# On the Initial Value Problem for the Navier-Stokes Equations with the Initial Datum in Critical Sobolev and Besov Spaces 

By D. Q. Khai and N. M. Tri


#### Abstract

The existence of local unique mild solutions to the Navier-Stokes equations in the whole space with an initial tempered distribution datum in critical homogeneous or inhomogeneous Sobolev spaces is shown. Especially, the case when the integral-exponent is less than 2 is investigated. The global existence is also obtained for the initial datum in critical homogeneous Sobolev spaces with a norm small enough in suitable critical Besov spaces. The key lemma is to establish the bilinear estimates in these spaces, due to the point-wise decay of the kernel of the heat semigroup.


## §1. Introduction

We consider the Navier-Stokes equations (NSE) in $d$ dimensions in special setting of a viscous, homogeneous, incompressible fluid which fills the entire space and is not submitted to external forces. Thus, the equations we consider are the system:

$$
\left\{\begin{array}{l}
\partial_{t} u=\Delta u-\nabla \cdot(u \otimes u)-\nabla p \\
\operatorname{div}(u)=0 \\
u(0, x)=u_{0}
\end{array}\right.
$$

which is a condensed writing for

$$
\left\{\begin{array}{l}
1 \leq k \leq d, \quad \partial_{t} u_{k}=\Delta u_{k}-\sum_{l=1}^{d} \partial_{l}\left(u_{l} u_{k}\right)-\partial_{k} p \\
\sum_{l=1}^{d} \partial_{l} u_{l}=0 \\
1 \leq k \leq d, \quad u_{k}(0, x)=u_{0 k}
\end{array}\right.
$$

[^0]The unknown quantities are the velocity $u(t, x)=\left(u_{1}(t, x), \ldots, u_{d}(t, x)\right)$ of the fluid element at time $t$ and position $x$ and the pressure $p(t, x)$.

A translation invariant Banach space of tempered distributions $\mathcal{E}$ is called a critical space for NSE if its norm is invariant under the action of the scaling $f(.) \longrightarrow \lambda f(\lambda$.$) . One can take, for example, \mathcal{E}=L^{d}\left(\mathbb{R}^{d}\right)$ or the smaller space $\mathcal{E}=\dot{H}^{\frac{d}{2}-1}\left(\mathbb{R}^{d}\right)$. In fact, one has the chain of critical spaces given by the continuous embeddings

$$
\begin{align*}
\dot{H}^{\frac{d}{2}-1}\left(\mathbb{R}^{d}\right) & \hookrightarrow L^{d}\left(\mathbb{R}^{d}\right) \hookrightarrow \dot{B}_{q}^{\frac{d}{q}-1, \infty}\left(\mathbb{R}^{d}\right)_{(d \leq q<\infty)}  \tag{1}\\
& \hookrightarrow B M O^{-1}\left(\mathbb{R}^{d}\right) \hookrightarrow \dot{B}_{\infty}^{-1, \infty}\left(\mathbb{R}^{d}\right)
\end{align*}
$$

It is remarkable feature that NSE are well-posed in the sense of Hadarmard (existence, uniqueness and continuous dependence on data) when the initial datum is divergence-free and belong to the critical function spaces (except $\dot{B}_{\infty}^{-1, \infty}$ ) listed in $(1)$ (see $[7]$ for $\dot{H}^{\frac{d}{2}-1}\left(\mathbb{R}^{d}\right), L^{d}\left(\mathbb{R}^{d}\right)$, and $\dot{B}_{q}^{\frac{d}{q}-1, \infty}\left(\mathbb{R}^{d}\right)$, see [28] for $B M O^{-1}\left(\mathbb{R}^{d}\right)$. The recent ill-posedness result for $\left.\dot{B}_{\infty}^{-1, \infty}\left(\mathbb{R}^{d}\right)\right)$ with $d \geq 3$ was established in [3]. However, the ill-posedness in $\dot{B}_{\infty}^{-1, \infty}\left(\mathbb{R}^{d}\right)$ is still open when $d=2$.

In the 1960s, mild solutions were first constructed by Kato and Fujita ( $[20],[16])$ that are continuous in time and take values in the Sobolev space $H^{s}\left(\mathbb{R}^{d}\right),\left(s \geq \frac{d}{2}-1\right)$, say $u \in C\left([0, T] ; H^{s}\left(\mathbb{R}^{d}\right)\right)$. In 1992 , a modern treatment for mild solutions in $H^{s}\left(\mathbb{R}^{d}\right),\left(s \geq \frac{d}{2}-1\right)$ was given by Chemin [11]. In 1995, using the simplified version of the bilinear operator, Cannone proved the existence of mild solutions in $\dot{H}^{s}\left(\mathbb{R}^{d}\right),\left(s \geq \frac{d}{2}-1\right)$, see [7]. Results on the existence of mild solutions with value in $L^{q}\left(\mathbb{R}^{d}\right),(q>d)$ were established in the papers of Fabes, Jones and Rivière [14] and of Giga [17]. Concerning the initial datum in the space $L^{\infty}\left(\mathbb{R}^{d}\right)$, the existence of a mild solution was obtained by Cannone and Meyer in ([7], [10]). Moreover, in ([7], [10]), they also obtained theorems on the existence of mild solutions with value in Morrey-Campanato space $M_{2}^{q}\left(\mathbb{R}^{d}\right),(q>d)$ and Sobolev space $H_{q}^{s}\left(\mathbb{R}^{d}\right),(q<$ $d, \frac{1}{q}-\frac{s}{d}<\frac{1}{d}$ ), and in general in the case of a so-called well-suited space $\mathcal{W}$ for NSE. NSE in the Morrey-Campanato spaces were also treated by Kato [22], Taylor [33], Kozono and Yamazaki [24].

In 1981, Weissler [34] gave the first existence result of mild solutions in the half space $L^{3}\left(\mathbb{R}_{+}^{3}\right)$. Then Giga and Miyakawa [18] generalized the result to $L^{3}(\Omega)$, where $\Omega$ is an open bounded domain in $\mathbb{R}^{3}$. Finally, in

1984, Kato [21] obtained, by means of a purely analytical tool (involving only the Hölder and Young inequalities and without using any estimate of fractional powers of the Stokes operator), an existence theorem in the whole space $L^{3}\left(\mathbb{R}^{3}\right)$. In ([7], [8], [9]), Cannone showed how to simplify Kato's proof. The idea is to take advantage of the structure of the bilinear operator in its scalar form. In particular, the divergence $\nabla$ and heat $e^{t \Delta}$ operators can be treated as a single convolution operator. In 1994, Kato and Ponce [23] showed that NSE are well-posed when the initial datum belongs to the homogeneous Sobolev spaces $\dot{H}_{q}^{\frac{d}{q}-1}\left(\mathbb{R}^{d}\right),(d \leq q<\infty)$. Recently, the authors of this article have considered NSE in mixed-norm Sobolev-Lorentz spaces and Sobolev-Fourier-Lorentz spaces, see [25] and [26] respectively. In [27], we showed that the bilinear operator

$$
\begin{equation*}
B(u, v)(t)=\int_{0}^{t} e^{(t-\tau) \Delta} \mathbb{P} \nabla \cdot(u(\tau, .) \otimes v(\tau, .)) \mathrm{d} \tau \tag{2}
\end{equation*}
$$

is bicontinuous in $L^{\infty}\left([0, T] ; \dot{H}_{q}^{s}\left(\mathbb{R}^{d}\right)\right)$ with super-critical, non-negativeregular indexes $\left(0 \leq s \leq d, q>1\right.$, and $\left.\frac{s}{d}<\frac{1}{q}<\min \left\{\frac{s+1}{d}, \frac{s+d}{2 d}\right\}\right)$, and we obtain the inequality

$$
\|B(u, v)\|_{L^{\infty}\left([0, T] ; \dot{H}_{q}^{s}\right)} \leq C_{s, q, d} T^{\frac{1}{2}\left(1+s-\frac{d}{q}\right)}\|u\|_{L^{\infty}\left([0, T] ; \dot{H}_{q}^{s}\right)}\|v\|_{L^{\infty}\left([0, T] ; \dot{H}_{q}^{s}\right)}
$$

In this case existence and uniqueness theorems of local mild solutions can therefore be easily deduced.

In this paper, first, for $d \geq 3, s \geq 0, p>1$, and $r>2$ be such that $\frac{s}{d}<\frac{1}{p}<\frac{1}{2}+\frac{s}{2 d}$ and $\frac{2}{r}+\frac{d}{p}-s \leq 1$, we investigate mild solutions to NSE in the spaces $L^{r}\left([0, T] ; \dot{H}_{p}^{s}\left(\mathbb{R}^{d}\right)\right)$. We obtain the existence of local mild solutions with arbitrary initial tempered distribution datum in the Besov spaces $B_{p}^{s-\frac{2}{r}, r}$. In the case of critical indexes $\frac{2}{r}-s+\frac{d}{p}=1$, we obtain the existence of global mild solutions when the norm of the initial tempered distribution datum in the Besov space $\dot{B}_{p}^{s-\frac{2}{r}, r}$ is small enough. The particular case of the above result, when $s=0$, was presented in the book by Lemarie-Rieusset [29]. We also note that the Cauchy problem for an incompressible magneto-hydrodynamics system with positive viscosity and magnetic resistivity, in the framework of the Besov spaces was considered in [30].

Next, we present two different algorithms for constructing mild solutions in $C\left([0, T] ; \dot{H}_{q}^{\frac{d}{q}-1}\left(\mathbb{R}^{d}\right)\right)$ or $C\left([0, T] ; H_{q}^{\frac{d}{q}-1}\left(\mathbb{R}^{d}\right)\right)$ to the Cauchy problem for the Navier-Stokes equations when the initial datum belongs to the Sobolev spaces $\dot{H}_{q}^{\frac{d}{q}-1}\left(\mathbb{R}^{d}\right)\left(\right.$ or $\left.H_{q}^{\frac{d}{q}-1}\left(\mathbb{R}^{d}\right)\right)$. We use the first algorithm to consider the case when the initial datum belongs to $\dot{H}_{q}^{\frac{d}{q}-1}\left(\mathbb{R}^{d}\right)$ or $H_{q}^{\frac{d}{q}-1}\left(\mathbb{R}^{d}\right)$ with $3 \leq d \leq 4$ and $2 \leq q \leq d$. Our results, when $q=d$, are a generalization the ones obtained in [29]. With the second algorithm, we can treat the case when the initial datum belongs to the critical spaces $\dot{H}_{q}^{\frac{d}{q}-1}\left(\mathbb{R}^{d}\right)$ with $d \geq 3$ and $1<q \leq d$. The cases $q=2$ and $q=d$ were considered by many authors, see ([7], [9], [11], [12], [16], [20], [21], [29], [31]). A part of our results in the case when $2<q<d$ can also be obtained by using the interpolation method of the results between the spaces $\dot{H}^{\frac{d}{2}}$ and $L^{d}$. So we will concentrate our efforts on the case $1<q<2$. To obtain the existence theorem in $C\left([0, T] ; \dot{H}_{q}^{\frac{d}{q}-1}\left(\mathbb{R}^{d}\right)\right)$, we need to establish the continuity of the bilinear operator $B$ from

$$
L^{2 q}\left([0, T] ; \dot{H}_{\frac{d q}{q}}^{\frac{d+2-2 q}{d+1-q}}\right) \times L^{2 q}\left([0, T] ; \dot{H}_{\frac{d q}{q}}^{\frac{d+2-2 q}{d+1-q}}\right) \text { to } C\left([0, T] ; \dot{H}_{q}^{\frac{d}{q}-1}\left(\mathbb{R}^{d}\right)\right)
$$

and establishes the continuity of the bilinear operator $B$ from $L^{r}([0, T]$; $\left.H_{p}^{s}\right) \times L^{r}\left([0, T] ; H_{p}^{s}\right)$ into $L^{r}\left([0, T] ; H_{p}^{s}\right)$. In order to evaluate the norm of the bilinear operator $B$ in these spaces we use Lemma 7 which estimates the point-wise product of two functions in $\dot{H}_{q}^{s}\left(\mathbb{R}^{d}\right)$.

