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Abstract

In this article, we consider a modified model for a traffic network and an optimal control
problem of determining the optimal parameters at each signal. First we establish a nonlinear
model for an N×N traffic network. Then Split Cycle Offset Optimisation Technique (SCOOT)
as well as an objective function (average waiting time) is introduced. Finally, we give the
numerical results of the optimal parameters.

1 Introduction

As we know, there are heavy traffic jams in the center parts of the cities all over the world. It
seems to be an important issue to give a reasonable way to control the traffic signals, for example,
determining the signal parameters. A macroscopic model (a system of ODEs) introduced by J.
Imura snd M. Kamal [1] is used to formulate the optimal control of the traffic signals based on the
“on-off” strategy. Later on, K. Aihara, K. Ito, J. Nakagawa and T. Takeuchi [2] apply this linear
ODE model and use a novel binary optimization method to develop a real-time optimal control
law.
In this article, rather than give a real-time optimal control, we are interested in suggesting a
reasonable and efficient choice of the three important parameters of the traffic signals, i.e., Split,
Offset and Cycle under the knowledge of the average turning rates at each signal. Compared
with [2], our settings are more practical to the real traffic problems and a sophisticated model is
established. However, heavy calculations are required which prevent us from reaching a real-time
optimal control.
The article is organized as follows: In Section 2, notations and a traffic flow model is introduced.
In Section 3, we discuss the three signal parameters and the objective function. In Section 4,
provided that the average turning rates at each signal are known, we apply a numerical test and
give reasonable choice of signal parameters which is one local solution to our optimal control
problem.

2 A modified macroscopic traffic flow model

We consider the square grids (i, j), i, j = 1, ..., N for the traffic network (Fig.1). Fix a minimum
time interval ∆t > 0 (s). During each time interval [k∆t, (k + 1)∆t) (s), k = 0, ...,K and at each
junction (i, j), i, j = 1, ..., N we assign a traffic signal which is described by uk

i,j , v
k
i,j taking value

0 or 1. Here uk
i,j indicates the traffic flows in the east-west direction while vki,j is related to the

north-south direction. As a practical condition, we have

uk
i,jv

k
i,j = 0, i, j = 1, ..., N, k = 0, ...,K − 1.

In particular, uk
i,j = vki,j = 0 means that the traffic flows in both directions are not allowed at the

junction (i, j) during the time interval [k∆t, (k+1)∆t) (s). Let Ek
i,j ,W

k
i,j , N

k
i,j and Sk

i,j denote the
traffic volumes near the junction (i, j) in the direction of east, west, north and south respectively
(see Fig.2) at time k∆t (s). In addition, we assume that the turning rates in each direction at the
junction (i, j) are given by bXi,j ≥ 0 (left turn), cXi,j ≥ 0 (right turn) and aXi,j := 1−bXi,j−cXi,j ≥ 0 (go
straight) where X ∈ {E,W,N, S} stands for the direction (Fig.3). Furthermore, we assume the
time delay between the adjacent junctions is n∆t seconds, n ∈ N. That is, it takes n∆t seconds
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Figure 1: Square grids for the traffic network. Figure 2: Traffic volumes.

to go from one junction to the next one. Equipped with the above notations, we can easily obtain
the following equation (see also Fig.4):

Ek+1
i,j = Ek

i,j − uk
i,jλ(E

k
i,j)E

k
i,j , i = 1, ..., N, j = 2, ..., N, k = 0, ..., n− 1

Ek+1
i,j = Ek

i,j − uk
i,jλ(E

k
i,j)E

k
i,j + uk−n

i,j−1a
E
i,j−1λ(E

k−n
i,j−1)E

k−n
i,j−1 + vk−n

i,j−1b
S
i,j−1λ(S

k−n
i,j−1)S

k−n
i,j−1

+ vk−n
i,j−1c

N
i,j−1λ(N

k−n
i,j−1)N

k−n
i,j−1, i = 1, ..., N, j = 2, ..., N, k = n, ...,K − 1

where the passing ratio function λ is defined as

λ(Y ) :=

{
1 Y ≤ Y0,

Y0/Y Y > Y0

with a positive constant Y0. Similarly, we have equations in the other three directions:

