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Wave Equations in a Complex Domain

By Keisuke UCHIKOSHI

Abstract. We consider Cauchy problems for 2-dimensional wave
equations in a complex domain. We assume that the initial values have
singularities along the union of two hypersurfaces which are normally
crossing at the origin. We show that the solutions have singularities
not only along the corresponding characteristic hypersurfaces but also
on the light cone issuing from the origin.

1. Introduction

Let # = (w0, 2') = (20,71, 22) € C3. We consider a 2-dimensional wave
operator of the following form:

(1) Pu = Ou(x) + Pi(zg)dou(x) + Po(zo)u(x).

Here we have denoted 0 = 92 — 0? — 93,0, = 0/0x), and we assume
that Pj(xp) is holomorphic at the origin. We consider the following Cauchy
problem:

(2) Pu=0, u(0,2") = up(2"), d1u(0,z') = ui(2").

We assume that the initial values ug(z’) and wu;(2’) have some singularities
in the initial hypersurface {z¢y = 0}, and study how the singularities of the
solution propagate in the complex domain.

REMARK. If the initial values are holomorphic on {2’ € C?; x; #
0}, it is known that the singularities of the solution propagate along the
characteristic hypersurfaces {x € C3; z; £ 29 = 0} (See [1, 2, 8]). If
the initial values have singularities on a swallow’s tail X C {z¢g = 0} a
similar result is also known (See [3, 4, 5]). However, if the singularity set of
the initial values has a different form, the singularities of the solution may
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propagate in a different way. We treat this last case, for which few results
are known (See [6, 7]).

In this article, we assume that ug(z’) and u;(z’) are single-valued holo-
morphic functions on {z' € C? |2/| < R, x1 # 0, x5 # 0} for some
R > 0. Therefore the initial values have singularities along X; U X5, where
X; = {2’ € C?%; z; # 0}. Precisely speaking, we assume that 27°z5°u;(z’)
are holomorphic near the origin for some positive ng € Z. We shall show
the following result.

THEOREM 1. LetY =YyUY; L UY; _UYy UYy _, where
Yo = {2z € C3% —a? + 23+ 23 =0}
s the light cone issuing from the origin, and
Y+ ={x€ C3: xj £ x9 =0}

is a characteristic hypersurface issuing form X; and propagating backwards
or forwards. The solution is holomorphic on the universal covering space
R(w\Y) of w\Y, where w is a small neighborhood of the origin.

Plan of the paper. In section 2 we shall construct a formal solution of
the Cauchy problem using a kind of asymptotic expansion. In section 3, we
shall calculate the singularities of this expansion. It will turn out that this
expansion contains a superfluous singularities on {2? + 3 = 0}. We shall
show that we can remove these superfluous singularities from the solution.
In section 4, we shall complete the proof of Theorem 1.

2. Construction of the Solution
We first consider the problem in the following special case.
ProrosiTiON 1. If

(3) Pi(x9) =0, up =0, u; =1/(z122)

in (1) and (2), then Theorem 1 is true.
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We shall prove this proposition in section 4. In section 2 and section 3,
we admit this result, and we restrictively consider an operator P satisfying
condition (3).

At first, we define

0, if j =0,

1 r ...
— =+ 4+ —, ifj>1.
J

for j€e Zy ={0,1,2,...}. Let p(x,0) = ¢ + x1 cos @ + xosin b for § € C. If
j € Z, we define

(191G - 1)ipl, ), itj>1,
pj(z,0) = r.0)"J
A Gogp(e6) - N(-i). i <o.

Finally, we define ®;(z) = foﬂ/ 2 @;(x,0)dd. Then we have the following
result.

LEMMA 1. (1) We have 80<I)j = q)j-H and D(I)j =0.
(ii) If Re 1 <0, Re w2 <0, and j > 1, then we have

o [ee) .
D;(0,2") = — / / 18122821172 e g, .
0 0

In particular, we have ®2(0,2") = —1/(z122).

