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Blow-Up of Finite-Difference Solutions to

Nonlinear Wave Equations

By Norikazu Saito and Takiko Sasaki

Abstract. Finite-difference schemes for computing blow-up so-
lutions of one dimensional nonlinear wave equations are presented.
By applying time increments control technique, we can introduce a
numerical blow-up time which is an approximation of the exact blow-
up time of the nonlinear wave equation. After having verified the
convergence of our proposed schemes, we prove that solutions of those
finite-difference schemes actually blow up in the corresponding numer-
ical blow-up times. Then, we prove that the numerical blow-up time
converges to the exact blow-up time as the discretization parameters
tend to zero. Several numerical examples that confirm the validity of
our theoretical results are also offered.

1. Introduction

The purpose of this paper is to establish numerical methods for com-

puting blow-up solutions of one space dimensional nonlinear wave equations

with power nonlinearlities. In order to avoid unessential difficulties about

boundary conditions, we concentrate our attention to L-periodic functions

of x with L > 0. That is, setting SL = R/LZ, we consider the following

initial value problem for the function u = u(t, x) (t ≥ 0, x ∈ SL),

{
utt − uxx = |u|p, t > 0, x ∈ SL,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ SL.
(1.1)

Before stating assumptions on nonlinearlity and initial values, we recall

a general result for nonlinear wave equations. Set QT,L = [0, T ] × SL for

T > 0.
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Proposition 1.1. Let u0, u1 ∈ C3(SL) and f ∈ C4(R) be given. Then,

there exists T > 0 and a unique classical solution u ∈ C3(QT,L) of

{
utt − uxx = f(u), (t, x) ∈ QT,L,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ SL.
(1.2)

Moreover, there exists a positive and continuous function Cml(η) of η > 0

satisfying ∥∥∥∥ ∂m

∂tm
∂l

∂xl
u

∥∥∥∥
L∞(QT,L)

≤ Cml

(
‖u‖L∞(QT,L)

)

for non-negative integers m, l such that m+ l ≤ 3. Furthermore, if f(s) ≥ 0

for s ≥ 0 and u0(x) ≥ 0, u1(x) ≥ 0 for x ∈ SL, then we have u(t, x) ≥ 0 for

(t, x) ∈ QT,L.

This proposition is proved by the standard argument based on the con-

traction mapping principle (cf. [6, §12.3]) with the aid of the explicit solu-

tion formula given as

u(t, x) =
1

2
[u0(x− t) + u0(x− t)]

+
1

2

∫ x+t

x−t
u1(ξ) dξ +

1

2

∫ t

0

∫ x+s

x−s
f(u(s, y)) dyds.

Throughout this paper, we make the following assumptions:

f(u) = |u|p with p > 1 is of class C4;(1.3)

u0, u1 ∈ C3(SL);(1.4)

u0(x) ≥ 0, u1(x) ≥ 0, x ∈ SL.(1.5)

Thanks to Proposition 1.1, the problem (1.1) admits a unique non-negative

solution u ∈ C3(QT,L), which we will call simply a solution hereinafter. We

note that the condition (1.3) is equivalently written as

p = 2 or p is a real number ≥ 4.(1.6)

See also Remark 2.5.
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The supremum of T in Proposition 1.1 is called the lifespan of a solution

and is denoted by T∞. If T∞ = ∞, then we say that the solution u of (1.1)

exists globally-in-time. On the other hand, if T∞ < ∞, we say that u blows

up in finite time and call T∞ the blow-up time of a solution.

As a readily obtainable consequence of Proposition 1.1, we deduce the

following proposition.

Proposition 1.2. Let u be the solution of (1.1). Then, the following

(i) and (ii) are equivalent.

(i) u blows up in finite time T∞ < ∞.

(ii) lim
t↑T∞

‖u(t)‖L∞(SL) = ∞.

Any solution u of (1.1) actually blows up. To verify this fact, the func-

tional

K(v) =
1

L

∫ L

0
v(x) dx (v ∈ C(SL))

plays an important role. Obviously, we have

K(v) ≤ ‖v‖L∞(SL) (0 ≤ v ∈ C(SL)).(1.7)

Proposition 1.3. Assume that

α = K(u0) ≥ 0, β = K(u1) > 0.(1.8)

Then, there exists T∞ ∈ (0,∞) such that the solution u of (1.1) blows up

in finite time T∞.

This proposition is not new; however, we briefly review the proof since

we will study a discrete analogue of this result in Section 4. As a matter

of fact, the key point of the proof is that the solution u of (1.1) satisfies,

whenever it exists,

d

dt
K(u(t)) ≥ β +

∫ t

0
K(u(s))p ds > 0,(1.9) [

d

dt
K(u(t))

]2

≥ 2

p + 1
K(u(t))p+1 + M1 ≥ 0,(1.10)
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where M1 = β2 − 2
p+1α

p+1 and K(u(t)) = K(u(t, ·)).
These inequalities, together with the following elementary proposition,

implies that K(u(t)) cannot exist beyond TK , which is defined below. Thus,

u(t, x) blows up in finite time T∞ ∈ (0, TK ], which completes the proof of

Proposition 1.3.

Proposition 1.4. Let a C1 function w = w(t) satisfy a differential

inequality

d

dt
w(t) ≥

√
2

p + 1
w(t)p+1 + M1 (t > 0)(1.11)

with w(0) = α ≥ 0. Then, w(t) blows up in finite time TK ∈ (0, T1), where

T1 =

∫ ∞

α

[
β2 +

2

p + 1
(sp+1 − αp+1)

]− 1
2

ds < ∞.

Inequalities (1.9) and (1.10) are derived in the following manner. First,

we derive by using Jensen’s inequality

d2

dt2
K(u(t)) ≥ K(u(t))p,(1.12)

which gives (1.9). Multiplying the both-sides of (1.12) by (d/dt)K(u(t)),

we have

d

dt
K(u(t))

d2

dt2
K(u(t)) ≥ d

dt
K(u(t))K(u(t))p.

Thus

d

dt

[
1

2

(
d

dt
K(u(t))

)2

−
∫ K(u(t))

α
ξp dξ

]
≥ 0.

