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Wave Equations in a Complex Domain

By Keisuke Uchikoshi

Abstract. We consider Cauchy problems for 2-dimensional wave
equations in a complex domain. We assume that the initial values have
singularities along the union of two hypersurfaces which are normally
crossing at the origin. We show that the solutions have singularities
not only along the corresponding characteristic hypersurfaces but also
on the light cone issuing from the origin.

1. Introduction

Let x = (x0, x
′) = (x0, x1, x2) ∈ C3. We consider a 2-dimensional wave

operator of the following form:

Pu = �u(x) + P1(x0)∂0u(x) + P0(x0)u(x).(1)

Here we have denoted � = ∂2
0 − ∂2

1 − ∂2
2 , ∂k = ∂/∂xk, and we assume

that Pj(x0) is holomorphic at the origin. We consider the following Cauchy

problem:

Pu = 0, u(0, x′) = u0(x
′), ∂1u(0, x′) = u1(x

′).(2)

We assume that the initial values u0(x
′) and u1(x

′) have some singularities

in the initial hypersurface {x0 = 0}, and study how the singularities of the

solution propagate in the complex domain.

Remark. If the initial values are holomorphic on {x′ ∈ C2; x1 �=
0}, it is known that the singularities of the solution propagate along the

characteristic hypersurfaces {x ∈ C3; x1 ± x0 = 0} (See [1, 2, 8]). If

the initial values have singularities on a swallow’s tail X ⊂ {x0 = 0} a

similar result is also known (See [3, 4, 5]). However, if the singularity set of

the initial values has a different form, the singularities of the solution may

2010 Mathematics Subject Classification. Primary 35L05; Secondary 35A20, 35A21.
Key words: Complex Cauchy propblem, propagation of the singularities, light cone.

405



406 Keisuke Uchikoshi

propagate in a different way. We treat this last case, for which few results

are known (See [6, 7]).

In this article, we assume that u0(x
′) and u1(x

′) are single-valued holo-

morphic functions on {x′ ∈ C2; |x′| < R, x1 �= 0, x2 �= 0} for some

R > 0. Therefore the initial values have singularities along X1 ∪ X2, where

Xj = {x′ ∈ C2; xj �= 0}. Precisely speaking, we assume that xn0
1 xn0

2 uj(x
′)

are holomorphic near the origin for some positive n0 ∈ Z. We shall show

the following result.

Theorem 1. Let Y = Y0 ∪ Y1,+ ∪ Y1,− ∪ Y2,+ ∪ Y2,−, where

Y0 = {x ∈ C3; −x2
0 + x2

1 + x2
2 = 0}

is the light cone issuing from the origin, and

Yj,± = {x ∈ C3; xj ± x0 = 0}

is a characteristic hypersurface issuing form Xj and propagating backwards

or forwards. The solution is holomorphic on the universal covering space

R(ω \ Y ) of ω \ Y , where ω is a small neighborhood of the origin.

Plan of the paper . In section 2 we shall construct a formal solution of

the Cauchy problem using a kind of asymptotic expansion. In section 3, we

shall calculate the singularities of this expansion. It will turn out that this

expansion contains a superfluous singularities on {x2
1 + x2

2 = 0}. We shall

show that we can remove these superfluous singularities from the solution.

In section 4, we shall complete the proof of Theorem 1.

2. Construction of the Solution

We first consider the problem in the following special case.

Proposition 1. If

P1(x0) = 0, u0 = 0, u1 = 1/(x1x2)(3)

in (1) and (2), then Theorem 1 is true.
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We shall prove this proposition in section 4. In section 2 and section 3,

we admit this result, and we restrictively consider an operator P satisfying

condition (3).

At first, we define

N(j) =




0, if j = 0,

1

1
+

1

2
+ · · · + 1

j
, if j ≥ 1.

for j ∈ Z+ = {0, 1, 2, ...}. Let ϕ(x, θ) = x0 + x1 cos θ + x2 sin θ for θ ∈ C. If

j ∈ Z, we define

ϕj(x, θ) =




(−1)j−1(j − 1)!ϕ(x, θ)−j , if j ≥ 1,

ϕ(x, θ)−j

(−j)!
(log ϕ(x, θ) − N(−j)), if j ≤ 0.

Finally, we define Φj(x) =
∫ π/2
0 ϕj(x, θ)dθ. Then we have the following

result.

Lemma 1. (i) We have ∂0Φj = Φj+1 and �Φj = 0.

