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1 Introduction

During the last few years, various techniques and new tools have been introduced
for the study of microlocal tunneling (i.e. tunneling in phase space): see e.g.
[Ma2, Na1, Na2, Sj]. These techniques have permitted in various situations
to obtain very accurate estimates on exponentially small quantities attached
to microlocal tunneling effects, such as the semiclassical widths of resonances
([Ba, Ma2, Na3]), the adiabatic transition probabilities ([Ju, Ma3, MaNe]), the
effect of magnetic fields ([MaSo, Na4]) and the off-diagonal coefficients of the
scattering operator of multistate systems ([BeMa, Na2]).

Here we plan to generalize [Na2] to multidimensional two-state scattering
systems (improving at the same time the result of [BeMa] by eliminating the
regularizing weights appearing there). More precisely, we consider a two-state
semiclassical Schrödinger Hamiltonian of the type P (h) = −h2∆x + V (x) +
hR(x;hDx) on H = L2(IRn)⊕L2(IRn), where V is a 2×2 matrix of multiplica-
tion operators with a gap between its two eigenvalues (and therefore V (x) can
actually be assumed to be diagonal without loss of generality). Under additional
assumptions of decay at infinity, one can define the scattering matrix

S(λ) =
(
S1,1(λ) S1,2(λ)
S2,1(λ) S2,2(λ)

)

where e.g. λ is greater than the limit at infinity of the largest eigenvalue of
V (x). Then, depending on the regularity of V , we give estimates on S1,2(λ) and
S2,1(λ) in the case where λ is a non-trapping energy. In particular, if V is C∞

we show that (see Theorem 3.7):

‖S1,2(λ)‖+ ‖S2,1(λ)‖ = O(h∞)

while if V admits a holomorphic extension in a complex strip Γ = {x ∈
C n ; | Im x| < γ} (for some γ > 0), then (see Theorem 4.5):

‖S1,2(λ)‖+ ‖S2,1(λ)‖ = O(e−τ/h)

where the exponential rate τ > 0 is related to the behavior in the complex phase
space of the characteristic set of P (or more precisely of the complex extensions
of the two connected components of the real characteristic set of P ). Let us
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observe that related results are obtained in [NeSo] by using different techniques
involving almost invariant subspaces of P .

Our approach is very similar in spirit to the one usually adopted for studying
interactions between 2 potential wells (see e.g. [HeSj, Si]), and already used for
the one-dimensional scattering case in [Na2]: it consists in splitting both the
space and the operator in two parts (via identification operators in the same
spirit as in [BCD]), in such a way that each part corresponds to a problem with
a connected real characteristic set. Then the interaction between these two con-
nected sets appears as very small off-diagonal coefficients in the representation
of P obtained in this way. However, since we want to keep some analyticity
(when required), we have to be careful in cutting-off the operator, and this
problem is solved by using Toeplitz operators of the type T ∗χT where T is a
global FBI transform (see e.g. [Sj]) and χ is a cut-off function on the phase
space. Such operators have the nice property of satisfying microlocal weight
exponential a priori estimates (similar to those of [Ma1, Na1]), although their
natural symbol χ is not analytic. Moreover, since this technique permits to cut
the phase-space in a way essentially arbitrary, we believe it can be useful in
many other problems involving microlocal tunneling.

In Section 2, we prepare basic notations and introduce our assumptions on
P (h). In Section 3, we consider the case when the symbol is C∞-smooth, and
introduce scattering theoretical machinery, which will be also used in the next
section.In Section 4, we study the case when the symbol is analytic, and prove
our main result, namely the exponential decay of the off-diagonal terms of the
scattering matrix. We discuss the calculus of cut-off operators in phase space
in terms of Toeplitz operators in Appendix.

2 Notations and Assumptions

We consider the two-state Schrödinger Hamiltonian

P (h) = −h2∆x + V (x) + hR(x;hDx) (2.1)

on H = L2(IRn)⊕ L2(IRn). Here

V (x) :=
(
V1(x) 0

0 V2(x)

)

is a 2× 2 diagonal symmetric matrix and

R(x;hDx) =
∑
|α|≤1

cα(x)(hDx)α

is a differential operator of order 1. Moreover, V (x) and cα(x) are real-valued
smooth functions on IRn and there exist ρ > 1 and a real symmetric matrix

V∞ :=
(
V∞

1 0
0 V∞

2

)

such that for all multi-index β:

|∂βx (V (x)− V∞)|+
∑
|α|≤1

|∂βx cα(x)| = O(〈x〉−ρ−|β|) (2.2)

2



uniformly on IRn. Setting

P0 =
(
P 0

1 0
0 P 0

2

)
:= −h2∆x + V∞

we can prove as in the scalar case that the wave operators:

W±(P, P0) = s− lim
t→±∞

eitP e−itP0

exist and are complete. Hence, we can define the scattering operator

S = S(P, P0) =: W+(P, P0)∗W−(P, P0)

which is a unitary operator on H.
In the following, we work near an energy level E > Max{V∞

1 , V∞
2 } and we

assume that E is non-trapping, that is, denoting by qj(x, ξ) = ξ2 + Vj(x) (j =
1, 2), we assume that for any (x, ξ) ∈ IR2n such that qj(x, ξ) = E one has:

|exptHqj
(x, ξ)| → ∞ as |t| → ∞ (2.3)

for j = 1, 2. Here Hqj
is the Hamiltonian flow generated by qj .

