A Uniform Boundedness Result for Solutions to the Liouville Type Equation with Boundary Singularity

By Samy Skander Bahoura

Abstract

We give blow-up behavior of a sequence of solutions of a Liouville-type problem with a singular weight and Dirichlet boundary conditions. As an application we derive a compactness criterion in the same spirit of the well known Brezis-Merle's result.

1. Introduction and Main Results

We set $\Delta=\partial_{11}+\partial_{22}$ on open set Ω of \mathbb{R}^{2} with a smooth boundary. We consider the following equation:

$$
(P)\left\{\begin{aligned}
-\Delta u & =|x|^{-2 \alpha} V e^{u} & & \text { in } \Omega \subset \mathbb{R}^{2}, \\
u & =0 & & \text { in } \partial \Omega
\end{aligned}\right.
$$

Here we assume that

$$
\alpha \in(0,1 / 2), 0 \in \partial \Omega
$$

The above equation was studied by many authors, with or without the boundary condition, also for Riemann surfaces, see [1-15], where one can find some existence and compactness results.

Among other results, we can see in [10] the following important Theorem. (Since $0 \in \partial \Omega$, all the conditions of this theorem are satisfied in our setting).

Theorem (Brezis-Merle [10]). If $\left(u_{i}\right)$ is a sequence of solutions of problem (P) with (V_{i}) satisfying $0<a \leq V_{i} \leq b<+\infty$, then, for any compact subset K of Ω, it holds

$$
\sup _{K} u_{i} \leq c
$$

Key words: Blow-up, boundary, singularity, a priori estimate, Lipschitz condition.
with c depending on a, b, α, K, Ω.
If we assume that V is more regular, we can have another type of estimates called a sup + inf type inequalities. It was proved by Shafrir see [15], that, if $\left(u_{i}\right)_{i}$ is a sequence of functions solutions of the previous equation without assumption on the boundary with V_{i} satisfying $0<a \leq V_{i} \leq b<$ $+\infty$, then it holds

$$
C\left(\frac{a}{b}\right) \sup _{K} u_{i}+\inf _{\Omega} u_{i} \leq c,
$$

where c is a constant depending on a, b, K, Ω.
Now, if we assume that $\left(V_{i}\right)_{i}$ is uniformly Lipschitzian with its Lipschitz constant A then, $C(a / b)=1$ and $c=c(a, b, A, K, \Omega)$; see [9].

We find in [4-7], estimates of type sup + inf for Liouville type equation with singular weight.

In this paper we give a blow-up analysis for sequences of solutions of a Liouville-type problem with singular weight.

We have the following problem for the Liouville equation with singular weight (as in [10, Problem 1]).

Problem. Suppose that $V_{i} \rightarrow V$ in $C^{0}(\bar{\Omega})$ with $0 \leq V_{i} \leq b$ for some positive constant b. Also, we consider a sequence of solutions $\left(u_{i}\right)$ of (P) relative to $\left(V_{i}\right)$ such that

$$
\int_{\Omega}|x|^{-2 \alpha} e^{u_{i}} d x \leq C .
$$

Is it possible to have

$$
\left\|u_{i}\right\|_{L^{\infty}} \leq C=C(b, \alpha, \Omega, C) ?
$$

In this paper we derive a uniform boundedness result for the solutions to an elliptic equation with exponential nonlinearity when the prescribed curvature is uniformly Lipschitzian. For a regular case $\alpha=0$ one can find in [3] a result close to the result of the present paper.

For the blow-up analysis, the following condition is sufficient.

$$
0 \leq V_{i} \leq b
$$

The condition $V_{i} \rightarrow V$ in $C^{0}(\bar{\Omega})$ is not necessary.