W k+1
i,j = W k

i,j − uk
i,jλ(W

k
i,j)W

k
i,j , i = 1, ..., N, j = 1, ..., N − 1, k = 0, ..., n− 1

W k+1
i,j = W k

i,j − uk
i,jλ(W

k
i,j)W

k
i,j + uk−n

i,j+1a
W
i,j+1λ(W

k−n
i,j+1)W

k−n
i,j+1 + vk−n

i,j+1b
N
i,j+1λ(N

k−n
i,j+1)N

k−n
i,j+1

+ vk−n
i,j−1c

S
i,j−1λ(S

k−n
i,j−1)S

k−n
i,j−1, i = 1, ..., N, j = 1, ..., N − 1, k = n, ...,K − 1,

Nk+1
i,j = Nk

i,j − vki,jλ(N
k
i,j)N

k
i,j , i = 2, ..., N, j = 1, ..., N, k = 0, ..., n− 1

Nk+1
i,j = Nk

i,j − vki,jλ(N
k
i,j)N

k
i,j + vk−n

i−1,ja
N
i−1,jλ(N

k−n
i−1,j)N

k−n
i−1,j + uk−n

i−1,jb
E
i−1,jλ(E

k−n
i−1,j)E

k−n
i−1,j

+ uk−n
i−1,jc

W
i−1,jλ(W

k−n
i−1,j)W

k−n
i−1,j , i = 2, ..., N, j = 1, ..., N, k = n, ...,K − 1

and

Sk+1
i,j = Sk

i,j − vki,jλ(S
k
i,j)S

k
i,j , i = 1, ..., N − 1, j = 1, ..., N, k = 0, ..., n− 1

Sk+1
i,j = Sk

i,j − vki,jλ(S
k
i,j)S

k
i,j + vk−n

i+1,ja
S
i+1,jλ(S

k−n
i+1,j)S

k−n
i+1,j + uk−n

i+1,jb
W
i+1,jλ(W

k−n
i+1,j)W

k−n
i+1,j

+ uk−n
i+1,jc

E
i+1,jλ(E

k−n
i+1,j)E

k−n
i+1,j , i = 1, ..., N − 1, j = 1, ..., N, k = n, ...,K − 1.

Considering the boundary input, we have

Ek+1
i,j = Ek

i,j − uk
i,jλ(E

k
i,j)E

k
i,j + F k

i,0, i = 1, ..., N, j = 1, k = 0, ...,K − 1

W k+1
i,j = W k

i,j − uk
i,jλ(W

k
i,j)W

k
i,j + F k

i,N+1, i = 1, ..., N, j = N, k = 0, ...,K − 1

Nk+1
i,j = Nk

i,j − vki,jλ(N
k
i,j)N

k
i,j + F k

0,j , i = 1, j = 1, ..., N, k = 0, ...,K − 1

Sk+1
i,j = Sk

i,j − vki,jλ(S
k
i,j)S

k
i,j + F k

N+1,j , i = N, j = 1, ..., N, k = 0, ...,K − 1.

Here F k
i,j (i = 0, N+1, j = 0, N+1, k = 0, ...,K−1) represents the traffic inflows at the boundary

junctions.
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Figure 3: Turning rates. Figure 4: Image of the model.

Denote the 4N2 column vector for the traffic volumes (Ek
i,j ,W

k
i,j , N

k
i,j , S

k
i,j) at time k∆t (s) by Dk,

Dk := (Ek
1,1, E

k
2,1, ..., E

k
N,N ,W k

1,1, ..., N
k
1,1, ..., S

k
N,N )T (k = 0, ...,K). Then we can rewrite the above

equations in a matrix form:

Dk+1 = A(Dk;Uk)Dk +B(Dk−n;Uk−n)Dk−n + F k, k = 0, ...,K − 1 (1)

where Uk is the 4N2 signal control vector defined by

Uk := (uk
1,1, u

k
2,1, ..., u

k
N,N , uk

1,1, ..., u
k
N,N , vk1,1, ..., v

k
N,N , vk1,1, ..., v

k
N,N ), k = 0, ...,K − 1 (2)

and Dk := 0 (zero vector) if k < 0, F k is the boundary inflows.
Remark. If we take Y0 = ∞ and n = 0, then (1) leads to a simple linear model which is the
discretization of the macroscopic model introduced in [1] and [2].

