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On the Initial Value Problem for the Nawvier-Stokes
Equations with the Initial Datum in Critical

Sobolev and Besov Spaces

By D. Q. KHAT and N. M. TRrI

Abstract. The existence of local unique mild solutions to the
Navier-Stokes equations in the whole space with an initial tempered
distribution datum in critical homogeneous or inhomogeneous Sobolev
spaces is shown. Especially, the case when the integral-exponent is
less than 2 is investigated. The global existence is also obtained for
the initial datum in critical homogeneous Sobolev spaces with a norm
small enough in suitable critical Besov spaces. The key lemma is to
establish the bilinear estimates in these spaces, due to the point-wise
decay of the kernel of the heat semigroup.

81. Introduction

We consider the Navier-Stokes equations (NSE) in d dimensions in spe-
cial setting of a viscous, homogeneous, incompressible fluid which fills the
entire space and is not submitted to external forces. Thus, the equations
we consider are the system:

Ou=Au—V.(u®u)— Vp,
div(u) =0,
U(O, 'CU) = Uo,

which is a condensed writing for

1<k<d, Oup=~u— Y, 0(uur) — 0p,

Sy Oy =0,
1<k <d, ug(0,z)=ugg.
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The unknown quantities are the velocity u(t, x) = (ui(t, ), ..., uq(t,z)) of
the fluid element at time ¢ and position x and the pressure p(t, ).

A translation invariant Banach space of tempered distributions & is
called a critical space for NSE if its norm is invariant under the action
of the scaling f(.) — Af(\.). One can take, for example, £ = L4(R%)
or the smaller space & = Hz"!(R%). In fact, one has the chain of critical
spaces given by the continuous embeddings

. : i o
(1) AU RY o LR < By (R 4zgeo0)
o BMO_I(Rd) . Bo—ol,oo(Rd)_

It is remarkable feature that NSE are well-posed in the sense of Hadarmard
(existence, uniqueness and continuous dependence on data) when the initial
datum is divergence-free and belong to the critical function spaces (except

d
B3 listed in (1) (see [7] for Hg_l(Rd), LYR%), and quil’oo(Rd), see
28] for BMO~(R%). The recent ill-posedness result for B OO(]Rd)) with
d > 3 was established in [3]. However, the ill-posedness in By "™ (R%) is
still open when d = 2.

In the 1960s, mild solutions were first constructed by Kato and Fujita
([20], [16]) that are continuous in time and take values in the Sobolev space
H3(RY), (s > $-1), say u € C([0,T]; H*(RY)). In 1992, a modern treatment
for mild solut1ons in H°(R%), (s > %l —1) was given by Chemin [11]. In 1995,
using the simplified version of the bilinear operator, Cannone proved the
existence of mild solutions in H*(R%), (s > 4 1), see [7]. Results on the
existence of mild solutions with value in L9(R%), (¢ > d) were established
in the papers of Fabes, Jones and Riviere [14] and of Giga [17]. Concerning
the initial datum in the space L>(R?), the existence of a mild solution
was obtained by Cannone and Meyer in ([7], [10]). Moreover, in ([7], [10]),
they also obtained theorems on the existence of mild solutions with value in
Morrey—Campanato space Mg (R?), (¢ > d) and Sobolev space H;(Rd), (g <
d,t— 7 < ) and in general in the case of a so-called well-suited space W
for NSE. NSE in the Morrey-Campanato spaces were also treated by Kato
[22], Taylor [33], Kozono and Yamazaki [24].

In 1981, Weissler [34] gave the first existence result of mild solutions
in the half space L3(R%). Then Giga and Miyakawa [18] generalized the
result to L3(Q), where Q is an open bounded domain in R3. Finally, in
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1984, Kato [21] obtained, by means of a purely analytical tool (involving
only the Holder and Young inequalities and without using any estimate
of fractional powers of the Stokes operator), an existence theorem in the
whole space L3(R?). In ([7], [8], [9]), Cannone showed how to simplify
Kato’s proof. The idea is to take advantage of the structure of the bilinear
operator in its scalar form. In particular, the divergence V and heat e*®
operators can be treated as a single convolution operator. In 1994, Kato and

Ponce [23] showed that NSE are well-posed when the initial datum belongs
d

L4
to the homogeneous Sobolev spaces Hy (RY), (d < q < o0). Recently, the

authors of this article have considered NSE in mixed-norm Sobolev-Lorentz
spaces and Sobolev-Fourier-Lorentz spaces, see [25] and [26] respectively. In
[27], we showed that the bilinear operator

t

@) B(u, v)(t) = / IAPY (u(r, ) ® o(r, .))dr
0

is bicontinuous in L“([O,T];H;(Rd)) with super-critical, non-negative-

regular indexes (0 < s < d,q > 1, and § < % < min{%,%}), and

we obtain the inequality

d

HB(U,U Cs7q7dT%(1+sfq

)HLoo([o,T];Hg) S )H“HLOC([O,T];H;:) UHLOO([O,T];Hg)'

In this case existence and uniqueness theorems of local mild solutions can
therefore be easily deduced.

