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1 Introduction

This paper aims to provide a description of some lattice defects in terms of monodromy in the sense

of W. Thurston [7, 8]. Although we mainly discuss lattice defects arising from edge dislocations,

we hope that our method can be applied also to more general lattice defects in the future. We

note that Kupferman–Maor [5] and Hamada–Matsutani–Nakagawa–Saeki–Uesaka [4] have previ-

ously described edge dislocations and screw dislocations respectively in terms of monodromy from

different points of view. Kupferman–Maor discussed them using tools of differential geometry,

such as connections and curvatures, and considered a sequence of manifolds with dislocation-type

singularities. In this sense their description is given from a continuum perspective. We also note

that Kupferman–Maor considered some specific coordinate change to describe monodromy. On

the other hand, Hamada–Matsutani–Nakagawa–Saeki–Uesaka discussed screw dislocations using

fiber bundles, and the monodromy is described using a bundle whose fiber is some discrete group,

such as Z. In this sense, their description is given from a discrete perspective. Our description

inherits some features of Kupferman–Maor and Hamada–Matsutani–Nakagawa–Saeki–Uesaka: we

describe lattice defects from a discrete perspective, and use specific coordinate changes to encode

symmetries of lattices.

The basic idea of our description is as follows. A lattice defect is a configuration of points whose

most parts look like usual lattice, such as Z3, but the lattice structure is broken somewhere. It can

be hoped for a natural description of a given lattice defect to encode some symmetry emerging from

the original symmetry of the usual lattice. In a suitable situation, this can be rephrased by saying

that there are local charts of the graph corresponding to the lattice defects, and the coordinate

change of the charts encodes the symmetry arising from the original lattice. This system of charts

and coordinate changes can be understood using Thurston’s monodromy.
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2 Thurston’s monodromy

In this section we summarize Thurston’s (G,X)-manifold and monodromy given in [7,8] for reader’s

convenience. (We refer the reader also to Goldman [2].) Let X be a topological space and G

be a group. Assume that G acts continuously on X. Namely, assume that we have a group

homomorphism ρ : G → Homeo(X), where Homeo(X) is the group of homeomorphisms on X. In
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fact, for our main purpose, we shall only need to consider the case that X is a Cω-manifold, and

ρ is the inclusion ρ : G ↪→ Diffω(X), where Diffω(X) is the group of Cω-diffeomorphisms on X.

Definition 2.1 ((G,X)-manifold [7, 8]). Let M be a topological space

1. {(Uα, ϕα)}α is a (G,X)-atlas on M if

• {Uα}α is an open covering of M ,

• each ϕα : Uα → X is a homeomorphism onto its image, and

• ϕα ◦ ϕ−1
β |ϕβ(Uα∩Uβ) : ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ) is the restriction of an element of

ρ(G).

2. M equipped with a (G,X)-atlas is called a (G,X)-manifold. Each (Uα, ϕα) is called a (G,X)-

chart.

Example 2.2. Let us consider the four pairs (X,G) = (Rn,Homeo(Rn)), (Rn,Diff(Rn)), (Cn,Hol(Cn)),

and (Hn, Isom(Hn)). Here Hn is the hyperbolic space, Diff(Rn), Hol(Cn), and Isom(Hn) are the

groups of diffeomorphisms, biholomorphic maps, and isometries respectively. Then, corresponding

to these four pairs, the notions of (G,X)-manifolds are equivalent to the notion of topological

manifolds, smooth manifolds, complex manifolds, and hyperbolic manifolds respectively.

Henceforth assume that X is a Cω-manifold, and ρ : G ↪→ Diffω(X) is the inclusion of the group

of Cω-diffeomorphisms. Then, for each (G,X)-manifold M , we can define the following group

homomorphism which is called the monodromoy

MonM : π1(M,p0) → G,

where we fix a point p0 ∈ M and a (G,X)-chart (U0, ϕ0) near p0. The construction of the

monodromy map consists of the following four steps:

1. Take a loop γ : [0, 1] → M with base point p0.

2. Take (G,X)-charts (U1, ϕ1), . . . , (Un, ϕn) which cover the image of γ. (Note that the neigh-

borhood of the base point is already covered by U0.) Take the covers so that Ui ∩ Ui+1 is

non-empty and connected for each i ∈ {0, . . . , n− 1}.

