respect to the intersection form of X. When b+

2 (X) = 0, Donaldson [3] has
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shown sign(X) = 0. By using the Seiberg-Witten equations, the first author showed that if
sign(X) is not zero, the inequality

b+
2 (X) ≥ 2(−sign(X)/16) + 1

holds [6]. Recently optimal estimates are proved in some special cases; b+
2 (X) ≥ 6 when

sign(X) = −32 ([10], [11]) and b+
2 (X) ≥ 9 when sign(X) = −48 [9]. In this paper we give a

proof of the following inequality, which is a generalization of the above results.

Theorem 1. Suppose that X is a 4-dimensional closed oriented spin manifold. If sign(X) <
0,

b+
2 (X) ≥

8><
>:
2(−sign(X)/16) + 1 if −sign(X)/16 ≡ 0, 1 mod 4,

2(−sign(X)/16) + 2 if −sign(X)/16 ≡ 2 mod 4,

2(−sign(X)/16) + 3 if −sign(X)/16 ≡ 3 mod 4.

The above inequality was first proved by N. Minami in [15] by using an equivariant join
theorem to reduce the inequality to a theorem of Stolz [17]. Minami showed a stabilized version
of Stolz’s theorem. Our strategy is also to show this stabilized version (see Theorem 21) for
a stable range. However our proof is quite different from his argument and allows us the
following result.

To show the above theorem, we may suppose b1(X) = 0 by performing such a surgery
along nontrivial loops in X that does not change the intersection form. It, however, does
change H1(X) when b1(X) > 0. Motivated by Ruberman and Strle’s work [16], the authors
and F. Matsue and Minami showed that the map

∧4H1(X,Z) → Z, ∧4
i=1αi → α1α2α3α4[X]

concerns the inequality ([10]). Suppose that the image of ∧4H1(X,Z) → Z contains an odd
integer. Then we obtained the inequality b+

2 (X) ≥ 6 when sign(X) = −16, and b+
2 (X) ≥ 9

when sign(X) = −32 ([10]). These inequalities are stronger than the 11/8-inequality. Note
that these inequalities are optimal since K3#T 4 or K3#K3#T 4 satisfies the equality. Our
second main theorem is the following generalization of these inequalities.

Theorem 2. Let X be a 4-dimensional closed oriented spin manifold. satisfying sign(X) ≤
−64. Suppose that the image of ∧4H1(X,Z) → Z contains an odd integer. Then we have

b+
2 (X) ≥

8><
>:
2(−sign(X)/16) + 5 if −sign(X)/16 ≡ 0, 1 mod 4,

2(−sign(X)/16) + 6 if −sign(X)/16 ≡ 2 mod 4,

2(−sign(X)/16) + 7 if −sign(X)/16 ≡ 3 mod 4.

In the remaining case sign(X) = −48 we can only state b+
2 (X) ≥ 10 as a corollary (see

Remark 30).
It may be natural to ask the following conjecture;

Conjecture 3. When X satisfies the assumption of Theorem 2, we have the inequality b+
2 (X) ≥

3(−sign(X)/16) + 3.

To prove the above two theorems, we use a P in2-symmetry of the Seiberg-Witten equation
for the trivial spinc structure of spin 4-manifolds first exploited by Kronheimer [13] and its
finite dimensional approximation as in ([6], [7], [2]). But we do not use K-theory degree,
instead we use equivariant framing and an equivariant version of Adams’ e-invariant for the
zero of the equation. In this sense our proof is along Kronheimer’s one. The different point is
that we only use a Z/4-symmetry of the equation.

In this paper we first introduce the notion of equivariant e-invariant for Z2-graded G-
modules to show Theorem 1. Secondly we formulate a family version of the above construction:
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the notion of equivariant e-invariant for Z2-graded G-equivariant vector bundles, which allows
us to show Theorem 2.

We could presumably show our results without using directly the finite dimensional ap-
proximation which describes the equation globally. But we do not pursue it, since we want to
avoid setting up gauge theory.

2 Equivariant framed bordisms and e-invariants

In this section we define some variants of framed bordism groups and associated equivariant
e-invariants. Next we give formulae to compute them from the fixed-point data.

Definition 4. Let G be a finite group and U a G-module over R. We call U a G-spinc vector
space [resp. G-spin vector space] when the following data are given.

1. A G-invariant orientation of U is given.

2. A spinc [resp. spin] structure on U compatible with the orientation is given.

3. A lift of the G-action to the spinc [resp. spin] structure is given.

For G-equivariant vector bundles, the notion of G-spinc and G-spin are obviously extended.
We call a G-manifold M G-spinc [resp. G-spin] when T M is G-spinc [resp. G-spin]

Let G be a finite group and U0, U1 two G-spinc [resp. G-spin] vector spaces over R. We
assume dimU0 − dimU0 ≡ 0 mod 2 [resp. dimU0 − dimU1 ≡ 4 mod 8].

Consider a pair (M, φ) such that

1. M is a closed free G-manifold.

2. φ is a G-equivariant isomorphism; φ : (T M ⊕R)⊕U1
∼= U0, where R is the 1-dimensional

trivial G-module.

Note that φ induces a G-spinc [resp. G-spin]- structure on T M .
We denote by Ω(U0, U1) the bordism group of such pairs (M, φ), where (M1, φ1) and

(M2, φ2) are bordant if there exists a pair (W, φW ) such that

1. W is a compact free G-manifold with a G-equivariant diffeomorphism ∂W ∼= M1

`
M2.

2. φW is a G-equivariant isomorphism φW : T W ⊕ U1
∼= U0 which extends φ1 and φ2.

Here we identify T W |M1 with T M1 ⊕ R by using the inward normal direction, and T W |M2

with T M2 ⊕ R by using the outward normal direction.
Let Ωb,f

C (U0, U1) [resp. Ωb,f
R (U0, U1) ] be the subgroup of classes of the pairs [M, φ] ∈

Ω(U0, U1) such that the free G-spinc [resp. G-spin] manifold M is diffeomorphic to the bound-
ary of some compact free G-spinc [resp. G-spin] manifold W by a G-equivariant diffeomorphism
preserving G-spinc [resp. G-spin] structures.

2.1 Definition of eC(M, φ)

We use the following notation. For a based compact Hausdorff space Z, let P ic(Z) be the
group of isomorphism classes of complex line bundles over Z.