Therefore, we get[
d

dt
K(u(t))

]2

≥ β2 +
2

p + 1

[
K(u(t))p+1 − αp+1

]
,

which implies (1.10).
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There are a large number of works devoted to blow-up of positive solu-

tions for nonlinear wave equations. To our best knowledge, the first result

was obtained by Kawarada [11]. He studied a nonlinear wave equation

utt − ∆u = f(u) (x ∈ Ω, t > 0)(1.13)

in a smooth bounded domain Ω in R
d and proved a positive solution actually

blows up in finite time if the initial values are sufficiently large. (He did not

consider a positive solution explicitly, but as a readily obtainable corollary

of his theorem we could obtain the blow-up of a positive solution.) Those

results are referred as “large data blow-up” results. After Kawarada’s work,

a lost of results have been reported. For example, Glassey’s papers [7], [8]

are well-known. On the other hand, “small data blow-up” results were

presented, for example, F. John ([9]) and T. Kato ([10]). See an excellent

survey by S. Alinhac ([2]) for more details on blow-up results for nonlinear

hyperbolic equations. In contrast to parabolic equations, it seems that there

is a little work devoted to asymptotic profiles and blow-up rates of blow-up

solutions for hyperbolic equations. Therefore, numerical methods would be

important tools to study blow-up phenomena in hyperbolic equations.

However, the computation of blow-up solutions is a difficult task. We

do not state here the detail of those issues; see, for example, [4] and [5]. In

order to surmount those obstacles, various techniques for computing blow-

up solutions of various nonlinear partial differential equations are developed

so far. Among them, variable time-increments ∆tn is of use. The pioneer-

ing work is done by Nakagawa [13] in 1976. He considered the explicit

Euler/finite difference scheme to a semilinear heat equation ut − uxx = u2

(t > 0, 0 < x < 1) with u(t, 0) = u(t, 1) = 0. The crucial point of his strat-

egy is that the time increment and the discrete time are given, respectively,

as

∆tn = τ min

{
1,

1

‖uh(tn)‖L2

}
, tn+1 = tn + ∆tn =

n∑
k=0

∆tk

with some τ > 0, where uh(tn), h being the size of space grids, denotes the

piece-wise constant interpolation function of the finite-difference solution at

t = tn and ‖uh(tn)‖L2 its L2(0, 1) norm. Then, he succeeded in proving

that, for a sufficiently large initial value, the finite-difference solution uh(tn)
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actually blows up in finite time

T (τ, h) =
∞∑
n=1

∆tn < ∞

and

lim
τ,h→0

T (τ, h) = T∞,(1.14)

where τ denotes the size of a time discretization and T∞ the blow-up time

of the equation under consideration. T (τ, h) is called the numerical blow-up

time. Later, Nakagawa’s result has been extend to several directions; see,

for example, Chen [3], Abia et al. [1], Nakagawa and Ushijima [14] and

Cho et al. [4]. However, those papers are concerned only with parabolic

equations. On the other hand, it seems that little is known for hyperbolic

equations and C. H. Cho’s work ([5]) is the first result on the subject. He

studied the initial-boundary value problem for a nonlinear wave equation{
utt − uxx = u2 (t > 0, x ∈ (0, 1)),

u = 0 (t ≥ 0, x = 0, 1), u(0, x) = u0(x), ut(0, x) = u1(x)

and the explicit Euler/finite-difference scheme


1

τn

(
un+1
j − un

j

∆tn
−

un
j − un−1

j

∆tn−1

)
=

un
j+1 − 2un

j + un
j−1

h2
+ (un

j )2,

un
0 = un

N = 0, u0
j = u0(xj), u1

j (xj) = u0(xj) + ∆t0u1(xj),

(1.15)

where the time and space variable are discretized as tn = ∆t0 + ∆t1 +

· · · + ∆tn−1, xj = j/N and N ∈ N, and un
j denotes the approximation of

u(tn, xj). He proposed the following time-increments control strategy

∆tn = τ min

{
1,

1

‖uh(tn)‖1/2
L2

}
, τn =

∆tn + ∆tn−1

2
.(1.16)

Then, he succeeded in proving that (1.14) actually holds true under some

assumptions. One of the crucial assumptions in his theorem is convergence

of the finite-difference solutions, that is,

lim
h→0

max
0≤tn≤T

|un
j − u(tn, xj)| = 0(1.17)
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for any T ∈ (0, T∞). The proof of this convergence result is still open at

present. As a matter of fact, we need some a priori estimates or stability

in a certain norm in order to prove (1.17). However, as Cho mentioned in

[5, page 487], it is quite difficult to prove a stability that remains true even

when ∆tn → 0.

Recently, K. Matsuya reported some interesting results on global exis-

tence and blow-up of solutions of a discrete nonlinear wave equation in [12].

However, it seems that his results are not directly related with approxima-

tion of partial differential equations.

This paper is motivated by the paper [5] and devoted to a study of the

finite-difference method applied to (1.1). Thus, we propose finite-difference

schemes and prove convergence results (cf. Theorems 3 and 4) for those

schemes even when time-increments approaches to zero. To accomplish this

purpose, we rewrite the equation as

ut + ux = φ, φt − φx = |u|p,

which is based on the formal factorization utt−uxx = (∂t− ∂x)(∂t + ∂x)u =

|u|p, and then follow the method of convergence analysis proposed by [15]

that is originally developed to study time-discretizations for a system of

nonlinear Schrödinger equations. Actually, it suffices to prove local sta-

bility results in a certain sense (cf. Theorems 1 and 2) in order to obtain

convergence results. Moreover, we show that discrete analogues of (1.9) and

(1.10) holds true, and therefore, we can deduce approximation of blow-up

time (1.14) (cf. Theorem 5).

This paper is organized as follows. In Section 2, after having stated our

finite-difference schemes, we mention stability and convergence results for

our schemes (Theorems 1, 2, 3 and 4). Therein, approximation of blow-up

time is also mentioned (Theorem 5). Section 3 is devoted to the proofs of

Theorems 1, 2, 3 and 4. The proof of Theorem 5 is given in Section 4. We

conclude this paper by examining several numerical examples in Section 5.

Notation. For v = (v1, . . . , vJ)T ∈ R
J , we set ‖v‖ = max

1≤j≤J
|vj |, where

·T indicates the transpose of a matrix. We write v ≥ 0 if and only if vi ≥ 0
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(1 ≤ i ≤ J). We use the matrix ∞ norm

‖E‖ = max
v∈RJ

‖Ev‖
‖v‖ = max

1≤i≤J

J∑
j=1

|Eij |

for a matrix E = (Eij) ∈ R
J×J . Moreover, we write E ≥ O if and only if

Ei,j ≥ 0 (1 ≤ i, j ≤ J). The set of all positive integers is denoted by N.