In this paper, first, for d > 3,s > 0,p > 1l,and r > 2 be such that
3 < % < % + 55 and % + % = < 1, we investigate mild solutions to
NSE in the spaces L"([O,T];H;(Rd)). We obtain the existence of local

mild solutions with arbitrary initial tempered distribution datum in the

2
s—=r o .
Besov spaces B, " . In the case of critical indexes % — s+ g =1, we

obtain the existence of global mild solutions when the norm of the initial

tempered distribution datum in the Besov space B;_%’T is small enough.
The particular case of the above result, when s = 0, was presented in the
book by Lemarie-Rieusset [29]. We also note that the Cauchy problem for an
incompressible magneto-hydrodynamics system with positive viscosity and
magnetic resistivity, in the framework of the Besov spaces was considered
in [30].
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Next, we present two different algorithms for constructing mild solutions

.4 d_q
in C([0,T); Hy (RY)) or C([0,T]; H{ (R%)) to the Cauchy problem for
the Navier-Stokes equations when the initial datum belongs to the Sobolev

spaces Hg_l(Rd) (or Hg_l(Rd)) We use the first algorithm t id
p p . gorithm to consider

.4 d_q
the case when the initial datum belongs to Hy ~(RY) or Hy ~(R%) with
3<d<4and 2 < g <d. Our results, when ¢ = d, are a generalization
the ones obtained in [29]. With the second algorithm, we can treat the

da
case when the initial datum belongs to the critical spaces HqE 71(]Rd) with
d>3and 1 < g <d. The cases ¢ = 2 and ¢ = d were considered by
many authors, see ([7], [9], [11], [12], [16], [20], [21], [29], [31]). A part of
our results in the case when 2 < ¢ < d can also be obtalned by using the
interpolation method of the results between the spaces % and L. So we
will concentrate our efforts on the case 1 < g < 2. To obtain the existence

L4 q
theorem in C([0,7]; H{ (R?)), we need to establish the continuity of the
bilinear operator B from

. d+2-2¢ . d+2-2¢ L d_q
v, 7 f e ) x 22((0.THH 42 )to C(0,T)H (),
d+1—q d+1—q

and establishes the continuity of the bilinear operator B from L"([0,T7;
Hy)x L"([0,T]; Hy) into L"([0,T]; H,). In order to evaluate the norm of the
bilinear operator B in these spaces we use Lemma 7 which estimates the
point-wise product of two functions in H. S(Rd).

The paper is organized as follows. In Section 2 we recall some embedding
theorems in the Triebel and Besov spaces and auxiliary lemmas. In Section 3
we present the main results of the paper.

In the sequence, for a space of functions defined on R?, say E(R?), we
will abbreviate it as E.

§2. Some Imbedding Theorems

In this paper we use the definition of the Besov space By, the Triebel
space F;P, and their homogeneous space Bg’p and F; Pin [5, 6, 13, 32]. A
known property of these spaces is the Riesz potential A® = (—A)s/ 2 which
is an isomorphism from B;*? onto By°~*? and from Fy°" to F;°~°P, see
[4].
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Let 1 < ¢ < oo and s < d/q, we define the homogeneous Sobolev space
H; as the closure of the space Sy = {f €S: 0¢ Suppf} in the norm
| fll s = |A%f|4- Let us recall the following lemmas.

q

LEMMA 1. Letl <p,q <00 and s €R.
(a) If s < 1 then the two quantities

> _ s 1 dt 1/
(] @ eea), )™ and |5

pep aTe equivalent.
q

(b) If s < 0 then the two quantities

</OO (t_% HetAqu)p%y/p and HfHBs,p are equivalent.
0 q

PROOF. See ([15], Proposition 1, p. 181 and Proposition 3, p. 182), or
see ([29], Theorem 5.4, p. 45). O

The following lemma is a generalization of the above lemma.

LEMMA 2. Let1 < p,q < oo, « > 0, and s < «. Then the two
quantities

Oot—% tArg A LAY d walent
(/0 ( He fHLq) 7) an HfHBS,p are equivalent.

PROOF. Note that A® is an isomorphism from B{* to B **” then
we can easily prove the lemma. [J

LEMMA 3. For 1 < p,q,7 < oo and s € R, we have the following
embedding mappings.
(a) If 1 < ¢ <2 then
: b g - ,2 b 72
By%— Hj — Bp*, By? — Hj — By~
(b) If 2 < g < o then

58,2 TS 58,q $,2 s $,q
By*— Hy — By*, By® — H; — B".
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() If 1 < p1 < pa < oo then
35,P1 95,02 138,P1 5,p2  [78,p1 75,02 I0S,P1 8,02
ByPt — BpP?, ByPt — B2, EpP — FpP2 O ESOPY — FOP2L

(d) If s1 > s2, 1 < q1, g2 < o0, andsl—(%:sz—%then

251,D 252,P RS1,P $2,p IS1,p 82,7 51,p S2,7
BQl C_>BQQ 7Bq1 %qu 7FQ1 (_>qu ’th (_>Fq2 :
(e) If p < q then
8,p sp RSP S,
BP — FjP, ByP — FP.

