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A Uniform Boundedness Result for Solutions to
the Liouwville Type Equation with
Boundary Singularity

By Samy Skander BAHOURA

Abstract. We give blow-up behavior of a sequence of solutions of
a Liouville-type problem with a singular weight and Dirichlet bound-
ary conditions. As an application we derive a compactness criterion
in the same spirit of the well known Brezis-Merle’s result.

1. Introduction and Main Results

We set A = 911 + 022 on open set  of R? with a smooth boundary. We
consider the following equation:

—Au = |z|722Ve*  in Q C R?,
(P) { u=0 in 09).

Here we assume that
a€(0,1/2), 0 € 09.

The above equation was studied by many authors, with or without the
boundary condition, also for Riemann surfaces, see [1-15], where one can
find some existence and compactness results.

Among other results, we can see in [10] the following important Theorem.
(Since 0 € 012, all the conditions of this theorem are satisfied in our setting).

THEOREM (Brezis-Merle [10]). If (u;) is a sequence of solutions of
problem (P) with (V;) satisfying 0 < a < V; < b < 400, then, for any
compact subset K of 2, it holds

supu; < ¢
K
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with ¢ depending on a,b, o, K, €.

If we assume that V' is more regular, we can have another type of esti-
mates called a sup + inf type inequalities. It was proved by Shafrir see [15],
that, if (u;); is a sequence of functions solutions of the previous equation
without assumption on the boundary with V; satisfying 0 < a < V; < b <
400, then it holds

a
C <—) ; +infu; <c,
b Sl[l(puz—i-lg u; < ¢
where c is a constant depending on a, b, K, (2.

Now, if we assume that (V;); is uniformly Lipschitzian with its Lipschitz
constant A then, C(a/b) =1 and ¢ = ¢(a, b, A, K, ); see [9].

We find in [4-7], estimates of type sup + inf for Liouville type equation
with singular weight.

In this paper we give a blow-up analysis for sequences of solutions of a
Liouville-type problem with singular weight.

We have the following problem for the Liouville equation with singular
weight (as in [10, Problem 1}).

Problem. Suppose that V; — V in C%(Q) with 0 < V; < b for some
positive constant b. Also, we consider a sequence of solutions (u;) of (P)
relative to (V) such that

/ x| 2% ide < O,
Q
Is it possible to have
||luil|pe < C = C(b,a, Q,C)?

In this paper we derive a uniform boundedness result for the solutions
to an elliptic equation with exponential nonlinearity when the prescribed
curvature is uniformly Lipschitzian. For a regular case @ = 0 one can find
in [3] a result close to the result of the present paper.

For the blow-up analysis, the following condition is sufficient.

0<V;<b.

The condition V; — V in C%(Q) is not necessary.
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But for the uniform boundedness result, we assume that
[VVillLe < A.
We have

THEOREM 1.1. Assume o € (0,1/2) and maxqu; — +0o, where (u;)
are solutions of the problem (P) with

0<V;<b, and / \x\_%‘e“idz‘ < C, foralli e N.
Q
Then, after passing to a subsequence, there are a function u, a number
N € N and N points ©1 = 0,x2,... ,xny € 0Q — {0}, such that

N
/ opu;p — / oyugp + Zajgb(xj), a; > 4n(l — o), a5 > 4n.
o0 o0 =

for any ¢ € C°(0Q), and
u; —u in CL.(Q—{z1,...,zn}).
or, r1,%2,... ,xy € 00 — {0}, and

N
Opuip — / dyud + Z Oéj(z)(xj), with o > 4.
o0 [2}9]

j=1
for any ¢ € C°(9Q), and

u; —u in CL.(Q—{z1,...,2x}).

In the following theorem, we have a compactness result which concerns
the problem (P).

THEOREM 1.2.  Assume that (u;) are solutions of (P) relative to (V;)
with the following conditions:

a € (0,1/2), 0 € 09,
0< Vi <b, |[VVils < A, and / o[ 20 <
Q

We have
[|uil| L < e(b, a, A, C, ).
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2. Proof of the Theorems

PROOF OF THEOREM 1.1.

Since [, |z|72¥¢" < C, we have, by the Brezis-Merle result see [10],
eFui ¢ L1(Q),k > 2 and because a € (0,1/2) the elliptic estimates imply
that

u; € W*P(Q) N CH(Q).

We denote by d,u; the inner normal derivative of u;. By the maximum
principle, d,u; > 0.
By the Stokes formula, we obtain

/ o, u;do < C.
00

Thus, (using the weak convergence in the space of Radon measures), we
have the existence of a positive Radon measure p such that

/ (Bvus)gdo — (@), ¥ & € CO(O9).
o0

Let us consider a point zy € 0€2. We say that xg is regular if, zo # 0
and p({xo}) < 4m, or 29 = 0 and p({0}) < 47(1 — ). A point zp € IN is a
nonregular point, if the previous conditions are not satisfied.