2. Schemes and Main Results

Introducing a new variable φ = ut + ux, we first convert (1.1) into the

first order system as follows:


ut + ux = φ (t, x) ∈ QT,L,

φt − φx = |u|p (t, x) ∈ QT,L,

u(0, x) = u0(x), φ(0, x) = u1(x) + u′
0(x), x ∈ SL.

(2.1)

Take a positive integer J and set xj = jh with h = L/J . As a discretiza-

tion of the time variable, we take positive constants ∆t0,∆t1, . . . and set

t0 = 0, tn =
n−1∑
k=0

∆tk = tn−1 + ∆tn−1 (n ≥ 1).

Then, our explicit scheme to find

un
j ≈ u(tn, xj), φn

j ≈ φ(tn, xj) (1 ≤ j ≤ J, t ≥ 0)

reads as 


un+1
j − un

j

∆tn
+

un
j − un

j−1

h
= φn

j

φn+1
j − φn

j

∆tn
−

φn
j+1 − φn

j

h
= |un+1

j |p
(1 ≤ j ≤ J, n ≥ 0)(2.2)

where un
0 and φn

J+1 are set as un
0 = un

J and φn
J+1 = φn

1 .

We also consider an implicit scheme for the purpose of comparison. How-

ever, we do not prefer fully implicit schemes since we need iterative com-

putations for solving resulting nonlinear system. Instead, we consider a

linearly-implicit scheme by introducing dual time grids

tn+ 1
2

=
∆t0
2

+ tn (n ≥ 0).(2.3)
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Then, our implicit scheme to find

un
j ≈ u(tn, xj), φ

n+ 1
2

j ≈ φ(tn+ 1
2
, xj) (1 ≤ j ≤ J, n ≥ 0)

reads as

(2.4)




un+1
j − un

j

∆tn
+

1

2

(
un+1
j − un+1

j−1

h
+

un
j − un

j−1

h

)
= φ

n+ 1
2

j ,

φ
n+ 3

2
j − φ

n+ 1
2

j

∆tn
− 1

2


φ

n+ 3
2

j+1 − φ
n+ 3

2
j

h
+

φ
n+ 1

2
j+1 − φ

n+ 1
2

j

h




= |un+1
j |p,

(1 ≤ j ≤ J, n ≥ 0),

where un
0 and φ

n+ 1
2

J+1 are set as un
0 = un

J and φ
n+ 1

2
J+1 = φ

n+ 1
2

1 .

Remark 2.1. It is possible to take

t 1
2

=
∆t0
2

, tn+ 1
2

=
∆t0
2

+
n∑

k=1

τk (n ≥ 1)

as dual time grids instead of (2.3), where τk = (∆tk−1 + ∆tk)/2. With this

choice, the implicit scheme is modified as

(2.5)




un+1
j − un

j

∆tn
+

1

2

(
un+1
j − un+1

j−1

h
+

un
j − un

j−1

h

)
= φ

n+ 1
2

j ,

φ
n+ 3

2
j − φ

n+ 1
2

j

τn
− 1

2


φ

n+ 3
2

j+1 − φ
n+ 3

2
j

h
+

φ
n+ 1

2
j+1 − φ

n+ 1
2

j

h




= |un+1
j |p,

(1 ≤ j ≤ J, n ≥ 0).

Then, we can deduce all the results presented below with obvious modifica-

tions.

For n ≥ 0, we set

un = (un
1 , . . . , u

n
J)T ∈ R

J ,

φn = (φn
1 , . . . , φ

n
J)T ∈ R

J , φn+ 1
2 = (φ

n+ 1
2

1 , . . . , φ
n+ 1

2
J )T ∈ R

J .
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Theorem 1 (Local stability of the explicit scheme). Let τ = γh with

some γ ∈ (0, 1) and assume that ∆tn ≤ τ for n ≥ 0. Let a ≥ 0, b ≥ 0 ∈
R
J . Then, the solution (un,φn) of the explicit scheme (2.2) with u0 = a

and φ0 = b satisfies un ≥ 0 and φn ≥ 0 for n ≥ 1. Furthermore, for

any N ∈ N, there exists a constants hR,N > 0 depending only on N and

R = ‖a‖ + ‖b‖ such that, if h ∈ (0, hR,N ], we have

sup
1≤n≤N

(‖un‖ + ‖φn‖) ≤ 2R.(2.6)

Theorem 2 (Well-posedness and local stability of the implicit scheme).

Let τ = 2γh with some γ ∈ (0, 1) and assume that ∆tn ≤ τ for n ≥ 0.

Let a , b ∈ R
J . Then, the implicit scheme (2.4) admits a unique solution

(un,φn+ 1
2 ) for any n ≥ 1, where u0 = a and φ

1
2 = b. Moreover, if a ≥ 0

and b ≥ 0, then we have un ≥ 0 and φn+ 1
2 ≥ 0 for n ≥ 1. Furthermore,

for any N ∈ N, there exists a constants hR,N > 0 depending only on N and

R = ‖a‖ + ‖b‖ such that, if h ∈ (0, hR,N ], we have

sup
1≤n≤N

(
‖un‖ + ‖φn+ 1

2 ‖
)
≤ 2R.(2.7)

In order to state convergence results, we introduce en = (enj ), εn = (εnj )

and εn+ 1
2 = (ε

n+ 1
2

j ) which are given as

enj = u(tn, xj) − un
j , εnj = φ(tn, xj) − φn

j , ε
n+ 1

2
j = φ(tn+ 1

2
, xj) − φ

n+ 1
2

j .

Recall that T∞ denotes the blow-up time of the solution u(t, x) of (1.1).

Theorem 3 (Convergence of the explicit scheme). Let τ = γh with

some γ ∈ (0, 1) and assume that ∆tn ≤ τ for n ≥ 0. Suppose that (un,φn)

is the solution of the explicit scheme (2.2) for n ≥ 1, where (u0,φ0) is

defined as

u0
j = u0(xj), φ0

j = u1(xj) + u′
0(xj) (1 ≤ j ≤ J).(2.8)

Let T ∈ (0, T∞) be arbitrarily. Then, there exists positive constants h0 and

M0 which depend only on

p, T, γ, M = max
0≤m+l≤3

∥∥∥∥ ∂m

∂tm
∂l

∂xl
u

∥∥∥∥
L∞(QT,L)

(2.9)
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such that we have

max
0≤tn≤T

(‖en‖ + ‖εn‖) ≤ M0(τ + h)

for any h ∈ (0, h0].