(£) If g < p then

8,p 8P ISP 28,p
FP = ByP, FP — BpP.

(8)
F;aq — B;’q7 F;7q — B;’q

(h) Ifl<g< o
_ps2  frs _ s
H = F2?, HS = F2.

PRrROOF. For the proof of (a) and (b) see Theorem 6.4.4 ([2], p. 152).
For the proof of (c) see [1] and [2]. For the proof of (d) see Theorem 6.5.1
([2], p- 153) and [4]. For the proof of (e), (f), (g), and (h) see [1] and [4]. O

LEMMA 4. Letp>1 and s € R. Then the following statements hold
(1) Assume that ug € Hy. Then

e'®ug € L®([0, 00); Hy) and HetAUOHLoo([o,oo);H;) = HUOHH;'

(2) Assume that ug € H;. Then

e'®ug € L*([0,00); HS) and ”etAuoHLOO([O,oo);Hg) S HUOHHP
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PrROOF. (1) We have

I s%um -

T d/2H/Rde T ((Id = A ) ( .

1 €12 .
SW/ S (AN ”w)«—s)\\mds
1 lé12
:W/ e 4£t Huo”Hsdg_HUOHHS’ > 0.

(2) The proof of (2) is similar to the proof of (1). O

THEOREM 1. Let E be an Banach space, and let B: E X E — E be a
continuous bilinear form such that there exists n > 0 so that

1Bz, )l < nllzlllyll,

for all x and y in E. Then for any fized y € E such that ||y| < ﬁ, the

equation x =y — B(z,x) has a unique solution T € E satisfying ||T|| < 5~
PROOF. See Theorem 22.4 ([29], p. 227). O

The following lemmas, in which we estimate the point-wise product of
two functions in H;(Rd) is more general than the Holder inequality. In the
case when s = 0,p > 2, we get back the usual Holder inequality.

LEMMA 5. Assume that
1

1 1
l<pg<dand —+-<1+ .
poq d

Then there exists a constant C' independent of u,v such that the following
nequality holds

Vu e H),ve H,,

i < Cllull 1ol

1

+ - — é. In the subsequence the above kinds of conclusions will

where
be shorten

—1,1
P g
as

ol
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PrOOF. By applying the Leibniz formula for the derivatives of a prod-

uct of two functions, we have
< > @ ol + > Ju@ ),

~ D o€

|a|=1 lal=1 |a|=1

From the Holder and Sobolev inequalities it follows that

> @ wolly, < 3 0%l lloll o S el ol

|a|=1 la|=1

where
1 —_

1
a q
Similar to the above proof, we have

1
7

u(0%)

e 5l ol
|a|=1

This gives the desired result

ull gy ol 1y

LEMMA 6. Assume that

1 s 1 S 1 1 s
3 0<s<l,->—-,—>—,and —+—-<1+-.
®) p dq d P q d

Then the following inequality holds

S Nl gglloll gy v € Hyov € Hy,

where % =

+

Qlw

1.1
P q

PrOOF. It is not difficult to show that if p,q,and s satisfy (3) then

there exist numbers p1,p2,q1,q2 € (1,400) (may be many of them) such
that

1 1-—s s 1 1—s s 1 1
= +— - = 4+ — — 4+ — <1,
p p1 P2 q q1 q2 P1 q1
1 1 1
P <d,go<d, and —+ — <1+ -.
P2 Q2 d
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Setting 1 1 11 1 1 1

1 b1 Q1’7”2 D2 g_a’
we have

1 1-s s
r ™ )

Therefore, applying Theorem 6.4.5 (p. 152) of [2] (see also [19] for H;), we
get

H; — [LPl,H;Q]S,H; — [L‘ﬂ,quQ]s,Hf = (L™, H}]s.

Applying the Holder inequality and Lemma 5 in order to obtain
Yu e LP' v e L1,

ool 5 Nl g oy o 20

o]l e S Nl o o]l o

From Theorem 4.4.1 (p. 96) of [2] we get
O

fuvllze S [l ol

LEMMA 7. Assume that

1 1
,and —+ - <14 —.

S 1
4 0<s<d, =< < -
) d q P q d

il
"d

hS R

Then we have the inequality

v! VUEH;,UEH;,

|uv

Hs N Hu‘ H H

1 _1,1_s
where;—p—i—q g

PROOF. Denote by [s] the integer part of s and by {s} the fraction
part of s. Using formula for the derivatives of a product of two functions,
we have

vl = 1A° @o)][ - = (AL (o) ] e

> oAt o) = 3 A7 (ww)

laf=[s] |ar|=[s]

== [0%(wo)|| e S > Hmuaﬁvuﬂis}.
lal=]s] l-+181=1s]

~

LT
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Set
L1 sohl-{ 1_1_s—|8~{s}

pop d q ¢ d
Applying Lemma 6 and the Sobolev inequality in order to obtain

Hmu@ﬂ UHH{ s}
Huum ol
This gives the desired result
| =

REMARK 1. Lemmas 5, 6, and 7 are still valid when the homogeneous
space Hj is replaced by the inhomogeneous space Hp.