3. There exists a unique gi ∈ G such that gi gives the coordinate change of (Ui, ϕi) and

(Ui+1, ϕi+1). (Here, for the uniqueness, we need to assume that X is Cω.)

4. One can show that MonM ([γ]) := g0 · · · gn−1 ∈ G depends only on the homotopy class of γ

(for the fixed chart (U0, ϕ0)).

If we take another base point p′0 and a chart (U ′
0, ϕ

′
0) near p

′
0, the monodoromy map is changed by

conjugation. In particular, if G is abelian, we have a homomorphism

MonM : π1(M) → G

which is independent of the choice of base points and charts near that.

3 Monodromy of dislocations

In this section we describe some dislocations in terms of Thurston’s monodromy described in

Section 2. Assume that we are given a graph G = (V, E) realized in R3. We denote by G also

the realization of the graph. Here V and E mean the sets of vertices and edges respectively. This

situation can be rephrased as follows. Given a picture of a lattice defect of the type of dislocation,

assume that
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• we have the notion of “lattice point” (corresponding to vertices), and

• we also have the notion of “nearest lattice points” (corresponding to edges).

Define an open submanifold M = M(G) of R3 as the “fat graph”:

M = M(G) :=
∪

E∈E, p∈E

Bp(ϵp), (1)

where we regard an edge E as a (1-dimensional) subspace of R3, ϵp > 0 is a sufficiently small

number smoothly depending on p, and Bp(ϵp) is the open ball centered at p with radius ϵp. Here

ϵp is taken so that the homotpy type ofM coincides with that of G via a natural deformation retract

which is obtained by multiplying t ∈ [0, 1] to ϵp for any Bp(ϵp). If G is compact, of course, we can

take ϵp so that it is common to any p. In some good situations, we can give a (Z3,R3)-manifold

structure on M .

We first discuss 2-dimensional edge dislocation. A picture of an edge dislocation might be helpful

for readers. See Guy [3] p. 153, for example. (It will be partially given in this paper.) We first

consider a 2-dimensional model of edge dislocation. We assume that G is given as the 2-dimensional

edge dislocation described as the left figure of Figure 1. More precisely, it is defined as follows. Let

us regard Z2 as a graph in a usual way, and we write Z2 also for the realization of it. Let L ⊂ Z2 be

the subgraph generated by {0}×{ n ≤ 0 | n ∈ Z } ⊂ Z2. Let G′ be the graph obtained by removing

L from G and connecting the vertex written as {(−1, n)} with {(1, n)} by an edge of length 2 for

each n. Let denote by V(G′) the set of vertices of the graph G′. Let f : V(G′) → R2 be the

injective map defined as follows. We write Z>0 := { n > 0 | n ∈ Z } and Z≥0 := { n ≥ 0 | n ∈ Z },
and similarly define Z<0 and Z≤0.

• The restriction of f on Z× Z>0 is the identity map.

• The restriction of f on Z<0 × Z≤0 is given as f(m,n) := (m+ 1/2, n).

• The restriction of f on Z>0 × Z≤0 is given as f(m,n) := (m− 1/2, n).

Then we can write down the definition of G. Let V = V(G) be the image V(G′) by f . We define

the edges of G as follows: for given two vertices V1, V2 ∈ V, there exists an edge between V1 and

V2 if and only if the preimage of these vertices by f is connected by an edge. From this definition,

we have a bijective map E(G′), the set of edges of G′, to E(G). We also write f : E(G′) → E(G) for
this map.