But for the uniform boundedness result, we assume that

$$
\left\|\nabla V_{i}\right\|_{L^{\infty}} \leq A
$$

We have
THEOREM 1.1. Assume $\alpha \in(0,1 / 2)$ and $\max _{\Omega} u_{i} \rightarrow+\infty$, where $\left(u_{i}\right)$ are solutions of the problem (P) with

$$
0 \leq V_{i} \leq b, \text { and } \int_{\Omega}|x|^{-2 \alpha} e^{u_{i}} d x \leq C, \text { for all } i \in \mathbb{N}
$$

Then, after passing to a subsequence, there are a function u, a number $N \in \mathbb{N}$ and N points $x_{1}=0, x_{2}, \ldots, x_{N} \in \partial \Omega-\{0\}$, such that

$$
\int_{\partial \Omega} \partial_{\nu} u_{i} \phi \rightarrow \int_{\partial \Omega} \partial_{\nu} u \phi+\sum_{j=1}^{N} \alpha_{j} \phi\left(x_{j}\right), \alpha_{1} \geq 4 \pi(1-\alpha), \alpha_{j} \geq 4 \pi
$$

for any $\phi \in C^{0}(\partial \Omega)$, and

$$
u_{i} \rightarrow u \text { in } C_{l o c}^{1}\left(\bar{\Omega}-\left\{x_{1}, \ldots, x_{N}\right\}\right)
$$

or, $x_{1}, x_{2}, \ldots, x_{N} \in \partial \Omega-\{0\}$, and

$$
\int_{\partial \Omega} \partial_{\nu} u_{i} \phi \rightarrow \int_{\partial \Omega} \partial_{\nu} u \phi+\sum_{j=1}^{N} \alpha_{j} \phi\left(x_{j}\right), \text { with } \alpha_{j} \geq 4 \pi
$$

for any $\phi \in C^{0}(\partial \Omega)$, and

$$
u_{i} \rightarrow u \text { in } C_{l o c}^{1}\left(\bar{\Omega}-\left\{x_{1}, \ldots, x_{N}\right\}\right)
$$

In the following theorem, we have a compactness result which concerns the problem (P).

Theorem 1.2. Assume that $\left(u_{i}\right)$ are solutions of (P) relative to $\left(V_{i}\right)$ with the following conditions:

$$
\begin{gathered}
\alpha \in(0,1 / 2), 0 \in \partial \Omega \\
0 \leq V_{i} \leq b,\left\|\nabla V_{i}\right\|_{L^{\infty}} \leq A, \text { and } \int_{\Omega}|x|^{-2 \alpha} e^{u_{i}} \leq C
\end{gathered}
$$

We have

$$
\left\|u_{i}\right\|_{L^{\infty}} \leq c(b, \alpha, A, C, \Omega)
$$

2. Proof of the Theorems

Proof of Theorem 1.1.

Since $\int_{\Omega}|x|^{-2 \alpha} e^{u_{i}} \leq C$, we have, by the Brezis-Merle result see [10], $e^{k u_{i}} \in L^{1}(\Omega), k>2$ and because $\alpha \in(0,1 / 2)$ the elliptic estimates imply that

$$
u_{i} \in W^{2, p}(\Omega) \cap C^{1, \epsilon}(\bar{\Omega})
$$

We denote by $\partial_{\nu} u_{i}$ the inner normal derivative of u_{i}. By the maximum principle, $\partial_{\nu} u_{i} \geq 0$.

By the Stokes formula, we obtain

$$
\int_{\partial \Omega} \partial_{\nu} u_{i} d \sigma \leq C
$$

Thus, (using the weak convergence in the space of Radon measures), we have the existence of a positive Radon measure μ such that

$$
\int_{\partial \Omega}\left(\partial_{\nu} u_{i}\right) \phi d \sigma \rightarrow \mu(\phi), \quad \forall \phi \in C^{0}(\partial \Omega)
$$

Let us consider a point $x_{0} \in \partial \Omega$. We say that x_{0} is regular if, $x_{0} \neq 0$ and $\mu\left(\left\{x_{0}\right\}\right)<4 \pi$, or $x_{0}=0$ and $\mu(\{0\})<4 \pi(1-\alpha)$. A point $x_{0} \in \partial \Omega$ is a nonregular point, if the previous conditions are not satisfied.

