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Abstract

Using the properties of the Hydrodynamic limits, with the powerful recognition ability of
deep learning for images, we have carried out some results on the changes from micro to macro.

深層学習と流体力学極限について
Hu Xin(東京大学数理科学研究科)

概要
画像の深層学習の強力な認識能力を備えた流体力学極限の特性を使用して、微視的から巨視的

への変化について考察した。

1 Introduction

The topic of hydrodynamic limits can be traced back to the work of J. Clerk Maxwell and L.

Boltzmann, the founders of gas dynamics theory. At a time when the existence of atoms was

controversial, kinetic theory could explain how the size of gas molecules could be estimated from

macroscopic data, such as the viscosity of a gas. Later, D. Hilbert formulated the hydrodynamic

limit problem as a mathematical problem.

So what is the hydrodynamic limits? To use a simple example, water flow can be observed from two

types, one is the flow of macroscopic water, and the other is the complex and chaotic microscopic

world formed by H2O particles, obviously no matter what way Observation, the water flow does

not change, we can establish the collision equation describing the microscopic H2O particles, and

we can also establish the equation describing the macroscopic water flow.

We first introduce the Boltzmann equation, which describes the motion and collision of microscopic

particles. Its form is：
∂tF + v · ∇xF = Q(F, F ), F |t=0 = F0, (1)

where F (t, x, v) is a probability density with a given datum F0 at t = 0, and x and v stand

respectively for the spatial and velocity variables, and we consider here the important physical

dimension three and suppose both vary in the whole space R3.

The bilinear operator Q on the right-hand side of (1) stands for the collision part acting only

on the velocity, so the spatially inhomogeneous Boltzmann equation degenerates in x, which is

one of the main difficulties in the regularity theory. In addition to the degeneracy, another major

difficulty arises from the nonlocal property of the collision operator Q, which is defined for suitable

functions F and G by

Q(G,F )(t, x, v) =

∫
R3

∫
S2
B(v − v∗, σ)(G

′
∗F

′ −G∗F )dσdv∗.

Next we introduce the Navier-Stokes equation, named after the French engineer and physicist

Claude-Louis Navier, and the Irish physicist and mathematician George Stokes, are a set of equa-

tions. Partial differential equations that describe the motion of fluids such as liquids and air. Its

form is：
∂t̃u+ u · ∇x̃u+∇x̃p = ν△x̃u, (2)

where u(t̃, x̃) is the velocity of the fluid at spatial x̃ at time t̃; p is the pressure; is the external

force per unit volume of the fluid ν constant is the dynamic viscosity.

Next we will briefly describe the connection of these two equations and our method.
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2 Mathematical Explanation

Now we introduce the connection between the Navier–Stokes equations and the Boltzmann

equation, firstly, we can naturally find that there is a difference in spatial scale between macro and

micro:

x = x̃× 1

ε
.

Here ε > 0 is a constant, representing a multiple on the spatial scale.

We found that if we only scaled the size of space, the velocity on the microscopic equations would

become insignificant after scaling down, so we also need to make a similar change in the scale of

time, so that we can see the flow of water on a macro scale:

t = t̃× 1

ε2
.

Then we must think of a question next, if we make a scale change to the microscopic Boltzmann

equation, can it become a macroscopic N-S equation? The answer is yes, under certain conditions

we can do it, Next we start with the scaled microscopic equations and assume：

ρε =

∫
R3

v

F εdv,

uε =

∫
R3

v

vF εdv,

θε =

∫
R3

v

(
|v|2 − 3

3
)F εdv.

Where F ε(t, x, v) is the solution of scaled Boltzmann equation:

ε∂tF
ε + v · ∇xF

ε = 1
εQ(F ε, F ε), F ε|t=0 = F0. (3)

After some calculations, we have the following lemma：

Lemma 1 For the Cauchy problem (3), There exist a δ0 > 0, let {F ε} be a family of solutions

to (3), if the initial data ||F0||H2(R6
x,v)

≤ δ0, then there exists an F ∈ L∞([0,∞),HN (R3
x, L

2(R3
v)))

satisfies

F ε → F = ρ+ u · v + θ(
|v|2

2
− 3

2
) (ε → 0), (4)

where ρ, θ ∈ L∞([0,∞),HN (R3
x)) and the convergence is weak-⋆ for t, strongly in HN−η

(
R3

x

)
for

any η > 0, and weakly in L2(R3
v), u is the solution of

∂tu+ u · ∇xu+∇xp = ν△xu, (5)

with initial data:

u|t=0 = Pu0(x), (6)

where P is the Leray projection.

3 Idea and Methods

Since the main idea of hydrodynamic limits is the scaling of time and space, then as long as

we perform the same transformation, we can theoretically change from the image of microscopic

equations to the image of macroscopic equations.

First, let’s consider a small area in the microscopic fields.
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図 1: LBM velocity directions

Step 1: We use the Lattice Boltzmann Method(LBM):

We consider the 16× 16 Lattice, and each small Lattice is as shown above, each lattice stores the

particle distribution function f, which is used to describe the distribution of fluid particles. It is

reasonable to think that adjacent regions are similar, so we can think of boundaries as reflective.

f(x, t) is a function of spatial position x and time t. It should be noted that the particle distribution

function has one in each direction, so an LBM lattice has 9 particle distribution function, written

as fi(x, t), And the direction we record as ci， i = 0, 1, · · · , 8. In general, we combine the two

steps of flow and collision to achieve, that is:

fi(x+ ci△t, t+△t) = fi(x, t)−
△t

τf
(fi(x, t)− feq

i (x, t)). (7)

Where feq
i (x, t) is the distribution function in equilibrium state of flow field as follows:

feq
i (x, t) = ωiρ(x, t)(1 +

u(x, t) · ci
c2s

+
(u(x, t) · ci)

2c4s
− u(x, t) · u(x, t)

2c2s
).

ωi, cs are weights and physical constants and ρ, u are the linear combination of fi for i = 0, 1, · · · , 8.
With this formula, we can simulate the equation of motion on the microscopic fields.

Step 2: We are going to reproduce the hydrodynamic limits from microscopic to macroscopic.

Although the LBM can indeed simulate the flow of water on the macroscopic level to some extent,

but we know that this simple model is actually difficult to reproduce the macroscopic water flow ’
s complexity, so we use some steps:

We repeat step 1 for 4 times and write down the data obtained from the step 1 as f j
i (x, t),

j = 1, · · · , 4. Then put these 2× 2 lattice together into one big lattice:

fnew
i (x, t) =

1

4

∑
j

f j
i (x, t).

Doubling the time, this formula will also multiply, but no matter what, this is always a linear

term, and if it still satisfies a similar equation as (7)，then it means that τf will change，and τf

is closely related to the properties of the fluid.

Step 3: We want to know if we do this step 2 so that the 25 by 25 particle model produces the

properties of a fluid. Finally we use the knowledge of deep learning to construct a convolution

neural network for recognizing images and finding patterns in images:

• Repeat step2 multiple times to get multiple graphs of different scales;

• We download a turbulent database and make a 25 × 25 map;

• Use the trained neural network to test our images.
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4 Main Result

Theorem 2 The result given by our neural network is after going through step2 4 times, 2% pic-

tures can be identified as having certain turbulent properties. After more iterations, the proportion

soon increases to 11%, but after continuing to iterate many times, the percent of the pictures which

can be identified as having certain turbulent properties downs to 4

This theorem shows that our thinking is correct. Expanding the time scale and space scale will

show the characteristics of the fluid, but the calculation method still needs to be improved, for the

noise cannot be suppressed.
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