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On a Tower of Good Affinoids in X,(p™) and

the Inertia Action on the Reduction

By Takahiro TSUSHIMA

Abstract. Coleman and McMurdy calculate the stable reduction
of Xo(p?) for any prime number p > 13, on the basis of rigid geometry
in [CM]. Further, in [CM2], they compute also the inertia action on
the stable reduction of Xo(p?). In [T], we have determined the stable
model of Xy(p?) for any prime p > 13. In this paper, we calculate
the reductions of some “good” affinoids in X¢(p™) and determine the
inertia action on them. As a result, we study the middle cohomology
of the reductions in terms of the type theory for GLy(Q,) given in
[BH].

1. Introduction

Let K be a non-archimedean local field, and let h be a non-negative
integer. As in [Cal, the non-abelian Lubin-Tate theory asserts that the lo-
cal Langlands correspondence and the local Jacquet-Langlands correspon-
dence for GLj(K) are realized in the cohomology of the Lubin-Tate space.
Harris-Taylor and Boyer prove this by using global automorphic represen-
tations in [HT] and [Bo] in the cases where K has mixed and equal char-
acteristics respectively. The correspondence given by them seems not so
explicit. In a series of papers [BH1], [BH2] and [BH3], without geome-
try, Bushnell-Henniart study supercuspidal representations of GLy(K) in a
purely representation-theoretic manner on the basis of [BK], and give an ex-
plicit description of the local Langlands correspondence for essentially tame
representations. See [He, §6] for more details on explicit local Langlands
correspondence. To know a purely local and geometric proof of non-abelian
Lubin-Tate theory, it needs to understand purely local geometric properties
of Lubin-Tate spaces. In [We], when the residual characteristic of K is odd
and h = 2, Weinstein classifies types of irreducible components in the stable

2010 Mathematics Subject Classification. Primary 11G18; Secondary 14G35.
Key words: Modular curve, reduction of affinoid, inertia action.

289



290 Takahiro TSUSHIMA

reduction of the Lubin-Tate curve with full-level structure up to purely in-
separable map. To prove this, he regards the projective limit of Lubin-Tate
spaces as a perfectoid space, which is called the Lubin-Tate perfectoid space.
Then, he constructs a family of affinoids in the Lubin-Tate perfectoid curve
and determines the reductions of them. As a result, with the help of the
non-abelian Lubin-Tate theory, the CM theory and the type theory due to
Bushnell and Henniart in [BH], he deduces that any irreducible component
in the stable reduction of the Lubin-Tate curve with finite full-level structure
admits a purely inseparable map from one of the smooth compactifications
of the reductions of the affinoids in the Lubin-Tate perfectoid curves. In
this paper, without ambiguity of the purely inseparability and without de-
pending on the above theories, we explicitly determine the reductions of
some affinoids in the modular curve Xy(p™) for any prime p > 13. Since
some of the smooth compactifications of the reductions have positive genera,
we conclude that the reductions actually appear as Zariski open subsets of
irreducible components in the stable reduction of Xy (p™) by [IT4, Proposi-
tion 7.11] (cf. Corollary 3.15). Such verifications are useful for a complete
understanding of a concrete configuration of the stable reduction of Xy (p™)
for each m. Note that the Lubin-Tate curve in the case where K = Q,
and h = 2 is isomorphic to the generic fiber of the formal completion of
the Katz-Mazur model of a modular curve at a supersingular point with j-
invariant # 0,1728. See [KM] for the Katz-Mazur model. Except for some
examples, a concrete understanding of configurations of stable reductions of
Lubin-Tate curves or of modular curves with fixed finite level structures is
not known. Our ultimate aim is to understand local geometry of Lubin-Tate
space, to give a geometric realization of Galois representations and the type
theory and, as a result, an explicit and geometric understanding of the lo-
cal Langlands correspondence in a purely local manner (cf. [Ha, Questions
8,9 in §3] ). We believe that the study in this direction will give a new
insight to explicit local Langlands correspondence. Actually, in the higher
dimensional case, we will give a geometric realization for epipelagic repre-
sentations, for which the explicit local Langlands correspondence is studied
in [BH4] up to unramified twists, and remove the ambiguity of unramified
twists in [IT5].