We now consider the fat graph M of G. The manifold M is defined as (1), but we take ϵp to be

common to any p, written as ϵ, and we use the two dimensional disk Bp(ϵ) instead of the three

dimensional ball. We note that one can obtain a bijective between the realizations f : G′ → G
putting together f : V(G′) → V(G) and f : E(G′) → E(G). We here take f so that the restriction

of f to the realization of E ∈ E(G′) is an isometry if E is not the edge connecting (−1, 0) and

(1, 0), and that is given by the natural affine map [−1, 1]×{0} → [−1/2, 1/2]×{0} if E is the edge

connecting these two vertices. The map f : E(G′) → E(G) naturally induces a bijection between

the fat graphs f : M(G′) → M(G).
We now give a (Z2,R2)-atlas on M , described in Figure 1. We first define an open subset U+

of R2. For V, V ′ ∈ V(G′), let EV,V ′ be the (unique) edge connecting V with V ′, and define

ẼV,V ′ := f(EV,V ′). We define a subset Ẽ+
(1,0),(−1,0) ⊂ E(1,0),(−1,0) as

Ẽ+
(1,0),(−1,0) :=

{
(x, y) ∈ E(1,0),(−1,0)

∣∣ x ≥ 0
}
.

Set

U+ :=
∪

p∈Ẽ(0,1),(1,1)∪Ẽ(1,1),(1,0)∪Ẽ+
(1,0),(−1,0)

Bp(ϵp).
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図 1: (Z2,R2)-charts on the edge dislocation
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図 2: The coordinate changes between ϕ+ and ϕ−

The open subset U+ of R2 is contained in M = M(G), and therefore we can get the inverse map

f−1|U+ : U+ → f(U+) ⊂ R2. We define ϕ+ : U+ → R2 as this map f−1|U+ . We can define an

open subset U− of R2 by changing the sign of x-component in the above argument to construct

U+, and similarly define ϕ− : U− → R2. For the rest part M \ (U+ ∪ U−), one has obvious charts

mapping to R2 respecting lattice structure. We thus get an atlas of M , and we shall conclude

that this atlas is in fact a (Z2,R2)-atlas. To see it, we have to check that the coordinate change

between (U+, ϕ+) and (U−, ϕ−) is controlled by Z2, which is described in Figure 2. Note that the

intersection U+ ∩ U− has two connected components. Let U+ be the component such that any

element of it has a positive y-coordinate, and let U− be the rest complement of U+ ∩ U−. We

define V +
± be the image of U+ by ϕ±, and similarly define V −

± . Then, ϕ−1
+ ◦ ϕ−|V +

−
: V +

− → V +
+ is

just the identity, and ϕ−1
+ ◦ ϕ−|V −

−
: V −

− → V −
+ is the addition of (1, 0) ∈ Z2. Other possibilities of

coordinate changes are obviously just the identity, and therefore we deduce that our atlas on M is

a (Z2,R2)-atlas.

We then can calculate the monodromy of with respect to the (Z2,R2)-structure on M . Since Z2 is

abelian, we do not have to care about base points. Let γ be the loop in M consisting of the five

edges which are completely contained in U− ∪ U+. By the definition of monodromy in Section 2,
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Z2

図 3: An example of a decomposition of U−

the monodromy for this loop γ is given as the sum of coordinate changes between (U+, ϕ+) and

(U−, ϕ−) calculated above: MonM (γ) = (0, 0) + (1, 0) = (1, 0) ∈ Z2.

Remark 3.1. Strictly speaking, to calculate the monodromy following the definition, we have to

decompose the two U+ and U− so that the intersection of these charts is connected. See Figure 3

for an example of such a decomposition of U−. (In Figure 3 it is illustrated as the corresponding

decomposition of V−.) However, the coordinate change between new two charts arising from the

previous one chart, say U−, is just the identity. The decompositions do not therefore give any

change to the above calculation of the monodromy for γ.