The map

ec/2Â − 1 : KO(Z) × P ic(Z) → H∗(Z,Q), (α, ξ) �→ ec(ξ)/2Â(α)− 1

induces a map ec/2Â−1 : K̃O(Z)×P ic(Z) → H̃∗(Z,Q). It implies that we have a functorially
defined morphism

ec/2Â − 1 : KO(Z0, Z1)× P ic(Z0/Z1) → H∗(Z0, Z1)
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for any compact Hausdorff pair Z0 ⊃ Z1. Let [E0, E1, ψ] be an element of KO(Z0, Z1).
Suppose E0 and E1 are given some spinc-structures and a lift of ψ to the spinc-structures
is fixed. We define [L(φ)] ∈ P ic(W/M) as follows. Let detE0 and detE1 be the complex
line bundles associated to the spinc structures on E0 and E1 respectively. Then ψ induces an
isomorphic detψ : detE0 | Z1

∼= detE1 | Z1 over Z1. It implies that L(ψ) := detE0⊗(detE1)
∗

has a trivialization over Z0 and hence gives an element of P ic(Z0/Z1). Then we have the
element

(ec/2Â − 1)([E0, E1, ψ], L(ψ)) ∈ H∗(Z0, Z1, Q).

Returning to our setting of the bordism group Ωb,f
C (U0, U1), we define a homomorphism

eC : Ωb,f
C (U0, U1) → Q/Z as follows. For [M, φ] ∈ Ωb,f

C (U0, U1), let W be a compact free G-
spinc manifold with a G-equivariant diffeomorphism ∂W ∼= M preserving G-spinc structures.

Now we define:

eC(M, φ, W ) :=
1

#G

Z
W

(ec/2Â − 1)([T W ⊕ U1, U0, φ], L(φ)) ∈ Q.

Lemma 5. eC(M, φ, W ) mod Z does not depend on the choice of W .

Proof. It suffices to show that eC(M, φ, W ) is an integer when M is empty. In this case we
have

eC(M, φ, W ) =
1

#G

Z
W

(ec/2Â − 1)([T W ⊕ U1, U0, φ], c1(L(φ)))

=
1

#G

Z
W

ec1(L(φ))/2Â([T W ] + [U1]− [U0])− 1)

=
1

#G

Z
W

ec1(detW )/2Â(T W )

=

Z
W/G

ec1(detW/G)/2Â(T (W/G))

The required statement follows from the integrality theorem for the index of the Dirac operator
on the closed spinc-manifold W/G.

Definition 6. eC(M, φ) := eC(M, φ, W ) mod Z ∈ Q/Z

We can extend the definition of eC(M, φ, W ) when the G-action on W is not free. For
[M, φ] ∈ Ωb,f

C (U0, U1), let W be a G-spinc manifold with a G-equivariant diffeomorphism
∂W ∼= M preserving G-spinc structures.

We first define eC(M, φ, W )g ∈ C for every g ∈ G.

eC(M, φ, W )g =

� R
W
(ec/2Â − 1)([T W ⊕ U1, U0, φ], L(φ)) (g = 1)

Spinc(g, W ) (g �= 1),

the right-hand-side of where the right-hand-side is the local contribution from the fixed point
set W g. More explicitly Spinc(g, W ) is given by

Spinc(g, W ) =

Z
Wg

ec1(Wg)/2Â(W g)

chλ−1(Ng ⊗ C)(g)

where Ng is the normal bundle of W g in W . Then we define eC(M, φ, W ) by

eC(M, φ, W ) :=
1

#G

X
g∈G

eC(M, φ, W )g.

Now the next lemma is proved by the same argument as in the proof of Lemma 25.
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Lemma 7. When the G-action on W is not free, we still have eC(M, φ) = eC(M, φ, W ) mod
Z.

Proposition 8. Suppose that [M, φ] ∈ Ωb,f
C (U0, U1) satisfies the following conditions.

1. There exists a G-spinc compact manifold W with a G-equivariant diffeomorphism ∂W ∼=
M preserving G-spinc-structures.

2. There exists a spinc compact manifold W ′ with a diffeomorphism ∂W ′ ∼= −M .

3. When we forget the G-action, we can extend the isomorphism φ : T M ⊕R⊕ U1
∼= U0 to

an isomorphism T W ′ ⊕ U1
∼= U0.

Then W̃ := W ′ ∪M W is a smooth spinc-manifold and we have the formula

eC(M, φ) =
1

#G

Z
W̃

ec1(det W̃ )/2Â(W̃ ) +
1

#G

X
g∈G,g �=1

Spinc(g, W ) mod 1.

Proof. The existence of the isomorphism T W ′ ⊕ U1
∼= U0 implies

eC(M, W, φW )1 =
1

#G

Z
W̃

ec1(det W̃ )/2Â(W̃ ). (1)

Lemma 13 and these two equalities imply the claim of the proposition.

2.2 Definition of eR(M, φ)

For [M, φ] ∈ Ωb,f
R (U0, U1), we define eR(M, φ) ∈ Q/2Z as follows. Let W be a free G-spin

manifold with a G-equivariant diffeomorphism ∂W ∼= M preserving G-spin structures.

Lemma 9. eC(M, φ, W ) mod 2Z does not depend on the choice of W .

Proof. It suffices to show that eC(M, φ, W ) is an even integer when M is empty. As in the
proof of Lemma 25, when M is empty, we have

eC(M, φ, W ) =

Z
W/G

Â(W/G).

Since W/G is a 8k+4-dimensional closed spin manifold, the right-hand-side is an even integer.

Definition 10. eR(M, φ) := eC(M, φ, W ) mod 2Z ∈ Q/2Z

Caution 11. The above definition does not coincide with the usual definition of eR. Actually
the above definition is equal to the twice of the usual one [18] when G = {1}.

To calculate eR(M, φ), we can use eC(M, φ, W ) even when the G-action on W is not free
nor W is not necessarily spin. The precise statement is given by Proposition 15 below.

For [M, φ] ∈ Ωb,f
R (U0, U1), let W be a G-spinc manifold with a G-equivariant diffeomor-

phism ∂W ∼= M preserving G-spinc structures.
Fix a G-invariant Riemannian metric mW on W which is of the product form near the

boundary ∂W = M . Note that the spinc-structure of W is reduced to a spin structure near
∂W = M and hence detT W is given a trivialization near M . Fix a G-invariant connection
θW on detT W which respects the trivialization. Let D(mW , θW ) be the spinc Dirac operator
on W defined by using mW and θW , and let indGD(mW , θW ) ∈ R(G) be the G-equivariant
index of D(mW , θW ) with the Atiyah-Patodi-Singer boundary condition.
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Lemma 12. ([8]) indGD(mW , θW ) mod Rsp(G) ∈ R(G)/Rsp(G) does not depend on the
choice of (mg, θW ), where Rsp(G) is the Grothendieck group of finite dimensional quaternionic
representations of G.