PROOF. Statement (i) is trivial. Let us prove (ii). We have

: /2 :
®;(0,2") = (=1)71(j - 1)!/ (z1 cos + xosinf) 7 db
0

/2 poo )
- _ / / 67"(301 cos 042 sin G)T,jfld,,,de
0 0

:_/ / 6x1£1+m£z|5|jf2d§1d€2‘ 0
0

0
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Let w C C? be a small neighborhood of the origin. We denote the set of
holomorphic functions on w by O(w). We seek for a solution u(z) of (2) in
the following form:

u(z) =ut(z)+u (@),
ut(z) = Z u;-t(wo)fbj(:l:xo,x’).
—o0<j<1

Here we consider unknown functions u]i(a:) € O(w). We substitute this
expression in (2). Then using (i) of Lemma 1 and condition (3), we obtain

Pu= Z {Pu;'(xo) : ‘I)j(ilio, $/) + 280u;'(350) : (I)j_H(ﬂZ(), x')}

—o0<j<1
+ > {Puj (w) - Bj(—mo,2") — 200u] (wo) - Bjy1(—x0,7)}.
—o0<j<1
Therefore we need to solve

F1
(4) douy = - Pu,

for j < 1, where we have defined u2i = 0. On the other hand, we have

u0,2) = Y (uf(0)+u;(0)®;(0,2") =0,
—o0<j<1
dou(0,2) = 3 (aouj(()) n aou;(O))cpj(o,x')
—00<y<1
Y (0 05 0) (0.0 =
—00<j<1 ’ g T1T2
Therefore we need to solve
uf (0) +u; (0) =0, j<t,
u (0) = uj (0) = 1, j=1
ul (0) = uj (0) = —dou;\1(0) — douj(0), j<o.
In other words, we need solve (4) under the following condition:
1 .
n :F§7 J = 17
() wro=1 2

5 (0t 1 (0) + Bz, (0), <o,
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Then we have the following results.

LemMA 2. (i) We have u] +(0) + u; (0) =0 for j <1.
(ii) We have u+(0) —u; (0) = 80uj+1(0) dou;;1(0) for j <O0.
(iii) If j is even, then we have u+(x0) u; (o).
(iv) If j is odd, then we have u; (:zo) —u; (o).
(v) We have ui = F1/2, ud = o Po(t )dt/4

PROOF. Statements (i), (ii) and (v) are direct results of (4) and (5).
We can prove (iii) and (iv) by induction on j. O

LEMMA 3. Let C >0 be large, and let R > 0 be small (compared with
1/C). Then we have ]ui\ < (1 —)C*7 for j <1 onw(R) = {z €
C3; |z| < R}.

Proor. We define u; E(xo) = 2 k>0 uj-[kx’g, where the coefficients ujik

are determined in the followmg way. For j = 1, we define ufk = Fon/2.
Let jo < 0. We assume that we have determined ujik for jo+1 <45 <1.

For (j k) = (jo,0) we define wj = F(wfiy | +uyiy,)/2 Let ko = 1. We
assume that we have determined ujik also for j = jo, 0 < k < kg — 1. For
(4, k) = (Jo, ko) we define

+
i = o bk + Duy g+ D Powtiiy ).
K +k"=k—1

By induction we can easily prove

(1—j+k) O3-2i+k

+
[ujil < Ll

if C' > 0 is large. Therefore we have

] <Y Jwolflujy| < 2 (1 = HICPH(2Cxo ) < (20)°7H (1 )L
k>0 k>0

Changing R > 0 and C' > 0, we obtain the lemma. [
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3. Singularities of the Solution

Let D(x) = —2% + 2% + 23. In this section we prove the following
statements:

(a) If j > 1, then ®;(z) is holomorphic on wy = {1 + 9 # 0, x2 + x¢ #
0, D # 0}.

(b) If j <0, then ®;(x) is holomorphic on wy = {z1 +z9 # 0, z2 + xo #
0, D #0, 22 + 23 # 0}.