For a regular point $x_{0} \in \partial \Omega$, we may assume that the following curve, $B\left(x_{0}, \epsilon\right) \cap \partial \Omega:=I_{\epsilon}$ is an interval. (In this case, it is simpler to construct the following test function η_{ϵ}).

Case 1. $\mu(\{0\}) \geq 4 \pi(1-\alpha)$.
This means that 0 is a nonregular point for the measure μ.
Let us consider the following function

$$
\left\{\begin{array}{l}
\eta_{\epsilon} \equiv 1, \text { on } I_{\epsilon}, \quad 0<\epsilon<\delta / 2 \\
\eta_{\epsilon} \equiv 0, \text { outside } I_{2 \epsilon} \\
0 \leq \eta_{\epsilon} \leq 1, \\
\left\|\nabla \eta_{\epsilon}\right\|_{L^{\infty}\left(I_{2 \epsilon}\right)} \leq \frac{C_{0}\left(\Omega, x_{0}\right)}{\epsilon}
\end{array}\right.
$$

We take a $\tilde{\eta}_{\epsilon}$ such that

$$
\left\{\begin{aligned}
-\Delta \tilde{\eta}_{\epsilon}=0 & \text { in } \Omega \\
\tilde{\eta}_{\epsilon}=\eta_{\epsilon} & \text { on } \partial \Omega .
\end{aligned}\right.
$$

We use the following estimate, see $[8,11]$,

$$
\left\|\nabla u_{i}\right\|_{L^{q}} \leq C_{q}, \forall i \text { and } 1<q<2
$$

We deduce from the last estimate that $\left(u_{i}\right)$ converge weakly in $W_{0}^{1, q}(\Omega)$, almost everywhere to a function $u \geq 0$ and $\int_{\Omega} e^{u}<+\infty$ (by Fatou lemma). Also, V_{i} converge *-weakly in L^{∞} to a nonnegative function V. The function u is in $W_{0}^{1, q}(\Omega)$ solution of :

$$
\left\{\begin{aligned}
-\Delta u & =|x|^{-2 \alpha} V e^{u} \in L^{1}(\Omega) & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}\right.
$$

As in the corollary 1 of Brezis-Merle result, see [10], we have $e^{k u} \in$ $L^{1}(\Omega), k>2$. We have $\alpha \in(0,1 / 2)$, by the elliptic estimates, $u \in W^{2, p}(\Omega) \cap$ $C^{1, \epsilon}(\bar{\Omega})$.

We can write

$$
\begin{equation*}
-\Delta\left(\left(u_{i}-u\right) \tilde{\eta}_{\epsilon}\right)=|x|^{-2 \alpha}\left(V_{i} e^{u_{i}}-V e^{u}\right) \tilde{\eta}_{\epsilon}-2 \nabla\left(u_{i}-u\right) \cdot \nabla \tilde{\eta}_{\epsilon} . \tag{1}
\end{equation*}
$$

We use the interior esimate of Brezis-Merle, see [10],
Step 1. Estimate of the integral of the first term of the right hand side of (1).

We use the Green formula between $\tilde{\eta}_{\epsilon}$ and u to obtain

$$
\begin{equation*}
\int_{\Omega}|x|^{-2 \alpha} V e^{u} \tilde{\eta}_{\epsilon} d x=\int_{\partial \Omega}\left(\partial_{\nu} u\right) \eta_{\epsilon} \leq 4 \epsilon\left\|\partial_{\nu} u\right\|_{L^{\infty}}=C \epsilon \tag{2}
\end{equation*}
$$

We have

$$
\left\{\begin{aligned}
-\Delta u_{i} & =|x|^{-2 \alpha} V_{i} e^{u_{i}} & & \text { in } \Omega \\
u_{i} & =0 & & \text { on } \partial \Omega
\end{aligned}\right.
$$