Let I be a small neighborhood of E. Since S commutes with P0 then, for λ ∈ I,
one can define the scattering matrix

S(λ) =
(
S1,1(λ) S1,2(λ)
S2,1(λ) S2,2(λ)

)
∈ L(L2(Sn−1)⊕ L2(Sn−1))

such that, for any φ ∈ H and λ ∈ I

F0(λ)Sφ = S(λ)F0(λ)φ,

where F0(λ) stands for the spectral representation of P0. We denote

Σ1(E) = {(x, ξ) ∈ IR2n ; ξ2 + V1(x)− E = 0}, (2.4)
Σ2(E) = {(x, ξ) ∈ IR2n ; ξ2 + V2(x)− E = 0} (2.5)

and we assume
dist(Σ1(E),Σ2(E)) > 0. (2.6)

In particular V∞
1 �= V∞

2 , and V1(x) and V2(x) are never equal on AE :=
{x ; V1(x) ≤ E , V2(x) ≤ E}. In fact, let us prove:

Lemma 2.1 Assume (2.2), (2.3) and Σ1(E)∩Σ2(E) = ∅. Then the difference
V2(x)− V1(x) keeps a constant sign on AE for all E > Max{V∞

1 , V∞
2 }.

Proof - For j = 1, 2 denote Mj := {x ∈ IRn ; Vj(x) ≤ E}. Then by (2.2) Mj

contains a neighborhood of infinity, and by (2.3) it has no bounded connected
component. Moreover V2−V1 never vanishes on Mj , otherwise the point where
it does would belong to M1 ∩M2 = AE . As a consequence, since V2 − V1 →
V∞

2 − V∞
1 �= 0 at infinity, it keeps a constant sign on each Mj and thus also on

AE . �
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Now, assuming, e.g., that V∞
2 > V∞

1 , Lemma 2.1 implies that V2 > V1 on
AE , and Assumption (2.6) is actually equivalent to:

inf
x∈AE

(V2(x)− V1(x)) > 0. (2.7)

Then, we also set

Σ+
j (E) = {(x, ξ) ∈ IR2n ; ξ2 + Vj(x)− E > 0}, (2.8)

Σ−
j (E) = {(x, ξ) ∈ IR2n ; ξ2 + Vj(x)− E < 0}, (2.9)

Σ(E) = Σ−
1 (E) ∩ Σ+

2 (E). (2.10)

3 Estimates in the Smooth Case

Let us define two functions χ+, χ− ∈ C∞ by:

χ+(x, ξ) = χ+
0 (ξ2 + V2 − E),

χ−(x, ξ) = χ−
0 (ξ2 + V1 − E),

where χ±
0 ∈ C∞(IR ; [0, 1]) is such that

χ+
0 (s) = 1 if s ≥ 2δ,
χ+

0 (s) = 0 if s ≤ δ,

χ−
0 (s) = χ+

0 (−s),

where δ > 0 is fixed small enough (and will possibly be shrinked a finite number
of times in the sequels).

Given a real n×n symmetric positive definite matrix A, we denote qA(x) =
〈Ax, x〉 and we consider the following global FBI transform:

TAu(x, ξ) = 2−n/2(πh)−3n/4(detA)1/4
∫
ei(x−y)ξ/h−qA(x−y)/2hu(y) dy

which is an isometry from L2(IRn) to L2(IR2n) (see e.g. [Ma1]). Then we set:

P+ = P + T ∗
A(1− χ+)(L− p)TA (3.1)

P− = P + T ∗
A(1− χ−)(L− p)TA (3.2)

where p = ξ2 + V is the principal symbol of P and L =
(
L1 0
0 L2

)
with

L1, L2 ∈ IR, L1 < E < L2. Let us observe that if a is a symbol then, denoting
OpW

h the usual semiclassical Weyl quantization of symbols, we have:

T ∗
AaTA = OpW

h (b) (3.3)

with

b(x, ξ) =
1

(2πh)n

∫
e−qA(x−y)/2h−qA−1 (ξ−η)/2ha(y, η)dydη ∼

∞∑
j=0

hj

4jj!
∆j

Aa(x, ξ)

(3.4)
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where ∆A := 〈A−1∂x, ∂x〉+〈A∂ξ, ∂ξ〉 (this can be seen by a direct computation).
In particular, P± is a pseudodifferential operator and if p± = χ±p+ (1− χ±)L
denotes its principal symbol we see:

det(p+(x, ξ)− E) = 0 iff ξ2 + V1(x) = E (3.5)
det(p−(x, ξ)− E) = 0 iff ξ2 + V2(x) = E. (3.6)

Now the main idea of our proof consists in comparing P with the operator

Q = P+ ⊕ P− (3.7)

acting onH⊕H. For this purpose we introduce two additional functions j+, j− ∈
C∞(IR2n) such that Suppj+ ⊂ {ξ2 +V2(x)−E ≥ 3δ}, j+ = 1 on {ξ2 +V2(x)−
E ≥ 4δ}, Suppj− ⊂ {ξ2+V1(x)−E ≤ −3δ}, j− = 1 on {ξ2+V1(x)−E ≤ −4δ}.
We can also assume that j± does not depend on x for |x| large enough, and we
observe that Supp(1− χ±) ∩ Suppj± = ∅.