In other words, our asymptotic expansion contains superfluous singularities
on {x? 4+ 22 = 0}, which we need to remove from the solution later.

We first show statement (a). It suffices to prove this statement for j = 1,
because differentiating ®(x) by z¢ for (j — 1)-times, we obtain the other
cases. We have

™ d 1 2ds
@1(1}) = = — 2 y
o p(z,0) o (zo—x1)s% 4+ 2x25 + 0 + 71

where s = tan(6/2), as usual. Let us define ay(z) = (—x2 £/ D(z))/(x0 —
x1). It follows that

1 1 2ds
<I)1(.7)) - o — T1 /0 (3 - 04+(3:'))(S B a_(a}))

2 ! 1 1
" (20— 21)(ar(z) — a_(x)) /0 (= ar(@)  s- a_<x>>d8

1 log a_(x) — ag(r)a_(x)
D(z)  at(z) —ay(@)a_(z)
It follows that
1 D
By (x) = 1ngo+x1+w2+\/ (:U)
D(z) “xo+z+ 22— /D)
Here we have
(6) To+ 21 +22+ VD=0 or zo+x1+22— VD=0

< (x1 + o) (22 + z9) = 0.
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This means that ®;(z) is holomorphic on wy.

REMARK. One may think that {D(x) = 0} is a removable singularity
of ®1(x), but it is not true. We can prove this in the following way. Let
wo={x1+x0#0, 22+ 20 # 0}, and let 7 : R(wp) 2 T —— x € wy be the
natural projection of the universal covering space. Assume that 2° € R(wp)
satisfies D(2%) = 0. We remark 9 + 29 + 29 # 0. In fact, if this is not true,
then we have z? + 23 = 22 = (21 + 22)? at x = 20, and we have 2929 = 0.
This, together with 28 +{ + 23 = 0 means either 29 +2% = 0 or 29 +2§ = 0,
which is a contradiction. In a neighborhood of Z°, we have

®,(2) =

1 10g<1+\/ﬁ/($0+$1+w2))
vD 1—VD/(zo + x1 + x2)

1 1 D 2k+1
:—<1og1+2z ( v ) )
/D k>12k+1 xro+ x1 + T2

Moving & € R(wp), we can choose an arbitrary branch of log1 in this ex-
pression, therefore ® (&) is not holomorphic at # = 7% in case of log 1 # 0.

We next show statement (b) above. For the moment we assume j < —1.
Let

T +’i$2 T1 —il‘g)
2 ’ 2
We always denote Jy = 0/0z). Then we have

Yy = (y()aylva) - (fEO,

w/2 )
%, /0 (i, 0) (log p(z,0) — N (~j))do

®j(z) = =

1
- /0 b (w, ) (log (,0) — N(—j))ds,

where we have defined

1 o2
: — -j_Z
d)](xvs) - (_])ﬁp(x?Q) 1 + 32‘
. (1 -8z 2529 s+i s—1 )
Since p(z,0) = zo+ a2 +1+s2 Yo— W ;Y2 We obtain
2 N Nl
Ul = Y ) () s i) s i)

k+l+m=—j
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_ 2 k 1 m (S + i)limil
= 2 e e e
k+l4+m=—j
I>m+1
2 k m l (S B i)l_m_l
LD i Do) (_Mﬁ(s+¢y—m+1
k+l+m=—j
1>m+1

2 -\ — -\ —
+ D g W) () s+ )T s -7
k42l=—j

Therefore we have
2 (l-m—1\ , l m (20

2 (l-m—1\ , m ,(—=20)
+ % m( I >Z/0(—3/1) (—y2) (s +9)i+2
7

1 g (—y)l(—p)! /1 1
* E:‘kHH! i <s—i s+»’
k- 2l=—j

where
(7) E+l4+m=—j, 0<l'<l—m—1.
It follows that

¥j(z,s) = Z Ajng(z)(s + iq) "1,

0<n<—j
qe{_17+1}
where
1q
(8) Ajog(z) = Z my’éyllylg
k42l=—j
2(=20)" 1 (1—m—1 m
I D o (N [ E LY

(11)
2(20)" L [l—m—1
k!l m!