We use the Green formula between u_{i} and $\tilde{\eta}_{\epsilon}$ to have

$$
\begin{align*}
\int_{\Omega}|x|^{-2 \alpha} V_{i} e^{u_{i}} \tilde{\eta}_{\epsilon} d x & =\int_{\partial \Omega}\left(\partial_{\nu} u_{i}\right) \eta_{\epsilon} d \sigma \rightarrow \mu\left(\eta_{\epsilon}\right) \tag{3}\\
& \leq \mu\left(I_{2 \epsilon}\right) \leq 4 \pi-\epsilon_{0}, \quad \epsilon_{0}>0
\end{align*}
$$

From (2) and (3) we have for all $\epsilon>0$ there is $i_{0}=i_{0}(\epsilon)$ such that, for $i \geq i_{0}$,

$$
\begin{equation*}
\int_{\Omega}|x|^{-2 \alpha}\left|\left(V_{i} e^{u_{i}}-V e^{u}\right) \tilde{\eta}_{\epsilon}\right| d x \leq 4 \pi-\epsilon_{0}+C \epsilon \tag{4}
\end{equation*}
$$

Step 2. Estimate of integral of the second term of the right hand side of (1).

Let $\Sigma_{\epsilon}=\left\{x \in \Omega, d(x, \partial \Omega)=\epsilon^{3}\right\}$ and $\Omega_{\epsilon^{3}}=\left\{x \in \Omega, d(x, \partial \Omega) \geq \epsilon^{3}\right\}$, $\epsilon>0$. Then, for ϵ small enough, Σ_{ϵ} is hypersurface.

The measure of $\Omega-\Omega_{\epsilon^{3}}$ is $k_{2} \epsilon^{3} \leq \mu_{L}\left(\Omega-\Omega_{\epsilon^{3}}\right) \leq k_{1} \epsilon^{3}$.
REmARK. For the unit ball $\bar{B}(0,1)$, our new manifold is $\bar{B}\left(0,1-\epsilon^{3}\right)$.
We write

$$
\begin{align*}
& \int_{\Omega}\left|\nabla\left(u_{i}-u\right) \cdot \nabla \tilde{\eta}_{\epsilon}\right| d x=\int_{\Omega_{\epsilon^{3}}}\left|\nabla\left(u_{i}-u\right) \cdot \nabla \tilde{\eta}_{\epsilon}\right| d x \tag{5}\\
&+\int_{\Omega-\Omega_{\epsilon^{3}}}\left|\nabla\left(u_{i}-u\right) \cdot \nabla \tilde{\eta}_{\epsilon}\right| d x
\end{align*}
$$

Step 2.1. Estimate of $\int_{\Omega-\Omega_{\epsilon} 3}\left|\nabla\left(u_{i}-u\right) \cdot \nabla \tilde{\eta}_{\epsilon}\right| d x$.
First, we know from the elliptic estimates that $\left\|\nabla \tilde{\eta}_{\epsilon}\right\|_{L^{\infty}} \leq C_{1} / \epsilon^{2}, C_{1}$ depends on Ω.

We know that $\left(\left|\nabla u_{i}\right|\right)_{i}$ is bounded in $L^{q}, 1<q<2$, we can extract from this sequence a subsequence which converge weakly to $h \in L^{q}$. But, we know that we have locally the uniform convergence to $|\nabla u|$ (by BrezisMerle theorem), then, $h=|\nabla u|$ a.e. Let q^{\prime} be the conjugate of q.

We have for any $f \in L^{q^{\prime}}(\Omega)$

$$
\int_{\Omega}\left|\nabla u_{i}\right| f d x \rightarrow \int_{\Omega}|\nabla u| f d x .
$$

If we take $f=1_{\Omega-\Omega_{\epsilon}{ }^{3}}$, we have

$$
\text { for } \epsilon>0 \exists i_{1}=i_{1}(\epsilon) \in \mathbb{N}, \quad i \geq i_{1}, \int_{\Omega-\Omega_{\epsilon^{3}}}\left|\nabla u_{i}\right| \leq \int_{\Omega-\Omega_{\epsilon^{3}}}|\nabla u|+\epsilon^{3} \text {. }
$$