We also set Ĵ±(x, hDx) = T ∗
Aj

±TA and we define

J : H → H⊕H

Jφ = (Ĵ+φ)⊕ (Ĵ−φ)

which will play the role of an identification operator (observe that J preserves
the H2-Sobolev regularity). Now if I is a sufficiently small interval containing
E and f ∈ C∞

0 (I), then

Supp(f(p±)) ⊂⊂ {j± = 1}.

Therefore, it follows from the functional calculus of pseudodifferential operators
(see e.g. [DiSj, Ma1, Ro]) that:

f(P±)Ĵ± = f(P±) +R± (3.8)

with
R± ∈ OPS(h∞〈x〉−∞〈ξ〉−∞) (3.9)

where OPS(h∞〈x〉−∞〈ξ〉−∞) denotes the space of semiclassical pseudodiffer-
ential operators with symbol bounded (together with all its derivatives) by
O(hN 〈x〉−N 〈ξ〉−N ) for all N > 0. More generally, for any given function
m ∈ C∞(IR2n; IR+), we denote OPS(m) the space of semiclassical pseudodiffer-
ential operators with (possibly h-dependent) symbol a ∈ C∞(IR2n) satisfying:

∂αx ∂
β
ξ a(x, ξ;h) = O(m(x, ξ)〈x〉−|α|〈ξ〉−|β|) (3.10)

uniformly with respect to (x, ξ) ∈ IR2n and h > 0 small enough (the corre-
sponding space of these symbols will be denoted by S2n(m)). Then we have the
following result:

Lemma 3.1 Let F ∈ OPS(〈x〉k〈ξ〉�) with k, 6 ∈ IR arbitrary. Then

T ∗
A(1− χ±)(L− p)TAF Ĵ± ∈ OPS(h∞〈x〉−∞〈ξ〉−∞).
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Proof: Applying the property (3.3)-(3.4) to a = j± and to a = (1− χ±)(L− p)
(which have disjoint supports), the result becomes an easy consequence of stan-
dard pseudodifferential calculus with symbols in the classes defined by (3.10). �

In the sequels, we also set

M1 = QJ − JP0, M2 = PJ∗ − J∗Q (3.11)

and we let I be any small interval around E such that the assumptions (2.3)
and (2.6) remain valid for any energy in I. Moreover, in all the sequels δ is
supposed to be sufficiently small in order that (3.5) and (3.6) are also valid for
any energy in I.

Now, with Q defined in (3.7), we first study the scattering for the pair (Q,P0)
and we show:

Proposition 3.2 The wave operators

W 1
±EI(P0) = W±(Q,P0;J)EI(P0) := s− lim

t→±∞
eitQJe−itP0EI(P0)

exist and are complete (i.e RanW 1
±EI(P0) = EI(Q)(H) where, for any selfad-

joint operator A, EI(A) denotes the spectral projection of A on I). Moreover,
they are partial isometries with initial space EI(P0), that is:

‖W 1
±EI(P0)φ‖ = ‖EI(P0)φ‖

Proof: Following [Na2], we first show that

M1 = M+ ⊕M− ∈ OPS(〈x〉−ρ〈ξ〉2)
Here we have

M± = P±Ĵ± − Ĵ±P0 = P Ĵ± − Ĵ±P0 +R1

with R1 = (P± − P )Ĵ± = T ∗
A(1 − χ±)(L − p)Ĵ±. Hence by Lemma 3.1, R1 ∈

OPS(h∞〈x〉−∞〈ξ〉−∞). On the other hand, since j± = j±0 (ξ) does not depend
on x for |(x, ξ)| large enough, we have:

P Ĵ± − Ĵ±P0 = PJ±
0 (hDx)− J±

0 (hDx)P0 +R2

with R2 ∈ OPS(〈x〉−∞〈ξ〉−∞) and thus

P Ĵ±−Ĵ±P0 = (V−V∞)J±
0 (hDx)+hR(x, hDx)J±

0 (hDx)+R2 ∈ OPS(〈x〉−ρ〈ξ〉2)
This implies that

M± ∈ OPS(h2〈x〉−ρ〈ξ〉2)
and the existence of the wave operators follows by the standard Cook-Kuroda
method. Their asymptotic completeness is a consequence of the limiting ab-
sorption principle for P , which in turns follows from the existence of a global
escape function for ξ2 +V1 and ξ2 +V2 at energy E and from Mourre estimates
as in [GeMa]. �

Now we can define the following scattering operator for the pair (Q,P0):

S1EI(P0) = S(Q,P0;J)EI(P0) = (W+(Q,P0;J)EI(P0))∗(W−(Q,P0;J)EI(P0))

and we have:
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Proposition 3.3

S1EI(P0) =:
(
S1

1 0
0 S1

2

)
EI(P0)

Proof: For any ϕj ∈ S(IRn) such that 0 /∈ Supp ϕ̂j , one has

〈W 1
−f(P0)

(
ϕ1

0

)
,W 1

+f(P0)
(

0
ϕ2

)
〉 = lim

t→−∞
lim

s→+∞
〈A(t), B(s)〉

with:

A(t) = eitP
+

(
Ĵ+f(P 0

1 )e−itP 0
1 ϕ1

0

)
⊕ eitP

−
(
Ĵ−f(P 0

1 )e−itP 0
1 ϕ1

0

)

B(s) = eisP
+

(
0

Ĵ+f(P 0
2 )e−isP 0

2 ϕ2

)
⊕ eisP

−
(

0
Ĵ−f(P 0

2 )e−isP 0
2 ϕ2

)
.

Now, since for N large enough one has

Suppj+ ∩ {|x| ≥ N} ∩ Suppf(ξ2 + V∞
2 ) = ∅

we see that
‖Ĵ+f(P 0

2 )e−isP 0
2 ϕ2‖ → 0 (s→ −∞)

and in the same way:

‖Ĵ−f(P 0
1 )e−itP 0

1 ϕ1‖ → 0 (t→ +∞).

As a consequence:

〈W 1
−f(P0)

(
ϕ1

0

)
,W 1

+f(P0)
(

0
ϕ2

)
〉 = 0.

�

It remains to study the scattering for the pair (P,Q). We have:

Proposition 3.4 The wave operators

W 2
±EI(Q) = W±(P,Q;J∗)EI := s− lim

t→±∞
eitPJ∗e−itQEac

I (Q)

exist and are complete i.e RanW 2
±EI(Q) = EI(P )(H).

Proof: By (3.11) we have

M2(ϕ1 ⊕ ϕ2) = M+
2 ϕ1 +M−

2 ϕ2

where
M±

2 = [P, Ĵ±] +R± (3.12)

with
R± = Ĵ±T ∗

A(1− χ±)(p− L)TA
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Hence, R± ∈ OPS(h∞〈x〉−∞〈ξ〉−∞) and thus

M2 ∈ OPS(〈x〉−ρ〈ξ〉).

Then the Cook-Kuroda method gives the existence ofW 2
±EI(Q). For the asymp-

totic completeness, we first observe:

W 2
±EI(Q)W 1

±EI(P0) = s− lim
t→±∞

eitPJ∗Je−itP0EI(P0)

and the symbol of J∗J is given by j+(x, ξ)2 + j−(x, ξ)2 = 1 + k(x, ξ) where k
is supported in Σ(E). In particular, if I has been chosen small enough then
Suppk ∩ ⋃

λ∈I{det(p − λ) = 0} = ∅. As a consequence, (1 − J∗J)EI(P0) is a
compact operator and since e−itP0ϕ → 0 weakly as |t| → ∞ for any ϕ ∈ H we
get:

W 2
±EI(Q)W 1

±EI(P0) = s− lim
t→±∞

eitP e−itP0EI(P0) = W±(P, P0)EI(P0)

and therefore the asymptotic completeness of W 2
±EI(Q) follows from the one of

W±(P, P0)EI(P0). �

Let us denote by S2 = S(P,Q, J∗) = (W 2
+)∗W 2

− the scattering operator and
by S2(λ) the scattering matrix associated to the pair of operators (P,Q). If
F0(λ) is the spectral representation of P0, we set

F1(λ) = F0(λ)(W 1
+)∗

for λ ∈ I. Then, denoting Hα = L2,α(IRn) ⊕ L2,α(IRn) with L2,α(IRn) :=
〈x〉−αL2(IRn), we see that F1(λ) is a spectral representation of Q on RanEI(Q).
Moreover F1(λ) is bounded from Hα ⊕Hα to [L2(Sn−1) ⊕ L2(Sn−1)]2 for any
α > 1/2 and its operator norm is bounded by c h−2 uniformly for λ ∈ I (this
can be seen as in [JeNa] by using a stationary representation of W+

1 and a
semiclassical resolvent estimate for Q, see also [Is]). Then we can apply the
representation formula for the scattering matrix to obtain:

S2(λ) = 1− 2πiF1(λ)[M∗
2 J

∗ −M∗
2 (P − λ− i0)−1M2]F1(λ)∗ (3.13)

and in order to estimate it we first prove:

Lemma 3.5 If I is a sufficiently small neighborhood of E and f ∈ C∞
0 (I) then

M2f(Q) ∈ OPS(h∞〈x〉−∞〈ξ〉−∞) and, in particular,

‖〈x〉NM2f(Q)〈x〉N‖ ≤ ChN

for any N ≥ 0.