For a regular point xg € 92, we may assume that the following curve,
B(xg,€) N0 := I is an interval. (In this case, it is simpler to construct
the following test function 7).

Case 1. pu({0}) > 4w (1 — «).

This means that 0 is a nonregular point for the measure p.
Let us consider the following function

ne=1, on I, 0<e<b/2,
ne = 0, outside Iy,
0<n<1,

Co (€2, 20)

Vel Lo (1) < —
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We take a 7 such that

—Ane =0 in Q,
e =N on Of).

We use the following estimate, see [8, 11],
||Vui||Lq < Cq, Viand 1 < g < 2.

We deduce from the last estimate that (u;) converge weakly in WO1 1(Q),
almost everywhere to a function v > 0 and [, e* < +oo (by Fatou lemma).
Also, V; converge x-weakly in L* to a nonnegative function V. The function
u is in Wy4(§2) solution of :

—Au = |z|22Ve* € LY(Q) in Q,
u =0 on 0f.

As in the corollary 1 of Brezis-Merle result, see [10], we have eF* €
LY(Q),k > 2. We have a € (0,1/2), by the elliptic estimates, u € WP ()N
CH¢(Q).

We can write

(1) A = u)iie) = |2 > (Vie™ = Ve')iie = 2V (u; — ) - Vil
We use the interior esimate of Brezis-Merle, see [10],

Step 1. Estimate of the integral of the first term of the right hand side
of (1).

We use the Green formula between 7. and u to obtain

@ [ vede = [ (@un < adollu- = Ce
Q oN
We have
—Au; = |z|72Ve%  in Q,

u; =0 on 0.
We use the Green formula between w; and 7). to have
3) [ Jal Vit ida = [ (@uunedo — p(n.)

0 o0

< ,u([26) < 4m — €0, €0 > 0.
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From (2) and (3) we have for all € > 0 there is i9p = ig(€) such that, for
1> iO?

(@) / 2720 (Vie — Ve)ii|da < dr — eo + Ce.
Q

Step 2. Estimate of integral of the second term of the right hand side
of (1).

Let 3¢ = {z € Q,d(2,09) = ¢} and Qs = {z € Q,d(z,0Q) > €},
€ > 0. Then, for € small enough, ¥, is hypersurface.
The measure of Q — Qs is koe® < pup(Q — Qes) < kred.

REMARK. For the unit ball 5(0, 1), our new manifold is B(0,1 — €3).
We write

(5) /Q|V(u,~ —u) - Vi |de :/Q IV (ui — ) - Vi |da

+/ |V (u; — u) - Vije|de.
0-0

Step 2.1. Estimate of [_q  [V(u; —u) - Vij|dz.

First, we know from the elliptic estimates that ||V7||z~ < C1/€?, Cy
depends on €.

We know that (|Vu;|); is bounded in L9,1 < ¢ < 2, we can extract
from this sequence a subsequence which converge weakly to h € LY. But,
we know that we have locally the uniform convergence to |Vu| (by Brezis-
Merle theorem), then, h = |Vu| a.e. Let ¢’ be the conjugate of gq.

We have for any f € L7 (Q)

/]Vui|fdx—>/|Vu|fdx.
Q )

If we take f = lo—q4, we have

for e > 03 iy =11(e) €N, @ >4y, / |V, §/ |Vu| + €.
Q-Q3 Q2-Q_3
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Then, for ¢ > i;(e)

/ V| < mes(Q — Qus)||Vul|p~ + € = Ce.

Q-Q.

Thus, we obtain
(6) / |V (u; —u) - Vielde < eCy(2k1||Vul| e + 1).

Q-0
The constant C does not depend on € but on €.

Step 2.2. Estimate of [, |V(u;j —u) - Vij|dz.

We know that Q. CC 2, and (because of Brezis-Merle’s interior esti-
mates) u; — u in C*(Q3). We have

IV (i — )| oo ) < €, for i > iz = iz(e).
We write

/ IV (u; — u) - Vije|dz < |[V(wi — w)|| g s)|[Vilel[Loe < Cre for i > .
o
For € > 0 and for ¢ € N, ¢ > max{i1, 2,43},
(1) / IV (s — ) - Viidldz < eCy (2 [Vl e + 2).
Q

From (4) and (7) we have, for ¢ > 0 there is i3 = i3(e) € N,iz =
max{ig, i1, 42} such that

(8) / Al i — w)iid|dz < 47 — eo + €Ch (2K ||Vl [ +2 + C).
Q

We choose € > 0 small enough to have a good estimate of (1).
Indeed, we have

—Al(uj —u)ne] = gie in Q,
(u; —u)e =0 on 0N

with HgiﬁHU(Q) S 4 — 60/2.
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We can use Theorem 1 of [10] to conclude that there are ¢ > ¢ > 1 such
that

/ e(ﬂuifu\dx < / eq|ui*u‘ﬁedx < C(E, Q)’
Ve(o) Q

where V,(zo) is a neighberhood of zg in Q. Here we used the fact that in
a neighborhood of zy, we have for some C' > 0, 1 — Ce < 75 < 1, by the
elliptic estimates.