The paper is organized as follows. In Section 2 we recall some embedding theorems in the Triebel and Besov spaces and auxiliary lemmas. In Section 3 we present the main results of the paper.

In the sequence, for a space of functions defined on $\mathbb{R}^{d}$, say $E\left(\mathbb{R}^{d}\right)$, we will abbreviate it as $E$.

## §2. Some Imbedding Theorems

In this paper we use the definition of the Besov space $B_{q}^{s, p}$, the Triebel space $F_{q}^{s, p}$, and their homogeneous space $\dot{B}_{q}^{s, p}$ and $\dot{F}_{q}^{s, p}$ in [5, 6, 13, 32]. A known property of these spaces is the Riesz potential $\dot{\Lambda}^{s}=(-\Delta)^{s / 2}$ which is an isomorphism from $\dot{B}_{q}^{s_{0}, p}$ onto $\dot{B}_{q}^{s_{0}-s, p}$ and from $\dot{F}_{q}^{s_{0}, p}$ to $\dot{F}_{q}^{s_{0}-s, p}$, see [4].

Let $1<q<\infty$ and $s<d / q$, we define the homogeneous Sobolev space $\dot{H}_{q}^{s}$ as the closure of the space $S_{0}=\{f \in \mathcal{S}: 0 \notin \operatorname{Supp} \hat{f}\}$ in the norm $\|f\|_{\dot{H}_{q}^{s}}=\left\|\dot{\Lambda}^{s} f\right\|_{q}$. Let us recall the following lemmas.

LEMMA 1. Let $1 \leq p, q \leq \infty$ and $s \in \mathbb{R}$.
(a) If $s<1$ then the two quantities

$$
\left(\int_{0}^{\infty}\left(t^{-\frac{s}{2}}\left\|e^{t \Delta} t^{\frac{1}{2}} \dot{\Lambda} f\right\|_{q}\right)^{p} \frac{\mathrm{~d} t}{t}\right)^{1 / p} \text { and }\|f\|_{\dot{B}_{q}^{s, p}} \text { are equivalent. }
$$

(b) If $s<0$ then the two quantities

$$
\left(\int_{0}^{\infty}\left(t^{-\frac{s}{2}}\left\|e^{t \Delta} f\right\|_{q}\right)^{p} \frac{\mathrm{~d} t}{t}\right)^{1 / p} \text { and }\|f\|_{\dot{B}_{q}^{s, p}} \text { are equivalent. }
$$

Proof. See ([15], Proposition 1, p. 181 and Proposition 3, p. 182), or see ([29], Theorem 5.4, p. 45).

The following lemma is a generalization of the above lemma.
Lemma 2. Let $1 \leq p, q \leq \infty, \alpha \geq 0$, and $s<\alpha$. Then the two quantities

$$
\left(\int_{0}^{\infty}\left(t^{-\frac{s}{2}}\left\|e^{t \Delta} t^{\frac{\alpha}{2}} \dot{\Lambda}^{\alpha} f\right\|_{L^{q}}\right)^{p} \frac{\mathrm{~d} t}{t}\right)^{\frac{1}{p}} \text { and }\|f\|_{\dot{B}_{q}^{s, p}} \text { are equivalent. }
$$

Proof. Note that $\dot{\Lambda}^{s_{0}}$ is an isomorphism from $\dot{B}_{q}^{s, p}$ to $\dot{B}_{q}^{s-s_{0}, p}$, then we can easily prove the lemma.

Lemma 3. For $1 \leq p, q, r \leq \infty$ and $s \in \mathbb{R}$, we have the following embedding mappings.
(a) If $1<q \leq 2$ then

$$
\dot{B}_{q}^{s, q} \hookrightarrow \dot{H}_{q}^{s} \hookrightarrow \dot{B}_{q}^{s, 2}, B_{q}^{s, q} \hookrightarrow H_{q}^{s} \hookrightarrow B_{q}^{s, 2}
$$

(b) If $2 \leq q<\infty$ then

$$
\dot{B}_{q}^{s, 2} \hookrightarrow \dot{H}_{q}^{s} \hookrightarrow \dot{B}_{q}^{s, q}, B_{q}^{s, 2} \hookrightarrow H_{q}^{s} \hookrightarrow B_{q}^{s, q}
$$

(c) If $1 \leq p_{1}<p_{2} \leq \infty$ then

$$
\dot{B}_{q}^{s, p_{1}} \hookrightarrow \dot{B}_{q}^{s, p_{2}}, B_{q}^{s, p_{1}} \hookrightarrow B_{q}^{s, p_{2}}, \dot{F}_{q}^{s, p_{1}} \hookrightarrow \dot{F}_{q}^{s, p_{2}}, F_{q}^{s, p_{1}} \hookrightarrow F_{q}^{s, p_{2}} .
$$

(d) If $s_{1}>s_{2}, 1 \leq q_{1}, q_{2} \leq \infty$, and $s_{1}-\frac{d}{q_{1}}=s_{2}-\frac{d}{q_{2}}$ then

$$
\dot{B}_{q_{1}}^{s_{1}, p} \hookrightarrow \dot{B}_{q_{2}}^{s_{2}, p}, B_{q_{1}}^{s_{1}, p} \hookrightarrow B_{q_{2}}^{s_{2}, p}, \dot{F}_{q_{1}}^{s_{1}, p} \hookrightarrow \dot{F}_{q_{2}}^{s_{2}, r}, F_{q_{1}}^{s_{1}, p} \hookrightarrow F_{q_{2}}^{s_{2}, r} .
$$

(e) If $p \leq q$ then

$$
B_{q}^{s, p} \hookrightarrow F_{q}^{s, p}, \quad \dot{B}_{q}^{s, p} \hookrightarrow \dot{F}_{q}^{s, p}
$$

(f) If $q \leq p$ then

$$
F_{q}^{s, p} \hookrightarrow B_{q}^{s, p}, \quad \dot{F}_{q}^{s, p} \hookrightarrow \dot{B}_{q}^{s, p}
$$

(g)

$$
F_{q}^{s, q}=B_{q}^{s, q}, \quad \dot{F}_{q}^{s, q}=\dot{B}_{q}^{s, q}
$$

(h) If $1<q<\infty$

$$
H_{q}^{s}=F_{q}^{s, 2}, \dot{H}_{q}^{s}=\dot{F}_{q}^{s, 2}
$$

Proof. For the proof of (a) and (b) see Theorem 6.4.4 ([2], p. 152). For the proof of (c) see [1] and [2]. For the proof of (d) see Theorem 6.5.1 ([2], p. 153) and [4]. For the proof of (e), (f), (g), and (h) see [1] and [4].

Lemma 4. Let $p \geq 1$ and $s \in \mathbb{R}$. Then the following statements hold (1) Assume that $u_{0} \in H_{p}^{s}$. Then

$$
e^{t \Delta} u_{0} \in L^{\infty}\left([0, \infty) ; H_{p}^{s}\right) \text { and }\left\|e^{t \Delta} u_{0}\right\|_{L^{\infty}\left([0, \infty) ; H_{p}^{s}\right)} \leq\left\|u_{0}\right\|_{H_{p}^{s}}
$$

(2) Assume that $u_{0} \in \dot{H}_{p}^{s}$. Then

$$
e^{t \Delta} u_{0} \in L^{\infty}\left([0, \infty) ; \dot{H}_{p}^{s}\right) \text { and }\left\|e^{t \Delta} u_{0}\right\|_{L^{\infty}\left([0, \infty) ; \dot{H}_{p}^{s}\right)} \leq\left\|u_{0}\right\|_{\dot{H}_{p}^{s}}
$$

Proof. (1) We have

$$
\begin{gathered}
\left\|e^{t \Delta} u_{0}\right\|_{H_{p}^{s}}=\left\|e^{t \Delta}(I d-\Delta)^{s / 2} u_{0}\right\|_{L^{p}}= \\
\frac{1}{(4 \pi t)^{d / 2}}\left\|\int_{\mathbb{R}^{d}} e^{\frac{-|\xi|^{2}}{4 t}}\left((I d-\Delta)^{s / 2} u_{0}\right)(.-\xi) \mathrm{d} \xi\right\|_{L^{p}} \\
\leq \frac{1}{(4 \pi t)^{d / 2}} \int_{\mathbb{R}^{d}} e^{\frac{-\left.|\xi|\right|^{2}}{4 t}}\left\|\left((I d-\Delta)^{s / 2} u_{0}\right)(.-\xi)\right\|_{L^{p}} \mathrm{~d} \xi \\
=\frac{1}{(4 \pi t)^{d / 2}} \int_{\mathbb{R}^{d}} e^{\frac{-|\xi|^{2}}{4 t}}\left\|u_{0}\right\|_{H_{p}^{s}} \mathrm{~d} \xi=\left\|u_{0}\right\|_{H_{p}^{s}}, t \geq 0 .
\end{gathered}
$$

(2) The proof of (2) is similar to the proof of (1).

Theorem 1. Let $E$ be an Banach space, and let $B: E \times E \rightarrow E$ be a continuous bilinear form such that there exists $\eta>0$ so that

$$
\|B(x, y)\| \leq \eta\|x\|\|y\|
$$

for all $x$ and $y$ in $E$. Then for any fixed $y \in E$ such that $\|y\| \leq \frac{1}{4 \eta}$, the equation $x=y-B(x, x)$ has a unique solution $\bar{x} \in E$ satisfying $\|\bar{x}\| \leq \frac{1}{2 \eta}$.

Proof. See Theorem 22.4 ([29], p. 227).
The following lemmas, in which we estimate the point-wise product of two functions in $\dot{H}_{p}^{s}\left(\mathbb{R}^{d}\right)$ is more general than the Hölder inequality. In the case when $s=0, p \geq 2$, we get back the usual Hölder inequality.

Lemma 5. Assume that

$$
1<p, q<d \text { and } \frac{1}{p}+\frac{1}{q}<1+\frac{1}{d}
$$

Then there exists a constant $C$ independent of $u, v$ such that the following inequality holds

$$
\|u v\|_{\dot{H}_{r}^{1}} \leq C\|u\|_{\dot{H}_{p}^{1}}\|v\|_{\dot{H}_{q}^{1}}, \forall u \in \dot{H}_{p}^{1}, v \in \dot{H}_{q}^{1}
$$

where $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}-\frac{1}{d}$. In the subsequence the above kinds of conclusions will be shorten as

$$
\|u v\|_{\dot{H}_{r}^{1}} \lesssim\|u\|_{\dot{H}_{p}^{1}}\|v\|_{\dot{H}_{q}^{1}} .
$$

Proof. By applying the Leibniz formula for the derivatives of a product of two functions, we have

$$
\|u v\|_{\dot{H}_{r}^{1}} \simeq \sum_{|\alpha|=1}\left\|\partial^{\alpha}(u v)\right\|_{L^{r}} \leq \sum_{|\alpha|=1}\left\|\left(\partial^{\alpha} u\right) v\right\|_{L^{r}}+\sum_{|\alpha|=1}\left\|u\left(\partial^{\alpha} v\right)\right\|_{L^{r}} .
$$

From the Hölder and Sobolev inequalities it follows that

$$
\sum_{|\alpha|=1}\left\|\left(\partial^{\alpha} u\right) v\right\|_{L^{r}} \leq \sum_{|\alpha|=1}\left\|\partial^{\alpha} u\right\|_{L^{p}}\|v\|_{L^{q_{1}}} \lesssim\|u\|_{\dot{H}_{p}^{1}}\|v\|_{\dot{H}_{q}^{1}},
$$

where

$$
\frac{1}{q_{1}}=\frac{1}{q}-\frac{1}{d} .
$$

Similar to the above proof, we have

$$
\sum_{|\alpha|=1}\left\|u\left(\partial^{\alpha} v\right)\right\|_{L^{r}} \lesssim\|u\|_{\dot{H}_{p}^{1}}\|v\|_{\dot{H}_{q}^{1}} .
$$

This gives the desired result

$$
\|u v\|_{\dot{H}_{r}^{1}} \lesssim\|u\|_{\dot{H}_{p}^{1}}\|v\|_{\dot{H}_{q}^{1}} . \square
$$