Proof: Since
Supp(f(p±)) ∩ Supp(∇j±) = ∅

one can easily see (e.g. by using (3.3) and (3.4)) that:

[P, Ĵ±]f(P±) ∈ OPS(h∞〈x〉−∞〈ξ〉−∞)
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and thus by (3.12):

M2f(Q) ∈ OPS(h∞〈x〉−∞〈ξ〉−∞)

�

Now the key result of this section is:

Proposition 3.6 If I is a sufficiently small neighborhood of E, then for any
N ≥ 0 there exists CN > 0 such that:

‖S2(λ)− I‖L(L2(Sn−1⊕Sn−1)) ≤ ChN

uniformly for h > 0 small enough.

Proof: We have

(S2(λ)− I)f(λ)2

= 2πiF1(λ)[f(Q)M∗
2 J

∗f(Q)− f(Q)M∗
2 (P − λ− i0)−1M2f(Q)]F1(λ)∗

= 2πiF1(λ)[(M2f(Q))∗J∗f(Q)− (M2f(Q))∗(P − λ− i0)−1M2f(Q)]F1(λ)∗

and since E is non-trapping, we have the resolvent estimates

‖〈x〉−ρ/2(P − λ± i0)−1〈x〉−ρ/2‖ = O(h−1)

for λ ∈ I. Therefore, the result follows by using Lemma 3.5. �

Now we can state and prove the main result of this section:

Theorem 3.7 Under assumptions (2.2), (2.3) and (2.6), let I be a sufficiently
small interval around E. Then, for any N ≥ 0 there exists CN > 0 such that:

‖S1,2(λ)‖L(L2(Sn−1)) + ‖S2,1(λ)‖L(L2(Sn−1)) ≤ ChN

uniformly for h > 0 small enough and λ ∈ I.
Proof: We have

SEI(P0) = (W+EI(P0))∗W−EI(P0)
= (W 1

+EI(P0))∗(W 2
+EI(Q))∗(W 2

−EI(Q))(W 1
−EI(P0))

= (W 1
+EI(P0))∗(S2EI(Q))(W 1

−EI(P0))
= (W 1

+EI(P0))∗(S2 − 1)EI(Q)(W 1
−EI(P0)) + S1EI(P0).

By Proposition 3.6, the first term is O(hN ) and, by Proposition 3.3, the off-
diagonal term of S1 are 0. �

4 Analytic Case: Exponential Decay

Here we add the following assumption on V and the cα’s:

V (x) and cα(x) (|α| ≤ 1) admit holomorphic extensions in the
complex strip Γ = {x ∈ C n ; | Im x| < γ} for some γ > 0, (4.1)
and (2.2) holds uniformly on Γ.
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For any given connected open set Ω ⊂ IR2n, let us consider a function ψ ∈
C∞

b (IR2n) real valued satisfying:

|∇ξψ(x, ξ)| ≤ γ (4.2)

and
Supp∇ψ ∩ Ω = ∅ (4.3)

In particular, ψ is constant on Ω, and, denoting by ψ0 this constant value, we
assume that there exists ν > 0 such that

|ψ(x, ξ)− ψ0| ≤
1− ν

4
dA((x, ξ),Ω) (4.4)

for any (x, ξ) ∈ IR2n, where dA denotes the distance on IR2n associated with
the metric:

QA(x, ξ) = 〈Ax, x〉+ 〈A−1ξ, ξ〉.
In the following we denote by MΩ the set of such functions ψ which satisfy
(4.2), (4.3) and (4.4).
In relation with microlocal weight estimates (see appendix) we also set

pψ,A(x, ξ) := p(x−A−1/2∂Aψ, ξ + iA1/2∂Aψ)

where ∂A := A−1/2∂x + iA1/2∂ξ, and we denote AA the set of pairs of functions

(φ1, φ2) ∈
(
MΣ+

1 (E) ∩MΣ−
2 (E)

)2

such that:

Suppφ1 ⊂ Σ−
1 (E) ; Suppφ2 ⊂ Σ+

2 (E) ;
Supp∇φ1 ∪ Supp∇φ2 ⊂ Σ(E) ;
|det(pφ1,A(x, ξ)− E)| · |det(pφ2,A(x, ξ)− E)| > 0 for all (x, ξ) ∈ Σ(E).

In particular φ1 and φ2 are constant on Σ−
2 (E) and on Σ+

1 (E) respectively, and
we set:

τA = Sup
(φ1,φ2)∈AA

Min
{
φ1

∣∣
Σ−

2 (E)
, φ2

∣∣
Σ+

1 (E)

}
.