10)  Apni(a) = )y§<—y1>’<—y2>m

(11)

n—1
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for n > 1. Here we have defined
(11) k+l4+m=—j,n<l—m

for n > 1. By simple calculation, we can easily see the following results (We
omit the proof).

LEMMA 4. (i) Ifj <0 is odd, we have Ajoq(—x0,2") = —Ajoq(x), and
thus Ajoq(0,2") = 0.
(i) If j <0 is even, we have Ajoq(—x0, ") = Ajoq(x).
(iii) [f] < —1, we have 8014]'0,1 = Aj+1707q.
(iv) We have O;Ajoq = 0.
(v) We have Agoq = iq.

LEMMA 5. Both Aj, +1(x) and y5 " Ajn+1(x) are entire functions and

we have
(2ly2))"(3ly)) 7" < (5ly)~
I

Both Aj,.—1(x) and y; " Ajn—1(x) are entire functions and we have

[Ajn1(2)] <

Ly )" By~ _ (Glyh~?

[Ajno,—1(2)| < (—j—n)n! = (=5~

We define

1
(12)  @pny(x) = Ajpgl) /0 (s + iq) ™ (log p(x, 8) — N(—j))ds.

The property of this function is quite different between the case n > 1
and the case n = 0. To see this, we first remark the following fact.

ot —
a4

—x9 + 21 — 9 + 1/ D(x)
—x9 £ /D(x) 7

and fy(x) is holomorphic on R(w1).

LEMMA 6. Let fi(z) =log . Then we have

fe(x) =log
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PROOF. We need to prove that fi(z) is holomorphic at an arbitrary
point ¥ € R(w;). We first consider the case 2§ = {. Then we have x93 # 0,
and we assume that we are considering a branch /D (z0) = /(29)% = 29.

In a neighborhood of #°, we have

—Xo + 21 —$2+x2\/1— (x% —:C%):CQ_Q

f+(z) =log
—x + 1‘2\/1 — (2% — 2})x5?
1 - (2k =3)!! (w0 — 1)" (o + x1)"
w0+ o =g (o = )er Y o v !
=1lo
T L ey GO ) )
9 \F0 T ¥1)%2 k22 o] 221

(2k =3)! (w0 — 21)* (w0 + 21)"

2x9 + 0 + 1 +22k22

2k x%k_2
= log (2k = 3)!! (zo— a:l)k_l(azo + xl)k
T+ T1+ 2 5o okl L 2k—2
I 5

Here we have 229 + 2 + 20 = 229 + 220 # 0, 29 + 20 # 0, and thus f(z)
is holomorphic in a neighborhood of Z°. On the other hand, for this branch
neither —z¢ +z1 — 22 — /D(z) nor —z3 — \/D(z) vanishes at 2°. Therefore

—z9 +x1 — x2 — \/D(2)

f-(z) =log " VD)

is holomorphic at z°.
We next consider the case 79 # z3. We have

—xg+ 21 —x2t/D(x)=0 = (z2 + zo)(x1 — x0) =0,
—x9++/D(x)=0 = (1 + o) (1 — ) = 0.

From our assumption it follows that neither —z¢ + x1 — zo £ y/D(x) nor
—x9 + +/D(z) vanishes at ¥ = #°. Therefore fy(z) is holomorphic at #°. OJ

LEMMA 7. Let R > 0 be sufficiently small. We define wi(R) = {z €
C3 |z| < R, 21420 #0, 29 +20#0, D(x) #0}. If n> 1, then ®jpq(z)
is holomorphic on R(w1(R)) and we have
20(10|z|)~7

ot (22 1)+ og(ar+a0)] + | og(za-+z0) +1)

le{—-1,+1}

| jng(2)] <
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on R(wi(R)).