Let p be a prime number. For a non-negative integer n, let Xo(p™) be
the modular curve over Q, which is the moduli space whose valued point
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corresponds to an isomorphism class of a pair (E,C), where E is a general-
ized elliptic curve and C' is its cyclic subgroup of order p". We consider the
stable reduction of Xy(p™) at p. Assume that p > 13. In [CM], Coleman
and McMurdy calculate the stable reduction of Xo(p?) on the basis of rigid
geometry. As a result, they find that several copies of the Artin-Schreier
curve with affine model a? — a = s? appear as irreducible components in
the stable reduction of X¢(p?). Moreover, they determine the inertia action
on the stable reduction of Xg(p?) in [CM2]. In [T}, we computed the stable
reduction of Xo(p*) using techniques in [CM]. As a result, in [T], we proved
that some copies of the Hermitian curve appear as irreducible components
in the stable reduction of Xo(p*). The main part in loc. cit. is in prov-
ing that singular residue classes in some affinoid of X(p*) are basic wide
open spaces whose underlying affinoids reduce to the affine curves defined
by aP? — a = tPT!. In this paper, we will partially generalize the results to
general level in some sense. In the following, we explain the contents of the
generalization.

By p > 13 and Howe’s result in [CM, Theorem B.1], there exists a
supersingular elliptic curve over I, such that its j-invariant is neither O
nor 1728. We fix such an elliptic curve A. We regard X(p™) as the rigid
analytic curve over Q, and focus on the tubular neighborhood in Xy(p") of
A, which we denote by W4 (p"). We define several affinoids in W4 (p™). The
space W4(p) is known to be isomorphic to an annulus A(p~',1). We fix
an isomorphism W (p) ~ A(p~!, 1) appropriately. We consider two special
circles TSy = C@_#] C Walp) and SD4 = C[p~'/?] € Wa(p). Let
T, m: Xo(p") — Xo(p" ') be natural level-lowering finite morphisms (cf.
Definition 2.3). For a,b € Z>q, we put 7, = 7 o 7731. Let n > 2 be an
integer. Then we define

Yf,b = W;;71(TSA) C Wa(p") witha+b=n>2 a,b>1,
Z} =m_1(SDA) C Wa(p") withc+d=n—-1>2¢,d>1.

In this paper, we will compute the reductions of Yf},l, Zﬁ,l for n > 1 and
Y,‘iz for n > 2 and analyze their singular residue classes. To calculate the
reductions of them, we use some machinery constructed in [T, Corollary
2.19]. Further, we explicitly describe the inertial action on the reductions

and study the middle cohomology of the reductions.
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For an irreducible affine curve over an algebraic closure of a finite field, its
genus means the genus of the smooth compactification of its normalization.
Let C, be the completion of a fixed algebraic closure @p of Qp. Let K
be a complete subfield of C,, and let Fg be the residue field of K. For
an affinoid space W over K, we write W for its canonical reduction. Let
Red: W(C,) — W(F,) be the reduction map. For a point P € W(Fg),
let Rw(P) be the rigid analytic space over K such that Rw(P)(C,) =
Red™}(P), which we call the residue class in W at P. In particular, if P
is a singular point on W, we call Ry (P) the singular residue class at P.
For any n > 1, the reduction ?Z"l is defined by st(s —t)P~! = 1 with genus
(p—1)/2. This type of curve does not fit into the classification of Weinstein,
because we consider stable reduction of Xy(p™). This curve is a quotient of
the Deligne-Lusztig curve for SLy(F,), which is defined by z%y — zy? = 1.
The curve defined by z%y — xy? = 1 is called also the Drinfeld curve. For
any n > 1, the reduction Zﬁl is defined by

