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Abstract

Neural networks provide a flexible way of capturing the underlying dynamics of a system from ob-
served time series data. Correct model identification becomes difficult because increasing or decreasing
the nodes and layers of a neural network may overfit or underfit the noisy data, ending up with a wrong
model. To address this issue, the independent and identically distributed noise from the observed data
is removed by optimizing the autocorrelation coefficients at different lags. It is showed that a recurrent
neural network can detect the correct state-space model of the system using the denoised data.

1 Introduction
To describe natural phenomena from observations, normally we start with a model. We first develop a
theory for explaining our observations and then derive equations to describe the underlying system. With
the advent of neural networks, we can reverse this process. As neural networks are universal approximators
[1], we can prepare a network of arbitrary complexity and learn to fit our data without assuming any prior
model. As long as the observed data contains no noise, this strategy will work, and we will get the correct
model after learning. But, observed data always comes with noise. We may end up overfitting or underfitting
our noisy data by starting the learning process with a very complex network or an excessively simplified
network.

Recurrent neural networks (RNN) have been used in various applications to predict time series data [2, 3, 4].
Time series data can be modeled with differential equations, and an RNN can simulate the state-space
representation of a system of differential equations [2, 4]. As a result, it is possible to detect the differential
equations that a system follows by starting with an arbitrarily complex RNN. In this case as well, overfitting
and underfitting of noisy data would not allow us to predict the correct complexity of the trained RNN,
ending up with a wrong system of differential equations [5]. To avoid this problem, provided that the
noise is independent and identically distributed (i.i.d.), we can minimize the autocorrelation coefficients
of the time series at different lags. We will have to train the RNN in such a way that the fitting loss is
the minimum and the autocorrelation coefficients at different lags are zero. In this paper, denoising is
achieved by implementing a Gaussian kernel moving average filter. The appropriate kernel width is found
by optimizing the autocorrelation of the residuals. A recurrent neural network is then used to learn the
state-space model of the system from this filtered signal.

2 State-space model from noisy data
Let us consider linear differential equations and concentrate on output noise only. For a linear differential
equation of the form:

an
dnΦ(t)

dtn +an−1
dn−1Φ(t)

dtn−1 + ...+a1
dΦ(t)

dt
+a0Φ(t) = u(t), (1)
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the state-space model can be derived by treating diΦ
dt i , i = n,n−1, ...,0 as independept basis functions.

Φk+1 = AkΦk +Bkuk, (2)

yk =CkΦk + vk. (3)

Here, Φk is the state vector, uk is the input vector, and yk is the observed output. The measurement noise vk

is assumed to be an i.i.d. Gaussian noise with zero mean and finite variance. Ak, Bk are the time-independent
matrices that linearly relate the current state Φk and the current input uk to the next state Φk+1. Ck is the
matrix that gives us the observable yk from the state Φk.
As vk is an i.i.d. noise, the autocorrelation of vk at any lag τ should be zero up to some numerical error. We
can use this property of the noise to distinguish it from a signal generated from (2).

2.1 De-noising based on autocorrelation

To experiment with this property, we have produced a signal of the form ỹt = [y0 cos( t
2
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2a2 . To generate the noisy data yi, we have added i.i.d Gaussian noise

with mean, µ = 0, and standard deviation, σ ∼ A
2 to ỹt . ỹt is the general solution for the 2nd order differential

equation: a2
d2y(t)

dt2 + a1
dy(t)

dt + a0y(t) = 0, y(0) = y0,
dy(t)

dt |t=0 = ẏ0. Our goal is to detect this differential
equation from the noisy data by considering autocorrelation. This task is not equivalent to finding the
parameters a2,a1,a0 because we assume that we do not have any prior knowledge about the form of the
model equation. To achieve this, we will first denoise the generated data with a Gaussian kernel moving
average filter:

ŷi =
∞

∑
j=−∞

y j

k
√

2π
e−

(y j−yi)
2

2k2 (4)

Here, k is the kernel width of our moving average filter. After applying the filter of (4), we have taken the
residuals ri = yi − ŷi and calculated their autocorrelations Rr(τ) at different lags.