§3. The Main Results

For T > 0, we say that u is a mild solution of NSE on [0, T'] corresponding
to a divergence-free initial data ug when u satisfies the integral equation

t
u = ePug — / e(t_T)APV.(u(T, ) @u(r,.))dr.
0

Above we have used the following notation: For a tensor ' = (Fj;) we define
the vector V.F by (V.F); = Zle 0;F;; and for vectors v and v, we define
their tensor product (u®v);; = u;v;. The operator P is the Helmholtz-Leray
projection onto the divergence-free fields

(5) (Pf);=fi+ Y. RiRifi,

1<k<d

where R; is the Riesz transforms defined on a scalar function g as

Rrg(¢) = "2 (©).

The heat kernel et® is defined as

ePu(z) = ((47Tt)7d/2€7"‘2/4t s u)(z).
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If X is a normed space and u = (uy,ug, ...,uq),u; € X,1 <i < d, then we

write .
1/2
we X flullx = (3 willk)

i=1

3.1. On the continuity and regularity of the bilinear operator
In this subsection a particular attention will be devoted to the study of
the bilinear operator B(u,v)(t) defined by (2).

LEMMA 8.  Let
(6) d>3, >0, p>1, r>2andT >0

be such that
s 1 1 S

2 d
7 L L R
(7) d<p<2+2dan r+p s <

Then the bilinear operator B(u,v)(t) is continuous from
L7([0,T); H3) x L7([0,T); HY)
mto
L7(10,T]; Hy),
and the following inequality holds

2_d

8) ||B(u,v)] < or2ei) ||y

L7([0,T]; Hy) L7 ((0,T);H3) vl L ((0,T);Hy)’

where C is a positive constant independent of T.

PROOF. We have

9) HB(u,v)(t)”HsS/OtHe(t_T)AIP)V.(u(T,.)®v(7‘,.))H dr =

Hp
/Ot He(t_rmpv.(ld — A)*2(u(r,.) ®v(r,.)) HLpdT’

where the operator (Id — A)? is defined via the Fourier transform as

((Id—A)3g) (&) = 1+ €[} 4(€).
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We have

(é“ﬂﬁpv(m — N2 (u(r,.) @ (T, ‘>)>j -

d
S (o — Yo - AV (r, (. ).

Lk=1

From the property of the Fourier transform we have

(e(t_T)APV.(Id _ A)5/2 (u(T, ) & ’U(T, )));\(g) =

e~ (t=TIEP i <5jk gjﬁ)(ifl)«hl—A)S/Q(“l(T")”’“(T’ ))> (©);

B 2
et €]

and therefore

J

Applying Proposition 11.1 ([29], p. 107) with |a| = 1 we obtain

1

K. <— .
’ l,k,](x)| ~ (1 + |$|)d+1
Thus, the tensor K (x) = {Kj ;(x)} satisfies

1

(11) |K(z)| < At Ja)®

So, we can rewrite the equality (10) in the tensor form
eWNAPY (Id — A)*? (u(r,.) @ v(T,.)) =

L )+ ((1d = AP (ur, ) © o(r. ) ).

(t—T)%K<\/t'——T
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Set

+ 1.

(12)

S|~
Ul ®m
==

hd
d7

[l =
=N

Note that from the inequalities (6) and (7), we can check that the following
relations are satisfied

1 1 1

l1<hp<ooand —+1=—+ —.

p hp

Applying the Young inequality for convolution we obtain

(13) He(t‘T)AIP’V.(Id — A2 (u(r, ) @ () ( 5
Sy T
Applying Lemma 7
a9 ||ad= 2y ur ) 9 u(r)]| | = ) @ o)
< [ Mg o7 My

From the estimate (11) and the equality (12), we have

) & (=)

The inequalities (13), (14), and (15) imply that

=(t— T)%HKHUL ~ (t— T)%_%Jr%.

Lh

(16)

IAPY.(1d = Ay (u(r, ) @ u(r, )|

u(T, )‘

<
e~

(t—7)2" 2 2 Ju(r, )HHg

Hy®

From the inequalities (9) and (16), we get

HB(U,U)(t)‘

u(T, .)HHng.
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Applying of Proposition 2.4 (c) in ([29], p. 20) for the convolution in the
Lorentz spaces, we have the following estimates

(17) 1B )04, - 1B )@l o
< 186 0Ol | 5.7, =
0yt 372 e s gy o8 Ml | 5.5

where & + 1 =1 and Ljo,7] is the indicator function of set [0,7] on R.
By applying the Holder inequality we get

(18) HHu(t,.)HHS 0(t )| Liom = HHu(t,.)HHg 0t ) om
= [[CECERIPPH N /YA 19 .

