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Abstract

In this paper, we investigate the rotationally invariant estimators of the population matrix
C knowing the sample covariance matrix E. We give a possible generalization of rotationally
invariant estimator from an operator algebraic point of view, and deduce the same formulae
as in random matrix theory.

作用素環における回転不変推定量の一般化

朱浩哲 (東京大学数理科学研究科)

概要

本研究では、作用素環の観点から回転不変推定量の一般化の可能性を提案し、ランダム行列理
論における同じ式を導いた。

1 Introduction

In many, very different fields such as quantitative finance, an important problem is to extract

a true signal from noisy observations in extremely large data sets. More precisely, consider an

empirical dataset {xi,t}1≤i≤N,1≤t≤T comprising the data of T observations of N quantities with
1
T

∑T
t=1 xi,t = 0, and consider the sample covariance matrix E = (Eij)1≤i,j≤N defined by

Eij =
1

T

T∑
t=1

xi,txj,t. (1)

It is apparent that the sample matrix E is a noisy version of the “true” covariance matrix C that

we aim to estimate (which might not even exist). For example, when building a portfolio, one may

regard xi,t as daily returns of the i-th stock at time t, and estimates the “true” covariance matrix

C based on E to predict future returns and minimum the risk.

Intuitively, when N is fixed and T is sufficiently large, i.e., q = N
T → 0, the matrix E will be

very close to C. However, in the general scenario where both N and T tend to infinity with a

fixed ratio q = N
T , even if C exists, E can differ significantly from C. The well-known Kolmogorov

limit implies that classical statistical tools are inadequate when dealing with this setting, and

we need to study these covariance matrices of large size from another point of view, that is, the

random matrix theory introduced by John Wishart. Roughly speaking, random matrix theory

attempts to give universal properties of large random matrices through the spectral measure (or

the density of eigenvalues), regardless of the specific form of the matrix. Some financial examples

and applications of random matrix theory can be found in [2].

To construct estimators of C without prior knowledge of its properties, additional assumptions

about C are necessary. A natural assumption is that the estimator Ξ(E) is rotationally invariant,

that is,

Ξ(OEOT) = OΞ(E)OT. (2)

for any rotation matrixO. As mentioned before, E is a noisy version ofC. There are two important

cases:

• E = C+X (additive noise case),
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• E = C1/2XC1/2 (multiplicative noise case),

where X is the noise matrix and C and X are freely independent. In [3], the formulae of the

optimal rotationally invariant estimator (RIE) in the above two cases (see Section 3 below) are

derived by investigating the “overlaps” between random matrices E and C.

In this paper, we study the rotationally invariant estimator Ξ(E) of C within the framework of

tracial von Neumann algebras, and deduce the same results as in [3]. In Section 2, we will first

recall some important definitions and results in free probabilty theory, and a breif introduction of

RIE of random matrices is given in Section 3. We will be discussing how to generalize rotationally

invariant estimators from an operator algebraic point of view in Section 4.

2 Noncommutative probabilty space

In fact, the algebra of random matrices can be viewed as a special case of noncommutative

probability space.

Definition 2.1 A noncommutative probability space (A,φ) is a unital algebra A over C together

with a unital linear functional φ : A → C.

The following table shows the comparison between classical/free probability theory and random

matrices.

classical probability free probability random matrices

probability space noncommutative probability
(AN , φN )

(X,Ω,P) space (A,φ)

random variable noncommutative random N ×N matrix of

f : Ω → C variable a ∈ A random variables

expecatation
φ(a)

φN (a)

E[f ] =
∫
Ω
f dP = tr⊗ E(a)

independence free independence

Gaussian
semi-circle GUE

distribution

Here (AN , φN ) = (MN (C) ⊗ L−∞(Ω), tr ⊗ E) is the algebra of N × N random matrices, and

L−∞(Ω) = ∩1≤p<∞Lp(Ω).

For self-adjoint a ∈ A, we have the following series.

• Ga(z) = (z − a)−1 and Stieltjes transform ga(z) = φ (Ga (z)) =
∑∞

k=0
1

zk+1φ(a
k);

• Ta(z) = a(z − a)−1 and T-transform ta(z) = φ
(
a(z − a)−1

)
;

• R-transform Ra(z) = za(z)− 1
z ;

• S-transform Sa(z) =
z+1

zζa(z)
(when φ(a) ̸= 0).