We will give a proof of the above lemma in [8]. Let ρ0 be the one-dimensional trivial repre-

sentation of G. We write ind
Z/2
ρ0 (W, M) ∈ Z/2 for the ρ0-component of indGD(mW , θW ) mod

Rsp(G).

Lemma 13. eR(M, φ) = eC(M, φ, W )− ind
Z/2
ρ0 (W, M) mod 2.

Proof. It suffices to show that the right-hand side is zero when M is empty. This is a conse-
quence of the G-index theorem for spinc Dirac operator.

structure is obstruction class
Recall that detT W has a canonical trivialization near M = ∂W , which is given by a

nonvanishing section s0 of detT W near M . Let s be a G-invariant section of detT W which
is an extension of s0. When s is transverse to the zero section, Z := s−1(0) is a G-invariant
submanifold of codimension 2.

Definition 14. Let W be a compact G-spinc manifold and suppose that a G-spin reduction
of the G-spinc-structure is given near the boundary M := ∂W . Then a G-characteristic
submanifold of (W, M) is a codimension 2 G-invariant submanifold obtained by using the
G-invariant section s as above.

Proposition 15. Suppose that [M, φ] ∈ Ωb,f
R (U0, U1) satisfies the following conditions.

1. There exists a G-spinc compact manifold W with a G-equivariant diffeomorphism ∂W ∼=
M preserving G-spinc-structures.

2. (W, M) has a G-characteristic submanifold Z which is contained in the fixed point set
WG.

3. There exists a spin compact manifold W ′ with a diffeomorphism ∂W ′ ∼= −M .

4. When we forget the G-action, we can extend the isomorphism φ : T M ⊕R⊕ U1
∼= U0 to

an isomorphism T W ′ ⊕ U1
∼= U0.

Then W̃ := W ′ ∪M W is a smooth spinc-manifold and we have the formula

eR(M, φ) =

�
−1 + 1

#G

�Z
W̃

ec1(det W̃ )/2Â(W̃ ) +
1

#G

X
g∈G,g �=1

Spinc(g, W ) mod 2.

To prove the above proposition, we need the following lemma.

Lemma 16. ([8]) Let W be a compact G-spinc manifold. Suppose that a G-spin reduction of
the G-spinc-structure is given near the boundary M := ∂W and that the G-action is free on
M . If (W, M) allow a characteristic submanifold which is contained in the fixed point set WG,

then ind
Z/2
G (W, M) ∈ R(G)/Rsp(G) is contained in (Z/2)ρ0, where ρ0 is the one-dimensional

trivial representation.

A proof of Lemma 16 will be given in [8].
Proof of Proposition 15 The above lemma implies that

indZ/2
ρ0 (W, M) ≡ indD(mW , θW ) mod 2,

where the right-hand side is the non-equivariant index. Let mW ′ be a Riemannian metric
on W ′ which can be patched together with mW to get a smooth Riemannian metric mW̃ on
W ∪M W ′. The Atiyah-Patodi-Singer formula implies the sum formula

indD(mW̃ , θW ) = indD(mW , θW ) + dimKerD(mM ) + indD(mW ′),
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where mM is the restriction of mW ( or mW ′) on M . Since M is a 8k + 3-dimensional
spin manifold, the kernel of the Dirac operator D(mM ) have quaternionic structure, and
hence dimKerD(mM ) is even. Similarly the index indD(mW ′) is even. ¿From the above two
equalities we obtain

ind
Z/2
G (W, M) ≡ indD(mW̃ , θW )

≡
Z
W̃

ec1(det W̃ )/2Â(W̃ ) mod 2.

On the other hand the existence of the isomorphism T W ′ ⊕ U1
∼= U0 implies (1). Lemma 13

and these two equalities imply the claim of the proposition.

2.3 Extension of the definition of eC and eR

We can define eC and eR for wider classes.

Definition 17. 1. Suppose that U0 and U1 are two G-spinc vector spaces over R satisfying
dimU0 − dimU1 ≡ 0 mod 2. Then let Ωb

C(U0, U1) be the subgroup of classes of the
pairs [M, φ] ∈ Ω(U0, U1) such that the free G-spinc manifold M is diffeomorphic to
the boundary of some compact G-spinc manifold W by a G-equivariant diffeomorphism
preserving G-spinc structures.

2. For such W , we can define

eC(M, φ) := eC(M, φ, W ) mod Z ∈ Q/Z.

The well-definedness is shown as in the proof of Lemma 7

Definition 18. 1. Suppose that U0 and U1 are two G-spin vector spaces over R satisfying
dimU0 − dimU1 ≡ 4 mod 8. Then let Ωb

R(U0, U1) be the subgroup of classes of the pairs
[M, φ] ∈ Ω(U0, U1) such that the free G-spin manifold M is diffeomorphic to the boundary
of some compact G-spinc manifold W by a G-equivariant diffeomorphism preserving G-
spinc structures.

2. For such W , we can define

eR(M, φ) := eC(M, φ, W )− indZ/2
ρ0 (W, M) mod 2Z ∈ Q/2Z.

The well-definedness is shown as in the proof of Lemma 13

Remark 19. 1. In both cases W is not necessarily free G-manifold. In the latter case W
is not necessarily spin.

2. We can further extend our construction to define the maps

eGC : Ωb
C(U0, U1) → (R(G)⊗C)/R(G),

eGR : Ωb
R(U0, U1) → (R(G)⊗ C)/Rsp(G).

The maps eC and eR are nothing but the ρ0-components of eGC and eGR. On the subgroups
Ωb,f

C (U0, U1) and Ωb,f
R (U0, U1), the images of eGC and eGR are contained in the multiples

of the regular representation. Hence on these subgroups eGC and eGR are completely
determined by eC and eR.
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3 A finite dimensional approximation of the Seiberg-

Witten equations

In this section we describe a finite dimensional approximation of the Seiberg-Witten equation
for a closed spin 4-manifold with the vanishing first Betti number [6]. For general cases we
discuss it in the following section.