Theorem 4 (Convergence of the implicit scheme). Let τ = 2γh with

some γ ∈ (0, 1) and assume that ∆tn ≤ τ for n ≥ 0. Suppose that

(un,φn+ 1
2 ) is the solution of the implicit scheme (2.4) for n ≥ 1, where

(u0,φ
1
2 ) is defined as

u0
j = u0(xj), φ

1
2
j = u1(xj) + u′

0(xj) (1 ≤ j ≤ J).(2.10)

Let T ∈ (0, T∞) be arbitrarily. Then, there exists positive constants h0 and

M0, which depend only on (2.9), such that we have

max
0≤tn+1≤T

(
‖en‖ + ‖εn+ 1

2 ‖
)
≤ M0(τ + h)(2.11)

for any h ∈ (0, h0].

Remark 2.2. If taking constant time-increments ∆tn = τ and suitable

initial value φ
1
2 , we can prove

max
0≤tn+1≤T

(
‖en‖ + ‖εn+ 1

2 ‖
)
≤ M0(τ

2 + h)

instead of (2.11).

By using the solutions of the explicit scheme (2.2) and the implicit

scheme (2.4), we can calculate the blow-up time T∞ of the solution of (1.1).

To this purpose, we fix

1 ≤ q < ∞, 0 < γ < 1(2.12)

and choose the time increments ∆t0,∆t1, . . . as

∆tn = τ · min

{
1,

1

‖un‖q
}

(n ≥ 0),(2.13)
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where τ is taken as

τ =

{
γh for the explicit scheme (2.2)

2γh for the implicit scheme (2.4).
(2.14)

Definition 1. Let un be the solution of the explicit scheme (2.2) or

the implicit scheme (2.4) with the time increment control (2.13) and (2.14).

Then, we set

T (h) =
∞∑
n=0

∆tn.

If T (h) < ∞, we say that un blows up in finite time T (h).

Remark 2.3. The blow-up of un implies that lim
tn→T (h)

‖un‖ =

lim
n→∞

‖un‖ = ∞.

We are now in a position to state numerical blow-up results.

Theorem 5 (Approximation of the blow-up time). Let un be the solu-

tion of the explicit scheme (2.2) or the implicit scheme (2.4) with the time

increment control (2.13) and (2.14), where the initial value is defined as

(2.8) or (2.10), respectively. In addition to the basic assumptions (1.4) and

(1.5) on initial values, assume that u1(x) is so large that

u1(x) + u′
0(x) ≥ 0, 
≡ 0 (x ∈ SL).(2.15)

Then, we have the following:

(i) un ≥ 0 and φn ≥ 0 (or φn+ 1
2 ≥ 0) for all n ≥ 0.

(ii) If (1.8) holds true, un blows up in finite time T (h) and

T∞ ≤ lim inf
h→0

T (h).(2.16)
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(iii) In addition to (1.8), we assume that

lim
t→T∞

K(u(t)) = ∞,(2.17)

then we have

T∞ = lim
h→0

T (h).(2.18)

Remark 2.4. The assumption (2.17) is somewhat restrictive. Essen-

tially the same assumption is considered in [5]. However, we are unable to

remove it at present. To find the sufficient condition for (2.17) to hold is an

interesting open question.

Remark 2.5. All results presented above remain valid for f(u) =

u|u|2, since it is a C4 function on R.

3. Proofs of Theorems 1, 2, 3 and 4

We rewrite the explicit scheme (2.2) and the implicit scheme (2.4), re-

spectively, as {
un+1 = Mnu

n + ∆tnφ
n

φn+1 = Nnφ
n + ∆tnf (un+1)

(n ≥ 0),(3.1)

and {
Anu

n+1 = Bnu
n + ∆tnφ

n+ 1
2

Cnφ
n+ 3

2 = Dnφ
n+ 1

2 + ∆tnf (un+1)
(n ≥ 0),(3.2)

where

Mn = P (−γn), Nn = P (−γn)T,

An = P (δn), Bn = P (−δn), Cn = P (δn)T, Dn = P (−δn)T,

γn =
∆tn
h

, δn =
∆tn
2h

,
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P (µ) =




1 + µ 0 · · · −µ

−µ 1 + µ 0
...

. . .
. . . 0

0 −µ 1 + µ


 ,

f (v) = (|v1|p, . . . , |vJ |p)T for v = (v1, . . . , vJ)T.

Lemma 3.1.

(i) P (µ) is non-singular, P (µ)−1 ≥ O and ‖P (µ)−1‖ ≤ 1 if µ > 0.

(ii) P (−µ) ≥ O and ‖P (−µ)‖ = 1 if 0 < µ ≤ 1.

Proof. (i) Let µ > 0. The matrix P (µ) is expressed as P (µ) =

(1 + µ)(I −G), where

G =
µ

1 + µ




0 0 0 · · · 1

1 0 0 · · · 0

0 1 0 · · · 0
...

. . .
. . .

. . . 0

0 · · · 0 1 0


 .

Since ‖G‖ = µ(1 +µ)−1 < 1, the matrix I −G is non-singular, (I −G)−1 =
∞∑
l=0

Gl ≥ O and ‖(I−G)−1‖ ≤ 1/(1−‖G‖) = 1+µ. Hence, P (µ) is also non-

singular, P (µ)−1 = (1 + µ)−1
∞∑
l=0

Gl ≥ O and ‖P (µ)−1‖ ≤ (1 + µ)−1‖(I −

G)−1‖ = 1.

(ii) Let 0 < µ ≤ 1. Then, P (−µ)≥O is obvious. We further have

‖P (−µ)‖ = max
1≤i≤J

J∑
j=1

|pij | = (1 − µ) + µ = 1,

where P (µ) = (pij), which completes the proof. �

Now, we can state the following proofs.
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Proofs of Theorems 1 and 2. According to Lemma 3.1, we have

Mn, Nn, Bn, Dn ≥ O and ‖Mn‖ = ‖Nn‖ = ‖Bn‖ = ‖Dn‖ = 1. Moreover,

An, Cn are non-singular, A−1
n , C−1

n ≥ O and ‖A−1
n ‖, ‖C−1

n ‖ ≤ 1. Therefore,

the unique existence and non-negativity of solutions of (2.2) and (2.4) are

direct consequences of the expressions (3.1) and (3.2), respectively.

Below we are going to show local stability results (2.6) and (2.7). We

only state the proof of (2.7); that of (2.6) could be done in the same way.