Thus, for each g € 02 — {Z1,... ,Zy,} there is €z, > 0,¢y, > 1 such

that
/ edwo¥idy < C, V 1.
B(xo,¢exq)

Now, we consider a cutoff function n € C°°(R?) such that
n=1 on B(z,€ez/2) and n=0 on R? — B(zq, 2€4,/3).
We write
Auim) = |z|72*Vielin — 2V, - Vi + u A,

By the elliptic estimates, (u;n); is uniformly bounded in W41 (Q) and also,
in C1(€Q).
Finally, we have, for some € > 0 small enough,

(9) luillero(pag,e) < €3 Vi
We have proved that, there is a finite number of points Z1, ... , Z,, such that
the squence (u;); is locally uniformly bounded in Q — {Z1,... ,Zm}.

Case 2. u({0}) < 4n(1l — «).

This means that 0 is a regular point for the measure pu.

Let us consider B(0), a ball of center 0 and radius € > 0. As in the
previous case, we use the uniform estimate in VVO1 1(Q),(1 < ¢ < 2) and
Brezis-Merle’s method, see [10], to have

el e L(lfe’)/(lfafe’)(Be(O))‘

with a uniform bound.
Thus, by the Holder inequality we have

u; € L°(Be(0)).
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If we take p({0}) < 4w, by the Brezis-Merle estimate we have e €
L"(B.(0)) with » > 1, but this » may not be large enough to ensure u; €
L>(B(0)), because we have the term |z|~2% in the equation.

Then, by the elliptic estimates, for o € (0, 1)

(10) w; € W2 (B,(0)) N C¥ (B.(0)) N CZE(Q = {0, 21,22, ... ,2n}),

loc

and, for o € (0,1/2), we have

(11) w; € W2H(B,(0)) N CY (B.(0)) N C> (2 — {0, 21, 79, ... ,zN}).

loc

And thus, we have

N
(12) Oyt — Oy + > by,

j=1

a; > 4m weakly in the sense of measures on 0f2.

As explained in the first step, if we consider a neighborhood of a regular
point xg # 0, we are far from the singularity and the scheme of the first
step work in this case; we have the uniform convergence of 0, u; around xzg.
In the case a € (0,1/2), the elliptic estimates gives us the C'! convergence
of Ui O

Proor or THEOREM 1.2. Without loss of generality, we may assume
that 0 is a blow-up point (if 0 is not a blow-up point we are in the regular
case). Also, by a conformal transformation, we can assume that Q = By,
the half ball, and 8+Bl+ is the exterior part, a part which does not contain
0 and on which u; converges in the C'! norm to u. Let us consider B the
half ball with radius € > 0.

In order to apply the Pohozaev identity, we need a good function ;. The
fact that o € (0,1/2) implies that

U; € W?2P N CI(Q)

Thus
3jui e whPn CO(Q)

Thus
0ju;.Opu; € whrn CO(Q)
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Thus we can do integration by parts.
The Pohozaev identity gives

(13) 2(1—a)/ ||” 2O“/emalarrl—/ x - VVi|z|2%e"i dx
BE B
:/ Vuz d0'+/ w-uVie“i,
<9+B+ oBt
(14) 2(1—a)/ | 2av€udx+/ v TV |22 ehds
Bf BF

€

= / g(Vu)do + / x-vVe"
o+BF OB

Here g(Vu;) means a quantity which depends on Vu; and for which we
have a uniform convergence to g(Vu). (On 8T BJ). In fact we have:

]Vuz|2

g(Vu;) = (v-Vu;)(x - Vu;) —z-v 5

We use again the fact that u; = v =0 on {z; = 0} to obtain

2(1 — a)/ 2| 2V;evida — 2(1 — a)/ |z| 729V evda
B B

€ €

-I—/ x - VVi|z| 2 e%idr — / x - VV|z| "2 ds
B B

€

= / 9(Vu;) — g(Vu)do + o(1) = o(1).
o+ B
First, we tend ¢ to infinity and then € tend to 0. We obtain
(15) lim lim 2(1 — a)/ 2| 2V;evida = 0.
e—0i—+o00 BF

However,
/ 2|2 Vet ide = / dyu; +o(e) +o(1) — a3 >0,
B OB

which is a contradiction. OJ
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