Here za(z) and ζa(z) are inverse functions of ga(z) and ta(z) (as formal series) respectively.

Voiculescu’s free probability theory gives a remarkable result of R- and S-transforms, stating that

if a, b ∈ A are positive and freely independent, then we have

Ra+b(z) = Ra(z) +Rb(z), Sab(z) = Sa(z)Sb(z). (3)
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Remark 2.1 Equivalently, the R-transform can be defined in terms of free cumulants as

Ra(z) =

∞∑
n=0

κa
n+1z

n, (4)

where κa
k is the k-th free cumulant of a. Actually, when a and b are self-adjoint and free, we have

κa
k + κb

k = κa+b
k , from which the equality Ra+b = Ra + Rb in (3) is deduced. Moreover, by using

(4) and the definition of free cumulants, it can be shown that

ga+b(z)Ra (ga+b(z)) = φ
(
a (z − (a+ b))

−1
)
. (5)

The proof is cumbersome but is similar in spirit to that of the equivalence of the above two

definitions of R-transform (for example, Theorem 5.2 [5]), as the case b = 0 is just the same as the

fisrt definition of R-transform Ra(z) = za(z)− 1
z .

We will not focus on the analytic properties of these series. More details of noncommutative

probability spaces and R-/S-transforms can be found in [4] and [5].

3 Random matrices case: a brief review

In this section, we briefly review the results of RIE in [3] in terms of random matrices.

Let E and C be two self-adjoint N × N random matrices with N being sufficiently large. Let

c1 ≥ c2 ≥ · · · ≥ cN (resp. λ1 ≥ λ2 ≥ · · · ≥ λN ) be the eigenvalues of C (resp. E), and denote by

v1,v2, . . . ,vN (resp. u1,u2, . . . ,uN ) the corresponding normalized eigenvectors. The definition

(2) implies that rotationally invariant estimator Ξ(E) of C has the same eigenvectors as those of

E, namely

Ξ(E) =

N∑
i=1

ξiuiu
T
i , (6)

where ξi is a function of empirical eigenvalues {λi}. We are interested in the optimal choice of ξi,

i.e., the RIE Ξ̂(E) that minimizes the following Euclidean norm (least-square error):

Ξ̂(E) = argmin
Ξ(E)

∥Ξ(E)−C∥L2 = argmin
Ξ(E)

Tr(Ξ(E)−C)2. (7)

Apparently, the solution is Ξ̂(E) =
∑N

i=1 ξ̂iuiu
T
i , with

ξ̂i = uiCuT
i =

N∑
j=1

cj
(
uT
i vj

)2
. (8)

The so-called self-averaging property of ξ̂i (for specific discussion, see [3] II-B or [4] chapter 2.1)

yeilds

ξ̂i ≈
N∑
j=1

cjE
[(
uT
i vj

)2]
, (9)

so it suffies to calculate the overlap
(
uT
i vj

)2
, or equivalently, to calculate

O(λi, cj)
def
= NE

[(
uT
i vj

)2]
. (10)

If we denote by ρE the eigenvalue desity of E, then it is shown that ([3] II.8 and IV) in the large

N limit,

ImvT
j GE(λ− iη)vj ≈ πρE(λ)O(λ, cj), for 1 ≫ η ≫ N−1, (11)
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and then

ξ̂i =
N∑
j=1

cj
(
uT
i vj

)2
=

1

NπρE(λi)
lim

η→0+
ImTr(CGE (λi − iη)) . (12)

In the additive noise cases, the replica method indicates that E [GE(z)] = GC (z −RX (gE(z))).

Finally, we deduce, as IV.1 and IV.2 in [3],

ξ̂i = λi −
limη→0+ Im (RX (gE (λi − iη)) gE (λi − iη))

πρE(λi)
. (13)

Similarly, in the multiplicative noise cases (IV.6 and IV.7),

ξ̂i =
limη→0+ Im (SX (tE (λi − iη)) tE (λi − iη))

πρE(λi)
. (14)

4 Optimal RIE in operator algebraic setting

Now we would like to study what (6) and (7) mean in a tracial von Neumann algebra. Actually,

the definition (2) of RIE and (6) argue that if the rotationally invariant estimator Ξ(E) of C can

be defined, it should be a certain functional calculus of E. Together with (7), it is natural to ask

the following question.