Recall that we are assuming that ∆tj ≤ τ for all j and τ = 2γh with some

γ ∈ (0, 1). Choose N ∈ N arbitrarily and fix it.

Now we can prove (2.7) by induction on n. First, note that ‖u0‖ +

‖φ 1
2 ‖ = ‖a‖ + ‖b‖ = R. Assume that

‖un‖ + ‖φn+ 1
2 ‖ ≤ 2R(3.3)

for 0 ≤ n ≤ N − 1. Since un+1 and φn+ 3
2 are given as

un+1 = Hn · · ·H0a +

n∑
j=0

∆tn−jHn · · ·Hn−j+1A
−1
n−jφ

n−j+ 1
2 ,

φn+ 3
2 = Ln · · ·L0b +

n∑
j=0

∆tn−jLn · · ·Ln−j+1C
−1
n−jf (un−j+1)

with Hn = A−1
n Bn and Ln = C−1

n Dn, we have

‖un+1‖ ≤ ‖a‖+τ
n∑

j=0

‖φn−j+ 1
2 ‖ ≤ ‖a‖ + Nτ(2R),

‖φn+ 3
2 ‖ ≤ ‖b‖ + τ

n∑
j=0

‖un−j+1‖p ≤ ‖b‖ + Nτ(2R)p

for 0 ≤ n ≤ N − 1. Hence,

‖un+1‖ + ‖φn+ 3
2 ‖ ≤ R + Nτ [2R + (2R)p](3.4)

for 0 ≤ n ≤ N − 1.

At this stage, we define τR,N and hR,N as

τR,N =
R

N [2R + (2R)p]
, hR,N =

τR
2γ
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and suppose h ∈ (0, hR,N ].

Then, by (3.4), we get

‖un+1‖ + ‖φn+ 3
2 ‖ ≤ 2R.

This completes the proof of (2.7). �

We proceed to the proof of convergence results. Below, we only state

the proof of Theorem 4 since that of Theorem 3 is simpler.

Proof of Theorem 4. Let {(un,φn+ 1
2 )}n≥1 be the solution of the

implicit scheme (2.4) with the initial condition (2.10). We note that

‖u0‖ + ‖φ 1
2 ‖ ≤ 3M.

Hereinafter, set M ′ = 3M . In view of Theorem 2, there exists constants

hM ′ > 0 and TM ′ > 0, which depend only on M ′ and p, such that, if

h ∈ (0, hM ′ ], we have

‖un‖ + ‖φn+ 1
2 ‖ ≤ 2M ′ (n ∈ ΛM ′ = {n ∈ N | tn ≤ TM ′}).

We set

ν = sup{n ∈ N | ‖un‖ + ‖φn+ 1
2 ‖ ≤ 3M ′},

Λ̃ν = {n ∈ N | tn+1 ≤ T, n ≤ ν}.

The rest of the proof is divided into two steps.

Step 1. First, we show that there exist positive constants h1 and M0,

which depend only on T and M , such that the estimate (2.11) holds for all

h ∈ (0, h1] and n ∈ Λ̃ν .

We have for n ∈ Λ̃ν

enj − en−1
j +

∆tn−1

2

(
enj − enj−1

h
+

en−1
j − en−1

j−1

h

)
= ∆tn−1E

n− 1
2

j ,(3.5)
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where E
n− 1

2
j = ε

n− 1
2

j − E
n− 1

2
1j − E

n− 1
2

2j ,

E
n− 1

2
1j = ut(tn− 1

2
, xj) −

u(tn, xj) − u(tn−1, xj)

∆tn−1
,

E
n− 1

2
2j = ux(tn− 1

2
, xj)

−1

2

(
u(tn, xj) − u(tn, xj−1)

h
+

u(tn−1, xj) − u(tn−1, xj−1)

h

)
.

Since (3.5) is equivalently written as

en = A−1
n−1Bn−1e

n−1 + ∆tn−1A
−1
n−1E

n− 1
2 ,

where En− 1
2 = (E

n− 1
2

j ), we have from Lemma 3.1

‖en‖ ≤ ‖en−1‖ + ∆tn−1‖En− 1
2 ‖

≤ ‖en−1‖ + ∆tn−1(‖E
n− 1

2
1 ‖ + ‖En− 1

2
2 ‖) + ∆tn−1‖εn−

1
2 ‖.

From the standard error estimates for the difference quotients, we obtain

‖En− 1
2

1 ‖ ≤ CM∆tn−1, ‖En− 1
2

2 ‖ ≤ CM(∆tn−1 + h)

for n ∈ Λ̃ν . Consequently,

‖en‖ ≤ ‖en−1‖ + CM∆tn−1(∆tn−1 + h) + ∆tn−1‖εn−
1
2 ‖(3.6)

for n ∈ Λ̃ν .

Similarly, we have for n ∈ Λ̃ν

ε
n+ 1

2
j − ε

n− 1
2

j − ∆tn−1

2


ε

n+ 1
2

j+1 − ε
n+ 1

2
j

h
+

ε
n− 1

2
j+1 − ε

n− 1
2

j

h


 = ∆tn−1ξ

n
j ,

or, equivalently,

εn+ 1
2 = C−1

n−1Dn−1ε
n− 1

2 + ∆tn−1C
−1
n−1ξ

n,
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where ξnj = −ξn1j + ξn2j + ξn3j , ξ
n = (ξnj ) and

ξn1j = φt(tn, xj) −
φ(tn+ 1

2
, xj) − φ(tn− 1

2
, xj)

∆tn−1
,

ξn2j = φx(tn, xj)

−1

2

(
φ(tn+ 1

2
, xj+1) − φ(tn+ 1

2
, xj)

h
+

φ(tn− 1
2
, xj+1) − φ(tn− 1

2
, xj)

h

)
,

ξn3j = |u(tn, xj)|p − |un
j |p.

We know

‖ξn1‖ ≤ CM∆tn−1, ‖ξn2‖ ≤ CM(∆tn−1 + h)

for n ∈ Λ̃ν . Since |u(tn, xj)| ≤ M and |un
j | ≤ 3M ′, we can estimate as∣∣∣|u(tn, xj)|p − |un

j |p
∣∣∣ ≤ C2pM

p−1|u(tn, xj) − un
j |

for n ∈ Λ̃ν and 1 ≤ j ≤ J , where C2p denotes a constant depending only on

p. Hence, we deduce

‖ξn3‖ ≤ CMp−1‖en‖

for n ∈ Λ̃ν . Thus, we obtain

‖εn+ 1
2 ‖ ≤ ‖εn− 1

2 ‖ + CM∆tn−1(∆tn−1 + h) + CMp−1∆tn−1‖en‖.(3.7)

Summing up (3.6) and (3.7), we deduce

(3.8) ‖en‖ + ‖εn+ 1
2 ‖ ≤ ‖en−1‖ + ‖εn− 1

2 ‖ + CM∆tn−1(∆tn−1 + h)

+CMp−1∆tn−1‖en‖ + ∆tn−1‖εn−
1
2 ‖.