Lemma 6. Assume that

$$
\begin{equation*}
0 \leq s \leq 1, \frac{1}{p}>\frac{s}{d}, \frac{1}{q}>\frac{s}{d} \text {, and } \frac{1}{p}+\frac{1}{q}<1+\frac{s}{d} . \tag{3}
\end{equation*}
$$

Then the following inequality holds

$$
\|u v\|_{\dot{H}_{r}^{s}} \lesssim\|u\|_{\dot{H}_{p}^{s}}\|v\|_{\dot{H}_{q}^{s}}, \forall u \in \dot{H}_{p}^{s}, v \in \dot{H}_{q}^{s},
$$

where $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}-\frac{s}{d}$.
Proof. It is not difficult to show that if $p, q$, and $s$ satisfy (3) then there exist numbers $p_{1}, p_{2}, q_{1}, q_{2} \in(1,+\infty)$ (may be many of them) such that

$$
\begin{gathered}
\frac{1}{p}=\frac{1-s}{p_{1}}+\frac{s}{p_{2}}, \frac{1}{q}=\frac{1-s}{q_{1}}+\frac{s}{q_{2}}, \frac{1}{p_{1}}+\frac{1}{q_{1}}<1, \\
p_{2}<d, q_{2}<d, \text { and } \frac{1}{p_{2}}+\frac{1}{q_{2}}<1+\frac{1}{d}
\end{gathered}
$$

Setting

$$
\frac{1}{r_{1}}=\frac{1}{p_{1}}+\frac{1}{q_{1}}, \frac{1}{r_{2}}=\frac{1}{p_{2}}+\frac{1}{q_{2}}-\frac{1}{d},
$$

we have

$$
\frac{1}{r}=\frac{1-s}{r_{1}}+\frac{s}{r_{2}}
$$

Therefore, applying Theorem 6.4.5 (p. 152) of [2] (see also [19] for $\dot{H}_{p}^{s}$ ), we get

$$
\dot{H}_{p}^{s}=\left[L^{p_{1}}, \dot{H}_{p_{2}}^{1}\right]_{s}, \dot{H}_{q}^{s}=\left[L^{q_{1}}, \dot{H}_{q_{2}}^{1}\right]_{s}, \dot{H}_{r}^{s}=\left[L^{r_{1}}, \dot{H}_{r_{2}}^{1}\right]_{s}
$$

Applying the Hölder inequality and Lemma 5 in order to obtain

$$
\begin{aligned}
& \|u v\|_{L^{r_{1}}} \lesssim\|u\|_{L^{p_{1}}}\|v\|_{L^{q_{1}}}, \forall u \in L^{p_{1}}, v \in L^{q_{1}} \\
& \|u v\|_{\dot{H}_{r_{2}}^{1}} \lesssim\|u\|_{\dot{H}_{p_{2}}^{1}}\|v\|_{\dot{H}_{q_{2}}^{1}}, \forall u \in \dot{H}_{p_{2}}^{1}, v \in \dot{H}_{q_{2}}^{1}
\end{aligned}
$$

From Theorem 4.4.1 (p. 96) of [2] we get

$$
\|u v\|_{\dot{H}_{r}^{s}} \lesssim\|u\|_{\dot{H}_{p}^{s}}\|v\|_{\dot{H}_{q}^{s}} \square
$$

Lemma 7. Assume that

$$
\begin{equation*}
0 \leq s<d, \frac{s}{d}<\frac{1}{p}, \frac{s}{d}<\frac{1}{q}, \text { and } \frac{1}{p}+\frac{1}{q}<1+\frac{s}{d} . \tag{4}
\end{equation*}
$$

Then we have the inequality

$$
\|u v\|_{\dot{H}_{r}^{s}} \lesssim\|u\|_{\dot{H}_{p}^{s}}\|v\|_{\dot{H}_{q}^{s}}, \forall u \in \dot{H}_{p}^{s}, v \in \dot{H}_{q}^{s},
$$

where $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}-\frac{s}{d}$.
Proof. Denote by [ $s$ ] the integer part of $s$ and by $\{s\}$ the fraction part of $s$. Using formula for the derivatives of a product of two functions, we have

$$
\begin{gathered}
\|u v\|_{\dot{H}_{r}^{s}}=\left\|\dot{\Lambda}^{s}(u v)\right\|_{L^{r}}=\left\|\dot{\Lambda}^{\{s\}}(u v)\right\|_{\dot{H}_{r}^{[s]}} \simeq \\
\sum_{|\alpha|=[s]}\left\|\partial^{\alpha} \dot{\Lambda}^{\{s\}}(u v)\right\|_{L^{r}}=\sum_{|\alpha|=[s]}\left\|\dot{\Lambda}^{\{s\}} \partial^{\alpha}(u v)\right\|_{L^{r}} \\
=\sum_{|\alpha|=[s]}\left\|\partial^{\alpha}(u v)\right\|_{\dot{H}_{r}^{\{s\}}} \lesssim \sum_{|\gamma|+|\beta|=[s]}\left\|\partial^{\gamma} u \partial^{\beta} v\right\|_{\dot{H}_{r}^{\{s\}}} .
\end{gathered}
$$

Set

$$
\frac{1}{\tilde{p}}=\frac{1}{p}-\frac{s-|\gamma|-\{s\}}{d}, \frac{1}{\tilde{q}}=\frac{1}{q}-\frac{s-|\beta|-\{s\}}{d} .
$$

Applying Lemma 6 and the Sobolev inequality in order to obtain

$$
\begin{gathered}
\left\|\partial^{\gamma} u \partial^{\beta} v\right\|_{\dot{H}_{r}^{\{s\}}} \lesssim\left\|\partial^{\gamma} u\right\|_{\dot{H}_{\bar{D}}^{\{s\}}}\left\|\partial^{\beta} v\right\|_{\dot{H}_{\tilde{q}}^{\{s\}}} \\
\lesssim\|u\|_{\dot{H}_{\bar{p}}^{[|\gamma|+\{s\}}}\|v\|_{\dot{\bar{q}}_{\dot{q}}^{|\beta|+\{s\}}} \lesssim\|u\|_{\dot{H}_{\bar{p}}}\|v\|_{\dot{H}_{\dot{q}}^{s}}
\end{gathered}
$$

This gives the desired result

$$
\|u v\|_{\dot{H}_{r}^{s}} \lesssim\|u\|_{\dot{H}_{p}^{s}}\|v\|_{\dot{H}_{q}^{s}} .
$$

Remark 1. Lemmas 5, 6, and 7 are still valid when the homogeneous space $\dot{H}_{p}^{s}$ is replaced by the inhomogeneous space $H_{p}^{s}$.

## §3. The Main Results

For $T>0$, we say that $u$ is a mild solution of NSE on $[0, T]$ corresponding to a divergence-free initial data $u_{0}$ when $u$ satisfies the integral equation

$$
u=e^{t \Delta} u_{0}-\int_{0}^{t} e^{(t-\tau) \Delta} \mathbb{P} \nabla \cdot(u(\tau, .) \otimes u(\tau, .)) \mathrm{d} \tau
$$

Above we have used the following notation: For a tensor $F=\left(F_{i j}\right)$ we define the vector $\nabla . F$ by $(\nabla . F)_{i}=\sum_{i=1}^{d} \partial_{j} F_{i j}$ and for vectors $u$ and $v$, we define their tensor product $(u \otimes v)_{i j}=u_{i} v_{j}$. The operator $\mathbb{P}$ is the Helmholtz-Leray projection onto the divergence-free fields

$$
\begin{equation*}
(\mathbb{P} f)_{j}=f_{j}+\sum_{1 \leq k \leq d} R_{j} R_{k} f_{k}, \tag{5}
\end{equation*}
$$

where $R_{j}$ is the Riesz transforms defined on a scalar function $g$ as

$$
\widehat{R_{j} g}(\xi)=\frac{i \xi_{j}}{|\xi|} \hat{g}(\xi) .
$$

The heat kernel $e^{t \Delta}$ is defined as

$$
e^{t \Delta} u(x)=\left((4 \pi t)^{-d / 2} e^{-|\cdot|^{2} / 4 t} * u\right)(x) .
$$

If $X$ is a normed space and $u=\left(u_{1}, u_{2}, \ldots, u_{d}\right), u_{i} \in X, 1 \leq i \leq d$, then we write

$$
u \in X,\|u\|_{X}=\left(\sum_{i=1}^{d}\left\|u_{i}\right\|_{X}^{2}\right)^{1 / 2}
$$

### 3.1. On the continuity and regularity of the bilinear operator

In this subsection a particular attention will be devoted to the study of the bilinear operator $B(u, v)(t)$ defined by (2).

Lemma 8. Let

$$
\begin{equation*}
d \geq 3, s \geq 0, p>1, r>2, \text { and } T>0 \tag{6}
\end{equation*}
$$

be such that

$$
\begin{equation*}
\frac{s}{d}<\frac{1}{p}<\frac{1}{2}+\frac{s}{2 d} \text { and } \frac{2}{r}+\frac{d}{p}-s \leq 1 \tag{7}
\end{equation*}
$$

Then the bilinear operator $B(u, v)(t)$ is continuous from

$$
L^{r}\left([0, T] ; H_{p}^{s}\right) \times L^{r}\left([0, T] ; H_{p}^{s}\right)
$$

into

$$
L^{r}\left([0, T] ; H_{p}^{s}\right)
$$

and the following inequality holds

$$
\begin{equation*}
\|B(u, v)\|_{L^{r}\left([0, T] ; H_{p}^{s}\right)} \leq C T^{\frac{1}{2}\left(1+s-\frac{2}{r}-\frac{d}{p}\right)}\|u\|_{L^{r}\left([0, T] ; H_{p}^{s}\right)}\|v\|_{L^{r}\left([0, T] ; H_{p}^{s}\right)} \tag{8}
\end{equation*}
$$

where $C$ is a positive constant independent of $T$.
Proof. We have

$$
\begin{gather*}
\|B(u, v)(t)\|_{H_{p}^{s}} \leq \int_{0}^{t}\left\|e^{(t-\tau) \Delta} \mathbb{P} \nabla \cdot(u(\tau, .) \otimes v(\tau, .))\right\|_{H_{p}^{s}} \mathrm{~d} \tau=  \tag{9}\\
\int_{0}^{t}\left\|e^{(t-\tau) \Delta} \mathbb{P} \nabla \cdot(I d-\Delta)^{s / 2}(u(\tau, .) \otimes v(\tau, .))\right\|_{L^{p}} \mathrm{~d} \tau
\end{gather*}
$$

where the operator $(I d-\Delta)^{\frac{s}{2}}$ is defined via the Fourier transform as

$$
\left((I d-\Delta)^{\frac{s}{2}} g\right)^{\wedge}(\xi)=\left(1+|\xi|^{2}\right)^{\frac{s}{2}} \hat{g}(\xi)
$$

We have

$$
\begin{gathered}
\left(e^{(t-\tau) \Delta} \mathbb{P} \nabla \cdot(I d-\Delta)^{s / 2}(u(\tau, .) \otimes v(\tau, .))\right)_{j}= \\
e^{(t-\tau) \Delta} \sum_{l, k=1}^{d}\left(\delta_{j k}-\frac{\partial_{j} \partial_{k}}{\Delta}\right) \partial_{l}(I d-\Delta)^{s / 2}\left(u_{l}(\tau, .) v_{k}(\tau, .)\right)
\end{gathered}
$$