(1.1) ZP 4+ XPH 4 X~ =0 in AZ |
P

which has genus 0. This curve has the 2(p + 1) singular points defined by
X = ¢ with ¢2®+1) = 1. Each singular residue class S in Z;il is a basic
wide open whose underlying affinoid Xg reduces to the affine curve defined
by a? — a = s? with genus (p — 1)/2. The complement S\ X is an annulus

of width (4p™)~1. For n > 2, the reduction ?ﬁﬂ is defined by
(1.2) ay(z —y)P =1, ZP 4142~ P 4=+ =0 in A%p,

which has genus (p — 1)/2. The curve (1.2) has the p + 1 singular points
which are defined by (z,y) = (—(, ¢) with (P*! = —1. Each singular residue
class T in Y;,i{2 is a basic wide open whose underlying affinoid reduces to the
affine curve defined by a? — a = tP*! with genus p(p — 1)/2. We can show
that the complement T\ X7 is an annulus of width (p"(p + 1))~!. When
n = 2, these things are proved in [T]. However, there is a gap in the proof
of [T, Corollary 4.8], and this will be fixed in the proof of Proposition 3.8.1.
We write 7,, for the set of the singular residue classes in Yfl{Q. As a result,
we prove that, for each n > 2, the map 7, : Y;?JFL2 — Y;i2 induces a purely
inseparable map 7, : ?Zl 412 — ?ig and m,(7p41) = 7,. The restriction
of m, induces m,: HT’ETn+1 X — HTeTn X7r. We show that this map
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induces a purely inseparable map 7, : [ €Toir X — Hrer, X . Similar
things are proved for Z;?,1 with n > 1.

In [CM2, §6.3], the inertia action on the stable reduction of Xo(p?) is
described using Fake CM, Weil pairing etc. In this paper, we give explicit
descriptions of the inertia actions on the reductions of the affinoids explained
above in terms of the Lubin-Tate theory. In particular, we make more ex-
plicit the inertia action on the components with affine model a? — a = s? in
the stable reduction of X¢(p?) described in [CM2, Corollary 6.11]. As ap-
plication, we explicitly understand the structure of the middle cohomology
of the irreducible components as representations of the inertia subgroup.
We can conclude that the restrictions to the inertia subgroup of all two-
dimensional Galois representations of exponential conductor < 4 and with
trivial determinant character appear in the middle cohomology of them.
Using the description and the type theory in [BH], we can also describe the
cohomology in terms of the language of the local Langlands correspondence.
See Corollaries 4.9, 4.14 and 4.22 for precise statements. Such descriptions
in finite levels in a purely local manner are not known except for [Yo].
Unfortunately, by using these descriptions, we cannot construct the local
Langlands correspondence for GLy(Q,) for representations of exponential
Artin conductor 4. A complete treatment in this direction for representa-
tions of exponential Artin conductor three is given in [IT4]. The results in
this paper will be used in a subsequent paper in which we determine the
stable reduction of Xo(p°).

The author would like to express his sincere gratitude to the referee
for very careful reading of this paper, giving suggestions and pointing out
many errors in the previous version of this paper. He would like to thank
the referee especially for pointing out the incompleteness of the proof of
Propositions 3.8.1 and 3.14.1 in the previous version, and suggesting some
ideas to improve it. This work was supported by JSPS KAKENHI Grant
Number 15K17506.

Notation. We fix some p-adic notations. We let C,, be the completion
of a fixed algebraic closure @p of Q. Let K be a complete subfield of C,,.
Let Ok denote the ring of integers of K, and let px denote the maximal
ideal of Ok . Set Fx = Ok /px. We simply write F for Fc,. For an element
a € Ok, we write a € Fg for the reduction of a. Let v(-) denote the
valuation of K such that v(p) = 1, and let | - | denote the absolute value
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given by |z| = p~¥® for z € K* and |0| = 0. For a positive integer n > 1,
we set Uy = 1 + p%. This is an open compact subgroup of K*.

For a non-negative integer n, let Q,» denote the unramified extension of
Qp of degree n in @p. We write Zyn for Og,,. Let Fyn be the extension of
Fp of degree n. Then, we have F)n = Fg,, in the above notation.

Put R = pQ. Let K be a complete subfield of C,. For r € R, we
let Bi[r] and Bk (r) denote the closed and open disks over K of radius r
around 0, i.e. the rigid spaces over K whose Cp-valued points are {z € C, |
|z] < r}and {z € C, | |z] < r} respectively. If r,s € R and r < s, let
Ak|r,s] and Ag(r,s) be the rigid spaces over K whose C,-valued points
are {x € C, | r < |z| < s} and {x € C, | r < |z| < s}, which we call a
closed annulus and an open annulus respectively. By the width of such an
annulus, we mean log,(s/r). A closed annulus of width 0 is called a circle,
which we denote the circle Ax/[s, s] also by Ck|s].