Setting M∗ = M + Mp−1, we have from (3.8)

(1 − CM∗∆tn−1)(‖en‖ + ‖εn+ 1
2 ‖)

≤ ‖en−1‖ + (1 + ∆tn−1)‖εn−
1
2 ‖ + CM∆tn−1(∆tn−1 + h)

≤ (1 + CM∗∆tn−1)(‖en−1‖ + ‖εn− 1
2 ‖) + CM∗∆tn−1(∆tn−1 + h).
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At this stage, we define

h1 =
1

4γCM∗ , τ1 = 2γh1

and we assume that h ∈ (0, h1]. Then, using an elementally inequality

0 ≤ (1 − s)−1(1 + s) ≤ 1 + 4s for s ∈ [0, 1/2], we have

‖en‖ + ‖εn+ 1
2 ‖

≤ (1 + 4CM∗∆tn−1)(‖en−1‖ + ‖εn− 1
2 ‖) + 2CM∗∆tn−1(∆tn−1 + h)

≤ e4CM∗∆tn−1(‖en−1‖ + ‖εn− 1
2 ‖) + 2CM∗∆tn−1(∆tn−1 + h).

Therefore

‖en‖ + ‖εn+ 1
2 ‖ ≤ e4CM∗tn(‖e0‖ + ‖ε 1

2 ‖) + 2CM∗
n−1∑
j=0

∆tj(∆tj + h)e4CM∗tn

≤ e4CM∗T ‖ε 1
2 ‖ + 2CM∗Te4CM∗T (τ + h).

On the other hand, we have ‖ε 1
2 ‖ ≤ (τ+h)M , since ε

1
2
j = φ(t 1

2
, xj)−φ

1
2
j =

ut(t 1
2
, xj) + ux(t 1

2
, xj) − u1(xj) − u′

0(xj). Therefore, taking

M0 = (Me4CM∗T + 2CM∗Te4CM∗T ),

we have shown that the desired estimate (2.11) holds for all h ∈ (0, h1] and

n ∈ Λ̃ν .

Step 2. We set

h0 = min

{
h1,

M

2M0(1 + 2γ)
, h 3

2M
,1

}

where h 3
2
M,1 is the constant introduced in Theorem 2 with R = 3

2M and

N = 1. Below we assume h ∈ (0, h0].

We prove

max{n ∈ N | tn+1 ≤ T} ≤ ν(3.9)
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by showing a contradiction. Thus, we assume

max{n ∈ N | tn+1 ≤ T} > ν.

Then, we have Λ̃ν = {1, . . . , ν} and, since h0 ≤ h1 in view of Step 1,

‖en‖ + ‖εn+ 1
2 ‖ ≤ M0(1 + 2γ)h

for all n = 1, . . . , ν. Moreover, since tν+1 ≤ T , it follows from the definition

of M that

max
n=1,... ,ν

(‖u(tn)‖ + ‖φ(tn+ 1
2
)‖) ≤ M,

where u(tn) = (u(tn, xj)) and φ(tn+ 1
2
) = (φ(tn+ 1

2
, xj)). Combining those

inequalities, we get

‖un‖ + ‖φn+ 1
2 ‖ ≤ M + M0(1 + 2γ)h

for all n = 1, . . . , ν. In particular,

‖uν‖ + ‖φν+ 1
2 ‖ ≤ M + M0h ≤ 3

2
M.

Now, we apply Theorem 2 with a = uν , b = φν+ 1
2 , R = 3

2M , and

N = 1 to obtain

‖uν+1‖ + ‖φν+ 3
2 ‖ ≤ 3M.

This contradicts the definition of ν. Therefore, (3.9) actually holds true.

Hence, by the result of Step 1, we see that the desired estimate (2.11) holds

for all h ∈ (0, h0] and n ∈ N satisfying tn+1 ≤ T . This completes the proof

of Theorem 4. �

4. Proof of Theorem 5

This section is devoted to the proof of numerical blow-up result, The-

orem 5. We shall deal only with the case of the explicit scheme (2.2); the

case of the implicit scheme (2.4) is proved in exactly the same way.

Throughout this section, suppose that (un,φn) denotes the solution of

the explicit scheme (2.2) as in Theorem 5. Further, we suppose that all
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assumptions of Theorem 5 hold true. In view of (2.15), we may suppose

that φ0,u1 ≥ 0, 
= 0 for a sufficiently small h > 0. Consequently, we have

un,φn ≥ 0, 
= 0 for n ≥ 1.

Before stating the proof of Theorem 5, we establish a discrete version of

(1.10). To this end, we introduce the functional

Kh(v) =
1

L

J∑
j=1

vjh (0 ≤ v ∈ R
J)(4.1)

and consider the discrete version Kh(u
n) of K(u(t)). We note that

Kh(u
n) ≥ 0 and Kh(φ

n) ≥ 0 for n ≥ 0. In particular,

Kh(φ
0) > 0, αh = Kh(u

0) ≥ 0, βh = Kh(u
1) > 0.(4.2)

Lemma 4.1. Kh(u
n) is a strictly increasing sequence in n ≥ 0 and it

satisfies [
Kh(u

n+1) −Kh(u
n)

∆tn

]2

≥ 1

p + 1
Kh(u

n)p+1 + M1h ≥ 0(4.3)

for n ≥ 0, where

M1h =

(
βh − αh

∆t0

)2

− 1

p + 1
αp+1
h .(4.4)

Proof. We have

Kh(u
n+1) −Kh(u

n)

∆tn
=

1

L

J∑
j=1

un+1
j − un

j

∆tn
h

=
1

L

J∑
j=1

[
−

un
j − un

j−1

h
+ φn

j

]
h = Kh(φ

n)(4.5)

for n ≥ 0. In particular, by (4.2)

Kh(u
1) −Kh(u

0)

∆t0
≥ Kh(φ

0) > 0(4.6)
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By using Jensen’s inequality, we have from (4.5)

Kh(φ
n+1) −Kh(φ

n)

∆tn
=

1

L

J∑
j=1

[
φn
j+1 − φn

j

h
+

(
un+1
j

)p
]
h

=
1

L

J∑
j=1

(
un+1
j

)p
h ≥ Kh(u

n+1)p.