Note that

(19) H1[07T1t§—%—% e ~ T3+ 2=0)

Therefore the inequality (8) can be deduced from the inequalities (17), (18),
and (19). O

REMARK 2. Lemma 8 is still valid when the inhomogeneous space H,
is replaced by the homogeneous space H;

LEMMA 9. Let
d>3, 0<s<d, p>1, r>2,andT >0

be such that

Then the bilinear operator B(u,v)(t) is continuous from

L"([0,T); H) x L"([0,T); H3)
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into

(0.7 ;)
where
1_2_s
p p d
and we have the inequality
(20) HB(“’”)HLOO([O,T];B?L%) < Cllull pr oy 10l L o,zrsrrs)

where C is a positive constant independent of T.

PROOF. To prove this lemma by duality (in the x-variable), (see Propo-
sition 3.9 in ([29], p. 29)), let us consider an arbitrary test function h(z) €
S(R?) and evaluate the quantity

(21) I = (B(u,v)(t), h) = " (B(u,v)(t))(z)h(z)dz.
We have

(22) (B(u,v)(t), h) = /0 <6(t7T)A]P)V.(U(T7 ) ®u(r,.)), h)dr =

/Ot <€(t_T)AAP%-(U(T, J®u(r,.)), h>d7 _

/Ot <P%.(U(T’ ) ®u(r, '))7€(t_T)AAh>d7‘ =

/t <IP’YA5 (u(r,.) ®v(r,.)) e(t_T)AAA_5h>dT.
0 A ) ) )

By applying the Holder inequality in the x-variable, from the equality (22)
and the fact that (see [29])

\Y
P and N are continuous from L? into LP,1 < p < oo,

we get

t
v - COAG s
(23) | 1| S/O H]P’K.A (u(T, .)@U(T,.))HLﬁHe(t JAAA hHLﬁ’ dr

t
< /0 1A% (u(r, ) @ o(r, )|, | etV AA R, dr.
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where

Applying Lemma 7, we have

(24) 1A (u(r, ) @ v(m, )| 5 = [ulr ) @ o(r ) 4,

Sl gl )l -

From the inequalities (23) and (24), applying the Holder inequality in the
t-variable, we deduce that

r—2

() Ot et ) ar) ([ e ) =5r)

r—2

t P _r_ -
Uller (po,rys11y) ( /0 (Jle*=2AA R )72 dT) '

From Lemma 1 and note that A® is an isomorphism from Bj? to Bj *"
(see [4]), we have the following estimates

t ..
(25) |It’ S /0 |’U(7—,)HH5H’I)(T7 .)HHSHe(t_T)AAA_Sh”Lﬁ/ dr S
2

< [Ju

L ((0,T}; Hy)

r—2

t .. _r =
(26) ( /0 (=2 RAR]| ) 7 ar )

:(/Ooo(tzr

<(/ (=47) 200

e hin] ) ) T s i

= T2

ey = 0l
P

Z;/

From the equality (21) and the inequalities (25) and (26), we get

h I—Q-l T .
B, pTr—2

p

[(Blu,v)(t), h)| S [|u

Lr((o,1);E) 1V 1 Lr ([0, 1]; F13)

d _r d_q.r

.1-4 .4
However, By, *""* is exactly the dual of B/ ', (the restriction
is mainly because we are interested in non-negative indexes), therefore we

2 s+1
==
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conclude that

oy VS EST

d

Finally, the estimate (20) can be deduced from the inequality (27). O

g Sl

en) ||Bvo) b (oL

d
>34
By

Combining Theorem 1 with Lemma 8, we get the following existence
results, the particular case of which, when s = 0, was obtained in [29].

THEOREM 2. Let
d>3,5s>0, p>1, andr > 2,

be such that

s<1 1+ d2—|—d <1
- < -< =4+ —and —+—-—35 .
d p 2d r o p -

(a) There exists a positive constant Oy, q such that for all T > 0 and for
all up € S'(RY) with div(u) = 0, satisfying

< 6 7p’7"d7

(28) i) e uol Lr([o,T);Fg) =

there is a unique mild solution u € LT([O,T]; H;)) for NSE.

If
ePugy e L"([0,1]; H;),

then the inequality (28) holds when T (ug) is small enough.

(b) If 2 24 % — s = 1 then there exists a positive constant Os p q such that we

can take T = oo whenever He u0|

L7 ([0,00];H§) < bspa-
PrROOF. (a) From Lemma 8, we use the estimate

IB] < CopraT? 7070,

L ([0,T];H3)

where Cj , . 4 is a positive constant independent of T'. From Theorem 1 and
the above inequality, we deduce the existence of a solution to the Navier-
Stokes equations on the interval (0,7") with

4C, p.r, dT2(1+s____ Hemuo‘ <1

Lr([0,T];Hg) =
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If e'2ug € L7([0,1]; Hg ) then this condition is fulfilled for T = T'(ug) small
enough, this is obvious for the case when 2 + d — s < 1 since

%m%)T?(HS P — = 0. For the case when 2 —|— £ — s = 1, the condition
= 0.

is fulfilled since we have hm He u0|
(b) This is obvious. OJ

L ([0,T}; Hy)

2,
REMARK 3. From Theorem 5.3 ([29], p. 44), if ug € By "' NS'(R%)

then e'®uy € L7([0, 1]; H;) From Lemma 2, if ug € S’(R?) the two quanti-
2, and Hemuo‘
P

Lr((0,00); 1) AT equivalent.