From the property of the Fourier transform we have

$$
\begin{gathered}
\left(e^{(t-\tau) \Delta} \mathbb{P} \nabla \cdot(I d-\Delta)^{s / 2}(u(\tau, .) \otimes v(\tau, .))\right)_{j}^{\wedge}(\xi)= \\
e^{-(t-\tau)|\xi|^{2}} \sum_{l, k=1}^{d}\left(\delta_{j k}-\frac{\xi_{j} \xi_{k}}{|\xi|^{2}}\right)\left(i \xi_{l}\right)\left((I d-\Delta)^{s / 2}\left(u_{l}(\tau, .) v_{k}(\tau, .)\right)\right)^{\wedge}(\xi)
\end{gathered}
$$

and therefore

$$
\begin{gather*}
\left(e^{(t-\tau) \Delta} \mathbb{P} \nabla \cdot(I d-\Delta)^{s / 2}(u(\tau, .) \otimes v(\tau, .))\right)_{j}=  \tag{10}\\
\frac{1}{(t-\tau)^{\frac{d+1}{2}}} \sum_{l, k=1}^{d} K_{l, k, j}\left(\frac{\cdot}{\sqrt{t-\tau}}\right) *\left((I d-\Delta)^{s / 2}\left(u_{l}(\tau, .) v_{k}(\tau, .)\right)\right)
\end{gather*}
$$

where

$$
\widehat{K_{l, k, j}}(\xi)=\frac{1}{(2 \pi)^{d / 2}} \cdot e^{-|\xi|^{2}}\left(\delta_{j k}-\frac{\xi_{j} \xi_{k}}{|\xi|^{2}}\right)\left(i \xi_{l}\right)
$$

Applying Proposition 11.1 ([29], p. 107) with $|\alpha|=1$ we obtain

$$
\left|K_{l, k, j}(x)\right| \lesssim \frac{1}{(1+|x|)^{d+1}}
$$

Thus, the tensor $K(x)=\left\{K_{l, k, j}(x)\right\}$ satisfies

$$
\begin{equation*}
|K(x)| \lesssim \frac{1}{(1+|x|)^{d+1}} \tag{11}
\end{equation*}
$$

So, we can rewrite the equality (10) in the tensor form

$$
\begin{gathered}
e^{(t-\tau) \Delta} \mathbb{P} \nabla \cdot(I d-\Delta)^{s / 2}(u(\tau, .) \otimes v(\tau, .))= \\
\frac{1}{(t-\tau)^{\frac{d+1}{2}}} K\left(\frac{\cdot}{\sqrt{t-\tau}}\right) *\left((I d-\Delta)^{s / 2}(u(\tau, .) \otimes v(\tau, .))\right)
\end{gathered}
$$

Set

$$
\begin{equation*}
\frac{1}{\tilde{p}}=\frac{2}{p}-\frac{s}{d}, \frac{1}{h}=\frac{s}{d}-\frac{1}{p}+1 \tag{12}
\end{equation*}
$$

Note that from the inequalities (6) and (7), we can check that the following relations are satisfied

$$
1<h, \tilde{p}<\infty \text { and } \frac{1}{p}+1=\frac{1}{h}+\frac{1}{\tilde{p}}
$$

Applying the Young inequality for convolution we obtain

$$
\begin{gather*}
\left\|e^{(t-\tau) \Delta} \mathbb{P} \nabla \cdot(I d-\Delta)^{s / 2}(u(\tau, .) \otimes v(\tau, .))\right\|_{L^{p}} \lesssim  \tag{13}\\
\frac{1}{(t-\tau)^{\frac{d+1}{2}}}\left\|K\left(\frac{\cdot}{\sqrt{t-\tau}}\right)\right\|_{L^{h}}\left\|(I d-\Delta)^{s / 2}(u(\tau, .) \otimes v(\tau, .))\right\|_{L^{\tilde{p}}}
\end{gather*}
$$

## Applying Lemma 7

$$
\begin{gather*}
\left\|(I d-\Delta)^{s / 2}(u(\tau, .) \otimes v(\tau, .))\right\|_{L^{\tilde{p}}}=\|u(\tau, .) \otimes v(\tau, .)\|_{H_{\tilde{p}}^{s}}  \tag{14}\\
\lesssim\|u(\tau, .)\|_{H_{p}^{s}}\|v(\tau, .)\|_{H_{p}^{s}}
\end{gather*}
$$

From the estimate (11) and the equality (12), we have

$$
\begin{equation*}
\left\|K\left(\frac{\cdot}{\sqrt{t-\tau}}\right)\right\|_{L^{h}}=(t-\tau)^{\frac{d}{2 h}}\|K\|_{L^{h}} \simeq(t-\tau)^{\frac{s}{2}-\frac{d}{2 p}+\frac{d}{2}} . \tag{15}
\end{equation*}
$$

The inequalities (13), (14), and (15) imply that

$$
\begin{gather*}
\left\|e^{(t-\tau) \Delta} \mathbb{P} \nabla \cdot(I d-\Delta)^{s / 2}(u(\tau, .) \otimes v(\tau, .))\right\|_{L^{p}} \lesssim  \tag{16}\\
\quad(t-\tau)^{\frac{s}{2}-\frac{d}{2 p}-\frac{1}{2}}\|u(\tau, .)\|_{H_{p}^{s}}\|v(\tau, .)\|_{H_{p}^{s}}
\end{gather*}
$$

From the inequalities (9) and (16), we get

$$
\|B(u, v)(t)\|_{H_{p}^{s}} \lesssim \int_{0}^{t}(t-\tau)^{\frac{s}{2}-\frac{d}{2 p}-\frac{1}{2}}\|u(\tau, .)\|_{H_{p}^{s}}\|v(\tau, .)\|_{H_{p}^{s}} \mathrm{~d} \tau
$$

Applying of Proposition 2.4 (c) in ([29], p. 20) for the convolution in the Lorentz spaces, we have the following estimates

$$
\begin{gather*}
\left\|\|B(u, v)(t)\|_{H_{p}^{s}}\right\|_{L_{t}^{r}(0, T)}=\| \| B(u, v)(t)\left\|_{H_{p}^{s}}\right\|_{L_{t}^{r, r}(0, T)}  \tag{17}\\
\leq\| \| B(u, v)(t)\left\|_{H_{p}^{s}}\right\|_{L_{t}^{r, \frac{r}{2}}(0, T)} \lesssim \\
\left\|1_{[0, T]} t^{\frac{s}{2}-\frac{d}{2 p}-\frac{1}{2}}\right\|_{L^{r^{\prime}, \infty}}\| \| u(t, .)\left\|_{H_{p}^{s}}\right\| v(t, .)\left\|_{H_{p}^{s}}\right\|_{L_{t}^{\frac{r}{2}, \frac{r}{2}}(0, T)},
\end{gather*}
$$

where $\frac{1}{r^{\prime}}+\frac{1}{r}=1$ and $1_{[0, T]}$ is the indicator function of set $[0, T]$ on $\mathbb{R}$.
By applying the Hölder inequality we get

$$
\begin{gather*}
\left\|\|u(t, .)\|_{H_{p}^{s}}\right\| v(t, .)\left\|_{H_{p}^{s}}\right\|_{L_{t}^{\frac{r}{2}, \frac{r}{2}(0, T)}}=\| \| u(t, .)\left\|_{H_{p}^{s}}\right\| v(t, .)\left\|_{H_{p}^{s}}\right\|_{L_{t}^{\frac{r}{2}}(0, T)}  \tag{18}\\
\leq\| \| u(t, .)\left\|_{H_{p}^{s}}\right\|_{L_{t}^{r}(0, T)}\| \| v(t, .)\left\|_{H_{p}^{s}}\right\|_{L_{t}^{r}(0, T)}
\end{gather*}
$$

Note that

$$
\begin{equation*}
\left\|1_{[0, T]} t^{\frac{s}{2}-\frac{d}{2 p}-\frac{1}{2}}\right\|_{L^{r^{\prime}, \infty}} \simeq T^{\frac{1}{2}\left(1+s-\frac{2}{r}-\frac{d}{p}\right)} . \tag{19}
\end{equation*}
$$

Therefore the inequality (8) can be deduced from the inequalities (17), (18), and (19).

REmark 2. Lemma 8 is still valid when the inhomogeneous space $H_{p}^{s}$ is replaced by the homogeneous space $\dot{H}_{p}^{s}$.

Lemma 9. Let

$$
d \geq 3,0 \leq s<d, p>1, r>2, \text { and } T>0
$$

be such that

$$
\frac{1}{p}<\frac{1}{2}+\frac{s}{2 d}, \frac{2}{p} \geq \frac{s+1}{d}, \text { and } \frac{2}{r}+\frac{d}{p}-s=1
$$

Then the bilinear operator $B(u, v)(t)$ is continuous from

$$
L^{r}\left([0, T] ; \dot{H}_{p}^{s}\right) \times L^{r}\left([0, T] ; \dot{H}_{p}^{s}\right)
$$

into

$$
L^{\infty}\left([0, T] ; \dot{B}_{\tilde{p}}^{\frac{d}{\tilde{p}}-1, \frac{r}{2}}\right)
$$

where

$$
\frac{1}{\tilde{p}}=\frac{2}{p}-\frac{s}{d}
$$

and we have the inequality

$$
\begin{equation*}
\|B(u, v)\|_{L^{\infty}\left([0, T] ; \dot{B}_{\tilde{p}}^{\frac{d}{p}-1, \frac{r}{2}}\right)} \leq C\|u\|_{L^{r}\left([0, T] ; \dot{H}_{p}^{s}\right)}\|v\|_{L^{r}\left([0, T] ; \dot{H}_{p}^{s}\right)} \tag{20}
\end{equation*}
$$

where $C$ is a positive constant independent of $T$.
Proof. To prove this lemma by duality (in the x -variable), (see Proposition 3.9 in ([29], p. 29)), let us consider an arbitrary test function $h(x) \in$ $\mathcal{S}\left(\mathbb{R}^{d}\right)$ and evaluate the quantity

$$
\begin{equation*}
I_{t}=\langle B(u, v)(t), h\rangle=\int_{\mathbb{R}^{d}}(B(u, v)(t))(x) h(x) \mathrm{d} x \tag{21}
\end{equation*}
$$

We have

$$
\begin{gather*}
\langle B(u, v)(t), h\rangle=\int_{0}^{t}\left\langle e^{(t-\tau) \Delta} \mathbb{P} \nabla \cdot(u(\tau, .) \otimes v(\tau, .)), h\right\rangle \mathrm{d} \tau=  \tag{22}\\
\int_{0}^{t}\left\langle e^{(t-\tau) \Delta} \dot{\Lambda} \mathbb{P} \frac{\nabla}{\dot{\Lambda}} \cdot(u(\tau, .) \otimes v(\tau, .)), h\right\rangle \mathrm{d} \tau= \\
\int_{0}^{t}\left\langle\mathbb{P} \frac{\nabla}{\dot{\Lambda}} \cdot(u(\tau, .) \otimes v(\tau, .)), e^{(t-\tau) \Delta} \dot{\Lambda} h\right\rangle \mathrm{d} \tau= \\
\int_{0}^{t}\left\langle\mathbb{P} \frac{\nabla}{\dot{\Lambda}} \cdot \dot{\Lambda}^{s}(u(\tau, .) \otimes v(\tau, .)), e^{(t-\tau) \Delta} \dot{\Lambda} \dot{\Lambda}^{-s} h\right\rangle \mathrm{d} \tau
\end{gather*}
$$

By applying the Hölder inequality in the x-variable, from the equality (22) and the fact that (see [29])

$$
\mathbb{P} \text { and } \frac{\nabla}{\dot{\Lambda}} \text { are continuous from } L^{p} \text { into } L^{p}, 1<p<\infty
$$

we get

$$
\begin{align*}
& \left|I_{t}\right| \leq \int_{0}^{t}\left\|\mathbb{P} \frac{\nabla}{\dot{\Lambda}} \cdot \dot{\Lambda}^{s}(u(\tau, .) \otimes v(\tau, .))\right\|_{L^{\tilde{p}}}\left\|e^{(t-\tau) \Delta} \dot{\Lambda} \dot{\Lambda}^{-s} h\right\|_{L^{\tilde{p}^{\prime}}} \mathrm{d} \tau  \tag{23}\\
& \quad \lesssim \int_{0}^{t}\left\|\dot{\Lambda}^{s}(u(\tau, .) \otimes v(\tau, .))\right\|_{L^{\tilde{p}}}\left\|e^{(t-\tau) \Delta} \dot{\Lambda} \dot{\Lambda}^{-s} h\right\|_{L^{\tilde{p}^{\prime}}} \mathrm{d} \tau
\end{align*}
$$

where

$$
\frac{1}{\tilde{p}}+\frac{1}{\tilde{p}^{\prime}}=1
$$

Applying Lemma 7, we have

$$
\begin{align*}
\| \dot{\Lambda}^{s}(u(\tau, .) & \otimes v(\tau, .))\left\|_{L^{\tilde{p}}}=\right\| u(\tau, .) \otimes v(\tau, .) \|_{\dot{H}_{\tilde{p}}^{s}}  \tag{24}\\
& \lesssim\|u(\tau, .)\|_{\dot{H}_{p}^{s}}\|v(\tau, .)\|_{\dot{H}_{p}^{s}}
\end{align*}
$$