Then, for $i \geq i_{1}(\epsilon)$

$$
\int_{\Omega-\Omega_{\epsilon^{3}}}\left|\nabla u_{i}\right| \leq \operatorname{mes}\left(\Omega-\Omega_{\epsilon^{3}}\right)| | \nabla u \|_{L^{\infty}}+\epsilon^{3}=C \epsilon .
$$

Thus, we obtain

$$
\begin{equation*}
\int_{\Omega-\Omega_{\epsilon^{3}}}\left|\nabla\left(u_{i}-u\right) \cdot \nabla \tilde{\eta}_{\epsilon}\right| d x \leq \epsilon C_{1}\left(2 k_{1}\|\nabla u\|_{L^{\infty}}+1\right) . \tag{6}
\end{equation*}
$$

The constant C_{1} does not depend on ϵ but on Ω.
Step 2.2. Estimate of $\int_{\Omega_{\epsilon^{3}}}\left|\nabla\left(u_{i}-u\right) \cdot \nabla \tilde{\eta}_{\epsilon}\right| d x$.
We know that $\Omega_{\epsilon} \subset \subset \Omega$, and (because of Brezis-Merle's interior estimates) $u_{i} \rightarrow u$ in $C^{1}\left(\Omega_{\epsilon^{3}}\right)$. We have

$$
\left\|\nabla\left(u_{i}-u\right)\right\|_{L^{\infty}\left(\Omega_{\epsilon^{3}}\right)} \leq \epsilon^{3}, \text { for } i \geq i_{3}=i_{3}(\epsilon)
$$

We write

$$
\int_{\Omega_{\epsilon^{3}}}\left|\nabla\left(u_{i}-u\right) \cdot \nabla \tilde{\eta}_{\epsilon}\right| d x \leq\left\|\nabla\left(u_{i}-u\right)\right\|_{L^{\infty}\left(\Omega_{\epsilon^{3}}\right)}\left\|\nabla \tilde{\eta}_{\epsilon}\right\|_{L^{\infty}} \leq C_{1} \epsilon \text { for } i \geq i_{3}
$$

For $\epsilon>0$ and for $i \in \mathbb{N}, i \geq \max \left\{i_{1}, i_{2}, i_{3}\right\}$,

$$
\begin{equation*}
\int_{\Omega}\left|\nabla\left(u_{i}-u\right) \cdot \nabla \tilde{\eta}_{\epsilon}\right| d x \leq \epsilon C_{1}\left(2 k_{1}| | \nabla u \|_{L^{\infty}}+2\right) \tag{7}
\end{equation*}
$$

From (4) and (7) we have, for $\epsilon>0$ there is $i_{3}=i_{3}(\epsilon) \in \mathbb{N}, i_{3}=$ $\max \left\{i_{0}, i_{1}, i_{2}\right\}$ such that

$$
\begin{equation*}
\int_{\Omega}\left|\Delta\left[\left(u_{i}-u\right) \tilde{\eta}_{\epsilon}\right]\right| d x \leq 4 \pi-\epsilon_{0}+\epsilon C_{1}\left(2 k_{1}\|\nabla u\|_{L^{\infty}}+2+C\right) \tag{8}
\end{equation*}
$$

We choose $\epsilon>0$ small enough to have a good estimate of (1).
Indeed, we have

$$
\left\{\begin{aligned}
-\Delta\left[\left(u_{i}-u\right) \tilde{\eta}_{\epsilon}\right] & =g_{i, \epsilon}
\end{aligned} \begin{array}{rl}
\text { in } \Omega \\
\left(u_{i}-u\right) \tilde{\eta}_{\epsilon} & =0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

with $\left\|g_{i, \epsilon}\right\|_{L^{1}(\Omega)} \leq 4 \pi-\epsilon_{0} / 2$.

