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Convexity is a primitive notion, based on nothing but the bare bones of the structure
of linear spaces over the reals. Yet some of its basic results are surprisingly deep;
furthermore, these results make their appearance in an astonishingly wide variety of
topics.

X is a linear space over the reals. For any pair of vectors z, y in X, the line segment

with endpoints x and y is defined as the set of points in X of form
ar+(1—a)y, 0<a<l1.

Definition. A set K in X is called convez if, whenever x and y belong to K, all

points of the line segment with endpoints x,y also belong to K.
Examples of Convex Sets

a) K = the whole space X.

(
(b) K =0, the empty set.
(c
(d

(e) Let [ be a linear function in X; then the sets

)

)

) K = {z}, a single point.
) K = any line segment.

)

l(x) = ¢, called a hyperplane,
l(x) < ¢, called an open half-space,
l(x) < e, called a closed half-space,

are all convex sets.

[fi8] P. D. Lax, Linear Algebra and Its Applications, Second Edition, John Wiley
& Sons, Inc. 2007, p. 187 (—HPKZ).
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Discrete subgroups of the Moébius group

The elements of the Mobius group are fractional linear bijections

b
z%S(z)szi_d, ad —be =1,

of the complex plane, oo included. The theory of Fuchsian differential equations

led Poincaré to a general theory of discrete subgroups of Mobius group, i.e., such

subgroups where orbits from a point do not return arbitrarily close to the point.

The connection is the following one. When u;, us form a basis of the solutions of a

_ ui(z)
usz(2)

when z runs through a loop from a base point around a singular point. The inverse

second order Fuchsian equation, the quotient d(z) is transformed as above
function ¢(z) defined by ¢(d(z)) = z then has the property that ¢(S(z)) = ¢(z) for
every element S of the monodromy group G of the equation. When G leaves a circle
invariant (we can let it be the unit circle), Poincaré named these functions Fuchsian
(against the advice of Klein) and in other cases Kleinean. Poincaré’s great papers
about automorphic functions were the main attraction that Mittag-Leffler secured for
the first volumes of Acta Mathematica.

Briefly, Poincaré’s general theory runs as follows. When G is a discrete subgroup

of the Mobius group, two points are said to be equivalent if they are images of

each other under the group. A fundamental domain of G is a maximal part of

the plane which only contains inequivalent points. Poincaré proved that there exist

fundamental domains bounded by circular arcs. When the group is Fuchsian, there

is a fundamental domain in the unit disk bounded by circular arcs orthogonal to the

unit circle. Such a fundamental domain is also the analytical and topological image
of a Riemannian surface whose universal covering surface is bijective to the unit disk
(the other possibilities are the entire plane or the plane plus one point). A Riemann
surface with finitely many leaves gives a fundamental region strictly contained in the
unit disk. The analytic functions on the Riemann surface correspond to functions
which are automorphic under a Fuchsian group.

In general a discrete group G has infinitely many elements and it is therefore not
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possible to construct automorphic functions by just taking the mean value over the

group of a rational function f(z). Instead Poincaré constructed so-called thetafuch-

sian functions F'(z) with the property that

1

F(5(2)) = F()(9"(z)™,  5'(2) = (CETE

where m is a positive or negative integer, called the weight of F. Since T'(Sz) =

T /
M, the function

5'(2)

F(z)=Y_ f(T(2))(T'(z))"™,  f(z) rational

TeG
is thetafuchsian of weight m when the series converges. If m is large positive, depend-
ing on GG, we may get uniform convergence and then construct automorphic functions

as quotients of two thetafuchsian ones with the same weight.

[{¥] Mobius: X €7 R (AN#), Fuchs: 7 v 7 X (AN%), Poincaré: K7 ¥ H L (N#),
Klein: 774 ¥ (A%), Riemann: V—<Y (A\#),

[Hi82] L. Garding, Mathematics and Mathematicians, —Mathematics in Sweden be-
fore 1950—, History of Mathematics, Volume 13, American Mathematical Society,
London Mathematical Society, pp. 173-174 (—#F2KZ).
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() BREIEE THORG S HUSEIE (2006), pp. 91-92 (—HKZ)