From the inequalities (23) and (24), applying the Hölder inequality in the t-variable, we deduce that

$$
\begin{align*}
& \text { 25) }\left|I_{t}\right| \lesssim \int_{0}^{t}\|u(\tau, .)\|_{\dot{H}_{p}^{s}}\|v(\tau, .)\|_{\dot{H}_{p}^{s}}\left\|e^{(t-\tau) \Delta} \dot{\Lambda} \dot{\Lambda}^{-s} h\right\|_{L^{\tilde{p}^{\prime}}} \mathrm{d} \tau \leq  \tag{25}\\
& \left(\int_{0}^{t}\left(\|u(\tau, .)\|_{\dot{H}_{p}^{s}}\|v(\tau, .)\|_{\dot{H}_{p}^{s}}\right)^{\frac{r}{2}} \mathrm{~d} \tau\right)^{\frac{2}{r}}\left(\int_{0}^{t}\left(\left\|e^{(t-\tau) \Delta} \dot{\Lambda} \dot{\Lambda}^{-s} h\right\|_{L^{\tilde{p}^{\prime}}}\right)^{\frac{r}{r-2}} d \tau\right)^{\frac{r-2}{r}} \\
& \quad \leq\|u\|_{L^{r}\left([0, T] ; \dot{H}_{p}^{s}\right)}\|v\|_{L^{r}\left([0, T] ; \dot{H}_{p}^{s}\right)}\left(\int_{0}^{t}\left(\left\|e^{(t-\tau) \Delta} \dot{\Lambda} \dot{\Lambda}^{-s} h\right\|_{L^{\tilde{p}^{\prime}}}\right)^{\frac{r}{r-2}} \mathrm{~d} \tau\right)^{\frac{r-2}{r}}
\end{align*}
$$

From Lemma 1 and note that $\dot{\Lambda}^{s_{0}}$ is an isomorphism from $\dot{B}_{q}^{s, p}$ to $\dot{B}_{q}^{s-s_{0}, p}$ (see [4]), we have the following estimates

$$
\begin{gather*}
\left(\int_{0}^{t}\left(\left\|e^{(t-\tau) \Delta} \dot{\Lambda} \dot{\Lambda}^{-s} h\right\|_{L^{\tilde{p}^{\prime}}}\right)^{\frac{r}{r-2}} \mathrm{~d} \tau\right)^{\frac{r-2}{r}}  \tag{26}\\
\leq\left(\int_{0}^{\infty}\left(\left\|e^{t \Delta} \dot{\Lambda} \dot{\Lambda}^{-s} h\right\|_{L^{\tilde{p}^{\prime}}}\right)^{\frac{r}{r-2}} \mathrm{~d} t\right)^{\frac{r-2}{r}} \\
=\left(\int_{0}^{\infty}\left(t^{\frac{r-4}{2 r}}\left\|e^{t \Delta} t^{\frac{1}{2}} \dot{\Lambda} \dot{\Lambda}^{-s} h\right\|_{L^{\tilde{p}^{\prime}}}\right)^{\frac{r}{r-2}} \frac{\mathrm{~d} t}{t}\right)^{\frac{r-2}{r}} \simeq\left\|\dot{\Lambda}^{-s} h\right\|_{\dot{B}_{\tilde{p}^{\prime}}^{\frac{4-r}{r}, \frac{r}{r-2}}} \\
\simeq\|h\|_{\dot{B}_{\tilde{p}^{\prime}}^{\frac{4-r}{r}-s, \frac{r}{r-2}}}=\|h\|_{\dot{B}_{\tilde{p}^{\prime}}^{1-\frac{d}{p}, \frac{r}{r-2}}}
\end{gather*}
$$

From the equality (21) and the inequalities (25) and (26), we get

$$
|\langle B(u, v)(t), h\rangle| \lesssim\|u\|_{L^{r}\left([0, T] ; \dot{H}_{p}^{s}\right)}\|v\|_{L^{r}\left([0, T] ; \dot{H}_{p}^{s}\right)}\|h\|_{\dot{B}_{\tilde{p}^{\prime}}^{1-\frac{d}{\bar{p}}, \cdot \frac{r}{r-2}}} .
$$

However, $\dot{B}_{\tilde{p}^{\prime}}^{1-\frac{d}{\tilde{p}}, \frac{r}{r-2}}$ is exactly the dual of $\dot{B}_{\tilde{p}}^{\frac{d}{\bar{p}}-1, \frac{r}{2}}$, (the restriction $\frac{2}{p} \geq \frac{s+1}{d}$ is mainly because we are interested in non-negative indexes), therefore we
conclude that

$$
\begin{equation*}
\|B(u, v)(t)\|_{\dot{B}_{\hat{p}}^{p}-1, \frac{r}{2}} \lesssim\|u\|_{L^{r}\left([0, T] ; \dot{H}_{p}^{s}\right)}\|v\|_{L^{r}\left([0, T] ; \dot{H}_{p}^{s}\right)}, \quad 0 \leq t \leq T \tag{27}
\end{equation*}
$$

Finally, the estimate (20) can be deduced from the inequality (27).
Combining Theorem 1 with Lemma 8, we get the following existence results, the particular case of which, when $s=0$, was obtained in [29].

## Theorem 2. Let

$$
d \geq 3, s \geq 0, p>1, \text { and } r>2
$$

be such that

$$
\frac{s}{d}<\frac{1}{p}<\frac{1}{2}+\frac{s}{2 d} \text { and } \frac{2}{r}+\frac{d}{p}-s \leq 1
$$

(a) There exists a positive constant $\delta_{s, p, r, d}$ such that for all $T>0$ and for all $u_{0} \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ with $\operatorname{div}(u)=0$, satisfying

$$
\begin{equation*}
T^{\frac{1}{2}\left(1+s-\frac{2}{r}-\frac{d}{p}\right)}\left\|e^{t \Delta} u_{0}\right\|_{L^{r}\left([0, T] ; \dot{H}_{p}^{s}\right)} \leq \delta_{s, p, r, d} \tag{28}
\end{equation*}
$$

there is a unique mild solution $\left.u \in L^{r}\left([0, T] ; \dot{H}_{p}^{s}\right)\right)$ for NSE.
If

$$
e^{t \Delta} u_{0} \in L^{r}\left([0,1] ; \dot{H}_{p}^{s}\right)
$$

then the inequality (28) holds when $T\left(u_{0}\right)$ is small enough.
(b) If $\frac{2}{r}+\frac{d}{p}-s=1$ then there exists a positive constant $\delta_{s, p, d}$ such that we can take $T=\infty$ whenever $\left\|e^{t \Delta} u_{0}\right\|_{L^{r}\left([0, \infty] ; \dot{H}_{p}^{s}\right)} \leq \delta_{s, p, d}$.

Proof. (a) From Lemma 8, we use the estimate

$$
\|B\|_{L^{r}\left([0, T] ; \dot{H}_{p}^{s}\right)} \leq C_{s, p, r, d} T^{\frac{1}{2}\left(1+s-\frac{2}{r}-\frac{d}{p}\right)}
$$

where $C_{s, p, r, d}$ is a positive constant independent of $T$. From Theorem 1 and the above inequality, we deduce the existence of a solution to the NavierStokes equations on the interval $(0, T)$ with

$$
4 C_{s, p, r, d} T^{\frac{1}{2}\left(1+s-\frac{2}{r}-\frac{d}{p}\right)}\left\|e^{t \Delta} u_{0}\right\|_{L^{r}\left([0, T] ; \dot{H}_{p}^{s}\right)} \leq 1
$$

If $e^{t \Delta} u_{0} \in L^{r}\left([0,1] ; \dot{H}_{p}^{s}\right)$ then this condition is fulfilled for $T=T\left(u_{0}\right)$ small enough, this is obvious for the case when $\frac{2}{r}+\frac{d}{p}-s<1$ since $\lim _{T \rightarrow 0} T^{\frac{1}{2}\left(1+s-\frac{2}{r}-\frac{d}{p}\right)}=0$. For the case when $\frac{2}{r}+\frac{d}{p}-s=1$, the condition is fulfilled since we have $\lim _{T \rightarrow 0}\left\|e^{t \Delta} u_{0}\right\|_{L^{r}\left([0, T] ; \dot{H}_{p}^{s}\right)}=0$.
(b) This is obvious.

Remark 3. From Theorem 5.3 ([29], p. 44), if $u_{0} \in B_{p}^{s-\frac{2}{r}, r} \cap \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ then $e^{t \Delta} u_{0} \in L^{r}\left([0,1] ; \dot{H}_{p}^{s}\right)$. From Lemma 2, if $u_{0} \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ the two quantities $\left\|u_{0}\right\|_{\dot{B}_{p}^{s-\frac{2}{r}, r}}$ and $\left\|e^{t \Delta} u_{0}\right\|_{L^{r}\left([0, \infty] ; \dot{H}_{p}^{s}\right)}$ are equivalent.

### 3.2. Solutions to the Navier-Stokes equations with initial value

 in the critical spaces $H_{q}^{\frac{d}{q}-1}\left(\mathbb{R}^{d}\right)$ and $\dot{H}_{q}^{\frac{d}{q}-1}\left(\mathbb{R}^{d}\right)$ for $3 \leq d \leq$ $4,2 \leq q \leq d$Lemma 10. Let $d \geq 3$ and $2 \leq q \leq d$. Then the bilinear operator $B(u, v)(t)$ is continuous from

$$
L^{4}\left([0, T] ; \dot{H}_{\frac{d d q}{2 d-q}}^{\frac{d}{q}-1}\right) \times L^{4}\left([0, T] ; \dot{H}_{\frac{2 d q}{2 d-q}}^{\frac{d}{q}-1}\right)
$$

into

$$
L^{\infty}\left([0, T] ; \dot{B}_{q}^{\frac{d}{q}-1,2}\right)
$$

and we have the inequality

$$
\begin{gather*}
\left.\|B(u, v)\|_{L^{\infty}\left([0, T] ; \dot{H}_{q}^{\frac{d}{q}-1}\right)} \lesssim\|B(u, v)\|_{L^{\infty}\left([0, T] ; \dot{B}_{q}^{\frac{d}{q}-1,2}\right.}\right)  \tag{29}\\
\leq C\|u\|_{L^{4}\left([0, T] ; \dot{H}_{\frac{2 d q}{2 d-q}}^{\frac{d}{q}-1}\right)}\|v\|_{L^{4}\left([0, T] ; \dot{H}_{\frac{2 d q}{2 d-q}}^{\frac{d}{q}-1}\right)}
\end{gather*}
$$

where $C$ is a positive constant and independent of $T$.
Proof. Applying Lemma 9 with $r=4, p=\frac{2 d q}{2 d-q}$, and $s=\frac{d}{q}-1$, we get

$$
\begin{gather*}
\frac{1}{\tilde{p}}=\frac{2}{p}-\frac{s}{d}=\frac{2 d-q}{d q}-\frac{\frac{d}{q}-1}{d}=\frac{1}{q} \\
\|B(u, v)\|_{L^{\infty}\left([0, T] ; \dot{B}_{q}^{\frac{d}{q}-1,2}\right)} \lesssim\|u\|_{L^{4}\left([0, T] ; \dot{H}_{\frac{2 d q}{2 d-q}}^{\frac{d}{q}-1}\right)}\|v\|_{L^{4}\left([0, T] ; \dot{H}_{\frac{2 d q}{2 d-q}}^{\frac{d}{q}-1}\right)} \tag{30}
\end{gather*}
$$

From (b) of Lemma 3, we have

$$
\begin{equation*}
\dot{B}_{q}^{\frac{d}{q}-1,2} \hookrightarrow \dot{H}_{q}^{\frac{d}{q}-1} \tag{31}
\end{equation*}
$$

Finally, the estimate (29) can be deduced from the inequality (30) and the imbedding (31).