We use the following notations.

1. Sp1 = {q ∈ H | |q| = 1}
2. P in2 = {cos θ + i sin θ}0≤θ<2π ∪ {j cosφ + k sin φ}0≤φ<2π ⊂ Sp1

3. We regard H as a right P in2 module by the right multiplication.

4. We regard ImH as a P in2 module by the conjugation.

5. Let R̃ be the non-trivial 1-dimensional real representation of P in(2)/S1 = {±1}.
Note that ImH is isomorphic to R̃3 as P in(2)-module.

Let X be a smooth closed spin 4-manifold with b1(X) = 0 and sign(X) < 0. In this section
we use the notation k = −sign(X)/16 and l = b+

2 (X). Via a finite dimensional approximation
of Seiberg-Witten equations for the trivial spinc structure [6], we obtain a P in2-equivariant
map

fSW : S(V0 ⊕ W0) → S(V1 ⊕ W1).

for some right P in(2)-modules V0, V1, W0 and W1 which satisfy the following conditions.

1. V0 and V1 are isomorphic to the direct sum of a finite number of H’s.

2. dimH V0 − dimH V1 = k > 0,

3. W0 and W1 are isomorphic to the direct sum of a finite number of R̃’s.

4. dimR W0 − dimR W1 = −l < 0,

Our problem is to obtain a necessary condition for l and k to allow the P in2-equivariant
map fSW . Theorem 1 follows from

Theorem 20. Suppose that there exits a P in2-equivariant map

f : S(V0 ⊕ W0) → S(V1 ⊕ W1).

Then we have

l ≥

8><
>:
2k + 1 if k ≡ 0, 1 mod 4,

2k + 2 if k ≡ 2 mod 4,

2k + 3 if k ≡ 3 mod 4.

(2)

We shall prove Theorem 20 by using the Z/4-action which is just the restriction of the
P in2-action to the subgroup Z/4.

Let C1 and C2 be the 1-dimensional complex representation space of Z/4 with weight
1 and 2 respectively. For nonnegative integers a and b, Let E0, E1, F0 and F1 be the four
representation spaces of Z/4 which satisfy the following conditions.

1. E0 and E1 are isomorphic to the direct sum of a finite number of C1’s.

2. dimC E0 − dimC E1 = a > 0,

3. F0 and F1 are isomorphic to the direct sum of a finite number of C2’s.

4. dimC F0 − dimC F1 = −b < 0,

Theorem 20 is a consequence of the following theorem.
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Theorem 21. Suppose that there exits a Z/4-equivariant map f : S(E0 ⊕ F0) → S(E1 ⊕ F1).

1. The inequality a < 2b − 1 holds.

2. The inequality a < 2b − 2 holds if b ≡ 0 mod 4.

The above theorem can be thought of a stable version of the non-existence part of Stolz’s
result [17].

from Theorem 21.
Proof of Theorem 20 assuming Theorem 21
Step 1.
We first show l ≥ 2k + 1 in general.

Suppose that there exits a P in2-equivariant map S(V0 ⊕ W0) → S(V1 ⊕ W1) for l = 2k.
It implies the existence of a Z/4-equivariant map S(E0 ⊕ F0) → S(E1 ⊕ F1) for a = 2k and
b = k. Since a = 2b, this contradicts the first part of Theorem 21.
Step 2: the case k ≡ 3 mod 4.
In this case we show l ≥ 2k + 3. Suppose that there exits a P in2-equivariant map S(V0 ⊕
W0) → S(V1 ⊕ W1). for l = 2k + 2. It implies the existence of a Z/4-equivariant map
S(E0 ⊕ F0) → S(E1 ⊕ F1). for a = 2k and b = k + 1. Since a = 2b − 2 and b ≡ 0 mod 4, this
contradicts the second part of Theorem 21.
Step 3. the case k ≡ 2 mod 4.
In this case we show l ≥ 2k + 2. Suppose that there exits a P in2-equivariant map f :
S(V0 ⊕ W0) → S(V1 ⊕ W1) for l = 2k + 1. Let g : S(H) → S(R̃3) be the P in2-equivariant
map defined by g(q) = qiq̄. Then the join f ∗ g is a P in2-equivariant map for k′ = k + 1 and
l′ = l + 3. Since l′ = 2k′ + 2 and k′ ≡ 3 mod 4, we can reduce the proof to the former case.

4 The equivariant e-invariant for a pair of modules

We shall use Z/4-equivariant e-invariants to show Theorem 21.
Let f0 : S(E0 ⊕ F0) → E1 ⊕ F1. be a Z/4-equivariant smooth map. Since dimS(F0) <

dimF1, we may assume that, when restricted to S(0⊕F0), f0 is an embedding into S(0⊕F1).
Thus the zero set M = f−1

0 (0) does not intersect S(0 ⊕ F0), and Z/4 acts freely on M .
Moreover df induces an Z/4-equivariant trivialization of the normal bundle;

φ : (T M ⊕ R)⊕ (E1 ⊕ F1) ∼= E0 ⊕ F0

where R is the trivial Z/4-module.
The class [M, φ] ∈ Ω(E0⊕F0, E1⊕F1) is independent of the choice of f0, since dimS(F0)+

1 < dimF1 and the zero set Z of a generic G-equivariant path of two such maps also does not
intersect S(0⊕ F0). Moreover the derivative of the path gives an extension of φ;

φZ : T Z ⊕ (E1 ⊕ F1) ∼= E0 ⊕ F0.

as Z/4-equivariant bundles.
Hence the Z/4-equivariant bordism class [M, φ] ∈ Ω(E0 ⊕ F0, E1 ⊕ F1) depends only on

the Z/4 modules E0 ⊕ F0, E1 ⊕ F1. We write c(E0 ⊕ F0, E1 ⊕ F1) = [M, φ] for this class.
The following lemma is elementary;

Lemma 22. Let U be the direct sum of a finite number of C1’s and C2’s. Then

c(E0 ⊕ F0 ⊕ U, E1 ⊕ F1 ⊕ U) = c(E0 ⊕ F0, E1 ⊕ F1).
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Since C1 and C2 are complex representations of Z/4, the Z/4-modules E0⊕F0 and E1⊕F1

are even dimensional over R, and have natural Z/4-spinc structures. Hence we can define
Ωb,f

C (E0 ⊕ F0, E1 ⊕ F1). When c(E0 ⊕ F0, E1 ⊕ F1) sits in Ωb,f
C (E0 ⊕ F0, E1 ⊕ F1), we define

eC(E0 ⊕ F0, E1 ⊕ F1) ∈ Q/Z to be the eC-invariant of c(E0 ⊕ F0, E1 ⊕ F1).
When dimC E0,dimC E1,dimC F0 and dimC F1 are all divisible by 4, they have Z/4-spin

structures. Moreover if a − b ≡ 2 mod 4, then we can define Ωb,f
R (E0 ⊕ F0, E1 ⊕ F1). When

c(E0 ⊕F0, E1 ⊕F1) sits in Ωb,f
R (E0 ⊕F0, E1 ⊕F1), we define eR(E0 ⊕F0, E1 ⊕F1) ∈ Q/2Z to

be the eR-invariant of c(E0 ⊕ F0, E1 ⊕ F1).
¿From this definition we have the following lemma.