(ii) If Re x1 < 0, Re x2 < 0, and j ≥ 1, then we have

Φj(0, x
′) = −

∫ ∞

0

∫ ∞

0
ex1ξ1+x2ξ2 |ξ|j−2dξ1dξ2.

In particular, we have Φ2(0, x
′) = −1/(x1x2).

Proof. Statement (i) is trivial. Let us prove (ii). We have

Φj(0, x
′) = (−1)j−1(j − 1)!

∫ π/2

0
(x1 cos θ + x2 sin θ)−jdθ

= −
∫ π/2

0

∫ ∞

0
er(x1 cos θ+x2 sin θ)rj−1drdθ

= −
∫ ∞

0

∫ ∞

0
ex1ξ1+x2ξ2 |ξ|j−2dξ1dξ2. �
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Let ω ⊂ C3 be a small neighborhood of the origin. We denote the set of

holomorphic functions on ω by O(ω). We seek for a solution u(x) of (2) in

the following form:

u(x) = u+(x) + u−(x),

u±(x) =
∑

−∞<j≤1

u±
j (x0)Φj(±x0, x

′).

Here we consider unknown functions u±
j (x) ∈ O(ω). We substitute this

expression in (2). Then using (i) of Lemma 1 and condition (3), we obtain

Pu =
∑

−∞<j≤1

{Pu+
j (x0) · Φj(x0, x

′) + 2∂0u
+
j (x0) · Φj+1(x0, x

′)}

+
∑

−∞<j≤1

{Pu−
j (x0) · Φj(−x0, x

′) − 2∂0u
−
j (x0) · Φj+1(−x0, x

′)}.

Therefore we need to solve

∂0u
±
j =

∓1

2
Pu±

j+1(4)

for j ≤ 1, where we have defined u±
2 = 0. On the other hand, we have

u(0, x′) =
∑

−∞<j≤1

(u+
j (0) + u−

j (0))Φj(0, x
′) = 0,

∂0u(0, x′) =
∑

−∞<j≤1

(
∂0u

+
j (0) + ∂0u

−
j (0)

)
Φj(0, x

′)

+
∑

−∞<j≤1

(
u+
j (0) − u−

j (0)
)
Φj+1(0, x

′) =
1

x1x2
.

Therefore we need to solve

u+
j (0) + u−

j (0) = 0, j ≤ 1,

u+
j (0) − u−

j (0) = −1, j = 1,

u+
j (0) − u−

j (0) = −∂0u
+
j+1(0) − ∂0u

−
j+1(0), j ≤ 0.

In other words, we need solve (4) under the following condition:

u±
j (0) =



∓1

2
, j = 1,

∓1

2

(
∂0u

+
j+1(0) + ∂0u

−
j+1(0)

)
, j ≤ 0.

(5)
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Then we have the following results.

Lemma 2. (i) We have u+
j (0) + u−

j (0) = 0 for j ≤ 1.

(ii) We have u+
j (0) − u−

j (0) = −∂0u
+
j+1(0) − ∂0u

−
j+1(0) for j ≤ 0.

(iii) If j is even, then we have u+
j (x0) = u−

j (x0).

(iv) If j is odd, then we have u+
j (x0) = −u−

j (x0).

(v) We have u±
1 = ∓1/2, u±

0 =
∫ x0

0 P0(t)dt/4.

Proof. Statements (i), (ii) and (v) are direct results of (4) and (5).

We can prove (iii) and (iv) by induction on j. �

Lemma 3. Let C > 0 be large, and let R > 0 be small (compared with

1/C). Then we have |u±
j | ≤ (1 − j)!C2−j for j ≤ 1 on ω(R) = {x ∈

C3; |x| < R}.

Proof. We define u±
j (x0) =

∑
k≥0 u±

jkx
k
0, where the coefficients u±

jk

are determined in the following way. For j = 1, we define u±
1k = ∓δ0k/2.

Let j0 ≤ 0. We assume that we have determined u±
jk for j0 + 1 ≤ j ≤ 1.

For (j, k) = (j0, 0) we define u±
j0 = ∓(u+

j+1,1 + u−
j+1,1)/2. Let k0 ≥ 1. We

assume that we have determined u±
jk also for j = j0, 0 ≤ k ≤ k0 − 1. For

(j, k) = (j0, k0) we define

u±
jk =

∓1

2k
(k(k + 1)u±

j+1,k+1 +
∑

k′+k′′=k−1

P0,k′u
±
j+1,k′′).