3 SCOOT and objective function

Split Cycle Offset Optimisation Technique (SCOOT) is an adaptive traffic control system for the
coordination and control of traffic signals across an urban road network. SCOOT is originally
developed by the Transport Research Laboratory for the Department of Transport in 1980. It
is used extensively in many countries all over the world. In this article, we adapt the system of
SCOOT (Fig.5) and consider the problem of determining the three signal parameters.

Figure 5: System of SCOOT.

Next we employ matrices Cy, Sp1, Sp2, Of ∈ NN×N to describe the signals at all the junctions
which means at junction (i, j), one cycle of the signal takes (Cy)i,j∆t (s), the green light in the
east-west direction (resp.north-south direction) lasts (Sp1)i,j∆t (resp.(Sp2)i,j∆t) (s) and one cycle
begins at (Of)i,j∆t (s). Moreover, we define all red by AR := (Cy − Sp1 − Sp2)/2. In terms of
these parameters, we can uniquely determine the signal controls uk

i,j , v
k
i,j as follows:

uk
i,j =

{
1, 0 ≤

[(
k − (Of)i,j

)
mod (Cy)i,j

]
≤ (Sp1)i,j ,

0, otherwise,
(3)

vki,j =

{
1, 0 ≤

[(
k − (Of)i,j − (Sp1)i,j − (AR)i,j

)
mod (Cy)i,j

]
≤ (Sp2)i,j ,

0, otherwise.
(4)

Now we introduce an objective function that represents the average waiting time. That is

WT ({Uk}Kk=0) :=
∆t

G

K−1∑
k=0

(1− Uk)Dk. (5)
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Here Dk, Uk are the same notations as (1)-(2) and constant G denotes the total traffic volume
going through this network in K∆t seconds.
Let us now assume all red AR is given, which implies Sp2 is given by

Sp2 = Cy − Sp1− 2AR.

Then in terms of (5), we express WT as a function of Cy, Sp1 and Of :

WT (Cy, Sp1, Of) =
∆t

G

K−1∑
k=0

(
1− Uk(Cy, Sp1, Of)

)
Dk(Cy, Sp1, Of). (6)

If there is no confusion, we use the same notation WT as well as Uk and Dk here and henceforth.
Remark. The choice of objective function is different from that in [2]. Actually, it is clear that
here we take into account the traffic volume waiting in the network due to the red signals. Thus,
WT is the average waiting time for a vehicle going through the traffic network in timeK∆t seconds.

4 Numerical test

In this section, we carry out a numerical test for the optimization problem (OP):

(Cy⋆, Sp1⋆, Of⋆) =

argmin
{
WT (Cy, Sp1, Of)| Cymin ≤ Cy ≤ Cymax, 0 ≤ Sp1 ≤ Cy − 2AR, 0 ≤ Of ≤ Cy

}
with the domain of function WT being in NN×N .
First we fix some parameters: ∆t = 2, K = 1800, N = 3, AR = 1, Cymin = 10, Cymax = 60. In
addition, according to a sampling data (Fig.6), the turning rates aXi,j , b

X
i,j , c

X
i,j , i, j = 1, ..., N,X ∈

{E,W,N, S}, boundary inflows F k, k = 0, ...,K − 1 as well as the total traffic volume G can be
calculated. Furthermore we consider a simple case that the time delay number is a constant n = 10
and constant Y0 = 5/6. Finally we apply the idea of Alternating Direction Method of Multipliers
(ADMM) and have numerical calculations. The results are given in Fig.7 and Fig.8-9.

Figure 6: Sampling data of OD matrix. Figure 7: WT −Cy in the time interval [10, 60].

Fig.7 shows the relation between Cy and WT in [10, 60] ∆t(s) with intervals of 10∆t seconds. This
indicates that the optimal cycle is C⋆

y∆t ≈ 60 seconds under the above settings.

Figure 8: An optimal matrix of Split (sec). Figure 9: An optimal matrix of Offset (sec).

4



数理科学実践研究レター 2018-4

We also obtain one pair of optimal choice of the Split and Offset in Fig.8 and Fig.9. Due to the
high nonlinearity of our model, this pair of solutions is not necessarily a global optimizer to our
problem (OP). In fact, it is almost impossible to derive a global optimizer numerically since the
dimension of the control is too large. However, comparing with a simple half-half control, i.e.
each component of Sp1 is 28/∆t = 14 and Of is 0, we successfully reduce the object WT from
about 42.342 seconds to only 27.984 seconds. This means our control is quite reasonable and works
efficiently.
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