Proposition 23. If there exists a Z/4-equivariant map

f : S(E0 ⊕ F0) → S(E1 ⊕ F1),

we have c(E0⊕F0, E1⊕F1) = 0 in Ωb,f(E0⊕F0, E1⊕F1), and hence eC(E0⊕F0, E1⊕F1) = 0
mod Z or eR(E0 ⊕ F0, E1 ⊕ F1) = 0 mod 2Z when they are defined.

On the other hand we shall prove:

Theorem 24. 1. If a ≥ b, then c(E0 ⊕ F0, E1 ⊕ F1) ∈ Ωb
C(E0 ⊕ F0, E1 ⊕ F1).

2. If a = 2b − 1, then eC(E0 ⊕ F0, E1 ⊕ F1) = 1/2 mod Z

3. If a ≥ b, a ≡ 0 mod 2 and b ≡ 0 mod 4, then c(E0⊕F0, E1⊕F1) ∈ Ωb
R(E0⊕F0, E1⊕F1).

4. If a = 2b − 2 and b ≡ 0 mod 4, then eR(E0 ⊕ F0, E1 ⊕ F1) = 1 mod 2Z

Proof of Theorem 21 assuming Theorem 24
Theorem 21 is an immediate consequence of Proposition 23 and Theorem 24

5 Brieskorn varieties

By definition we may write E0 = Cp+a
1 , E1 = Cp

1, F0 = Cq
2 and F1 = Cq+b

2 for some p, q. By
Lemma 22 it suffices to compute eC or eR when p = q = 0.

We first prove Theorem— 24 (1) and (3), which enable us to define eC or eC for c(E0 ⊕
F0, E1 ⊕ F1)) if a ≥ b.

Suppose a ≥ b.
Let (ai,j) be a generic b × a matrix with complex entries and define the Z/4-equivariant

mapf : S(Ca
1) → Cb

2 to be

f(z1, · · · , za) = (

aX
j=1

a1,jz
2
j , · · · ,

aX
j=1

ab,jz
2
j ).

It is a well-known elementary fact that if all the maximal minors of the matrix (ai,j) is not
0, then f has 0 as a regular value, so M = f−1(0) is a smooth Z/4-spinc manifolds with a
Z/4-equivariant trivialization

φ = df : T M ⊕ R ⊕ Cb
2
∼= Ca

1 .

Now the claim of Theorem 24 (1) and (3) follows from the following explicit construction of
W .
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Construction of W The map f obviously extends over Ca
1 as a polynomial map f̃ , and

the zero set f̃−1(0) has only one singularity at the origin. Consider the Z/4-manifold W 0 =
f̃−1(0) \D(Ca

1), where D(Ca
1) is the unit disc around the origin. Let W be the closure of W 0

in P (Ca
1 ⊕ C) ⊃ Ca

1 . Then W is a smooth compact complex Z4-manifold with boundary M ,
and has a Z/4-spinc structure defined by using its Z/4-invariant complex structure. Note that
the spinc structure of M coincides with the restriction of that of M .

This completes the proof of Theorem 24 (1),(3).

5.1 Calculation of eC for the case a = 2b − 1

We prove Theorem 24 (2).
We can use Proposition 8 to calculate eC(E0 ⊕ F0, E1 ⊕ F1) = eC(M, φ).

Construction of W ′. We define W ′ to be the Milnor fiber of the map f̃ . Let us briefly
recall the definition of the Milnor fiber. Take a small nonzero vector ε in Cb

2 and define W ′ to
be f̃−1(ε) ∩ D(Ca). Then W ′ is a smooth compact complex manifold whose boundary ∂W ′

is diffeomorphic to M . Then W ′ has a spinc structure defined by using its complex structure.
Note that the restriction of the spinc structure of W ′ on ∂W ′ is isomorphic to that of M , and
that φ extends over W ′ as df̃ through this isomorphism.

Construction of W̃ . Let W̃ be the closed spinc-manifold W ∪M W ′. Note that W̃ is
diffeomorphic to the closure of f̃−1(ε) in P (Ca

1 ⊕ C) ⊃ Ca
1 . We identify these two manifolds.

The closed complex manifold W̃ is one of Brieskorn varieties or complete intersections.
The Todd-genus of the complete intersection is well known (see e.g. [12]). What we now need
is: Z

W̃

ec1(det W̃ )/2Â(W̃ ) =

Z
W̃

td(W̃ ) = 1− (−1)b when a = 2b − 1.

Calculation of Spinc(g, W ). The remaining terms we need are Spinc(g, W )’s for g �= 1.

For g = e
√−1πk/2 (k = 1, 2, 3), the fixed point set W g is equal to W ∩ P (Ca

1) ⊂ P (Ca
1 ⊕ C).

Let α ∈ H2(P (Ca
1), Z) be c1(O(1)). Then by the defining equation, the homology class

[W g] in H2(a−b−1)(P (Ca
1), Z) is the Poincaré dual of (2α)b and the normal bundle of W g in

P (Ca
1) is bO(2). In particular we have

td(W g) = td(O(1))a/td(O(2))b =

�
α

1− e−α

�a�
1− e−2α

2α

�b
.