Lemma 11. Let $d \geq 3$ and $2 \leq q \leq d$. Then the bilinear operator $B(u, v)(t)$ is continuous from

$$
L^{4}\left([0, T] ; H_{\frac{d 2 q}{2 d-q}}^{\frac{d}{q}-1}\right) \times L^{4}\left([0, T] ; H_{\frac{2 d q}{\frac{d}{q}-1}}^{\frac{2 d-q}{2 d}}\right)
$$

into

$$
L^{\infty}\left([0, T] ; H_{q}^{\frac{d}{q}-1}\right)
$$

and we have the inequality

$$
\begin{equation*}
\left.\|B(u, v)\|_{L^{\infty}\left([0, T] ; H_{q}^{\frac{d}{q}-1}\right)} \leq C\|u\|_{L^{4}\left([0, T] ; H_{\frac{2 d q}{2 d-q}}^{\frac{d}{q}-1}\right.}\|v\|_{L^{4}\left([0, T] ; H_{\frac{2 d q}{q}-1}^{2 d-q}\right.}^{\frac{\frac{d}{q}-1}{2 d}}\right) \tag{32}
\end{equation*}
$$

where $C$ is a positive constant and independent of $T$.
Proof. To prove this lemma by duality (in the x-variable), let us consider an arbitrary test function $h(x) \in \mathcal{S}\left(\mathbb{R}^{d}\right)$. Similar to the proof of Lemma 9, we have

$$
\lesssim\|u\|_{L^{4}\left([0, T] ; H_{\frac{d d q}{q}-1}^{\frac{d}{q}-q}\right.} \|\left\langle v\left\|_{L^{4}\left([0, T] ; H \frac{H^{2 d q}}{\frac{d}{q}-1}\right)}\right\| h \|_{\dot{B}_{q^{\prime}}^{0,2}}\right|\langle(\sqrt{I d-q},
$$

where

$$
\frac{1}{q}+\frac{1}{q^{\prime}}=1
$$

However the dual space of $\dot{B}_{q^{\prime}}^{0,2}$ is $\dot{B}_{q}^{0,2}$, therefore we get

$$
\begin{gather*}
\left\|(\sqrt{I d-\Delta})^{\frac{d}{q}-1} B(u, v)(t)\right\|_{\dot{B}_{q}^{0,2}}  \tag{33}\\
\lesssim\|u\|_{L^{4}\left([0, T] ; H_{\frac{2 d q}{2 d-q}}^{\frac{d}{q}-1}\right.}\|v\|_{L^{4}\left([0, T] ; H_{\frac{2 d q}{2 d-q}}^{\frac{d}{q}-1}\right.} .
\end{gather*}
$$

From (b) of Lemma 3 and the estimate (33), we have

$$
\begin{gather*}
\|B(u, v)(t)\|_{H_{q}^{\frac{d}{q}-1}}=\left\|(\sqrt{I d-\Delta})^{\frac{d}{q}-1} B(u, v)(t)\right\|_{L^{q}}=  \tag{34}\\
\left\|(\sqrt{I d-\Delta})^{\frac{d}{q}-1} B(u, v)(t)\right\|_{\dot{H}_{q}^{0}} \lesssim\left\|(\sqrt{I d-\Delta})^{\frac{d}{q}-1} B(u, v)(t)\right\|_{\dot{B}_{q}^{0,2}} \\
\lesssim\|u\|_{L^{4}\left([0, T] ; H_{\frac{d 2 q}{2 d-q}}^{\frac{d}{q}-1}\right.}\|v\|_{L^{4}\left([0, T] ; H^{\frac{d}{2 d-1}} \frac{2 d-q}{\frac{d}{q}}\right)}, 0 \leq t \leq T .
\end{gather*}
$$

Finally, the estimate (32) can be deduced from the inequality (34).

Lemma 12. Let $d \geq 3$ and $2 \leq q \leq 4$.
(a) If $u_{0} \in H_{q}^{\frac{d}{q}-1}\left(\mathbb{R}^{d}\right)$ then

$$
\left\|e^{t \Delta} u_{0}\right\|_{L^{4}\left([0, \infty) ; H_{2 d q /(2 d-q)}^{d / q-1}\right)} \lesssim\left\|u_{0}\right\|_{H_{q}^{d / q-1}}
$$

(b) If $u_{0} \in \dot{H}_{q}^{\frac{d}{q}-1}\left(\mathbb{R}^{d}\right)$ then

$$
\left\|e^{t \Delta} u_{0}\right\|_{L^{4}\left([0, \infty) ; \dot{H}_{2 d q /(2 d-q)}^{d / q-1}\right)} \simeq\left\|u_{0}\right\|_{\dot{B}_{2 d q /(2 d-q)}^{d / q-3 / 2,4}} \lesssim\left\|u_{0}\right\|_{\dot{H}_{q}^{d / q-1}}
$$

Proof. (a) From Lemma 1, we have the estimates

$$
\begin{gather*}
\left\|e^{t \Delta} u_{0}\right\|_{L^{4}\left([0, \infty) ; H_{2 d q /(2 d-q)}^{d / q-1}\right)}  \tag{35}\\
=\left(\int_{0}^{\infty}\left\|e^{t \Delta}(\sqrt{I d-\Delta})^{d / q-1} u_{0}\right\|_{L^{2 d q /(2 d-q)}}^{4} \mathrm{~d} t\right)^{1 / 4} \\
=\left(\int_{0}^{\infty}\left(t^{\frac{1}{4}}\left\|e^{t \Delta}(\sqrt{I d-\Delta})^{d / q-1} u_{0}\right\|_{L^{2 d q /(2 d-q)}}\right)^{4} \frac{\mathrm{~d} t}{t}\right)^{1 / 4} \\
\simeq\left\|(\sqrt{I d-\Delta})^{d / q-1} u_{0}\right\|_{\dot{B}_{2 d q /(2 d-q)}^{-1 / 2,4}} .
\end{gather*}
$$

Applying (b), (c), and (d) of Lemma 3 in order to obtain

$$
\begin{equation*}
L^{q}=\dot{H}_{q}^{0} \hookrightarrow \dot{B}_{q}^{0, q} \hookrightarrow \dot{B}_{q}^{0,4} \hookrightarrow \dot{B}_{2 d q /(2 d-q)}^{-1 / 2,4} \tag{36}
\end{equation*}
$$

From the inequality (35) and the imbedding (36), we get

$$
\begin{gathered}
\left\|e^{t \Delta} u_{0}\right\|_{L^{4}\left([0, \infty) ; H_{2 d q /(2 d-q)}^{d / q-1}\right)} \simeq\left\|(\sqrt{I d-\Delta})^{d / q-1} u_{0}\right\|_{\dot{B}_{2 d q /(2 d-q)}^{-1 / 2,4}} \\
\lesssim\left\|(\sqrt{I d-\Delta})^{d / q-1} u_{0}\right\|_{L^{q}}=\left\|u_{0}\right\|_{H_{q}^{d / q-1}}
\end{gathered}
$$

(b) Similar to the proof of (a) we have

$$
\begin{aligned}
\left\|e^{t \Delta} u_{0}\right\|_{L^{4}\left([0, \infty) ; \dot{H}_{2 d q /(2 d-q)}^{d / q-1}\right)} & \simeq\left\|\dot{\Lambda}^{\frac{d}{q}-1} u_{0}\right\|_{\dot{B}_{2 d q /(2 d-q)}^{-1 / 2,4}} \\
& \lesssim\left\|\dot{\Lambda}^{\frac{d}{q}-1} u_{0}\right\|_{L^{q}}=\left\|u_{0}\right\|_{\dot{H}_{q}^{d / q-1}}, \\
\text { and }\left\|\dot{\Lambda}^{\frac{d}{q}-1} u_{0}\right\|_{\dot{B}_{2 d q /(2 d-q)}^{-1 / 2,4}} & \simeq\left\|u_{0}\right\|_{\dot{B}_{2 d q /(2 d-q)}^{d / q-3 / 2,4}} .
\end{aligned}
$$

Combining Theorem 1 with Lemmas 4, 8, 10, and 12 we obtain the following existence result.

ThEOREM 3. Let $3 \leq d \leq 4$ and $2 \leq q \leq d$. There exists a positive constant $\delta_{q, d}$ such that for all $T>0$ and for all $u_{0} \in \dot{H}_{q}^{d / q-1}\left(\mathbb{R}^{d}\right)$ with $\operatorname{div}\left(u_{0}\right)=0$ satisfying

$$
\begin{equation*}
\left\|e^{t \Delta} u_{0}\right\|_{L^{4}\left([0, T] ; \dot{H}_{2 d q /(2 d-q)}^{d / q-1}\right)} \leq \delta_{q, d} \tag{37}
\end{equation*}
$$

NSE has a unique mild solution $u \in L^{4}\left([0, T] ; \dot{H}_{2 d q /(2 d-q)}^{d / q-1}\right) \cap C([0, T]$; $\left.\dot{H}_{q}^{d / q-1}\right)$. Denoting $w=u-e^{t \Delta} u_{0}$, then we have

$$
w \in L^{4}\left([0, T] ; \dot{H}_{2 d q /(2 d-q)}^{d / q-1}\right) \cap L^{\infty}\left([0, T] ; \dot{B}_{q}^{d / q-1,2}\right)
$$

Finally, we have

$$
\left\|e^{t \Delta} u_{0}\right\|_{L^{4}\left([0, T] ; \dot{H}_{2 d q /(2 d-q)}^{d / q-1}\right)} \lesssim\left\|u_{0}\right\|_{\dot{B}_{2 d q /(2 d-q)}^{d / q-3 / 2,4}} \lesssim\left\|u_{0}\right\|_{\dot{H}_{q}^{d / q-1}}
$$

in particular, for arbitrary $u_{0} \in \dot{H}_{q}^{d / q-1}\left(\mathbb{R}^{d}\right)$ the inequality (37) holds when $T\left(u_{0}\right)$ is small enough; and there exists a positive constant $\sigma_{q, d}$ such that for all $\left\|u_{0}\right\|_{\dot{B}_{2 d q /(2 d-q)}^{d / q-3 / 2,4}} \leq \sigma_{q, d}$ we can take $T=\infty$.

Proof. By applying Lemma 8 with $r=4, p=\frac{2 d q}{2 d-q}, s=\frac{d}{q}-1$, and notice that $1+s-\frac{2}{r}-\frac{d}{p}=0$ we have

$$
\|B\|_{L^{4}\left([0, T] ; \dot{H}_{2 d q /(2 d-q)}^{d / q-1}\right)} \leq C_{q, d}
$$

where $C_{q, d}$ is a positive constant independent of $T$. From Theorem 1 and the above inequality, we deduce that for any $u_{0} \in \dot{H}_{q}^{\frac{d}{q}-1}$ such that

$$
\operatorname{div}\left(u_{0}\right)=0, \quad\left\|e^{t \Delta} u_{0}\right\|_{L^{4}\left([0, T] ; \dot{H}_{2 d q /(2 d-q)}^{d / q-1}\right)} \leq \frac{1}{4 C_{q, d}}
$$

NSE has a mild solution $u$ on the interval $(0, T)$ so that

$$
\begin{equation*}
u \in L^{4}\left([0, T] ; \dot{H}_{2 d q /(2 d-q)}^{d / q-1}\right) \tag{38}
\end{equation*}
$$

From Lemma 10 and (38), we have $B(u, u) \in L^{\infty}\left([0, T] ; \dot{H}_{q}^{d / q-1}\right)$. From (2) of Lemma 4, we have $e^{t \Delta} u_{0} \in L^{\infty}\left([0, T] ; \dot{H}_{q}^{d / q-1}\right)$. Therefore

$$
u=e^{t \Delta} u_{0}-B(u, u) \in L^{\infty}\left([0, T] ; \dot{H}_{q}^{d / q-1}\right)
$$

In the space $H^{d / 2-1}$ or $L^{d}$ (see [29]), the solutions can also be constructed by a successive approximation via the integral equation and therefore they are continuous in time up to the initial time. Since $e^{t \Delta}$ is a $\left(C_{0}\right)$-semigroup in $H_{q}^{s}$ and $\dot{H}_{q}^{s}$ with finite integral-exponent $(q<\infty)$, by the same way as, we can easily show that the obtained mild solution $u \in C\left([0, T] ; \dot{H}_{q}^{d / q-1}\right)$.