Let K be a complete subfield of C, and A a reduced K-affinoid algebra.
Let | - |sup be the supremum norm on A (cf. [BGR, §6.2]). We set

A®={f € A||flsup <1},
AT ={f € A |flswp <1}

and A = A°/A°°. The ring A° is the set of all topologically bounded
elements in A, and A°° is the set of all topologically nilpotent elements
in A. For the affinoid space X = Sp A, the canonical reduction X means
Spec A (cf. [BGR, §6.3]). The reduction of X always means the canonical
reduction of X.

2. Preliminaries

In this section, we collect some known facts and recall some machinery
in Proposition 2.5 needed to compute the reductions of affinoids in later
sections.

2.1. Kronecker’s polynomial
As in [dSh, §0] or [T, §2.1], we recall Kronecker’s polynomial

RGX) = (X —iom) ] (X y (;)) e 7lj.X].

0<a<p—1
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Kronecker proved that

the equation F),(j, X) = 0 gives a plane model of X(p) over Q,
Fp(]7X):Fp(Xa])7 Fp(]vX)E(]p_X)(]_Xp) mOde[j7X]

We write F,(S,T) = (SP —T)(S —TP) + pf(S,T), where f(S,T) € Z[S,T]
is a symmetric polynomial.

Let p > 13 be a prime number. Let A be a supersingular elliptic
curve over ), with j(A) # 0,1728. Let By € Z; lift j(A) € F,. We put
F(X,Y) = Fp(X + o, Y + Bo)-

LemMA 2.1 ([T, Lemma 2.1]). 1. We have

FP(X,Y) = (XP-Y)(X —=YP) mod pZ[X,Y].

2. We set fi(X,Y) = (F,?O(X, Y) - (XP—Y)(X—YP)> /p € Z,[X,Y].
Then f1(X,Y) is symmetric and f1(0,0) is a unit of Zy.

Let ¢y be the leading coefficient of f; and set g(X,Y) = f1(X,Y) — co.
We define ¢g(X) and h(X) by

g(X,Y) = Xg(X)+h(X)Y mod (Y?).

Let ¢1 be the leading coefficient of h(X), which is also the one of g(X) by
Lemma 2.1.2.

LEmMA 2.2 ([T, Lemma 2.2]). We consider the equation Ffo (X,Y) =
0. Assume that 0 < v(X),v(Y) <1 and v(X) < v(YP). Then we have

e Peo | pg(XY) (YR
(2.1) Y= X0 +nz::1 < ) HXY),

where we put H(X,Y) = (pco/X) + (pg(X,Y)/X).

2.2. Circles in Xy(p)

We briefly recall supersingular annuli from [CM, §3.1] or [T, §2.2]. Only
in this subsection, we do not assume that p > 13. We think of Xy(p") as
the rigid analytic curve over @, whose points over C, are in a one-to-one
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correspondence with isomorphism classes of pairs, (E,C), where E/C,, is
a generalized elliptic curve and C' is a cyclic subgroup of order p”. We
implicitly make use of this correspondence, when we speak loosely of “the
point (E,C).”

DEFINITION 2.3. Let C[p’] denote the kernel of multiplication by p’ in
C. Let

mrom [ Xo@™) — T Xo™)

n>1 n>0

be the level-lowering maps given by 7;(E,C) = (E,pC) and 7,(E,C) =
(E/Clpl|, C/C]p]) respectively.
Let a,b € Z>o. Then by setting 7, = 77?c o % we obtain maps

map: || Xo@") — ] Xo@™).

n>a+b n>0

Let wy,: Xo(p") — Xo(p™) be the automorphism defined by (E,C) —
(E/C,E[p"]/C), which is called the Atkin-Lehner involution. We define

w: [T Xo(") — [ Xo(@™)

n>0 n>0

by wy, = w|x,(pr). The Atkin-Lehner involution is compatible with the level-
lowering maps in the sense that mow = wom, or equivalently, wom; = 7, 0w,
since w is an involution.