Since the Dirac operator of W is the Dolbeault operator and thus the local contribution
Spinc(g, W ) is given by (4.4) in [1], we have for g = e

√−1πk/2 (k = 1, 2, 3)

eC(M, φ, W )g = Spinc(g, W )

= 〈
�

α

1− e−α

�a�
1− e−2α

2α

�b
1

1− g−1e−α
, [P.D. of 2bαb ]〉

= Resα=0

�
1− e−2α

�b
gdα

(1− e−α)a (g − e−α)

= Resz=1 ω, where ω =
(1− z2)bgdz

(1− z)a(z − g)z
,

We put z = e−α in the last equality.
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eC(M, φ,W )g g = 1 g =
√−1 g = −1 g = −√−1

b ≡ 0 mod 4 0 0 2 0
b ≡ 1 mod 4 2 0 0 0
b ≡ 2 mod 4 0 2 − 2

√−1 2 2 + 2
√−1

b ≡ 3 mod 4 2 2 0 2

The poles of ω are z = 1, 0, g and ∞. Then the residue theorem implies:

Resz=1 ω = −(Resz=0 ω +Resz=g ω +Resz=∞ ω) (3)

= −{(−1) + (1− g2)b

(1− g)a
(4)

+Resz=∞
dz

−z
(−1)b−a−1g

1

za−2b−1
(1 + (a + g)

1

z
+ O(

1

z2
))}. (5)

When a = 2b − 1, we have

Resz=1 ω = −{(−1) + (1− g2)b

(1− g)2b−1
+ (−1)bg}, (a = 2b − 1).

Calculation of eC(E0 ⊕ F0, E1 ⊕ F1). The above calculations are summarized by the
table below. Here we write eC(M, φ, W )1 for 〈td(W̃ ), [W̃ 〉.

¿From Proposition 8 we have

eC(M, φ) = ec1(det W̃ )/2Â(W̃ ) +
1

#G

X
g∈G

Spinc(g, W ) mod 1.

≡ 1/2 ∈ Q/Z.

This completes the proof of Theorem 21 (2)

5.2 Calculation of eR for the case a = 2b − 2 and b ≡ 0 mod 4

We prove of Theorem 24 (4).
Suppose b ≡ 0 mod 4 and a = 2b−2. We use Proposition 15. to calculate eR(E0⊕F0, E1⊕

F1).
Constructions of W , W ′ and W̃ are the same as before.
When a = 2b − 2, the Todd genus of W̃ is given as follows (see e.g. [12]).Z

W̃

ec1(det W̃ )/2Â(W̃ ) =

Z
W̃

td(W̃ ) = 1 + (−1)b(2b − 1). (6)

Since b is even, the above expression is equal to 2b.

Calculation of Spinc(g, W ). For g = e
√−1πk/2 (k = 1, 2, 3) we want to calculate Spinc(g, W ).

When a = 2b − 2. the formula (3) implies

Resz=1 ω = −{(−1) + (1− g2)b

(1− g)a
+ (−1)t−1g(2b − 2 + g)}, (a = 2b − 2).

Then from (3) we have

Spinc(g, W ) =

8><
>:
2
√−1b g =

√−1,

4− 2b g = −1,

−2√−1b g = −√−1.

(7)
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G-characteristic submanifold. When a = 2b−2, we show that W∩P (Ca
1) ⊂ P (Ca

1⊕C)
is a Z/4-characteristic submanifold of (W, M).

The isomorphism T f̃−1(0)⊕ Cb
2
∼= Ca

1 is naturally extended to the isomorphism

T W ⊕ bO(2) ∼= T P (Ca
1 ⊕ C) | W.

Taking the determinant, we obtain the isomorphism

detT W ⊗O(2b) ∼= O(a + 1).

When a = 2b − 2, we have a canonical isomorphism detT W ∼= O(a + 1− 2b) = O(−1). Since
a spin structure is given on ∂W = M , we have a canonical Z/4-invariant nonvanishing section
s0 on detT W | M . On the other hand O(−1) | W has a Z/4-invariant (anti-holomorphic)
section s such that s is transverse to the zero section and s−1(0) = W ∩P (Ca

1) ⊂ P (Ca
1 ⊕C).

It is easy to see that s0 and s|M is Z/4-equivariantly homotopic to each other. (For instance
it follows from H1(M/(Z/4), Z) = 0.) It implies that W ∩ P (Ca

1) is a Z/4-characteristic
submanifold of (W, M).

Calculation of eR(E0 ⊕ F0, E1 ⊕ F1). When a = 2b − 2, since the Z/4-action on the
characteristic submanifold W ∩ P (Ca

1) is trivial, we can apply Proposition 15.

eR(M, φ) =

�
−1 + 1

#G

�Z
W̃

ec1(det W̃ )/2Â(W̃ ) +
1

#G

X
g∈G,g �=1

Spinc(g, W ) mod 2.

≡ (−1 + 1

4
)2b +

1

4
{2√−1b + (4− 2b)− 2

√−1b}
≡ 1 ∈ Q/2Z.

This completes the proof of Theorem 24(4).
R̃l ⊂ R̃l+1 implies that

6 Equivariant bundles and e-invariants

We next show Theorem 2. To this end we need to extend our equivariant bordism group
and associated e-invariants for a family of modules, that is, G-vector bundles. We use the
same notation for these objects as before and discuss them briefly, but the different points are
emphasized.

6.1 Twisted bordism groups and e-invariants

Let G be a finite group and T a closed G-manifold. Now let U0, U1 be G-spinc [resp. G-spin]
vector bundles over T . We assume rankU0 − rankU1 ≡ 0 mod 2 [resp. rankU0 − rankU1 ≡
4 mod 8].

We denote by Ω(U0, U1) the bordism group of the triple [M, π, φ] such that

1. M is a closed free G-manifold.

2. π : M → T is a G-equivariant map,

3. φ is a G-equivariant isomorphism; φ : (T M ⊕ R)⊕ π∗U1
∼= π∗U0, where R is the trivial

G-module,

where (M1, π1, φ1) and (M2, π2, φ2) are bordant if there exists a pair (W, πW , φW ) such that

1. W is a compact free G-manifold with a G-equivariant diffeomorphism ∂W ∼= M1

`
M2,

2. πW : W → T is a G-equivariant map which extends π1 and π2, and
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3. φW is a G-equivariant isomorphism φW : T W ⊕ π∗
WU1

∼= π∗
WU0 which extends φ1 and

φ2.