Combining these, we obtain

Kh(u
n+2) −Kh(u

n+1)

∆tn+1

≥ Kh(u
n+1) −Kh(u

n)

∆tn
+ ∆tn(Kh(u

n+1))p(4.7)

≥ Kh(u
1) −Kh(u

0)

∆t0
+

n∑
k=0

∆tk(Kh(u
k+1))p > 0(4.8)

for n ≥ 0. This, together with (4.6), implies that Kh(u
n) is a strictly

increasing sequence in n ≥ 0.

Again, we apply (4.7) to obtain[
Kh(u

n+2) −Kh(u
n+1)

∆tn+1

]2

≥ Kh(u
n+1) −Kh(u

n)

∆tn

[
Kh(u

n+1) −Kh(u
n)

∆tn
+ ∆tn

(
Kh(u

n+1)
)p]

=

[
Kh(u

n+1) −Kh(u
n)

∆tn

]2

+
(
Kh(u

n+1) −Kh(u
n)
)
Kh(u

n+1)p.

Hence,[
Kh(u

n+2) −Kh(u
n+1)

∆tn+1

]2

≥
n∑

k=0

(
Kh(u

k+1) −Kh(u
k)
)
Kh(u

k+1)p +

[
Kh(u

1) −Kh(u
0)

∆t0

]2

≥
∫ Kh(uk+1)

αh

zp dz +

(
βh − αh

∆t0

)2

=
1

p + 1

(
Kh(u

n+1)p+1 − αp+1
h

)
+

(
βh − αh

∆t0

)2

.(4.9)
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Since Kh(u
n) is non-decreasing in n, the right-hand side of (4.9) is non-

negative. This completes the proof of Lemma 4.1. �

Remark 4.2. Under the assumptions of Theorem 3, we have M1h →
β2 − 1

p+1α
p+1 as h → 0.

Remark 4.3. In view of (4.6) and (4.8),

Kh(u
n+2) −Kh(u

n+1)

∆tn+1
≥ Kh(φ

0) ≡ νh,

where νh is a positive number which is independent of n. This implies that

Kh(u
n) is not a bounded sequence in n. In particular, there exists m ∈ N

such that Kh(u
m) > 1.

At this stage, we set

G(z) =

√
1

p + 1
zp+1 + M1h.

Note that G(z) is a strictly increasing function in z ∈ [αh,∞).

In view of Lemma 4.1, we can follow exactly the same argument of the

proof of [5, Lemma 5.4] and obtain the following lemma.

Lemma 4.4. There exists a positive constant C which is independent

of h such that

T (h) ≤ 2

(∫ ∞

αh

dz

G(z)
+ Cτ

)
.

In particular, we have T (h) < ∞.

Now we can state the following proof.

Proof of Theorem 5. (i) It is a direct consequence of Theorems 1

and 2.

(ii) According to Lemma 4.4, we have T (h) < ∞; un blows up in finite time.

We prove that

T∞ ≤ lim inf
h→0

T (h) ≡ T∗(4.10)
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by showing a contradiction. Thus, we assume that

T∗ < T∞.

Then, there exists a subsequence {hi}i such that hi → 0 as i → ∞ and that

T (hi) ≤ T∗ + δ < T∞,

where δ = (T∞ − T∗)/2. We have

max
0≤t≤T∗+δ

‖u(t)‖L∞(SL) < ∞.(4.11)

On the other hand, the solution un = un(hi) of the explicit scheme (2.2)

corresponding to the parameter h = hi satisfies (cf. Remark 2.3)

lim
n→∞

‖un(hi)‖ = lim
tn→T (hi)

‖un(hi)‖ = ∞.(4.12)

These (4.11) and (4.12) contradict to Theorem 3. Hence, (4.10) is proved.

(iii) We assume (2.17); thus, u(t, x) and K(u(t)) blow up in finite time

t = T∞. We now prove that

T ∗ ≡ lim sup
h→0

T (h)≤T∞(4.13)

by showing a contradiction. In fact, this, together with (4.10), implies

T∞ = lim
h→0

T (h), which completes the proof. We assume

T∞ < T ∗

and set ε = (T ∗ − T∞)/4. There exist R > 0 and h∗∗ > 0 such that

2

(∫ ∞

R

dz

G(z)
+ Cγh∗∗

)
< ε.

Below we fix such R and h∗∗. Further, there exists t′ = t′R < T∞ such that

K(u(t′)) > 2R. Set

T = t′ +
T∞ − t′

2
=

t′ + T∞
2

< T∞
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and let M and M0 be the positive constants appearing Theorem 3 corre-

sponding to this T . Set

h∗ = min

{
h∗∗,

T∞ − t′

2γ
,

R

M + M0(1 + γ)

}

and suppose h ∈ (0, h∗] below. Then, we have Mh + M0(τ + h) ≤ R and

τ ≤ T − t′.
According to Theorem 3, we have

|K(u(tn)) −Kh(u
n)|

≤ 1

L

J∑
j=1

∫ xj

xj−1

|u(tn, x) − un
j | dx

≤ 1

L

J∑
j=1

∫ xj

xj−1

(|u(tn, x) − u(tn, xj)| + |u(tn, xj) − un
j |) dx

≤ Mh + M0(τ + h) ≤ R

and, therefore,

Kh(u
n) ≥ K(u(tn)) −R.

There exists k ∈ N satisfying t′ ≤ tk < T∞, since τ ≤ T − t′ < T∞ − t′.
Then,

Kh(u
k) ≥ K(u(tk)) −R > R.(4.14)

At this stage, we can take a subsequence {hi}i such that

T∞ + ε < T (hi)

and hi → 0 as i → ∞. However, in view of Lemma 4.4 and (4.14), we have

T (hi) = tk +
∞∑
n=k

∆tn < T∞ + 2

(∫ ∞

R

dz

G(z)
+ Cτi

)
.

Therefore, by the definition of R and h∗∗, we obtain T (hi) < T∞ + ε, which

is a contradiction. Hence, we obtain (4.13). This completes the proof of

Theorem 5. �
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q = 0.25 q = 0.5

q = 0.75 q = 1

Fig. 1. The history of ∆tn for p = 2.