By induction we can easily prove

|u±
jk| ≤

(1 − j + k)!

k!
C3−2j+k,

if C > 0 is large. Therefore we have

|u±| ≤
∑
k≥0

|x0|k|u±
jk| ≤

∑
k≥0

21−j(1 − j)!C3−2j(2C|x0|)k ≤ (2C)3−2j(1 − j)!.

Changing R > 0 and C > 0, we obtain the lemma. �
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3. Singularities of the Solution

Let D(x) = −x2
0 + x2

1 + x2
2. In this section we prove the following

statements:

(a) If j ≥ 1, then Φj(x) is holomorphic on ω1 = {x1 + x0 �= 0, x2 + x0 �=
0, D �= 0}.

(b) If j ≤ 0, then Φj(x) is holomorphic on ω2 = {x1 + x0 �= 0, x2 + x0 �=
0, D �= 0, x2

1 + x2
2 �= 0}.

In other words, our asymptotic expansion contains superfluous singularities

on {x2
1 + x2

2 = 0}, which we need to remove from the solution later.

We first show statement (a). It suffices to prove this statement for j = 1,

because differentiating Φ1(x) by x0 for (j − 1)-times, we obtain the other

cases. We have

Φ1(x) =

∫ 2π

0

dθ

ϕ(x, θ)
=

∫ 1

0

2ds

(x0 − x1)s2 + 2x2s + x0 + x1
,

where s = tan(θ/2), as usual. Let us define α±(x) = (−x2 ±
√

D(x))/(x0 −
x1). It follows that

Φ1(x) =
1

x0 − x1

∫ 1

0

2ds

(s − α+(x))(s − α−(x))

=
2

(x0 − x1)(α+(x) − α−(x))

∫ 1

0

( 1

s − α+(x)
− 1

s − α−(x)

)
ds

=
1√

D(x)
log

α−(x) − α+(x)α−(x)

α+(x) − α+(x)α−(x)
.

It follows that

Φ1(x) =
1√

D(x)
log

x0 + x1 + x2 +
√

D(x)

x0 + x1 + x2 −
√

D(x)
.

Here we have

x0 + x1 + x2 +
√

D = 0 or x0 + x1 + x2 −
√

D = 0(6)

⇐⇒ (x1 + x0)(x2 + x0) = 0.
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This means that Φ1(x) is holomorphic on ω1.

Remark. One may think that {D(x) = 0} is a removable singularity

of Φ1(x), but it is not true. We can prove this in the following way. Let

ω0 = {x1 + x0 �= 0, x2 + x0 �= 0}, and let π : R(ω0) � x̃ �−→ x ∈ ω0 be the

natural projection of the universal covering space. Assume that x̃0 ∈ R(ω0)

satisfies D(x0) = 0. We remark x0
0 +x0

1 +x0
2 �= 0. In fact, if this is not true,

then we have x2
1 + x2

2 = x2
0 = (x1 + x2)

2 at x = x0, and we have x0
1x

0
2 = 0.

This, together with x0
0+x0

1+x0
2 = 0 means either x0

1+x0
0 = 0 or x0

2+x0
0 = 0,

which is a contradiction. In a neighborhood of x̃0, we have

Φ1(x̃) =
1√
D

log
(1 +

√
D/(x0 + x1 + x2)

1 −
√

D/(x0 + x1 + x2)

)

=
1√
D

(
log 1 + 2

∑
k≥1

1

2k + 1

( √
D

x0 + x1 + x2

)2k+1)
.

Moving x̃ ∈ R(ω0), we can choose an arbitrary branch of log 1 in this ex-

pression, therefore Φ1(x̃) is not holomorphic at x̃ = x̃0 in case of log 1 �= 0.

We next show statement (b) above. For the moment we assume j ≤ −1.

Let

y = (y0, y1, y2) =
(
x0,

x1 + ix2

2
,
x1 − ix2

2

)
.

We always denote ∂k = ∂/∂xk. Then we have

Φj(x) =
1

(−j)!

∫ π/2

0
ϕ(x, θ)−j(log ϕ(x, θ) − N(−j))dθ

=

∫ 1

0
ψj(x, s)(log ϕ(x, θ) − N(−j))ds,

where we have defined

ψj(x, s) =
1

(−j)!
ϕ(x, θ)−j 2

1 + s2
.