Here we identify T W |M1 with T M2 ⊕ R by using the inward normal direction, and T W |M1

with T M2 ⊕ R by using the outward normal direction.
Note that φ gives an orientation and a G-spinc [resp. G-spin] structure of M .
Let Ωb,f

C (U0, U1) [resp. Ωb,f
R (U0, U1)] be the subgroup of pairs [M, φ] ∈ Ω(U0, U1) which

have a compact G-spinc [resp. G-spin] manifold W and a G-equivariant map πW : W → T
such that

1. G acts on W freely,

2. ∂W = M , πW |M = π and the G-spinc [resp. G-spin] structure on ∂W coincides with
the one defined by φ.

We define eC(M, φ, π, W, πW ) by:

eC(M, φ, π, W, πW ) :=
1

#G

Z
W

(ec/2Â − 1)([T W ⊕ π∗
WU1, π∗

WU0, φ], L(φ))π∗
W Â([U0]− [U1]) ∈ Q.

Lemma 25. Suppose rankU0 − rankU1 < dimT . Then eC(M, φ, π, W, πW ) mod Z does not
depend on the choice of (W, πW ) [resp. eR(M, φ, π, W, πW ) mod 2Z does not depend on the
choice of (W, πW ) ].

Proof. It suffices to show that eC(M, φ, π, W, πW ) is an integer [resp. even integer] when M
is empty. In this case we have

eC(M, φ, π, W, πW ) =
1

#G

Z
W

�
ec1(L(φ))/2Â([T W ] + [U1]− [U0])− 1

�
π∗
W Â([U0]− [U1])

=

Z
W/G

ec1(detW/G)/2Â(T (W/G))− 1

#G

Z
W

π∗
W Â([U0]− [U1]).

Since we are assuming dimW = rankU0 − rankU1 < dimT , the second term is zero. Now the
required statement follows from the integrality theorem for the index of the Dirac operator
of the spinc-manifold W/G [resp. the Dirac operator of the 8k + 4-dimensional spin manifold
W/G].

Definition 26. Let [M, π, φ] be an element of Ωb,f
C (U0, U1) [resp. Ω

b,f
R (U0, U1)]. When dimR U0−

dimR U1 > dimT , we define

eC([M, π, φ]) ≡ eC(M, π, φ, W, πW ) mod 1 ∈ Q/Z

[resp. eR([M, π, φ]) ≡ eC(M, π, φ, W, πW ) mod 2 ∈ Q/2Z].

Moreover we can obviously define Ωb
C(U0, U1) [resp. Ωb

R(U0, U1)] and the map eC :
Ωb

C(U0, U1) → Q/Z [resp. eR : Ωb
R(U0, U1) → Q/2Z] as in Section 2.3.

Remark 27. 1. We could further extend the definition to obtain eC : Ωb
C(U0, U1) →

R(G)⊗ (C/Z) [resp. eR : Ωb
R(U0, U1) → R(G)⊗ (C/2Z)] as in Remark 19.

2. The condition that T is a closed G-manifold is too strong. In fact to define eC or eR it
may be sufficient for T to be a compact Hausdorff G-space if one define the characteristic
classes to be algebraic elements in cohomology. But the dimension condition may not be
obvious.
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6.2 Seiberg-Witten equation : b1 > 0

Now we move to the Seiberg-Witten equation.
Let X be a closed spin 4-manifold with sign(X) < 0.
The moduli space of flat connections on the trivial bundle on X is identified with the

Jacobian torus J = H1(X;R)/H1(X;Z). We define a P in2-acton on J by the multiplication
of of P in2/S1 = {±1}. We write ι for the involutive action of j ∈ P in2.

Let V be a C-vector bundle over J with an anti linear lift ι̃V of ι to V . Following Dupont [5]
we call V quaternionic if the square of ι̃V is −1, and denote by Ksp(J) the Grothendieck group
generated by quaternionic vector bundles over J . A quaternionic vector bundle is nothing but
a P in2-equivariant R-vector bundle over J so that the S1-action on the total space is semifree.

Let indD be the index bundle of the Dirac operators twisted by flat connections on X ×C.
Then indD is an element of Ksp(L) [10].

Now the Seiberg-Witten equation for the spin structure is approximated by a P in2-
equivariant bundle map ([6], [7], [2]);

fSW : S(V0 ⊕ W0) → S(V1 ⊕ W1),

where V0, V1, W0 and W1 are four P in2-equivariant R-vector bundles over J satisfying the
following conditions.

1. rankRV0 − rankRV1 = 4k > 0 for k = −sign(X)/16.

2. rankRW0 − rankRW1 = −l < 0 for l = b+
2 (X).

3. V0 and V1 have structure of complex vector bundles.

4. S1 acts on V0, V1 as the complex multiplication.

5. j acts on V0, V1 as an anti linear map.

6. S1 acts on W0, W1 trivially.

7. j acts on W0, W1 as a R-linear involution.

8. [V0] − [V1] = indD ∈ Ksp(J), where indD is the index bundle for the family of Dirac
operators of the spin manifold X parameterized by J .

9. [W0]− [W1] = −[R̃l] ∈ KOZ/2(J).

Thus V0 and V1 are quaternionic vector bundles and W0 and W1 are Z/2-equivariant R-
vector bundles.

Let α1, α2, α2 and α4 are four elements of H1(X,Z). We write α̃ for (αi)1≤i≤4, which gives
a homotopy class of a map α̃ : X → T 4. On the other hand we have a map

hα̃ : T 4 = (R/Z)4 → J, (xi) �→
X

xiαi.

Lemma 28.
R
T4 h∗

α̃c2(indD) = degα̃ =
R
X

α1α2α3α4.

Proof. The second equality is obvious. The first equality is shown by the index formula for
family. Ruberman and Strle [16] gave a proof in the case b1(X) = 4. Their calculation goes
through the general case.

Hence Theorem 2 follows from;

Theorem 29. Suppose that there exits a Z/4-equivariant bundle map

f : S(V0 ⊕ W0) → S(V1 ⊕ W1).
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If W1 = W0 ⊕ R̃l, k ≥ 4 and 〈c2(V0)− c2(V1), [T
4]〉 is odd for some linearly embedded subtorus

T 4 ⊂ J, then we have

l ≥

8><
>:
2k + 5 if k ≡ 0, 1 mod 4,

2k + 6 if k ≡ 2 mod 4,

2k + 7 if k ≡ 3 mod 4.

Remark 30. When k = 3, we can obtain l ≥ 10 just in the same way as Section 6.