PROOF. From (12) we have ®jng(z) = 321 <)c5 Pjngp(z), where

B () = D (5 i) (log ol 0) ~ N ()]
Djnga() = Ajn;i(x) /01 (s +1iq)” s— ;+(x)ds,

Djngs(z) = Ajns(x) /01 (s —I—liq)” s — ;_ (:c)ds’

Binsa) = - 22 [ 1 e

We need to prove

(13) [ jngr ()]

4(10|z|)~7
<N ( S 1o+ Hoglar + o)+ log(oa +a0)| 1)
1 le{—1,+1}
for 1 <k <5.

We have [p(z,0)]s=0 = =1 + =0, and [p(z,0)]s=1 = z2 + zo. It follows
that

Pjng1(z) = ~Ajng(2) (log($2 +20) — N(—=j) log(x1 +x0) — N(—j)).
Jng n (1 + iq)n (Zq)”
We have N(—j) < —j <277, and from Lemma 5 we obtain
5ly[)~7 B
| jng1(z)] < % - (|log(xa + z0)| + |log(zy + xo)| +27711)
2(10|z|)~7
= % . (’ 10g(1‘2 + {E())‘ + ‘ log(xl + $0)| + 1).

Therefore (13) is true for k = 1.
We next consider ®j,42(x). If @ # b, then we have

1 _ =yt 1 ‘ 1
(s—a)(s—b" (a—b" s—a Z a— D)+ (s — b+

n/4+n''=n—
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It follows that

1 A 1 _1\n—1
bt = LA [
n o (ay(z) +ig)" Jo s —ay(z)
_ i A.]nQ('I) /1 1 d
no A (e (@) +ig) o (s i)
and thus

We need to prove that ®;,q2(z) is holomorphic at an arbitrary point
¥ € R(w1). From Lemma 6, log((a. (z) — 1)/(a(z)) is holomorphic at
7Y € R(wy). Therefore (I)ang( ) is holomorphic at 7% if ay (%) + iq # 0.
Let us consider the case ay (%) +ig = 0. We have

L (wo—a)(a-(a) +ig)

(15) ay(r) +ig 2(x1 —iqx2)

If ¢ = +1, then 21 —igzy = 2y». From (9) it follows that (x1—igz2) ™A n 11
is holomorphic at & = #". This means that ®; 1, +1,2() is holomorphic on
R(w1). We next give an estimate for ®;pq2(z) for ¢ = 1. From (15) we
have |(z1 — iqxa) /(a4 (z) + iq)| < |ig(zo — x1) — x2 — /D(x)| < 6|x|. Let

0 <n’ <n-—1. From Lemma 5 and (15) we have

Ajn+1(2) ’ < _lm—ige"@Bly)) 7
(g (@) +0)" 7 Jag (2) + ¥+ (= — n)ln!
<!9€1 — igg)| >”'+1 1 — dgaa|" " (3l]) "
jocr (&) +1] !
(10]z|)~7
(=J)!
for 0 <n' <n—1. From (14) it follows that

o (e L+ hoe 5 )

<

[P jng2(z)] <
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> (i@ +1).

le{—-1,+1}

Therefore (13) is true for (¢, k) = (1,2). The same result is true for ® ()
for ¢ € {+1,—-1} and k € {2,3}. Finally, ®jnq(z) and Pj,q5(x) are holo-
morphic functions at the origin which satisfy the same estimate. [

REMARK. By Lemma 7, ®,4(x) is holomorphic on R(wi(R)) if n > 1.
To the contrary, ®;,4(z) is not holomorphic on R(wi(R)) if n = 0. Let us
prove that ®;o,() is singular at 7% € R(wy(R)) if 2§ — igz) = 0. It suffices
to prove this for 7 = 0, because we have @00(1( ) =0, '<I>j0q. Furthermore,
it suffices to prove that 9y®gg, is singular at 2°. From (iv) of Lemma 4 and
(12), we have

L g
|
/Os+z og p(x, H)d)