From (b) of Lemma 12, we have

$$
\begin{aligned}
&\left\|e^{t \Delta} u_{0}\right\|_{L^{4}\left([0, T] ; \dot{H}_{2 d q /(2 d-q)}^{d / q-1}\right)} \lesssim\left\|e^{t \Delta} u_{0}\right\|_{L^{4}\left([0, \infty) ; \dot{H}_{2 d q /(2 d-q)}^{d / q-1}\right)} \\
& \simeq\left\|u_{0}\right\|_{\dot{B}_{2 d q /(2 d-q)}^{d / q-3 / 2,4}} \lesssim\left\|u_{0}\right\|_{\dot{H}_{q}^{d / q-1}}<\infty .
\end{aligned}
$$

Hence, the left-hand side of the inequality (37) converges to 0 when $T$ tends to 0 . Therefore, for arbitrary $u_{0} \in \dot{H}_{q}^{\frac{d}{q}-1}$ there is $T\left(u_{0}\right)$ small enough such that the inequality (37) holds. Also, there exists a positive constants $\sigma_{q, d}$ such that for all $\left\|u_{0}\right\|_{\dot{B}_{2 d q /(2 d-q)}^{d / q-3 / 2,4}} \leq \sigma_{q, d}$ and $T=\infty$ the inequality (37) holds.

REmark 4. Theorem 3 in the particular case $q=d$ is Proposition 20.1 in [29].

Theorem 4. Let $3 \leq d \leq 4$ and $2 \leq q \leq d$. There exists a positive constant $\delta_{q, d}$ such that for all $T>0$ and for all $u_{0} \in H_{q}^{\frac{d}{q}-1}\left(\mathbb{R}^{d}\right)$ with $\operatorname{div}\left(u_{0}\right)=0$ satisfying

$$
\begin{equation*}
\left\|e^{t \Delta} u_{0}\right\|_{L^{4}\left([0, T] ; H_{2 d q /(2 d-q)}^{d / q-1}\right)} \leq \delta_{q, d} \tag{39}
\end{equation*}
$$

NSE has a unique mild solution $u \in L^{4}\left([0, T] ; H_{2 d q /(2 d-q)}^{d / q-1}\right) \cap C([0, T]$; $\left.H_{q}^{d / q-1}\right)$. Finally, we have

$$
\left\|e^{t \Delta} u_{0}\right\|_{L^{4}\left([0, T] ; H_{2 d q /(2 d-q)}^{d / q-1}\right)} \leq\left\|u_{0}\right\|_{H_{q}^{d / q-1}}
$$

in particular, for arbitrary $u_{0} \in H_{q}^{\frac{d}{q}-1}$ the inequality (39) holds when $T\left(u_{0}\right)$ is small enough;

Proof. The proof of Theorem 4 is similar to the one of Theorem 3, by combining Theorem 1 with Lemmas $4,8,11$, and 12 .

### 3.3. Solutions to the Navier-Stokes equations with initial value

 in the critical spaces $\dot{H}_{q}^{\frac{d}{q}-1}\left(\mathbb{R}^{d}\right)$ for $d \geq 3$ and $1<q \leq d$We consider two cases $2<q \leq d$ and $1<q \leq 2$ separately.
3.3.1 Solutions to the Navier-Stokes equations with initial value in the critical spaces $\dot{H}_{q}^{\frac{d}{q}-1}\left(\mathbb{R}^{d}\right)$ for $d \geq 3$ and $2<q \leq d$

Lemma 13. Let $d \geq 3$ and $2<q \leq d$. Then for all $p$ such that

$$
2<p<\min \left\{\frac{(d-2) q}{d-q}, d+2\right\},\left(\text { if } q=d \text { then } \frac{(d-2) q}{d-q}=+\infty\right)
$$

the bilinear operator $B(u, v)(t)$ is continuous from

$$
L^{p}\left([0, T] ; \dot{H}_{p}^{\frac{2+d-p}{p}}\right) \times L^{p}\left([0, T] ; \dot{H}_{p}^{\frac{2+d-p}{p}}\right)
$$

into

$$
L^{\infty}\left([0, T] ; \dot{B} \frac{\frac{d+p-2}{p}-1, \frac{p}{2}}{\frac{d p}{d+p-2}}\right)
$$

and we have the inequality

$$
\begin{gather*}
\|B(u, v)\|_{L^{\infty}\left([0, T] ; \dot{H}_{q}^{\frac{d}{q}-1}\right)} \lesssim\|B(u, v)\|_{L^{\infty}\left([0, T] ; \dot{B}^{\frac{d+p-2}{p}-1, \frac{p}{d p}} \frac{\frac{p}{d+p-2}}{\substack{2}}\right)} \quad \leq C\|u\|_{L^{p}\left([0, T] ; \dot{H}_{p}^{\frac{2+d-p}{p}}\right)}\|v\|_{L^{p}\left([0, T] ; \dot{H}_{p}^{\frac{2+d-p}{p}}\right)} \tag{40}
\end{gather*}
$$

where $C$ is a positive constant independent of $T$.
Proof. Applying Lemma 9 with $r=p$ and $s=\frac{2+d-p}{p}$, we get

$$
\begin{gather*}
\frac{1}{\tilde{p}}=\frac{2}{p}-\frac{s}{d}=\frac{d+p-2}{d p}, \\
\|B(u, v)\|_{L^{\infty}\left([0, T] ; \dot{B} \frac{d+p-2}{p}-1, \frac{p}{d p}\right.}^{d+p-2}  \tag{41}\\
\lesssim\|u\|_{L^{p}\left([0, T] ; \dot{H}_{p}^{\frac{d+d-p}{p}}\right)}\|v\|_{L^{p}\left([0, T] ; \dot{H}_{p}^{\frac{2+d-p}{p}}\right)} .
\end{gather*}
$$

Applying (e), (d), and (h) of Lemma 3 in order to obtain

$$
\begin{equation*}
\dot{B} \frac{\frac{d+p-2}{p}-1, \frac{p}{2}}{\frac{d p}{d+p-2}} \hookrightarrow \dot{\dot{F}} \underset{\frac{d+p-2}{d+p-2}}{\frac{d, 2}{d}} \hookrightarrow \dot{F}_{q}^{\frac{d}{q}-1,2}=\dot{H}_{q}^{\frac{d}{q}-1} . \tag{42}
\end{equation*}
$$

Therefore the estimate (40) is deduced from the inequality (41) and the imbedding (42).

Lemma 14. Let $2<q<p<+\infty$. Then for all $u_{0} \in \dot{H}_{q}^{\frac{d}{q}-1}$ we have the estimates

$$
\left\|e^{t \Delta} u_{0}\right\|_{L^{p}\left([0, \infty) ; \dot{H}_{p}^{\frac{2+d-p}{p}}\right)} \simeq\left\|u_{0}\right\|_{\dot{B}_{p}^{\frac{d}{p}-1, p}} \lesssim\left\|u_{0}\right\|_{\dot{H}_{q}^{\frac{d}{q}-1}}
$$

Proof. From Lemma 1, we have the estimates

$$
\begin{equation*}
\left\|e^{t \Delta} u_{0}\right\|_{L^{p}\left([0, \infty) ; \dot{H}_{p}^{\frac{2+d-p}{p}}\right)} \simeq\left\|u_{0}\right\|_{\dot{B}_{p}^{\frac{d}{p}-1, p}} . \tag{43}
\end{equation*}
$$

Applying (b), (d), and (c) of Lemma 3 in order to obtain

$$
\begin{equation*}
\dot{H}_{q}^{\frac{d}{q}-1} \hookrightarrow \dot{B}_{q}^{\frac{d}{q}-1, q} \hookrightarrow \dot{B}_{p}^{\frac{d}{p}-1, q} \hookrightarrow \dot{B}_{p}^{\frac{d}{p}-1, p} \tag{44}
\end{equation*}
$$

From the estimate (43) and the imbedding (44), we have

$$
\left\|e^{t \Delta} u_{0}\right\|_{L^{p}\left([0, \infty) ; \dot{H}_{p}^{\frac{2+d-p}{p}}\right)} \simeq\left\|u_{0}\right\|_{\dot{B}_{p}^{\frac{d}{p}-1, p}} \lesssim\left\|u_{0}\right\|_{\dot{H}_{q}^{\frac{d}{q}-1}}
$$

TheOrem 5. Let $d \geq 3$ and $2<q \leq d$. Then for any $p$ be such that

$$
q<p<\min \left\{\frac{(d-2) q}{d-q}, d+2\right\}
$$

there exists a constant $\delta_{q, p, d}>0$ such that for all $T>0$ and for all $u_{0} \in$ $\dot{H}_{q}^{d / q-1}\left(\mathbb{R}^{d}\right)$ with $\operatorname{div}\left(u_{0}\right)=0$ satisfying

$$
\begin{equation*}
\left\|e^{t \Delta} u_{0}\right\|_{L^{p}\left([0, T] ; \dot{H}_{p}^{\frac{2+d-p}{p}}\right)} \leq \delta_{q, p, d} \tag{45}
\end{equation*}
$$

NSE has a unique mild solution $u \in L^{p}\left([0, T] ; \dot{H}_{p}^{\frac{2+d-p}{p}}\right) \cap C\left([0, T] ; \dot{H}_{q}^{d / q-1}\right)$. Denoting $w=u-e^{t \Delta} u_{0}$, then we have

$$
w \in L^{p}\left([0, T] ; \dot{H}_{p}^{\frac{2+d-p}{p}}\right) \cap L^{\infty}\left([0, T] ; \dot{B}_{\frac{\frac{d+p-2}{p}}{d p}-1, \frac{p}{2}}^{d+p-2}\right)
$$

Finally, we have

$$
\left\|e^{t \Delta} u_{0}\right\|_{L^{p}\left([0, T] ; \dot{H}_{p}^{\frac{2+d-p}{p}}\right)} \leq\left\|u_{0}\right\|_{\dot{B}_{p}^{\frac{d}{p}-1, p}} \lesssim\left\|u_{0}\right\|_{\dot{H}_{q}^{\frac{d}{q}-1}}
$$

in particular, for arbitrary $u_{0} \in \dot{H}_{q}^{d / q-1}$ the inequality (45) holds when $T\left(u_{0}\right)$ is small enough; and there exists a positive constant $\sigma_{q, p, d}$ such that for all $\left\|u_{0}\right\|_{\dot{B}_{p}^{\frac{d}{p}-1, p}} \leq \sigma_{q, p, d}$ we can take $T=\infty$.

Proof. The proof of Theorem 5 is similar to the one of Theorem 3, by combining Theorem 1 with Lemmas 4,8 (for $r=p, s=\frac{2+d-p}{p}$ ), 13, and 14.