We can use Theorem 1 of [10] to conclude that there are $q \geq \tilde{q}>1$ such that

$$
\int_{V_{\epsilon}\left(x_{0}\right)} e^{\tilde{q}\left|u_{i}-u\right|} d x \leq \int_{\Omega} e^{q\left|u_{i}-u\right| \tilde{\eta}_{\epsilon}} d x \leq C(\epsilon, \Omega)
$$

where $V_{\epsilon}\left(x_{0}\right)$ is a neighberhood of x_{0} in $\bar{\Omega}$. Here we used the fact that in a neighborhood of x_{0}, we have for some $C>0,1-C \epsilon \leq \tilde{\eta}_{\epsilon} \leq 1$, by the elliptic estimates.

Thus, for each $x_{0} \in \partial \Omega-\left\{\bar{x}_{1}, \ldots, \bar{x}_{m}\right\}$ there is $\epsilon_{x_{0}}>0, q_{x_{0}}>1$ such that

$$
\int_{B\left(x_{0}, \epsilon_{x_{0}}\right)} e^{q_{x_{0}} u_{i}} d x \leq C, \forall i
$$

Now, we consider a cutoff function $\eta \in C^{\infty}\left(\mathbb{R}^{2}\right)$ such that

$$
\eta \equiv 1 \text { on } B\left(x_{0}, \epsilon_{x_{0}} / 2\right) \text { and } \eta \equiv 0 \text { on } \mathbb{R}^{2}-B\left(x_{0}, 2 \epsilon_{x_{0}} / 3\right)
$$

We write

$$
\Delta\left(u_{i} \eta\right)=|x|^{-2 \alpha} V_{i} e^{u_{i}} \eta-2 \nabla u_{i} \cdot \nabla \eta+u_{i} \Delta \eta
$$

By the elliptic estimates, $\left(u_{i} \eta\right)_{i}$ is uniformly bounded in $W^{2, q_{1}}(\Omega)$ and also, in $C^{1}(\bar{\Omega})$.

Finally, we have, for some $\epsilon>0$ small enough,

$$
\begin{equation*}
\left\|u_{i}\right\|_{C^{1, \theta}\left[B\left(x_{0}, \epsilon\right)\right]} \leq c_{3} \forall i \tag{9}
\end{equation*}
$$

We have proved that, there is a finite number of points $\bar{x}_{1}, \ldots, \bar{x}_{m}$ such that the squence $\left(u_{i}\right)_{i}$ is locally uniformly bounded in $\bar{\Omega}-\left\{\bar{x}_{1}, \ldots, \bar{x}_{m}\right\}$.

Case 2. $\quad \mu(\{0\})<4 \pi(1-\alpha)$.
This means that 0 is a regular point for the measure μ.
Let us consider $B_{\epsilon}(0)$, a ball of center 0 and radius $\epsilon>0$. As in the previous case, we use the uniform estimate in $W_{0}^{1, q}(\Omega),(1 \leq q<2)$ and Brezis-Merle's method, see [10], to have

$$
e^{u_{i}} \in L^{\left(1-\epsilon^{\prime}\right) /\left(1-\alpha-\epsilon^{\prime}\right)}\left(B_{\epsilon}(0)\right)
$$

with a uniform bound.
Thus, by the Hölder inequality we have

$$
u_{i} \in L^{\infty}\left(B_{\epsilon}(0)\right)
$$

If we take $\mu(\{0\})<4 \pi$, by the Brezis-Merle estimate we have $e^{u_{i}} \in$ $L^{r}\left(B_{\epsilon}(0)\right)$ with $r>1$, but this r may not be large enough to ensure $u_{i} \in$ $L^{\infty}\left(B_{\epsilon}(0)\right)$, because we have the term $|x|^{-2 \alpha}$ in the equation.