5. Numerical experiments

In this section, we offer some numerical examples and examine the va-

lidity of our proposed finite-difference schemes. Suppose L = 1 and take

u0(x) =
λ

2
(sin(4πx) + 2), u1(x) = 2πλ + µ

as initial values. Then, if λ, µ > 0, we have α = K(u0) = λ > 0, β =

K(u1) = 2πλ + µ > 0 and u′
0(x) + u1(x) ≥ µ > 0. Below we set λ = 10 and

µ = 5.
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q = 0.5 q = 0.75

q = 1 q = 1.25

Fig. 2. The history of ∆tn for p = 3.

5.1. Choice of q

We first examine the value of q in the definition of ∆tn. We consider

the explicit scheme (2.2). In Fig. 1, we plot ∆tn as a function of tn when

p = 2. We see that ∆tn deceases as a linear function if q = 0.5 whereas it

deceases very rapidly if q = 0.25 and very slowly if q = 0.75, 1. Results for

the cases of p = 3 and 4 are reported in Fig. 2 and 3, respectively. Here, the

case p = 3 means the nonlinearlity f(u) = u|u|2; see Remark 2.5. For each

p, there is q = q∗ such that ∆tn deceases linearly if q = q∗ and it deceases

very rapidly if q < q∗ and very slowly if q > q∗.
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q = 0.75 q = 1

q = 1.25 q = 1.5

Fig. 3. The history of ∆tn for p = 4.

Slowly-deceasing cases are not suitable from the viewpoint of efficiency.

On the other hand, we do not prefer rapidly-deceasing cases since it is

difficult to capture clearly the variation of a numerical solution near t = T (h)

even if ∆tn is quite small.

Consequently, as a better choice, we offer

q =




0.5 (p = 2)

1 (p = 3)

1.5 (p = 4).

(5.1)
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(a) p = 2, ε = 10−12 (b) p = 3, ε = 10−7

Fig. 4. Truncated numerical blow-up time T (h; ε) for stopping criteria ε and 100ε.

Below we choose q as (5.1).

5.2. Stopping criterion

The numerical blow-up time is an infinite series defined as

T (h) =
∞∑
n=0

∆tn.

Therefore, in actual computations, we take a sufficiently large n and regard

tn as a reasonable approximation of T (h). For this purpose, we introduce

the truncated numerical blow-up time T (h; ε) by setting

T (h; ε) = min
{
tn | ‖un‖ > ε−1

}
,(5.2)

where ε > 0 is the stopping criterion given below.

We still consider the explicit scheme (2.2) and plot T (h, ε), T (h; 100ε)

for several h in Fig. 4. For suitably small ε and h, T (h, ε) and T (h; 100ε)

are almost equal so that we can take T (h; ε) as a reasonable approximation

of the exact blow-up time.

5.3. Comparison of our schemes and Cho’s scheme

We compare three finite-difference schemes; the explicit scheme (2.2),

the implicit scheme (2.4) and the Cho’s scheme (1.17) with obvious modifi-

cation of the boundary condition.
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(a) p = 2, ε = 10−10 (b) p = 3, ε = 10−5

Fig. 5. Truncated numerical blow-up time T (h; ε) for three schemes.

(a) p = 2 (b) p = 3

Fig. 6. Shapes of finite-difference solutions un of the explicit scheme (2.2).

Fig. 4, we plot T (h; ε) for several h by using those three schemes. We see

that those T (h; ε) converge to a certain value, say the exact blow-up time,

as h → 0. Thus, we can apply anyone to compute the blow-up solutions.

Cho’s scheme is better than ours. But, again, it should be kept in mind that

our schemes and the numerical blow-up times are guaranteed to converge

by the mathematical proof.

Furthermore, we conjecture form those figures that the rate of conver-
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gence of T (h) is expressed as

|T (h) − T∞| ≤ Ch = Cτ

if τ/h is fixed. We, however, have no mathematical proof; for similar diffi-

culties for parabolic problems, see [4].

We finally give the shapes of solutions un of the explicit scheme (2.2) in

Fig. 6.
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[3] Chen, Y. G., Asymptotic behaviours of blowing-up solutions for finite differ-

ence analogue of ut = uxx + u1+α, J. Fac. Sci. Univ. Tokyo Sect. IA Math.
33 (1986), 541–574.

[4] Cho, C. H., Hamada, S. and H. Okamoto, On the finite difference approxi-
mation for a parabolic blow-up problems, Japan J. Indust. Appl. Math. 24
(2007), 105–134.

[5] Cho, C. H., A finite difference scheme for blow-up solutions of nonlinear wave
equations, Numer. Math. Theory Methods Appl. 3 (2010), 475–498.

[6] Evans, L. C., Partial Differential Equations, American Mathematical Soci-
ety, 1998.

[7] Glassey, R. T., Blow-up theorems for nonlinear wave equations, Math. Z.
132 (1973), 183–203.

[8] Glassey, R. T., Finite-time blow-up for solutions of nonlinear wave equations,
Math. Z. 177 (1981), 323–340.

[9] John, F., Blow-up of solutions of nonlinear wave equations in three space
dimensions, Manuscripta Math. 28 (1979), 235–268.

[10] Kato, T., Blow-up of solutions of some nonlinear hyperbolic equations,
Comm. Pure Appl. Math. 33 (1980), 501–505.

[11] Kawarada, H., On solutions of nonlinear wave equations, J. Phys. Soc. Japan
31 (1971), 280–282.

[12] Matsuya, K., The blow-up theorem of a discrete semilinear wave equation,
J. Difference Eq. Appl. 19 (2013), 457–465.



380 Norikazu Saito and Takiko Sasaki

[13] Nakagawa, T., Blowing up of a finite difference solution to ut = uxx + u2,
Appl. Math. Optim. 2 (1976), 337–350.

[14] Nakagawa, T. and T. Ushijima, Finite element analysis of the semi-linear
heat equation of blow-up type, Topics Numer. Anal. III, Academic Press,
275–291, 1977.

[15] Sasaki, T., A second-order time-discretization scheme for a system of nonlin-
ear Schrödinger equations, Proc. Japan. Acad. Ser. A Math. Sci. 90 (2014),
15–20.

(Received July 22, 2014)

Graduate School of Mathematical Sciences
The University of Tokyo
3-8-1 Komaba, Meguro
Tokyo 153-8914, Japan
E-mail: norikazu@ms.u-tokyo.ac.jp

tsasaki@ms.u-tokyo.ac.jp