One can easily see that τA > 0: indeed, a possible choice for (φ1, φ2) consists
in taking φj = fj(ξ2 + W (x) − E) with V1 < W < V2, Suppf1 ⊂ [−ε,+∞)
with ε > 0 small enough, f1 > 0 constant on [ε,+∞), f ′1 > 0 small enough on
(−ε, ε), and f2(s) = f1(−s) for all s ∈ IR (with this choice one has φ1

∣∣
Σ−

2 (E)
=

φ2
∣∣
Σ+

1 (E)
= f1(ε) > 0).

Finally we set
τ0 = sup

A
τA

where A runs over the set of all n×n real symmetric positive definite matrices.
Then for any ε1 > 0 there exist A and (φ1, φ2) ∈ AA such that, denoting

τ1 := φ1
∣∣
Σ−

2 (E)
; τ2 := φ2

∣∣
Σ+

1 (E)

we have:
τ1 ≥ τ0 − ε1 and τ2 ≥ τ0 − ε1.

10



Moreover, since ∇φ1 and ∇φ2 are supported in Σ(E), if we take the value of
δ (used in the constructions of the previous section) sufficiently small, we see
that:

Supp(∇φ1) ∩ Supp(∇j±) = Supp(φ1) ∩ Supp(1− j−) = ∅
Supp(∇φ2) ∩ Supp(∇j±) = Supp(φ2) ∩ Supp(1− j+) = ∅

and for some open connected neighborhood Ω± of Supp(1− j±):

φj ∈MΩ+ ∩MΩ− (j = 1, 2).

(In particular, the φj ’s satisfy the conditions of the appendix with χ = 1 − j±

and with χ = 1−χ±.) Moreover, by construction |det(pφj ,A−E)| > 0 on Σ(E).
Then we have:

Proposition 4.1 If u ∈ H−ρ/2 is a generalized eigenfunction of P+ with eigen-
value λ ∈ I, then for any N ≥ 0:

‖〈(x, ξ)〉Nχ−TAu‖ = O(hN )‖〈x〉−ρ/2u‖.

Proof: It is an immediate consequence of the pseudodifferential calculus with
symbols in the classes defined by (3.10): just write u = f(P+)u with f supported
in an arbitrarily small neighborhood of λ, and observe that in this case χ− and
the symbol of f(P+) have disjoint supports. �

Proposition 4.2 Let m be as in (A.4). Then there exist two positive constants
cm and Cm such that for all v ∈ S(IRn) one has:

‖meφ1/hTA(P+ − λ)v‖ ≥ cm‖m〈ξ〉2eφ1/hTAv‖ − Cm‖m〈ξ〉2TAv‖.

Proof: Using Corollary A.2 of the appendix (with χ = 1−χ+) and the fact that
φ1 = 0 on Supp(1− χ−), we can write:

‖meφ1/hTA(P+ − λ)v‖
= ‖m

(
(pφ1,A − λ)χ+ + (L− λ)(1− χ+)

)
eφ1/hTAv‖

+O(
√
h)‖m〈ξ〉2eφ1/hTAv‖

= ‖m
(
(pφ1,A − λ)χ+ + (L− λ)(1− χ+)

)
χ−eφ1/hTAv‖+O(‖m〈ξ〉2TAv‖)

+O(
√
h)‖m〈ξ〉2eφ1/hTAv‖

≥ (c+O(
√
h))‖m〈ξ〉2χ−eφ1/hTAv‖+O(‖m〈ξ〉2TAv‖)

≥ c1‖m〈ξ〉2eφ1/hTAv‖+O(‖m〈ξ〉2TAv‖)

uniformly for h > 0 small enough. �

Of course, by a density argument Proposition 4.2 can be extended to any
v ∈ S ′(IRn) such that m〈ξ〉2Tv ∈ L2(IR2n).

Now, writing
F1(λ) =: F+

1 (λ)⊕F−
1 (λ)

for the spectral representation of Q = P+ ⊕ P−, we have:
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Proposition 4.3 For any N ≥ 0 and any ε > 0 there exists C = C(I,N, ε) > 0
such that for all λ ∈ I :

‖〈(x, ξ)〉Nχ−eφ1/hTAF+
1 (λ)∗‖ ≤ Ceε/h.

Proof: Let ϕ ∈ (C∞
0 (IRn))2 be arbitrary. Then, applying Proposition 4.2 to

v = F+
1 (λ)∗ϕ ∈ H−ρ/2 and with m = 〈x〉−ρ/2〈ξ〉2 one gets (since P+v = λv):

‖〈x〉−ρ/2eφ1/hTAF+
1 (λ)∗ϕ‖ ≤ C‖〈x〉−ρ/2TAF1(λ)∗ϕ‖

and thus, since 〈x〉−ρ/2F+
1 (λ)∗ and 〈x〉−ρ/2TA〈x〉ρ/2 are uniformly bounded op-

erators:
‖〈x〉−ρ/2eφ1/hTAF+

1 (λ)∗‖ = O(1). (4.5)

In particular 〈x〉−ρ/2eφ1/hχ−TAF+
1 (λ)∗ is a uniformly bounded operator. On

the other hand, we have by Proposition 4.1:

‖〈(x, ξ)〉tNeφ1/hχ−TAF+
1 (λ)∗‖ = O(hNeF/h)

with F = Supφ1. By interpolation with (4.5) we obtain for any t ∈ [0, 1] and
any N > 0:

‖〈(x, ξ)〉tN 〈x〉−(1−t)ρ/2eφ1/hχ−TAF+
1 (λ)∗‖ ≤ C ′htNetF/h

with a new positive constant C ′. Since t can be taken arbitrarily small, the
result follows. �

In the same way, we obtain:

‖〈(x, ξ)〉Nχ+eφ2/hTAF−
1 (λ)∗‖ ≤ Ceε/h (4.6)

for any N > 0 and ε > 0.
Now we can state and prove the key result of this section:

Proposition 4.4 If I is a sufficiently small neighborhood of E, then for any
ε > 0, N ≥ 0 and λ ∈ I, there exists C > 0 such that:

‖〈(x, ξ)〉NM2F1(λ)∗‖ ≤ Ce−(τ−ε)/h

where τ := Min{τ1, τ2}.

Proof: For ϕ = (ϕ1, ϕ2) ∈ H ⊕H we have by (3.11):

M2ϕ = (P Ĵ+ − Ĵ+P+)ϕ1 + (P Ĵ− − Ĵ−P−)ϕ2 =: M+
2 ϕ1 +M−

2 ϕ2

and we can decompose M+
2 as:

M+
2 = P (Ĵ+ − 1)− (Ĵ+ − 1)P+ + T ∗

A(p− L)(1− χ+)TA. (4.7)

Now, observing that Supp(1 − χ+) ⊂ Supp(1 − j+) ⊂ {χ− = 1} ⊂ {φ1 = τ1},
we obtain directly from Proposition 4.3:

‖〈(x, ξ)〉N (1− χ+)TAF+
1 (λ)∗‖+ ‖〈(x, ξ)〉N (1− j+)TAF+

1 (λ)∗‖ ≤ Ce−(τ1−ε)/h

12



and since also P+F+
1 (λ)∗ = λF+

1 (λ)∗, we can see immediately on (4.7) that:

‖〈(x, ξ)〉NM+
2 F+

1 (λ)∗‖ = O(e−(τ1−ε)/h).

We get in the same way by using (4.3):

‖〈(x, ξ)〉NM−
2 F−

1 (λ)∗‖ = O(e−(τ2−ε)/h).

and the result follows. �

By using (3.13), we can finally deduce the main result of this section:

Theorem 4.5 Assume (2.2), (2.3), (2.6) and (4.1). Then, for any ε > 0 there
exist an interval I around E and a constant C > 0 such that for any λ ∈ I one
has:

‖S1,2(λ)‖L(L2(Sn−1)) + ‖S2,1(λ)‖L(L2(Sn−1)) ≤ Ce−(τ0−ε)/h)

uniformly with respect to h > 0 small enough.

Remark 4.6 In particular, if we assume that

E2 − E1 > 0

with
E1 = sup(V1(x)) , E2 = inf(V2(x))

then we can give a geometric meaning to τ0. Let us define

κ(ξ) = sup{κ ∈ [0, γ[ ; |det(p(x−iy, ξ)−E)| > 0,∀(x, y) ∈ IR2n such that |y| < κ}

for E − E2 < ξ2 < E − E1, and κ(ξ) = 0 elsewhere. We also denote by d(ξ, ξ′)
the Agmon distance associated to κ, i.e. the pseudodistance on IRn associated
to the metric κ(ξ)dξ2. Then we can take

τ0 = d(Σ0
1,Σ

0
2)

where
Σ0

j = {ξ ∈ IRn ; ξ2 + Ej = E}, j = 1, 2.

Proof: Just take A = µI with µ > 0 small enough. �

Appendix: Cut-off Operators

Let p = p(x, ξ) ∈ C∞(IRn) be such that for all α ∈ IN2n one has

∂αp = O(m0(x, ξ)) (A.1)

uniformly in IRn, where m0(x, ξ) = 〈x〉k〈ξ〉� for some k, 6 ∈ IR.
We associate to p its semiclassical Weyl-quantization P = OpW

h (p) and our
purpose is to cut-off P in some special way and to obtain (under an additional
analyticity assumption) exponential microlocal estimates for the resulting op-
erator. Such estimates are well known for pseudodifferential operators with
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analytic symbols (see [Ma1, Na1]) but are known to be false for general pseu-
dodifferential operators with C∞ symbol. Therefore one has to be very careful
in the way of cutting-off P , and the main idea will consist in using Toeplitz-type
cut-off operators.