Since M is homotopy equivalent to
∨

Z S
1, we have π1(M) ∼= ∗ZZ. The monodromy map

MonM : π1(M) ∼= ∗ZZ → Z2 (2)

is non-trivial since MonM (γ) = (1, 0) as we have seen. On the other hand, let Mstd be the fat

graph of Z2. This manifold Mstd obviously admits a (Z2,R2)-structure and π1(Mstd) ∼= ∗ZZ, and
therefore the domain and the range of the monodromy map

MonMstd
: π1(Mstd) ∼= ∗ZZ → Z2

coincide with that of (2). However, MonMstd
is just the trivial homomorphism. This suggests that

the monodromy reflects the difference between the usual lattice Z2 and the configuration arising

from edge dislocation.

Remark 3.2. One can easily extend the above construction to a 3-dimensional model of edge

dislocation. The model is given by the product of Z (regarded as a discrete subset of z-axis) and

the previous 2-dimensional model. (See Guy [3] p. 153 for the picture.) For the fat graph M

corresponding to the 3-dimensional edge dislocation, we can give a (Z3,R3)-manifold structure on

it, and get the monodromy map

MonM : π1(M) ∼= ∗ZZ → Z3.

One can again have a distinguished loop and the value of the loop by MonM is given by (1, 0, 0) ∈
Z3. Note that the non-trivial direction (1, 0, 0) for monodromy is perpendicular to the disloca-

tion line R · (0, 0, 1). The non-trivial direction for monodromy can be regarded as some notion

corresponding to the Burgers vector (see [6], for example). On the other hand, if we can give a

(Z3,R3)-structrure for M corresponding to a given lattice defect, not necessary a dislocation, we

can define the monodromy map MonM . This suggests that MonM may be regarded as a general-

ization of the Burgers vector.

Remark 3.3. We here mention screw dislocation. We refer Fig. 6.10 in Callister–Rethwisch [1] as a

picture of a screw dislocation. In the figure, near the dislocation line, the graph corresponding to

the screw dislocation cannot be regarded as a subgraph of Z3. We cannot therefore give (Z3,R3)-

atlas for the whole fat graph. However, if we takeM as the fat graph which is obtained by removing
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a neighborhood of the dislocation line in the original fat graph, we can give (Z3,R3)-atlas as the

above one for an edge dislocation. If we take a loop γ in the graph having linking number one

(up to sign) with the dislocation line, then we have MonM (γ) is parallel to the dislocation line.

This is essentially only one non-trivial direction for monodromy. Therefore, also in the case of

screw dislocation, the non-trivial direction for monodromy coincides with the Burgers vector as in

Theorem 3.2.

Remark 3.4. We note that, as well as Burgers vectors, monodromy map can detect some difference

between edge dislocations and screw dislocations, described in Theorems 3.2 and 3.3. This suggests

that monodromy map may be regarded as a geometric invariant of lattice defects. To formulate

this idea rigorously, we should first define a lattice defect as a mathematical object. We hope that

monodromy map can give a guiding principle for the correct mathematical definition of lattice

defects.

参考文献
[1] William D. Callister Jr. and David G. Rethwisch, Materials Science and Engineering: An Introduction, 9th

Edition, Wiley, 2013.

[2] William M. Goldman, Locally homogeneous geometric manifolds, Proceedings of the International Congress of
Mathematicians. Volume II, Hindustan Book Agency, New Delhi, 2010, pp. 717–744.

[3] A. G. Guy, Essentials of Materials Science, McGraw-Hill Book Company, 1976.

[4] Hiroyasu Hamada, Shigeki Matsutani, Junichi Nakagawa, Osamu Saeki, and Masaaki Uesaka, An algebraic
description of screw dislocations in SC and BCC crystal lattices, available at arXiv:1605.09550.

[5] Raz Kupferman and Cy Maor, The emergence of torsion in the continuum limit of distributed edge-dislocations,
J. Geom. Mech. 7 (2015), no. 3, 361–387.

[6] F. R. N. Nabrro, Theory of Crystal Dislocations, Oxford Univ. Press, 1967.

[7] William P. Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, vol. 35,
Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy.

[8] William Thurston, The geometry and topology of three-manifolds, unpublished notes.

6