Since ϕ(x, θ) = x0 +
(1 − s2)x1

1 + s2
+

2sx2

1 + s2
= y0−

s + i

s − i
y1−

s − i

s + i
y2, we obtain

ψj(x, s) =
∑

k+l+m=−j

2

k! l! m!
yk0 (−y1)

l(−y2)
m(s + i)l−m−1(s − i)−l+m−1
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=
∑

k+l+m=−j
l≥m+1

2

k! l! m!
yk0 (−y1)

l(−y2)
m (s + i)l−m−1

(s − i)l−m+1

+
∑

k+l+m=−j
l≥m+1

2

k! l! m!
yk0 (−y1)

m(−y2)
l (s − i)l−m−1

(s + i)l−m+1

+
∑

k+2l=−j

2

k! l! l!
yk0 (−y1)

l(−y2)
l (s + i)−1(s − i)−1.

Therefore we have

ψj(x, s) =
∑
(7)

2

k! l! m!

(
l − m − 1

l′

)
yk0 (−y1)

l(−y2)
m (2i)l

′

(s − i)l′+2

+
∑
(7)

2

k! l! m!

(
l − m − 1

l′

)
yk0 (−y1)

m(−y2)
l (−2i)l

′

(s + i)l′+2

+
∑

k+2l=−j

1

k! l! l!
· yk0 (−y1)

l(−y2)
l

i

( 1

s − i
− 1

s + i

)
,

where

k + l + m = −j, 0 ≤ l′ ≤ l − m − 1.(7)

It follows that

ψj(x, s) =
∑

0≤n≤−j
q∈{−1,+1}

Ajnq(x)(s + iq)−n−1,

where

Aj,0,q(x) =
∑

k+2l=−j

iq

k! l! l!
yk0yl1y

l
2(8)

Aj,n,+1(x) =
∑
(11)

2(−2i)n−1

k! l! m!

(
l − m − 1

n − 1

)
yk0 (−y1)

m(−y2)
l,(9)

Aj,n,−1(x) =
∑
(11)

2(2i)n−1

k! l! m!

(
l − m − 1

n − 1

)
yk0 (−y1)

l(−y2)
m(10)
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for n ≥ 1. Here we have defined

k + l + m = −j, n ≤ l − m(11)

for n ≥ 1. By simple calculation, we can easily see the following results (We

omit the proof).

Lemma 4. (i) If j ≤ 0 is odd, we have Aj0q(−x0, x
′) = −Aj0q(x), and

thus Aj0q(0, x
′) = 0.

(ii) If j ≤ 0 is even, we have Aj0q(−x0, x
′) = Aj0q(x).

(iii) If j ≤ −1, we have ∂0Aj0q = Aj+1,0,q.

(iv) We have �xAj0q = 0.

(v) We have A00q = iq.

Lemma 5. Both Aj,n,+1(x) and y−n
2 Aj,n,+1(x) are entire functions and

we have

|Aj,n,+1(x)| ≤ (2|y2|)n(3|y|)−j−n

(−j − n)!n!
≤ (5|y|)−j

(−j)!
.

Both Aj,n,−1(x) and y−n
1 Aj,n,−1(x) are entire functions and we have

|Aj,n0,−1(x)| ≤ (2|y1|)n(3|y|)−j−n

(−j − n)!n!
≤ (5|y|)−j

(−j)!
.

We define

Φjnq(x) = Ajnq(x)

∫ 1

0
(s + iq)−n−1(log ϕ(x, θ) − N(−j))ds.(12)

The property of this function is quite different between the case n ≥ 1

and the case n = 0. To see this, we first remark the following fact.

Lemma 6. Let f±(x) = log
α± − 1

α±
. Then we have

f±(x) = log
−x0 + x1 − x2 ±

√
D(x)

−x2 ±
√

D(x)
,

and f±(x) is holomorphic on R(ω1).
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Proof. We need to prove that f±(x) is holomorphic at an arbitrary

point x̃0 ∈ R(ω1). We first consider the case x0
1 = x0

0. Then we have x0
2 �= 0,

and we assume that we are considering a branch
√

D(x0) =
√

(x0
2)

2 = x0
2.

In a neighborhood of x̃0, we have

f+(x) = log
−x0 + x1 − x2 + x2

√
1 − (x2

0 − x2
1)x

−2
2

−x2 + x2

√
1 − (x2

0 − x2
1)x

−2
2

= log

−x0 + x1 −
1

2
(x2

0 − x2
1)x

−1
2 −

∑
k≥2

(2k − 3)!!