We consider χ ∈ C∞
b (IR2n) (the space of smooth functions on IR2n which

are bounded together with all their derivatives) and we denote Ω1, ..., ΩN the
different connected components of Suppχ (χ will be our cut-off function). We
also consider ψ ∈ C∞

b (IR2n) real-valued such that:

Supp∇ψ ∩ Suppχ = ∅. (A.2)

In particular ψ is constant on every Ωj (j = 1, ..., N), and we denote ψj its
constant value on Ωj . For a given n× n symmetric positive definite matrix A,
we associate the positive definite quadratic form on IR2n defined by:

QA(x, ξ) := 〈Ax, x〉+ 〈A−1ξ, ξ〉

and we denote dA(X,Y ) =
√
QA(X − Y ) the corresponding distance on IR2n.

We assume there exists some ν > 0 such that:

|ψ(X)− ψj | ≤
1− ν

4
dA(X,Ωj)2 (A.3)

for all X ∈ IR2n and for j = 1, ..., N .
In order to construct our cut-off operator, we use the global FBI transform

TA defined by:

TAu(x, ξ) = 2−
n
2 (πh)−

3n
4 (detA)

1
4

∫
ei(x−y)ξ/h−qA(x−y)/2hu(y) dy

where qA(x) := 〈Ax, x〉. Then TA is an isometry from L2(IRn) to L2(IR2n) (see
e.g. [Ma1]). In all the sequels we also consider a positive function m on IR2n of
the form:

m(X) = Πk
j=1〈X ′

j〉�j (A.4)

where the X ′
j ’s denote some (arbitrary) components of X and 6j ∈ IR. Then

we show:

Theorem A.1 Under assumptions (A.1), (A.2) and (A.3) there exists C > 0
such that for all u ∈ C∞

0 (IRn):

‖meψ/hTAT
∗
ApχTAu−mpχeψ/hTAu‖L2(IR2n) ≤ C

√
h‖mm0e

ψ/hTAu‖L2(IR2n)

uniformly with respect to h small enough.

Proof - Using that T ∗
ATA = 1, we see that:

meψ/hTAT
∗
ApχTAu−mpχeψ/hTAu = meψ/h(TAT ∗

Apχ− pχTAT
∗
A)TAu

= Rmm0e
ψ/hTAu

with
R := meψ/h(TAT ∗

Apχ− pχTAT
∗
A)e−ψ/hm−1m−1

0
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and it remains to show that ‖R‖ = O(
√
h). Denoting KR(X,Y ) its distribu-

tional kernel, we have:

KR(X,Y ) =
m(X)
m(Y )

KTAT∗
A
(X,Y )e(ψ(X)−ψ(Y ))/h p(Y )χ(Y )− p(X)χ(X)

m0(Y )
(A.5)

where KTAT∗
A
(X,Y ) is the distributional kernel of TAT ∗

A. A direct computation
gives:

KTAT∗
A
(X,Y ) = (2πh)−neiθ(X,Y )/h−QA(X−Y )/4h (A.6)

with θ((x, ξ), (y, η)) := (x − y)(ξ + η)/2. In particular, we see on (A.5) that
KR(X,Y ) = 0 if X and Y do not belong to ∪N

j=1Ωj . Assume first that Y ∈ Ωj

for some j. then it follows from the assumptions that

|ψ(X)− ψ(Y )| = |ψ(X)− ψj | ≤
1− ν

4
dA(x,Ωj)2 ≤

1− ν

4
QA(X − Y )

Thus, in this case we deduce from (A.5)-(A.6) that

|KR(X,Y )| ≤ (2πh)−nm(X)
m(Y )

e−νQA(X−Y )/4h |p(Y )χ(Y )− p(X)χ(X)|
m0(Y )

≤ Ch−nm(X)[m0(X) +m0(Y )]
m(Y )m0(Y )

e−νQA(X−Y )/4h|X − Y |(A.7)

where we have used the fact that the derivatives of pχ on the segment [X,Y ] ⊂
IR2n are bounded by O(m0(X) + m0(Y )). Since the same estimate holds in
the case X ∈ Ωj , the result follows from the Schur lemma and the fact that
m(X)/m(Y ) and m0(X)/m0(Y ) remain uniformly bounded on {|X − Y | ≤
1
4 (|X|+ |Y |)}. �

Now we assume moreover that p = p(x, ξ) is analytic in the complex strip

S = {(x, ξ) ∈ C 2n ; |Im(x, ξ)| < a} (A.8)

for some positive a, and that the estimates (A.1) hold uniformly in S. We also
assume that

|∇ψ(x, ξ)| < a (A.9)

for all (x, ξ) ∈ IR2n. Then, applying to P the microlocal weight exponential
estimates of [Ma1, Na1], we immediately get the following corollary:

Corollary A.2 Under assumptions (A.2), (A.3), (A.8) and (A.9), there exists
C > 0 such that for all u ∈ C∞

0 (IRn):

‖meψ/hTA(P−T ∗
ApχTA)u−m(1−χ)pψ,Ae

ψ/hTAu‖ ≤ C
√
h‖mm0e

ψ/hTAu‖L2(IR2n)

uniformly with respect to h small enough, with

pψ,A := p(x−A−1/2∂Aψ, ξ + iA1/2∂Aψ).

Proof: Just observe that pχ = χpψ,A because of (A.2). �
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