To prove this theorem we have to make the preceding constructions for a family over T 4.
To avoid too many notations we assume that b1(X) = 4 and that α̃ is a basis of H1(X,Z)

so that we can identify T 4 with J . The proof for the general case goes through quite similarly.
We first construct a Z/4-equivariant bundle map

f0 : S(V0 ⊕ W0) → V1 ⊕ W1.

transversal to the zero section. This may be easily constructed as before, since W1 = W0 ⊕ R̃
and dimS(0⊕ W0) < dimW1. Thus the zero set M is a smooth closed Z/4-manifold and the
projection π : V0⊕W0 → J induces the Z/4-equivariant map π : M → J . Moreover df induces
an Z/4-equivariant trivialization of the normal bundle;

φ : (T M ⊕R)⊕ π∗(V1 ⊕ W1) ∼= π∗(V0 ⊕ W0 ⊕ R̃4),

where R̃4 comes from the tangent bundle of J . The class [M, π, φ] is independent of the choice
of f , thus we denote it by c(V0 ⊕ W0 ⊕ R̃4, V1 ⊕ W1) and write eC[M, π, φ] = eC(V0 ⊕ W0 ⊕
R̃4, V1 ⊕ W1) [resp. eR[M, π, φ] = eR(V0 ⊕ W0 ⊕ R̃4, V1 ⊕ W1) ] as long as it is defined.

The following proposition and lemma are obvious.

Proposition 31. If there exists a Z/4-equivariant map

f : S(V0 ⊕ W0) → S(V1 ⊕ W1),

we have c(V0 ⊕ W0 ⊕ R̃4, V1 ⊕ W1) = 0 ∈ Ωb,f(V0 ⊕ W0 ⊕ R̃4, V1 ⊕ W1).

Lemma 32. Let U be the direct sum of a finite number of quaternionic and real vector bundles
over J. Then

c(V0 ⊕ W0 ⊕ R̃4 ⊕ U, V1 ⊕ W1 ⊕ U) = c(V0 ⊕ W0 ⊕ R̃4, V1 ⊕ W1). ⊕ U, V1 ⊕ W1 ⊕ U)

Theorem 33. Suppose b1(X) = 4.

1. When l − 4 = 2k, we have

eC(V0 ⊕ W0 ⊕ R̃4, V1 ⊕ W1) ≡ 1

2

Z
J

(c2(V0)− c2(V1)) mod Z.

2. When l − 4 = 2k + 2 and k + 1 ≡ 0 mod 4, we have

eR(V0 ⊕ W0 ⊕ R̃4, V1 ⊕ W1) ≡
Z
J

(c2(V0)− c2(V1)) mod 2Z.

Proof of Theorem 2 assuming Theorem 33 Proposition 31 and Lemma 32 and Theo-
rem 33 implies Theorem 2.
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6.3 Calculation of eC and eR

Now we want to compute the equivariant e-invariant to show Theorem 33. We first invoke the
results in Part I of [10], in which we have investigated quaternionic vector bundle over J .

Proposition 34. Any quaternionic vector bundle over J is the direct sum of a rank 2 quater-
nionic C-vector bundle and the trivial quaternionic vector bundle HrankCV/2−1, on which the
right multiplication of j acts as the lift of the generator of the involution.

Thus we can write V0 = V̂0 ⊕Hp+k and V1 = V̂1 ⊕Hp for some rank 2 quaternionic vector
bundles V̂0, V̂1 over J and a nonnegative integer p. By Lemma 32 we may suppose that p = 0
and W0 = {0}. Thus we have only to consider a Z/4-equivariant map;

f : S(V̂0 ⊕ Hk) → V̂1 ⊕ R̃l.

Proposition 35. For any two quaternionic rank 2 C-vector bundles E0 and E1 over J, there
exists a Z/4-equivariant C-linear homomorphism fE : E0 → E1 which satisfies;

1. fE is an isomorphism except at a finite set of points S(fE) on J,

2. at each point x in S(fE), there exists a Z/4-equivariant neighborhood Ux of x, a diffeo-
morphism from Ux to a neighborhood U of 0 in R̃4 and trivializations E0

∼= U × H and
E1

∼= U × H such that fE is described as fE(v, q) = (v, vqi) or (v, v̄qi).

3. Let n+ (n−) be the number of the points x of the former (the latter) type respectively.
Then n+ − n− = c2(E0)− c2(E1).

Thus there exists a Z/4-equivariant C-linear homomorphism fV̂ : V̂0 → V̂1 satisfying the
above conditions.

Suppose now that l − 4 = 2k [resp. l − 4 = 2k + 2 and k + 1 ≡ 0 mod 4].
Note that the eC-invariant [resp. eR-invariant ] can be defined, since k ≥ 4. Here we use

Stolz’s result [17];

Stolz’ theorem [17]
There exits a Z/4-equivariant map g : S(Hk0) → S(R̃l0) if

l0 =

8><
>:
2k0 + 1 if k0 ≡ 0, 1 mod 4,

2k0 + 2 if k0 ≡ 2 mod 4,

2k0 + 3 if k0 ≡ 3 mod 4.

(8)

Thus there exists a Z/4-equivariant map

g : S(Hk) → S(R̃l).

Hence we obtain a Z/4-equivariant bundle map

f = fV̂ ∗ g : S(V̂0 ⊕ Hk) → S(V̂1 ⊕ R̃l).

by the join. Then the zero set of f is contained in fibers of the set S(fV̂ ). Since the e-invariant
is determined by the neighborhood of the zero, we can separate our computation into the
neighborhood of fibers over S(f).

We extend the map f to Z/4-equivariant bundle map

f̃ : D(V̂0 ⊕ Hk) → V̂1 ⊕ R̃l
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by the join with the zero at each disc. Then the zero set remains to be unchanged. Thus by
restricting f̃ into the boundary of a neighborhood of the fiber at each x of S(f), we obtain
Z/4-equivariant maps;

f̃x : S(Hk+1 ⊕ R̃4) → H ⊕ R̃l,

and we have

eC(V0 ⊕ W0 ⊕ R̃4, V1 ⊕ W1) =
X

x∈S(f)

eC(H
k+1 ⊕ R̃4, H ⊕ R̃l)

[resp. eR(V0 ⊕ W0 ⊕ R̃4, V1 ⊕ W1) =
X

x∈S(f)

eR(H
k+1 ⊕ R̃4, H ⊕ R̃l)].

But each term of the right hand side is 1/2 ∈ Q/Z [resp. 1 ∈ Q/2Z] by Theorem 24. This
complets the proof of Theorem 33 (1) [resp. Theorem 33 (2)].
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