L g (z 0—x1)52+2m25+(1‘0+x1)
| e i )ds)

/1 iq 2s
= — . 5 ds
0 s+iq (xog—x1)s%+ 2x98+ (2o + 1)

:/1 iq 2s ds
0o s+ig (z O—xl)(s—a+( ))(S—Oé—(x))

_ Qo 1 )ds
B ) +1iq) \/7 5 —ay(z) s+ig
1qou_ 1
x) +iq)\/D s—a () s—i—iq)ds
L igay L (1-as())ig
- . 0g -
(a4 () +iq)y/D(x) ~ —ax(z)(1 +1ig)
iqa_ (1 —a_(x))iq

(a_(z) +iq)/D@) = —a_(z)(1+iq)

By Lemma 6, the logarithmic functions are holomorphic on R(w;j). At
z = 20, either oy (x) +1iq or a_(z) + iq vanishes, and da®go,(z) may have a
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singularity at this point, according to the branch of the logarithmic function.

We next show that nevertheless the solution of (2) is holomorphic on
R(w1(R)). For this purpose, we define

gq(w) =Y (u] (w0) Ajog (x) + uj (w0) Ajog(—0, 2")).
J<0
Then we have the following result.

LEMMA 8. We have g4(x) = 0.

PrROOF. From (i) of Lemma 2, we have
(16) 9q(0,2") = Y (uf (0) +1;(0)) Ajog (0, 2) = 0.
J<0
From (ii) of Lemma 2, we have
30gq(0, ') = (Bou (0) + Bou; (0))Ajoq (0, 2)
5<0

+ Z (0))30A;joq(0,2")

3<0

= > (Aoul (0) + dou; (0))Ajog(0, ')

7<0

_ Z 80uj+1 + 80u]+1( ))80Aj0q(0, (I?/)

7<0

=D (ou; (0) + dou; (0))(Ajoq (0, 2') — o Aj—1,0,4(0,2"))

i<1

+ (aoug_((]) + 80u0(0))80A00q(0, .17/).

From (iii) and (v) of Lemma 4 we have Ao, —0pA;—1,0,4 = 0 and dyAgoq = 0.
It follows that

(17) D0g4(0,2") = 0.
We have

Pgq(x) =Y (Puf (w0) - Ajog(w) + Puj (o) - Ajog(—z0,2"))

J<0
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+ 2 Z <0ouj+ (xo) . aoAjoq(l‘) - a()u; (J}()) . aoAj()q(—$0, $,)> .
J<0

From (iii) and (v) of Lemma 4, we have

Pygy(x) =) (Puj (20) - Ajoq(x) + Puj (o) - Ajog(—0,2"))
§<0

+2Y (aouj(xo) Aji10g(2) — B0 (x0) .Ajﬂ,o,q(—xo,x')).

j<—1
From (4) we have
(18) Pg, =0.
From (16)—(18)we obtain the lemma. [J
COROLLARY.  We have 3 ;g ujc(xo)Ajoq(ixg, z') =0.

PROOF. Let j be odd. By Lemma 2, we have u;r(xo) = —u; (20), and
by Lemma 4, we have Ajoq(—z0,2") = —Ajoq(x). It follows that

(19) u; (z0) Ajog () = uj (0) Ajog(—z0, 2").
We can similarly prove (19) if j is even. From Lemma 8 we have

> uf (w0)Ajog(x) =Y uj (w0) Ajog(—x0,2") = 0. 0

Jj<0 Jj<0

PrRoOF OrF PrROPOSITION 1. If j <0, we have

Oj(x) = Y Djng(2)
0<n<—j
ge{-1,+1}

= Z Pjng(z)

1<n<—j
ge{—-1,+1}

LS Ajg(e) /0 (s +iq) " (log o — N(—3))ds.

qe{717+1}
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We define

1
() = Pj(z) — Z Aqu(a:)/o (s +iq) " log pds

qG{—l,—H}
= Z Djng(z) — Z N(—=j)Ajoq(z)log(1 — ig).
1<n<-j qe{—1,+1}
ge{—1,+1}

If j > 1, we define ®(z) = ®;(z). From Lemma 8, we have

u) = > ul(zo)®(gre,a’) = Y ul(we)®)(go, ')
—o0<j<1 —o00<j<1
ge{+1,—1} ge{+1,-1}

By Lemma 5 and Lemma 7, this function is holomorphic on R(w1(R)). O
4. Proof of the Theorem

From now on, we do not assume (3), and give the proof of Theorem 1
in several steps.