2k!!
· (x0 − x1)

k(x0 + x1)
k

x2k−1
2

−1

2
(x2

0 − x2
1)x

−1
2 −

∑
k≥2

(2k − 3)!!

2k!!
· (x0 − x1)

k(x0 + x1)
k

x2k−1
2

= log

2x2 + x0 + x1 + 2
∑

k≥2

(2k − 3)!!

2k!!
· (x0 − x1)

k−1(x0 + x1)
k

x2k−2
2

x0 + x1 + 2
∑

k≥2

(2k − 3)!!

2k!!
· (x0 − x1)

k−1(x0 + x1)
k

x2k−2
2

.

Here we have 2x0
2 + x0

0 + x0
1 = 2x0

2 + 2x0
0 �= 0, x0

1 + x0
0 �= 0, and thus f+(x)

is holomorphic in a neighborhood of x̃0. On the other hand, for this branch

neither −x0 +x1−x2−
√

D(x) nor −x2−
√

D(x) vanishes at x̃0. Therefore

f−(x) = log
−x0 + x1 − x2 −

√
D(x)

−x2 −
√

D(x)

is holomorphic at x̃0.

We next consider the case x0
1 �= x0

0. We have

− x0 + x1 − x2 ±
√

D(x) = 0 =⇒ (x2 + x0)(x1 − x0) = 0,

− x2 ±
√

D(x) = 0 =⇒ (x1 + x0)(x1 − x0) = 0.

From our assumption it follows that neither −x0 + x1 − x2 ±
√

D(x) nor

−x2 ±
√

D(x) vanishes at x̃ = x̃0. Therefore f±(x) is holomorphic at x̃0. �

Lemma 7. Let R > 0 be sufficiently small. We define ω1(R) = {x ∈
C3; |x| < R, x1 + x0 �= 0, x2 + x0 �= 0, D(x) �= 0}. If n ≥ 1, then Φjnq(x)

is holomorphic on R(ω1(R)) and we have

|Φjnq(x)| ≤ 20(10|x|)−j

(−j)!

( ∑
l∈{−1,+1}

|fl(x)|+| log(x1+x0)|+| log(x2+x0)|+1
)
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on R(ω1(R)).

Proof. From (12) we have Φjnq(x) =
∑

1≤p≤5 Φjnqp(x), where

Φjnq1(x) =
−Ajnq(x)

n

[
(s + iq)−n(log ϕ(x, θ) − N(−j))

]s=1

s=0

Φjnq2(x) =
Ajnq(x)

n

∫ 1

0

1

(s + iq)n
· 1

s − α+(x)
ds,

Φjnq3(x) =
Ajnq(x)

n

∫ 1

0

1

(s + iq)n
· 1

s − α−(x)
ds,

Φjnq4(x) = −Ajnq(x)

n

∫ 1

0

1

(s + iq)n
· 1

s + i
ds,

Φjnq5(x) = −Ajnq(x)

n

∫ 1

0

1

(s + iq)n
· 1

s − i
ds.

We need to prove

|Φjnqk(x)|(13)

≤ 4(10|x|)−j

(−j)!

( ∑
l∈{−1,+1}

|fl(x)| + | log(x1 + x0)| + | log(x2 + x0)| + 1
)

for 1 ≤ k ≤ 5.

We have [ϕ(x, θ)]s=0 = x1 + x0, and [ϕ(x, θ)]s=1 = x2 + x0. It follows

that

Φjnq1(x) =
−Ajnq(x)

n

( log(x2 + x0) − N(−j)

(1 + iq)n
− log(x1 + x0) − N(−j)

(iq)n

)
.

We have N(−j) ≤ −j ≤ 2−j , and from Lemma 5 we obtain

|Φjnq1(x)| ≤ (5|y|)−j

(−j)!
· (| log(x2 + x0)| + | log(x1 + x0)| + 2−j+1)

≤ 2(10|x|)−j

(−j)!
· (| log(x2 + x0)| + | log(x1 + x0)| + 1).

Therefore (13) is true for k = 1.