Question 4.1 Let (A,φ) be a tracial von Neumann algebra with a normal faithful tracial state φ,

and let C,E ∈ A be two positive elements. Find

Ξ̂(E) = argmin
f (E)

∥f (E)−C∥L2

over all possible bounded Borel functional calculus f (E) of E.

The positivity of E and C is due to the fact that covariance matrices are positive semi-definite.

The answer to the above question is quite clear thanks to the existence of contional expectation in

a tracial von Neumann algebra.

Theorem 1 Let (A,φ) be a von Neumann algebra with a normal faithful tracial state φ, and

let B ⊂ A be a von Neumann subalgebra. There exists a unique trace preserving linear map

EB : A → B such that

(1) EB(A+) ⊂ B+;

(2) EB(b) = b for b ∈ B;

(3) EB(b1ab2) = b1EB(a)b2 for b1, b2 ∈ B and a ∈ A.

The proof of this result is not provided here, but we refer to Theorem 9.1.2 in [1] for a complete

proof. Indeed, it is shown that the conditional expectationEB can be defined as the restriction

of the projection eB : L2(A,φ) → L2(B,φ|B) to A ⊂ L2(A,φ). Consequently, for any element

x ∈ A, the EB(x) corresponds to the unique element in B that minimizes the L2-distance between

x and B. It suffices to set Ξ̂(E) = EB(C), where B is the von Neumann subalgebra generated

by E. However, we still need to determine the function f or, equivalently, to find the moments

of EB(C) = f(E). While the approach is based on Chapter 19 of [4], we are considering a more

general setting within operator algebraic framework.

Put F (z) = φ
(
C(z −E)−1

)
. The trace preserving property of EB yields

F (z) = φ
(
C(z −E)−1

)
= φ

(
f(E)(z −E)−1

)
We denote by ρE the spectral measure of E. Then we can recover f by using the Stieltjes inversion

formula.

πρE(λ)f (λ) = lim
η→0+

Imφ
(
C(λ− iη −E)−1

)
. (15)
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In the additive noise case E = C+X, according to (5), we have

φ
(
C(z −E)−1

)
= gE(z)RC (gE(z))

= gE(z)RE (gE(z))− gE(z)RX (gE(z))

= −1 + (z −RX (gE(z))) gE(z).

Note that limη→0+ Im gE(λ− iη) = πρE(λ). We immediately get

πρE(λ)f (λ) = πλρE(λ)− lim
η→0+

Im (RX (gE (λ− iη)) gE (λ− iη)) .

The multiplicative noise case can be deduced similarly:

πρE(λ)f (λ) = lim
η→0+

Im (SX (tE (λ− iη)) tE (λ− iη)) .

Then we have the following theorem.

Theorem 2 Let ρE be the compactly supported measure on R given by the eigenvalue distribution

of E and let f be that of Ξ̂(E).

(1) In the additive noise case E = C+X, we have

f (λ) = λ− limη→0+ Im (RX (gE (λ− iη)) gE (λ− iη))

πρE(λ)
. (16)

(2) In the multiplicative noise case E = C1/2XC1/2, we have

f (λ) =
limη→0+ Im (SX (tE (λ− iη)) tE (λ− iη))

πρE(λ)
. (17)

Remark 4.1 In the general setting of operator algebras, unlike random matrices, the equalities

(8)-(12) may not make sense since not all points in the spectrum of C (or E) are eigenvalues.

Whether the calculation of E [GE(z)] = GC (z −RX (gE(z))) in the additive noise case based on

the replica method makes sense or not in a general tracial von Neumann algebra is not that clear.

So far, we have investigated what (optimal) rotationally invariant estimators should be in a

tracial von Neumann algebra, and deduced the same fomulae as in [3]. Besides, some properties

of optimal rotationally invariant estimators can be easily understood when regarding Ξ̂(E) as the

conditional expectation of C. For example, the following inequality

Tr Ξ̂(E)2 ≤ Tr C2 (18)

is an immediate result of EB(x)
∗EB(x) ≤ EB(x

∗x).
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