LEMMA 9. If Pi(z9) =0 and ug =0 in (1), then Theorem 1 is true.

PROOF. For some positive integer ng we have ui(z') = > .5, -

uy k) h, and we can rewrite as u1 = u + ul + u? + uj, where

0/ 1\ J .k
uj(z') = E U1jkLI L5
J,k>0
1.\ ik
uy(z') = E U1jkLI LY,

0>j>—no
k>0

ui@) = > wprlas,
Jj=0
0>k>—ng
ul(z') = Z uljka:{mg.
0>j>—ng
0>k>—ng
We can apply the Cauchy-Kowalewski theorem to the case (ug, u1) = (0,u?),
and the corresponding solution is holomorphic at the origin. We can apply
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the usual result for singular Cauchy problems to the case (ug,u1) = (0, u}),
and the corresponding solution is holomorohic outside of {z1 —xo = 0} U
{21 + 29 = 0}. The solution corresponding to the case of (ug,u1) = (0, u?)
is holomorohic outside of {xe — g = 0} U {z2 + z¢ = 0} (See [1] for these
two cases). Finally, we consider the case of (ug,u1) = (0,u}). For this case,
we may assume u; = mjlzé for some negative integers j and k. Then we can
reduce the problem to the case u; = 1/(x122) and can apply Proposi-
tion 1. [J

ProposSITION 2. Ifug =0, then Theorem 1 is true.

PrROOF. Let P(zg, D) be a general operator of the form (1). If

1o
u(z) = exp<—7/0 Pl(t)dt>v(a:),
then we have Pu = exp(— [;° Pi(t)dt/2)Qu, where

Qv =0v+ <P0(x0) — %80})1 (IEQ) — ipl(xO)Q)'U-

We can apply Lemma 9 to @, and the corresponding solution v(zx) is holo-
mophic on R(w\Y). O

LEMMA 10. If Py(zg) = 0o P1(xo) and uy = 0, then Theorem 1 is true.
PRrROOF. In this case, we need to solve
(20) Pu = Ou+ 9y(Pru) =0, u(0,2") = ug, dou(0,z’) = 0.

Let Q@ = O+ Pi(z0)0y. By Proposition 2, there exist v,w € O(R(w1(R)))
satisfying

Qu =0, v(0,2") =0, dv(0,2") = o,
Pw =0, w(0,2") =0, dw(0,2") = P1(0)ug(z").

Then u = w + Jyv satisfies (20). O

ProprosITION 3. Ifuy =0, then Theorem 1 is true.
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PrROOF. Let P(xg, D) be a general operator of the form (1). Let a(z)
be the solution of

d? 2/d d dP,
aa _(_a>2fp1_a+ (_1 fpo)azo,

(21) dx% dcylvo dxg dzg
a
0)=1, —(0)=0
a(0) =1, £2(0)

Both a and 1/a are holomorphic at the origin. We define u = av. Then we
have Pu = aQuv, where

Q =0+ Q19 + Qo,
2 da d’a da
=—-—+P + P F.
Q@1 adm+1’QO <d 1d0>+0
From (21), we have Qq(xg) = 0oQ1(xp). We can apply Lemma 10 to @, and
we have a solution v € O(R(w1(R))) of

Qu =0, v(0,2") = up(2"), dyv(0,2") = 0.
Then, u = av is the solution to the present problem. [

Theorem 1 is a direct consequence of Propostion 2 and Proposition 4.
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