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(1) RDOFEXD FHREEREZFRE K. 72720, HELSBLCAARZDOE FFSUIHWTH R,

In mathematics, as in physics, in order to treat phenomena in a given (affine) space, one

is naturally led to computation in the dual space. One way, the most commonly used in

analysis, is the Fourier transform. This transform, far from being of a local nature, is not

easily adapted to calculus on manifolds. By contrast, Sato’s method is perfectly suited to

this case; you can complexify a real analytic manifold, and, instead of looking at the behavior

at infinity of the Fourier transform, you look “where the boundary values come from.” In

technical terms, one regards the cotangent bundle (more precisely, v/—1-times the cotangent

bundle) as the conormal bundle to the real space in the complex space. This was how Sato

defined the analytic wave front set of a hyperfunction (in particular, of a distribution), a closed
conic subset of the cotangent bundle, and he showed that if a hyperfunction w is a solution of
the equation Pu = 0, then its wave front set is contained in the real part of the characteristic
variety of the operator P. This was the starting point of microlocal analysis invented by
Sato—a kind of revolution in analysis.

Of course, at this time other mathematicians (especially L. Héormander) and physicists

(e.g., D. Iagolnitzer) had the intuition that the cotangent space was the natural space for

analysis, and in fact this intuition had arisen much earlier. Indeed, pseudo-differential

operators had existed before the wave front set appeared. But Sato was the first to make

the objects of analysis, such as distributions, live in the cotangent space, and for that
purpose he constructed a key tool of sheaf theory, the microlocalization functor, that is,
the “Fourier-Sato” transform of the specialization functor. This was also the origin of the
microlocal theory of sheaves. In 1973 Sato and his two students, M. Kashiwara and T. Kawali,
published a treatise on the microlocal analysis of PDE. Certainly this work had a considerable
impact, although most analysts did not understand a single word. Hérmander and his school
then adapted the classical Fourier transform to these new ideas, leading to the now popular

theory of Fourier-integral operators.

[#] Fourier: (A#4), Sato: (A%£4), conormal bundle: &R, Hormander: (A%4), Iagolnitzer:
(AN%), pseudo-differential operator: #82>/EHZE, wave front set: KIHES.

[ #i] Pierre Schapira, Mikio Sato, a Visionary of Mathematics. Notices of the American
Mathematical Society 54 (2007), no. 2, p. 244 (—#kZ) .



(2) ROBEXEFRE L. 727U, BFASBLOALIRZOE FTUTANTS B,

A lattice in R™ is an additive subgroup L C R™ which is additively generated by some
basis b1, ..., b, for the real vector space R".

Choosing some basis by, ...,b, for L, we can form the fundamental domain P consisting
of all £&1b1 + -+ 4+ &,b, with 0 < &; < 1. Clearly every point of R" is congruent modulo L to

one and only one point of P. The volume (or Lebesgue measure)

vol(P) = / dzy - - dzy,
P

can be identified with the volume of the quotient torus R™/L. This volume is of course equal
to the absolute value of the determinant of the matrix whose columns are bq,...,b,. We write

this briefly as
vol(R"/L) = |det(by,...,bn)|

[7%] Lebesgue: (A%).

[ L] John Milnor and Dale Husemoller, Symmetric Bilinear Forms. Ergebnisse der Mathe-
matik und ihrer Grenzgebiete, Band 73, Springer-Verlag, New York-Heidelberg, 1973, pp. 15—
16 (—HBek%).
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EFH BZEMV Q250 2,y S (2,y) =0 &2 AT L E, 2,y FEVWICERTLIEWNS.
v <2 R FOWREMOBS, (1) € RERS, 240, y£0IHLT 1< EW

~ Azl Iyl —
(Schwarz DARERN) THYH, L7z ->Tcosh = H<T’7|:‘y>” CMBEBO<OI<THEES. ZOD
|| |y
0 %~Z MLy BOfHENS. 240, y4£0 DL X, <x,y>=0<:>0:g.

W n ROTNEZEM V OERMED O TERWARZ ML oy, .,z € V IHWIERT 3
(1 £JDEE (@, xj) =0) BoIE, z,..., ¢ FEIEM. E<IZE<nTHY, k=nZold
Ti,..., T XV DREERT.

BERA] Mzi+- 4+ Mz =0\, €C) &T5. Ka; IZHLTO=(0,2;) = M\ (@1,25)+ -+
Me(@r, i) = Njl|lzg| |20 AREIZED 25 £ O DS ||oy]] £0. LizhioT, N\ =0 (1<j<k).
WZIZ, x1,..., 2 (KL TH 5. N

[F] (—>2®) WNEZEM @ (an) inner product space.

(] A RE TRUEAET), ZEERE, % 13K (1996) |, p. 191 (—#®ZE) .