We next consider Φjnq2(x). If a �= b, then we have

1

(s − a)(s − b)n
=

(−1)n−1

(a − b)n
· 1

s − a
−

∑
n′+n′′=n−1

1

(a − b)n′+1
· 1

(s − b)n′′+1
.
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It follows that

Φjnq2(x) =
1

n
· Ajnq(x)

(α+(x) + iq)n

∫ 1

0

(−1)n−1

s − α+(x)
ds

− 1

n

∑
n′+n′′=n−1

Ajnq(x)

(α+(x) + iq)n′+1

∫ 1

0

1

(s + iq)n′′+1
ds

and thus

Φjnq2(x) =
1

n
· Ajnq(x)

(α+(x) + iq)n

(
(−1)n−1 log

α+(x) − 1

α+(x)
+ log

iq

1 + iq

)
(14)

+
1

n

∑
n′+n′′=n−1

n′′ 
=0

Ajnq(x)

n′′(α+(x) + iq)n′+1

( 1

(1 + iq)n′′ −
1

(iq)n′′

)
.

We need to prove that Φjnq2(x) is holomorphic at an arbitrary point

x̃0 ∈ R(ω1). From Lemma 6, log((α+(x) − 1)/(α+(x)) is holomorphic at

x̃0 ∈ R(ω1). Therefore Φjnq2(x) is holomorphic at x̃0 if α+(x̃0) + iq �= 0.

Let us consider the case α+(x̃0) + iq = 0. We have

1

α+(x) + iq
=

(x0 − x1)(α−(x) + iq)

2(x1 − iqx2)
.(15)

If q = +1, then x1−iqx2 = 2y2. From (9) it follows that (x1−iqx2)
−nAj,n,+1

is holomorphic at x̃ = x̃0. This means that Φj,n,+1,2(x) is holomorphic on

R(ω1). We next give an estimate for Φjnq2(x) for q = 1. From (15) we

have |(x1 − iqx2)/(α+(x) + iq)| ≤ |iq(x0 − x1) − x2 −
√

D(x)| ≤ 6|x|. Let

0 ≤ n′ ≤ n − 1. From Lemma 5 and (15) we have

∣∣∣ Aj,n,+1(x)

(α+(x) + i)n′+1

∣∣∣ ≤ |x1 − iqx2|n(3|y|)−j−n

|α+(x) + i|n′+1(−j − n)!n!

≤
( |x1 − iqx2|
|α+(x) + i|

)n′+1 |x1 − iqx2|n−n′−1(3|x|)−j−n

(−j − n)!n!

≤ (10|x|)−j

(−j)!
.

for 0 ≤ n′ ≤ n − 1. From (14) it follows that

|Φjnq2(x)| ≤ (10|x|)−j

(−j)!

(∣∣∣log
(α+(x) − 1)

α+(x)

∣∣∣ +
∣∣∣log

i

i + 1

∣∣∣)
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+
∑

n′+n′′=n−1
n′′ 
=0

2

n
· (10|x|)−j

(−j)!

≤ 4(10|x|)−j

(−j)!

∑
l∈{−1,+1}

(|fl(x)| + 1).

Therefore (13) is true for (q, k) = (1, 2). The same result is true for Φjnqk(x)

for q ∈ {+1,−1} and k ∈ {2, 3}. Finally, Φjnq4(x) and Φjnq5(x) are holo-

morphic functions at the origin which satisfy the same estimate. �

Remark. By Lemma 7, Φjnq(x) is holomorphic on R(ω1(R)) if n ≥ 1.

To the contrary, Φjnq(x) is not holomorphic on R(ω1(R)) if n = 0. Let us

prove that Φj0q(x) is singular at x̃0 ∈ R(ω1(R)) if x0
1 − iqx0

2 = 0. It suffices

to prove this for j = 0, because we have Φ00q(x) = ∂−j
0 Φj0q. Furthermore,

it suffices to prove that ∂2Φ00q is singular at x̃0. From (iv) of Lemma 4 and

(12), we have

∂2Φ00q(x) = ∂2

(∫ 1

0

iq

s + iq
log ϕ(x, θ)ds

)

= ∂2

(∫ 1

0

iq

s + iq
log

((x0 − x1)s
2 + 2x2s + (x0 + x1)

s2 + 1

)
ds
)

=

∫ 1

0

iq

s + iq
· 2s

(x0 − x1)s2 + 2x2s + (x0 + x1)
ds

=

∫ 1

0

iq

s + iq
· 2s

(x0 − x1)(s − α+(x))(s − α−(x))
ds

=
iqα+

(α+(x) + iq)
√

D(x)

∫ 1

0

( 1

s − α+(x)
− 1

s + iq

)
ds

− iqα−
(α−(x) + iq)

√
D(x)

∫ 1

0

( 1

s − α−(x)
− 1

s + iq

)
ds

=
iqα+

(α+(x) + iq)
√

D(x)
log

(1 − α+(x))iq

−α+(x)(1 + iq)

− iqα−
(α−(x) + iq)

√
D(x)

log
(1 − α−(x))iq

−α−(x)(1 + iq)
.