Then, by the elliptic estimates, for $\alpha \in(0,1)$
(10) $u_{i} \in W^{2,1+\epsilon^{\prime}}\left(B_{\epsilon}(0)\right) \cap C^{0, \epsilon^{\prime}}\left(B_{\epsilon}(0)\right) \cap C_{l o c}^{2, \epsilon^{\prime}}\left(\Omega-\left\{0, x_{1}, x_{2}, \ldots, x_{N}\right\}\right)$,
and, for $\alpha \in(0,1 / 2)$, we have

$$
\begin{equation*}
u_{i} \in W^{2,1+\epsilon^{\prime}}\left(B_{\epsilon}(0)\right) \cap C^{1, \epsilon^{\prime}}\left(B_{\epsilon}(0)\right) \cap C_{l o c}^{2, \epsilon^{\prime}}\left(\Omega-\left\{0, x_{1}, x_{2}, \ldots, x_{N}\right\}\right) . \tag{11}
\end{equation*}
$$

And thus, we have

$$
\begin{equation*}
\partial_{\nu} u_{i} \rightarrow \partial_{\nu} u+\sum_{j=1}^{N} \alpha_{j} \delta_{x_{j}}, \tag{12}
\end{equation*}
$$

$\alpha_{j} \geq 4 \pi$ weakly in the sense of measures on $\partial \Omega$.
As explained in the first step, if we consider a neighborhood of a regular point $x_{0} \neq 0$, we are far from the singularity and the scheme of the first step work in this case; we have the uniform convergence of $\partial_{\nu} u_{i}$ around x_{0}. In the case $\alpha \in(0,1 / 2)$, the elliptic estimates gives us the C^{1} convergence of u_{i}.

Proof of Theorem 1.2. Without loss of generality, we may assume that 0 is a blow-up point (if 0 is not a blow-up point we are in the regular case). Also, by a conformal transformation, we can assume that $\Omega=B_{1}^{+}$, the half ball, and $\partial^{+} B_{1}^{+}$is the exterior part, a part which does not contain 0 and on which u_{i} converges in the C^{1} norm to u. Let us consider B_{ϵ}^{+}the half ball with radius $\epsilon>0$.

In order to apply the Pohozaev identity, we need a good function u_{i}. The fact that $\alpha \in(0,1 / 2)$ implies that

$$
u_{i} \in W^{2, p} \cap C^{1}(\bar{\Omega}) .
$$

Thus

$$
\partial_{j} u_{i} \in W^{1, p} \cap C^{0}(\bar{\Omega}) .
$$

Thus

$$
\partial_{j} u_{i} . \partial_{k} u_{i} \in W^{1, p} \cap C^{0}(\bar{\Omega}) .
$$

Thus we can do integration by parts.
The Pohozaev identity gives

$$
\begin{align*}
2(1-\alpha) & \int_{B_{\epsilon}^{+}}|x|^{-2 \alpha} V_{i} e^{u_{i}} d x+\int_{B_{\epsilon}^{+}} x \cdot \nabla V_{i}|x|^{-2 \alpha} e^{u_{i}} d x \tag{13}\\
= & \int_{\partial^{+} B_{\epsilon}^{+}} g\left(\nabla u_{i}\right) d \sigma+\int_{\partial B_{\epsilon}^{+}} x \cdot \nu V_{i} e^{u_{i}}, \\
2(1-\alpha) & \int_{B_{\epsilon}^{+}}|x|^{-2 \alpha} V e^{u} d x+\int_{B_{\epsilon}^{+}} x \cdot \nabla V|x|^{-2 \alpha} e^{u} d x \tag{14}\\
= & \int_{\partial^{+} B_{\epsilon}^{+}} g(\nabla u) d \sigma+\int_{\partial B_{\epsilon}^{+}} x \cdot \nu V e^{u}
\end{align*}
$$

Here $g\left(\nabla u_{i}\right)$ means a quantity which depends on ∇u_{i} and for which we have a uniform convergence to $g(\nabla u)$. (On $\left.\partial^{+} B_{\epsilon}^{+}\right)$. In fact we have:

$$
g\left(\nabla u_{i}\right)=\left(\nu \cdot \nabla u_{i}\right)\left(x \cdot \nabla u_{i}\right)-x \cdot \nu \frac{\left|\nabla u_{i}\right|^{2}}{2}
$$