Rr(τ) =
E[(rt −µr)(rt+τ −µr)]

σ2
r

(5)

The optimization is done by taking the total absolute autocorrelation for all possible lags:

∑
τ
|Rr(τ)| (6)

Fig. 1(a) shows that an optimal kernel width k exists (around 9). In figure 1(b), we have plotted the noisy
signal (blue dots), the original signal (black dashes) and the filtered signal (orange line) with k = 9. In
figure 1(c) and 1(d), we have done the same, this time with k = 2 and k = 15. Comparing these figures, we
see that the reconstruction has the minimum error when k = 9. This result means that it is possible to use
autocorrelation as an objective function for reconstructing the original signal from a noisy data. But this
assumption is valid when we consider i.i.d observational noise only.

2.2 Model Identification with Recurrent Neural Network

We have used the denoised data ŷt from fig. 1(b) to train a recurrent neural network. As shown in Fig. 2(a),
The network has 3 layers to start with, each layer having 3 nodes. To represent the state-space transition
as described in (2), any nonlinear transformation function has not been used for the outputs of the nodes.
The output of of each node is a weighted sum of the values at other nodes connected to it. After training,
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as shown in Fig. 2(b), the network reduces to a system with one input node, 2 nodes representing the
state-space of our 2nd order differential equation and the output node. We have used the values a2 =

5,a1 = 0.1,a0 = 7. The corresponding transition matrix Ak = exp

([
0 1

−a0/a2 −a1/a2

]
T

)
is given by[

Ak11 Ak12

Ak21 Ak22

]
=

[
0.999 0.04
−0.056 0.998

]
. Here, T = 0.04s is the sampling period. After training the model of 3

nodes for the transition matrix with the denoised signal, we obtain the following result.Ak11 Ak12 Ak13

Ak21 Ak22 Ak23

Ak31 Ak32 Ak33

=

 0.999 0.039 3.6×10−3

−0.058 0.999 −4.6×10−3

−1.4×10−3 −1.9×10−3 0.993

 (7)

The transition matrix in (7) has elements |Ak13|, |Ak23|, |Ak31|, |Ak32| < 5× 10−3. We can use this value as
a threshold and prune these connections in the neural network. All the connections from the 3rd state will
be pruned. Hence, the remaining matrix will represent a 2-states model. The values of the matrix elements
are also the same up to some computational error as the original matrix that we used to generate the noisy
data. This means that although we have used a 3-states model for training a neural network with noisy
output which is originally described by a 2-states system, the denoising method based on autocorrelation
allows us to predict the correct complexity of the model without any overfitting or underfitting. To further
improve the identification performance, we can use more efficient methods for denoising such as wavelet
transformations, kernel ridge regression, etc. (see [6]). Whatever the strategy is, we can always use the
denoising method based on autocorrelation as described in this paper.

Fig. 1: Denoising with a Gaussian kernel moving average filter which minimizes the autocorrelation
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Fig. 2: Model identification of the denoised data with a recurrent neural network

3 Conclusion
The removal of noise from the observed data is a crucial step in identifying the correct model with neural
networks. As long as the noise is i.i.d., the autocorrelation coefficients at different lags for the residuals after
fitting should be zero. This property of i.i.d. noise has been availed in this paper to identify the state-space
model with a recurrent neural network. This strategy works as long as the noise does not have a memory and
the system dynamics is deterministic, i.e., it is defined by a linear system of ordinary differential equations,
a non-linear differential equation, or a partial differential equation. For the nonlinear case, we may either
use an appropriate nonlinear function at the output node of the RNN or find the linearized version of it
around an attractor. A separable partial differential equation can be expressed with a system of ordinary
differential equations, so finding the latter is equivalent to finding the former. However, the current method
of minimizing the autocorrelation needs to be extended for cases when the noise has a memory, or the
dynamics of the system is stochastic.

The author is indebted to Prof. Peter Tino, Prof. Masahiro Yamamoto, and Dr. Shunsuke Tsuchioka for
their comments and advice during the discussions. This research has been supported by the FMSP leading
graduate course of the University of Tokyo.
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