By Lemma 6, the logarithmic functions are holomorphic on R(ω1). At

x = x0, either α+(x)+ iq or α−(x)+ iq vanishes, and ∂2Φ00q(x) may have a
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singularity at this point, according to the branch of the logarithmic function.

We next show that nevertheless the solution of (2) is holomorphic on

R(ω1(R)). For this purpose, we define

gq(x) =
∑
j≤0

(u+
j (x0)Aj0q(x) + u−

j (x0)Aj0q(−x0, x
′)).

Then we have the following result.

Lemma 8. We have gq(x) = 0.

Proof. From (i) of Lemma 2, we have

gq(0, x
′) =

∑
j≤0

(u+
j (0) + uj(0))Aj0q(0, x

′) = 0.(16)

From (ii) of Lemma 2, we have

∂0gq(0, x
′) =

∑
j≤0

(∂0u
+
j (0) + ∂0u

−
j (0))Aj0q(0, x

′)

+
∑
j≤0

(u+
j (0) − u−

j (0))∂0Aj0q(0, x
′)

=
∑
j≤0

(∂0u
+
j (0) + ∂0u

−
j (0))Aj0q(0, x

′)

−
∑
j≤0

(∂0u
+
j+1(0) + ∂0u

−
j+1(0))∂0Aj0q(0, x

′)

=
∑
j≤1

(∂0u
+
j (0) + ∂0u

−
j (0))(Aj0q(0, x

′) − ∂0Aj−1,0,q(0, x
′))

+ (∂0u
+
0 (0) + ∂0u0(0))∂0A00q(0, x

′).

From (iii) and (v) of Lemma 4 we have Aj0q−∂0Aj−1,0,q = 0 and ∂0A00q = 0.

It follows that

∂0gq(0, x
′) = 0.(17)

We have

Pgq(x) =
∑
j≤0

(Pu+
j (x0) · Aj0q(x) + Pu−

j (x0) · Aj0q(−x0, x
′))
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+ 2
∑
j≤0

(
∂0u

+
j (x0) · ∂0Aj0q(x) − ∂0u

−
j (x0) · ∂0Aj0q(−x0, x

′)
)
.

From (iii) and (v) of Lemma 4, we have

Pgq(x) =
∑
j≤0

(Pu+
j (x0) · Aj0q(x) + Pu−

j (x0) · Aj0q(−x0, x
′))

+ 2
∑
j≤−1

(
∂0u

+
j (x0) · Aj+1,0,q(x) − ∂0u

−
j (x0) · Aj+1,0,q(−x0, x

′)
)
.

From (4) we have

Pgq = 0.(18)

From (16)–(18)we obtain the lemma. �

Corollary. We have
∑

j≤0 u±
j (x0)Aj0q(±x0, x

′) = 0.

Proof. Let j be odd. By Lemma 2, we have u+
j (x0) = −u−

j (x0), and

by Lemma 4, we have Aj0q(−x0, x
′) = −Aj0q(x). It follows that

u+
j (x0)Aj0q(x) = u−

j (x0)Aj0q(−x0, x
′).(19)

We can similarly prove (19) if j is even. From Lemma 8 we have

∑
j≤0

u+
j (x0)Aj0q(x) =

∑
j≤0

u−
j (x0)Aj0q(−x0, x

′) = 0. �

Proof of Proposition 1. If j ≤ 0, we have

Φj(x) =
∑

0≤n≤−j
q∈{−1,+1}

Φjnq(x)

=
∑

1≤n≤−j
q∈{−1,+1}

Φjnq(x)

+
∑

q∈{−1,+1}
Aj0q(x)

∫ 1

0
(s + iq)−1(log ϕ − N(−j))ds.
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We define

Φ′
j(x) = Φj(x) −

∑
q∈{−1,+1}

Aj0q(x)

∫ 1

0
(s + iq)−1 log ϕds

=
∑

1≤n≤−j
q∈{−1,+1}

Φjnq(x) −
∑

q∈{−1,+1}
N(−j)Aj0q(x) log(1 − iq).