3.2. Solutions to the Navier-Stokes equations with initial value

d_1 .4
in the critical spaces H; (R?) and H/ (R%) for 3 < d <
4,2<q<d

LEMMA 10. Let d > 3 and 2 < q < d. Then the bilinear operator
B(u,v)(t) is continuous from

L40Q7m}¥gm):xL40011

d_q . 3—1
T, H 2dq
2d—q 2d—q

>(fo. 1) B¢,

nto

and we have the inequality

(29) HB(u,v)H i, S HB(u,v)H

Ld_ d_19
L>([0,T];HS ) r=(o1):84 )
<C )
— HUH ([0 T] Hdqul ) H H ([0 T] H » )
2d—q 2d—q

where C is a positive constant and independent of T.

PrOOF. Applying Lemma 9 with r = 4,p = ;d;d_qq, and s = g —1, we
get
12 s 2d—q_%—1_1
p p d  dg d
30 B(u, N d d .
( ) H (u U)H ([OT]BZ 12) H H ([O,T] g )H H ([OT] Z )
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From (b) of Lemma 3, we have

d_q29 d_q
(31) B T HY
Finally, the estimate (29) can be deduced from the inequality (30) and the
imbedding (31). O

LEMMA 11. Let d > 3 and 2 < q < d. Then the bilinear operator
B(u,v)(t) is continuous from

L%[O,T];Hf%) x L%[O,T];Héﬂ%)

nto
d

d_q
(0. ™),
and we have the inequality

(32) HB(U’U)HL“’([O,T];H?_l) SCHUHL%[QT]; %; )H H (

2d— 2d q

where C is a positive constant and independent of T.

ProOOF. To prove this lemma by duality (in the x-variable), let us
consider an arbitrary test function h(x) € S(R?). Similar to the proof of
Lemma 9, we have

’((\/Id “A)a B, 0) (1), h>‘

S./ U a_ h 50,2,
H HL ([O,T 2dq)H H ( sz )H HBZ,2
2d—q 2d—q
where
1.1
g ¢

However the dual space of 32;2 is B(q)’?, therefore we get

(33) |(vVIa=8) " B v) )| ..
Sy Mot y

2d— 2d7q
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From (b) of Lemma 3 and the estimate (33), we have

= |VH= R B, w0

6y [Bav] . I
| IR B 0], < | VI B Bl )8
gy\uu (o % )H all (o) ,0<t<T.

Finally, the estimate (32) can be deduced from the inequality (34). O

LEMMA 12. Letd> 3 and 2 < q < 4.
d_1
(a) If up € Hy (R?) then
He UOHLZL([O °0); H;ldq/(;d )) f, ”UOHHg/q—l.
.4
(b) If uo € Hy ~(R?) then

HetA ) = HUOHB%Z;(:;’{&; S HuOHH:]i/H

UD‘ d/q—1
L4 (10,00 32 30

PrROOF. (a) From Lemma 1, we have the estimates

uo‘ d/q—1 )

H t L o0);H
4
([0’ ); 2dq/(2d—q)

(35)

— (/Ooo Hem( Td—A A)d/q—luO‘ iqu/(zd_q) t) 1/4
= ([ (e vra=my g ey
~ H(M)d/q—mg]

L2dq/(2d—Q)) t

5—1/2,4
2dq/(2d—q)

Applying (b), (c), and (d) of Lemma 3 in order to obtain

0 0, 0,4 1/2,4
(36) L1 = H <—>B q%B ‘—>Bqu/(2d e
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From the inequality (35) and the imbedding (36), we get

g ~ ||y
L & J7 e
SN VId = 2" uo| 1, = Juol|yyara-
(b) Similar to the proof of (a) we have
tA o lA d_q .
He UOHL‘L([O"’O);H%S/_(;_@) ~ HAq uoHB;dlq/;(,;d_q)

< A ol = [l g0

L d_q
and HAq uo‘

sz = lollggrazare - O

Combining Theorem 1 with Lemmas 4, 8, 10, and 12 we obtain the
following existence result.

THEOREM 3. Let 3 < d <4 and 2 < q < d. There exists a positive
constant 6q.q such that for all T > 0 and for all ug € Hg/q_l(Rd) with
div(ug) = 0 satisfying

A
(37) Het UDHLAL([O’T};H%;I/_(;d_q)) < 6q,d7

NSE has a unique mild solution u € L4([O,T];H%g/fédiq)) N C([O,T];
Hg/q_l). Denoting w = u — e®ug, then we have

w e L4([0,T];H§ég/‘(;d_q)) mLOO([o,T];B;l/q—M)_

Finally, we have

HetAu()HL‘*([O’T};H;Z;I/_(;d—q)) S HUOHB%Z;(Za; f, ”uoHH&i/qil’

in particular, for arbitrary ug € Hg/qfl(Rd) the inequality (37) holds when
T(ug) is small enough; and there exists a positive constant o4 4 such that

for all

Uug

cdjq3/24 = Ogd We can take T = oo.