REMARK 5. The case $q=d$ was treated by several authors, see for example ([7], [12], [21]). However their results are different from ours.
3.3.2 Solutions to the Navier-Stokes equations with initial value in the critical spaces $\dot{H}_{q}^{\frac{d}{q}-1}\left(\mathbb{R}^{d}\right)$ for $d \geq 3$ and $1<q \leq 2$

Lemma 15. Let $d \geq 3$ and $1<q \leq 2$. Then the bilinear operator $B(u, v)(t)$ is continuous from

$$
L^{2 q}\left([0, T] ; \dot{H} \frac{\frac{d+2-2 q}{q}}{d+1-q}\right) \times L^{2 q}\left([0, T] ; \dot{H} \frac{\frac{d+2-2 q}{q}}{d+1-q}\right)
$$

into

$$
L^{\infty}\left([0, T] ; \dot{B}_{q}^{\frac{d}{q}-1, q}\right),
$$

and we have the inequality

$$
\begin{aligned}
& \left.\|B(u, v)\|_{L^{\infty}\left([0, T] ; \dot{H}_{q}^{\frac{d}{q}-1}\right)} \lesssim\|B(u, v)\|_{L^{\infty}\left([0, T] ; \dot{B}_{q}^{\frac{d}{q}-1, q}\right.}\right) \\
& \quad \leq C\|u\|_{L^{2 q}\left([0, T] ; \dot{H} \frac{\frac{d+2-2 q}{q}}{\frac{d q}{d+1-q}}\right)}\|v\|_{L^{2 q}\left([0, T] ; \dot{H} \frac{\frac{d+2-2 q}{q q}}{\frac{d q}{d+1-q}}\right)},
\end{aligned}
$$

where $C$ is a positive constant independent of $T$.
Proof. Applying Lemma 9 with $r=2 q, p=\frac{d q}{d+1-q}$, and $s=\frac{d+2-2 q}{q}$, we get

$$
\frac{1}{\tilde{p}}=\frac{2}{p}-\frac{s}{d}=\frac{1}{q}
$$

and from (a) of Lemma 3, we have

$$
\begin{aligned}
& \|B(u, v)\|_{L^{\infty}\left([0, T] ; \dot{H}_{q}^{\frac{d}{q}-1}\right)} \lesssim\|B(u, v)\|_{L^{\infty}\left([0, T] ; \dot{B}_{q}^{\frac{d}{q}-1, q}\right)} \\
& \left.\quad \lesssim\|u\|_{L^{2 q}\left([0, T] ; \dot{H} \frac{d+2-2 q}{d q}\right.}^{d+1-q}\right)
\end{aligned}{\left.\|v\|_{L^{2 q}\left([0, T] ; \dot{H} \frac{d+2-2 q}{q} \frac{d q}{d+1-q}\right.}^{d+1}\right)} \quad \square
$$

Lemma 16. Assume that $u_{0} \in \dot{H}_{q}^{\frac{d}{q}-1}$ with $d \geq 3$ and $1<q \leq 2$. Then

$$
\left.\left\|e^{t \Delta} u_{0}\right\|_{L^{2 q}\left([0, \infty) ; \dot{H} \frac{d+2-2 q}{q}\right.} \simeq\left\|u_{0}\right\|_{\dot{B}_{d q /(d+1-q)}^{(d+1) / q-2,2 q}}^{d+1-q}\right) \lesssim\left\|u_{0}\right\|_{\dot{H}_{q}^{d / q-1}}
$$

Proof. By using (a), (c), and (d) of Lemma 3 in order to obtain

$$
\begin{equation*}
\dot{H}_{q}^{\frac{d}{q}-1} \hookrightarrow \dot{B}_{q}^{\frac{d}{q}-1,2} \hookrightarrow \dot{B}_{q}^{\frac{d}{q}-1,2 q} \hookrightarrow \dot{B}_{d q /(d+1-q)}^{(d+1) / q-2,2 q} . \tag{46}
\end{equation*}
$$

Applying Lemma 1 and from the imbedding (46) we have the estimates

$$
\begin{aligned}
&\left\|e^{t \Delta} u_{0}\right\|_{L^{2 q}([0, \infty) ; \dot{H}} \frac{d+2-2 q}{d q} \\
& \simeq\left\|\dot{\Lambda^{\frac{d+2-2 q}{q}}} u_{0}\right\|_{\dot{B}_{d q /(d+1-q)}^{-1 / q, 2 q}} \\
& \simeq\left\|u_{0}\right\|_{\dot{B}_{d q /(d+1-q)}^{(d+1) / q-2,2 q}}^{(d+1-q)} \\
& \lesssim\left\|u_{0}\right\|_{\dot{H}_{q}^{d / q-1}} .
\end{aligned}
$$

ThEOREM 6. Let $d \geq 3$ and $1<q \leq 2$. There exists a positive constant $\delta_{q, d}$ such that for all $T>0$ and for all $u_{0} \in \dot{H}_{q}^{d / q-1}\left(\mathbb{R}^{d}\right)$ with $\operatorname{div}\left(u_{0}\right)=0$ satisfying

$$
\begin{equation*}
\left\|e^{t \Delta} u_{0}\right\|_{L^{2 q}\left([0, T] ; \dot{H} \frac{d+2-2 q}{d q}\right.} \leq \delta_{q, d} \tag{47}
\end{equation*}
$$

NSE has a unique mild solution $u \in L^{2 q}\left([0, T] ; \dot{H}_{\frac{d q}{d+1-q}}^{\frac{d+2-2 q}{q}}\right) \cap C\left([0, T] ; \dot{H}_{q}^{d / q-1}\right)$. Denoting $w=u-e^{t \Delta} u_{0}$, then we have

$$
w \in L^{2 q}\left([0, T] ; \dot{H}_{\frac{d+2-2 q}{q}}^{\frac{d q}{d+1-q}}\right) \cap L^{\infty}\left([0, T] ; \dot{B}_{q}^{\frac{d}{q}-1, q}\right)
$$

Finally, we have

$$
\left\|e^{t \Delta} u_{0}\right\|_{L^{2 q}\left([0, T] ; \dot{H} \frac{d+2-2 q}{d q}\right.} \leq\left\|u_{0}\right\|_{\dot{B}_{d q /(d+1-q)}^{(d+1) / q-2,2 q}} \lesssim\left\|u_{0}\right\|_{\dot{H}_{q}^{d / q-1}}
$$

in particular, for arbitrary $u_{0} \in \dot{H}_{q}^{d / q-1}\left(\mathbb{R}^{d}\right)$ the inequality (47) holds when $T\left(u_{0}\right)$ is small enough; and there exists a positive constant $\sigma_{q, d}$ such that for all $\left\|u_{0}\right\|_{\dot{B}_{d q /(d+1-q)}^{(d+1) / q-2,2 q}} \leq \sigma_{q, d}$ we can take $T=\infty$.

Proof. The proof of Theorem 6 is similar to the one of Theorem 3, by combining Theorem 1 with Lemmas 4,8 (for $r=2 q, p=\frac{d q}{d+1-q}, s=\frac{d+2-2 q}{q}$ ), 15 , and 16.

Remark 6. The case $q=2$ was treated by several authors, see for example ([7],[16], [29]). However their results are different from ours.

Acknowledgments. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2014.50.

## References

[1] Adams, A. R., Sobolev Spaces, Academic press, Boston, MA, 1975, 268 p.
[2] Bergh, J. and J. Lofstrom, Interpolation Spaces, Springer-Verlag, 1976, 264 p.
[3] Bourgain, J. and N. Pavloviéc, Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal. 255 (9) (2008), 2233-2247.
[4] Jawerth, B., Some observations on Besov and Lizorkin-Triebel space, Math. Scand. 40 (1977), 94-104.
[5] Bourdaud, G., Réalisation des espaces de Besov homogènes, Ark. Mat. 26 (1) (1988), 41-54.
[6] Bourdaud, G., Ce qu'il faut savoir sur les espaces de Besov, Prépublication de l'Universitéde Paris 7 (janvier 1993).
[7] Cannone, M., Ondelettes, Paraproduits et Navier-Stokes, Diderot Editeur, Paris, 1995, 191 p.
[8] Cannone, M., A generalization of a theorem by Kato on Navier-Stokes equations, Rev. Mat. Iberoamericana 13 (3) (1997), 515-541.
[9] Cannone, M. and F. Planchon, On the nonstationary Navier-Stokes equations with an external force, Adv. in Diff. Eq. 4 (5) (1999), 697-730.
[10] Cannone, M. and Y. Meyer, Littlewood-Paley decomposition and the NavierStokes equations, Meth. and Appl. of Anal. 2 (1995), 307-319.
[11] Chemin, J. M., Remarques sur l'existence globale pour le système de NavierStokes incompressible, SIAM J. Math. Anal. 23 (1992), 20-28.
[12] Dong, H. and D. Du, On the local smoothness of solutions of the NavierStokes equations, J. Math. Fluid Mech. 9 (2) (2007), 139-152.
[13] Frazier, M., Jawerth, B. and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conference Series in Mathematics, 79, AMS, Providence (1991).
[14] Fabes, E., Jones, B. and N. Riviere, The initial value problem for the NavierStokes equations with data in $L^{p}$, Arch. Rat. Mech. Anal. 45 (1972), 222-240.
[15] Friedlander, S. and D. Serre, Handbook of Mathematical Fluid Dynamics, Volume 3, Elsevier, 2004.
[16] Fujita, H. and T. Kato, On the Navier-Stokes initial value problem I, Arch. Rat. Mech. Anal. 16 (1964), 269-315.
[17] Giga, Y., Solutions of semilinear parabolic equations in $L^{p}$ and regularity of weak solutions of the Navier-Stokes system, J. Differ. Eq. 62 (1986), 186-212.
[18] Giga, Y. and T. Miyakawa, Solutions in $L^{r}$ of the Navier-Stokes initial value problem, Arch. Rat. Mech. Anal. 89 (1985), 267-281.
[19] Kalton, N., Mayboroda, S. and M. Mitrea, Interpolation of Hardy-Sobolev-Besov-Triebel-Lizorkin Spaces and Applications to Problems in Partial Differential Equations. Interpolation Theory and Applications, Contemp. Math., 445, Amer. Math. Soc., Providence, RI, 2007, 121-177.
[20] Kato, T. and H. Fujita, On the non-stationary Navier-Stokes system, Rend. Sem. Mat. Univ. Padova 32 (1962), 243-260.
[21] Kato, T., Strong $L^{p}$-solutions of the Navier-Stokes equation in $R^{m}$, with applications to weak solutions, Math. Z. 187 (4) (1984), 471-480.
[22] Kato, T., Strong solutions of the Navier-Stokes equations in Morrey spaces, Bol. Soc. Brasil. Math. 22 (1992), 127-155.
[23] Kato, T. and G. Ponce, The Navier-Stokes equation with weak initial data, Int. Math. Res. Notes 10 (1994), 435-444.
[24] Kozono, H. and M. Yamazaki, Semilinear heat equations and the NavierStokes equation with distributions in new function spaces as initial data, Comm. Partial Differential Equations 19 (1994), 959-1014.
[25] Khai, D. Q. and N. M. Tri, Solutions in mixed-norm Sobolev-Lorentz spaces to the initial value problem for the Navier-Stokes equations, Journal of Mathematical Analysis and Applications 417 (2014), 819-833.
[26] Khai, D. Q. and N. M. Tri, Well-posedness for the Navier-Stokes equations with datum in Sobolev-Fourier-Lorentz spaces, Preprint arXiv:1601.01441.
[27] Khai, D. Q. and N. M. Tri, Well-posedness for the Navier-Stokes equations with data f in homogeneous Sobolev-Lorentz spaces, Preprint arXiv: 1601.01742.
[28] Koch, H. and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math. 157 (2001), 22-35.
[29] Lemarie-Rieusset, P. G., Recent Developments in the Navier-Stokes Problem, Chapman and Hall/CRC Research Notes in Mathematics, vol. 431, Chapman and Hall/CRC, Boca Raton, FL, 2002.
[30] Miao, C. and B. Yuan, On the well-posedness of the Cauchy problem for an MHD system in Besov spaces, Math. Methods Appl. Sci. 32 (2009), 53-76.
[31] Planchon, F., Solutions Globales et Comportement Asymptotique pour les Equations de Navier-Stokes, Doctoral Thesis, Ecole Polytechnique, France (1996).
[32] Peetre, J., New Thoughts on Besov Spaces, Duke Univ. Math. Series, 1976.
[33] Taylor, M. E., Analysis on Morrey spaces and applications to Navier-Stokes equations and other evolution equations, Comm. Partial Differential Equations 17 (1992), 1407-1456.
[34] Weissler, F. B., The Navier-Stokes initial value problem in $L^{p}$, Arch. Rat. Mech. Anal. 74 (1981), 219-230.
(Received October 27, 2014)
(Revised October 23, 2015)
Institute of Mathematics
Vietnam Academy of Science and Technology
18 Hoang Quoc Viet, 10307 Cau Giay
Hanoi, Vietnam
E-mail: triminh@math.ac.vn
Khaitoantin@gmail.com


[^0]:    2010 Mathematics Subject Classification. Primary 35Q30; Secondary 76D05, 76N10.
    Key words: Navier-Stokes equations, existence and uniqueness of local and global mild solutions, critical Sobolev and Besov spaces.