If j ≥ 1, we define Φ′
j(x) = Φj(x). From Lemma 8, we have

u(x) =
∑

−∞<j≤1
q∈{+1,−1}

uq
j(x0)Φj(qx0, x

′) =
∑

−∞<j≤1
q∈{+1,−1}

uq
j(x0)Φ

′
j(qx0, x

′)

By Lemma 5 and Lemma 7, this function is holomorphic on R(ω1(R)). �

4. Proof of the Theorem

From now on, we do not assume (3), and give the proof of Theorem 1

in several steps.

Lemma 9. If P1(x0) = 0 and u0 = 0 in (1), then Theorem 1 is true.

Proof. For some positive integer n0 we have u1(x
′) =

∑
j,k≥−n0

·
u1jkx

j
1x

k
2, and we can rewrite as u1 = u0

1 + u1
1 + u2

1 + u3
1, where

u0
1(x

′) =
∑
j,k≥0

u1jkx
j
1x

k
2,

u1
1(x

′) =
∑

0>j≥−n0
k≥0

u1jkx
j
1x

k
2,

u2
1(x

′) =
∑
j≥0

0>k≥−n0

u1jkx
j
1x

k
2,

u3
1(x

′) =
∑

0>j≥−n0
0>k≥−n0

u1jkx
j
1x

k
2.

We can apply the Cauchy-Kowalewski theorem to the case (u0, u1) = (0, u0
1),

and the corresponding solution is holomorphic at the origin. We can apply
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the usual result for singular Cauchy problems to the case (u0, u1) = (0, u1
1),

and the corresponding solution is holomorohic outside of {x1 − x0 = 0} ∪
{x1 + x0 = 0}. The solution corresponding to the case of (u0, u1) = (0, u2

1)

is holomorohic outside of {x2 − x0 = 0} ∪ {x2 + x0 = 0} (See [1] for these

two cases). Finally, we consider the case of (u0, u1) = (0, u3
1). For this case,

we may assume u1 = xj
1x

k
2 for some negative integers j and k. Then we can

reduce the problem to the case u1 = 1/(x1x2) and can apply Proposi-

tion 1. �

Proposition 2. If u0 = 0, then Theorem 1 is true.

Proof. Let P (x0, D) be a general operator of the form (1). If

u(x) = exp
(
− 1

2

∫ x0

0
P1(t)dt

)
v(x),

then we have Pu = exp(−
∫ x0

0 P1(t)dt/2)Qv, where

Qv = �v +
(
P0(x0) −

1

2
∂0P1(x0) −

1

4
P1(x0)

2
)
v.

We can apply Lemma 9 to Q, and the corresponding solution v(x) is holo-

mophic on R(ω \ Y ). �

Lemma 10. If P0(x0) = ∂0P1(x0) and u1 = 0, then Theorem 1 is true.

Proof. In this case, we need to solve

Pu = �u + ∂0(P1u) = 0, u(0, x′) = u0, ∂0u(0, x′) = 0.(20)

Let Q = � + P1(x0)∂0. By Proposition 2, there exist v, w ∈ O(R(ω1(R)))

satisfying

Qv = 0, v(0, x′) = 0, ∂0v(0, x′) = u0,

Pw = 0, w(0, x′) = 0, ∂0w(0, x′) = P1(0)u0(x
′).

Then u = w + ∂0v satisfies (20). �

Proposition 3. If u1 = 0, then Theorem 1 is true.
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Proof. Let P (x0, D) be a general operator of the form (1). Let a(x0)

be the solution of


d2a

dx2
0

− 2

a

( da

dx0

)
2 − P1

da

dx0
+

(dP1

dx0
− P0

)
a = 0,

a(0) = 1,
da

dx0
(0) = 0.

(21)

Both a and 1/a are holomorphic at the origin. We define u = av. Then we

have Pu = aQv, where

Q = � + Q1∂0 + Q0,

Q1 =
2

a
· da

dx0
+ P1, Q0 =

1

a

(d2a

dx2
0

+ P1
da

dx0

)
+ P0.

From (21), we have Q0(x0) = ∂0Q1(x0). We can apply Lemma 10 to Q, and

we have a solution v ∈ O(R(ω1(R))) of

Qv = 0, v(0, x′) = u0(x
′), ∂0v(0, x′) = 0.

Then, u = av is the solution to the present problem. �

Theorem 1 is a direct consequence of Propostion 2 and Proposition 4.
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