2dq/(2d—q)
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ProOF. By applying Lemma 8 with r =4, p = %, § = % — 1, and

notice that 1 + s — % — % = 0 we have

HBHL4([0’T Fd/a-1 ) < C'q,da

“adq/(2d—q)

where C, 4 is a positive constant independent of T'. From Theorem 1 and
d

L4
the above inequality, we deduce that for any ug € Hy  such that

1

diV(UO) =0, He UOHL4 OT] H;dq/(;d q)) = 40‘17‘1’

NSE has a mild solution u on the interval (0,7") so that

d/g—1
(38) ue L4([0,T];H2£§/(2d7q)).
From Lemma 10 and (38), we have B(u,u) € L*([0,T]; Hg/q_l). From (2)
of Lemma 4, we have e'®uy € L> ([0, T7; H(‘;/q_l). Therefore

u = e"®ug — Bu,u) € L>([0,T]; HY/T1).

In the space H¥2~1 or L% (see [29]), the solutions can also be constructed
by a successive approximation via the integral equation and therefore they
are continuous in time up to the initial time. Since ' is a (Cp)-semigroup
in H; and Hqs with finite integral-exponent (¢ < o0), by the same way as,

we can easily show that the obtained mild solution u € C([0,T7; H;l / q_l).
From (b) of Lemma 12, we have

A
He UOHL4 (0.7 13 2a- q) S Het UOHL‘*([O,oo);H%;ﬁww)
= HUO‘ d/q 3/24 ~ HUOHHd/q 1 < 00.
dg/(2d

—q)
Hence, the left-hand side of the 1nequahty (37) converges to 0 when T tends

to 0. Therefore, for arbitrary ug € qu ! there is T'(up) small enough such
that the inequality (37) holds. Also, there exists a positive constants o4

such that for all Huo‘ < 044 and T = oo the inequality (37)

nd/q—3/2,4
2dq/(2d q)

holds. OJ
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REMARK 4. Theorem 3 in the particular case ¢ = d is Proposition 20.1
in [29].

THEOREM 4. Let 3 < d < 4 and 2 < q < d. There exists a posi-

d_q
tive constant 6g4 such that for all T > 0 and for all ug € Hy ~(R?) with
div(ug) = 0 satisfying

39 et®u _ <44,

(39) H OHL‘L([O’T];H%(?/(;d—q)) = td

NSE has a unique mild solution u € L4([O,T];H%g/_éd_q)) N C ([0, TJ;
Hg/q_l). Finally, we have

ool omag, ) < Weollgn-s

da

d_1
in particular, for arbitrary ug € Hy  the inequality (39) holds when T'(up)
is small enough;

PrOOF. The proof of Theorem 4 is similar to the one of Theorem 3,
by combining Theorem 1 with Lemmas 4, 8, 11, and 12. [J

3.3. Solutions to the Navier-Stokes equations with initial value

.41
in the critical spaces H; (R%) for d >3 and 1 <¢q<d
We consider two cases 2 < ¢ < d and 1 < g < 2 separately.
3.3.1 Solutions to the Navier-Stokes equations with initial value in the

.41
critical spaces HY (R?) ford >3 and 2 < q<d

LEMMA 13. Letd >3 and 2 < g < d. Then for all p such that

2<p<min{%, d—i—Q},(ifq—dthen%——i—oo

~—

the bilinear operator B(u,v)(t) is continuous from

24d—p 24+d—p

LP([0,T); Hy ™ ) x LP([0,T); Hp © )

nto

.d+p—27 P
Le(0,1;B 4 7)),

d+p—2
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and we have the inequality

@ B SIBwo sy

Lee ([O,T];Hqgil) L= (jo,1:B 7 %)
TFp—2
<Ol g ol s

re(o1se, * ) re(oTkE, T )

where C is a positive constant independent of T.

PROOF. Applying Lemma 9 with »r = p and s = QJF;#, we get
L2 s dip-2
p p d dp
“ ||
(41) e =
d+p—2
< _ —p .
< HUHLP([O’T};H;% p)"v“LP([O,T];H§+Z ')

Applying (e), (d), and (h) of Lemma 3 in order to obtain

LdEp=2_qp Ld4p=2_ g p .24 19 L4
72 P 72 q ’ q
(42) B — I 2 — Fy =H; .
d+p—2 d+p—2

Therefore the estimate (40) is deduced from the inequality (41) and the
imbedding (42).