We use again the fact that $u_{i}=u=0$ on $\left\{x_{1}=0\right\}$ to obtain

$$
\begin{gathered}
2(1-\alpha) \int_{B_{\epsilon}^{+}}|x|^{-2 \alpha} V_{i} e^{u_{i}} d x-2(1-\alpha) \int_{B_{\epsilon}^{+}}|x|^{-2 \alpha} V e^{u} d x \\
+\int_{B_{\epsilon}^{+}} x \cdot \nabla V_{i}|x|^{-2 \alpha} e^{u_{i}} d x-\int_{B_{\epsilon}^{+}} x \cdot \nabla V|x|^{-2 \alpha} e^{u} d x \\
=\int_{\partial^{+} B_{\epsilon}^{+}} g\left(\nabla u_{i}\right)-g(\nabla u) d \sigma+o(1)=o(1)
\end{gathered}
$$

First, we tend i to infinity and then ϵ tend to 0 . We obtain

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \lim _{i \rightarrow+\infty} 2(1-\alpha) \int_{B_{\epsilon}^{+}}|x|^{-2 \alpha} V_{i} e^{u_{i}} d x=0 \tag{15}
\end{equation*}
$$

However,

$$
\int_{B_{\epsilon}^{+}}|x|^{-2 \alpha} V_{i} e^{u_{i}} d x=\int_{\partial B_{\epsilon}^{+}} \partial_{\nu} u_{i}+o(\epsilon)+o(1) \rightarrow \alpha_{1}>0,
$$

which is a contradiction.

References

[1] Aubin, T., Some Nonlinear Problems in Riemannian Geometry, SpringerVerlag, 1998.
[2] Bandle, C., Isoperimetric Inequalities and Applications, Pitman, 1980.
[3] Bahoura, S. S., A new proof for Brezis-Merle Problem with Lipschitz condition, ArXiv 0705.4004.
[4] Bartolucci, D., A "sup+Cinf" inequality for Liouville-type equations with singular potentials, Math. Nachr. 284 (2011), no. 13, 1639-1651.
[5] Bartolucci, D., A "sup+Cinf" inequality for the equation $-\Delta u=V e^{u} /|x|^{2 \alpha}$, Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), no. 6, 1119-1139.
[6] Bartolucci, D., A sup+inf inequality for Liouville type equations with weights, J. Anal. Math. 117 (2012), 29-46.
[7] Bartolucci, D., A sup \times inf-type inequality for conformal metrics on Riemann surfaces with conical singularities, J. Math. Anal. Appl. 403 (2013), no. 2, 571-579.
[8] Boccardo, L. and T. Gallouet, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 (1989), no. 1, 149-169.
[9] Brezis, H., Li, Y. Y. and I. Shafrir, A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities, J. Funct. Anal. 115 (1993), 344-358.
[10] Brezis, H. and F. Merle, Uniform estimates and Blow-up behavior for solutions of $-\Delta u=V(x) e^{u}$ in two dimension, Commun. in Partial Differential Equations 16 (1991), nos. 8 and 9, 1223-1253.
[11] Brezis, H. and W. A. Strauss, Semi-linear second-order elliptic equations in L1, J. Math. Soc. Japan 25 (1973), 565-590.
[12] Chen, C.-C. and C.-S. Lin, A sharp sup+inf inequality for a nonlinear elliptic equation in \mathbb{R}^{2}, Commun. Anal. Geom. 6 (1998), no. 1, 1-19.
[13] Li, Y. Y. and I. Shafrir, Blow-up analysis for solutions of $-\Delta u=V e^{u}$ in dimension two, Indiana. Math. J. 3 (1994), no. 4, 1255-1270.
[14] Li, Y. Y., Harnack Type Inequality: the method of moving planes, Commun. Math. Phys. 200 (1999), 421-444.
[15] Shafrir, I., A sup+inf inequality for the equation $-\Delta u=V e^{u}$, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 2, 159-164.
(Received March 18, 2014)
(Revised September 3, 2015)
Equipe d'Analyse Complexe et Géométrie Université Pierre et Marie Curie 75005 Paris, France
E-mail: samybahoura@yahoo.fr
samybahoura@gmail.com