.4 g
LEMMA 14. Let 2 < g < p < +oo. Then for all uyg € Hy  we have
the estimates

—1"

el

<
r([0,00);H, 7 ) " HUOHH

d_ d
p L q
P q

PRrROOF. From Lemma 1, we have the estimates

(43) HetAuoH
L

p([o,oo);g%) = HUOHBP%’L” ,

Applying (b), (d), and (c) of Lemma 3 in order to obtain

| 414 . 414 .4 1p
(44) H{ — B{ — By — By .
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From the estimate (43) and the imbedding (44), we have

=

LP([O,@);HI%) = HUOHBP%_LP S HUOHH%—I O

THEOREM 5. Letd >3 and 2 < q <d. Then for any p be such that

q<p<min{(dd_f2)q, d—|—2},

q

there exists a constant 64,4 > 0 such that for all T > 0 and for all ug €
Hg/q_l(Rd) with div(ug) = 0 satisfying

(45) e uo| aip . < Sy pas

. 2+d—p .
NSE has a unique mild solution u € Lp([O,T];Hp P ) OC’([O,T];Hg/qfl).
tA

Denoting w = u — e"“ug, then we have

2+d—p L d+p=2 {1 p

we (0T i, 7 ) nL=([0.TB 4 7).

d+p—2

Finally, we have

HetA

o see <ol g S ol g

e (0,18, * i 3
in particular, for arbitrary ug € Hff/q_l the inequality (45) holds when T'(ug)
is small enough; and there exists a positive constant oy q such that for all

HUOHB%%,;} < 0¢pd we can take T = oo.
p

PrRoOOF. The proof of Theorem 5 is similar to the one of Theorem 3,
by combining Theorem 1 with Lemmas 4, 8 (for r = p, s = 2+z_p ), 13, and
14. 0J

REMARK 5. The case ¢ = d was treated by several authors, see for
example ([7], [12], [21]). However their results are different from ours.
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3.8.2  Solutions to the Navier-Stokes equations with initial value in the
|
critical spaces HY (R?) ford >3 and 1 < q <2
LEMMA 15. Let d > 3 and 1 < q < 2. Then the bilinear operator
B(u,v)(t) is continuous from

d+2—2q

. _ d+2-2q
121(10, 751yl ) < 122(10,ThH_ul )
d+1—q d+1—q

wnto .,
£=((0,7); B ),

and we have the inequality

B ) S B ) d_
1B (u “)”Loo([o,ﬂ;yf‘l) |B(u U)HLW([QT];B; oy
< CHU‘ d+2—2q HU‘ d+2-2q
ra(jorpa 0 )W Nea(orsa 7))
d+1—q d+1—¢q
where C is a positive constant independent of T.
PROOF. Applying Lemma 9 with r = 2¢, p = d+dquq’ and s = %,
we get
1_2_s_1
p p d q
and from (a) of Lemma 3, we have
B < ||B
B ) = 1M oy
S Hu’ d+2—2q H’U‘ d+2—2q _ - O
ra(orpa 8 )W Nra(orpa g
d+1—q d+1—¢q

d

L4
LEMMA 16. Assume that ug € Hy  withd >3 and 1 < q < 2. Then

|0

(s 720y = Iollagzrra-son S ol s
d+1—q
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PROOF. By using (a), (c¢), and (d) of Lemma 3 in order to obtain

Ld_q .d_19 =412 S5(d+1)/9—2,2
(46) Hi —Bj ~—=Bj <= Bygiig -

Applying Lemma 1 and from the imbedding (46) we have the estimates

emuo’ dt2—2q HA@UOH - —1/q.2q
LQ"([OOO);H e ) Bigj(di1-q)
d+1—q

= [Juoll grsay/a-220 < Jfuol| garas- O

THEOREM 6. Letd > 3 and 1 < q < 2. There exists a positive constant
0q,d such that for all T > 0 and for all uy € Hg/qfl(]Rd) with div(ug) = 0
satisfying

(47) HetA’LLO‘ d+2—2q S (Sq7d,
L2 ([0, TH 2
d+1—¢q
. d+2—2q . d/ 1

NSE has a unique mild solution u € LQ‘J([O7 T, H . )ﬂC([O, T); Hy'? )

d+1—q
Denoting w = u — e®ug, then we have

. d+2—2q X é—l,q
we L*([0, T, H .0 YNnL>®([0,T;B§ ).
d+1—q

Finally, we have

[l

LQQ([O,T];HdZQZ_Qq S HUO”BQ‘;;F(ZZ‘{:?)ZL] 5 HUOHH(?/Q*M
d+1—¢q

in particular, for arbitrary ug € Hg/q_l(Rd) the inequality (47) holds when
T'(ug) is small enough; and there exists a positive constant o4 4 such that
for all ||uol| ga+1)/4-220 < g we can take T = oo.

da/(d+1-q)

PROOF. The proof of Theorem 6 is similar to the one of Theorem 3, by
dq _ d+2—2q)
d+1—q’ §= q ’

combining Theorem 1 with Lemmas 4, 8 (for r = 2¢,p =
15, and 16. OJ
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REMARK 6. The case ¢ = 2 was treated by several authors, see for

example ([7],[16], [29]). However their results are different from ours.
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