DEFINITION 2.4 ([CM, Definition 3.3]). For a fixed elliptic curve A
over a finite field, let W4 (p™) represent the rigid subspace of Xy(p") whose
points over C, are represented by pairs (E, C) with E ~ A.

The Wa(1) is just a residue disk of the j-line. If E is an elliptic curve
over Cp, we let h(E) denote the minimum of 1 and the valuation of a
lifting of the Hasse invariant of the reduction of a non-singular model of
E mod p, if it exists, and 0 otherwise. When A is a supersingular elliptic
curve, it is well-known that Wy(p) is isomorphic, over Q,2, to an open
annulus of width ¢(A) = |Aut(A)|/2. This means that one can choose a



Affinoids in Xo(p™) and Inertia Action 297

parameter x4 on Wy (p) over Qp2 which identifies it with the open annulus
AQ, (p_i(A), 1). In fact, we can and will always do this in such a way that
v(za(E,C)) = i(A)h(E) when C is a canonical subgroup of order p in E
and otherwise i(A)(1 — h(E/C)) (cf. [Bu, Theorem 3.3 and §4]). See also
[Ka] for canonical subgroups.

In [CM, §3.1], Coleman-McMurdy considered the following concentric
circles in Bq , (1):

i(A)

SDy = CQp2 [p_ 2 } which they call the “self-dual circle”

or the “Atkin-Lehner circle,”

_pi(A)

TS, = C’sz [ p+1 } which they call the “too supersingular circle.”

We fix an isomorphism W (1) ~ Bg,, (1) as in de Shalit’s theorem in [CM,
Theorem 3.5] or [T, Theorem 2.9]. Under the above identification W4 (1) ~
BQP2(1)7 for r € (0,1) N Q, let Cc and Cg’rg denote the circle Cg , [p~"]
and the closed ball Bg , [p~"] respectively.

2.3. Affinoids in W4(p")

From now until the end of the paper, we assume that p > 13 and fix a
supersingular elliptic curve A/F, with j(A) # 0,1728. Let n € Z>3. We
define

Yoty =7 (TSa) C Wa(p") for a+b=mn,a,b>1,
(2.2)
ZAd—ﬂcd(SDA) CWap")forc+d=n—-1>2¢,d>1.

In the following proposition, we consider embeddings of Yg‘b and Zfd into
products of subspaces of Wa(1). Let 8y € Zj, be a lifting of j(A).

ProOPOSITION 2.5 ([T, Corollary 2.19]). Let 70 be the map
[To<icn Tin—i: Wa(p") — Wa(1)*(FD),
1. The affinoid Yg‘,b with a+b=n > 2 is isomorphic to the following space
by the map w0

{({Xi}OSiSn)e |

1
0<i<a—1 P* ' +D
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et <[ I e, )|
=p+1 a+1§i§n pi afl(erl)

0

FI/)BO(Xi,XZ'Jrl) =0 fO’/’ 0 < 7 < n, Xa,1 75 Xa+1}.

2. The affinoid Zfd with ¢ +d =n — 12> 2 is isomorphic to the following
space by the map 70:

— —c—1
0<i<e 2P c+1<i<n P

FpﬁO(Xi:Xi—l-l) =0 for0<i< n}

3. Reductions of Affinoids
In [We, Theorem 1.0.1], Weinstein proves the following:

THEOREM 3.1. Let K be a non-archimedean local field. Let q be the
cardinality of the residue field Fi. We simply write p for px. Let X(p™) de-
note the Lubin-Tate curve with Drinfeld level p™-structure. Assume that q is
odd. Then, every irreducible component in the stable reduction of X(p™) ad-
mits a purely inseparable map to one of the following four projective smooth
curves over F:

1. The projective line P!,

2. The curve with affine model x4y — xy? =1,
3. The curve with affine model a4 + a = 19+,
4

. The curve with affine model a4 — a = s>.

Roughly speaking, if we replace K by Q,, and the second curve by the
curve with affine model zy(z — y)?~! = 1, similar things are expected to
hold for irreducible components in the stable reduction of X¢(p™) except for
ordinary components. In this section, without ambiguity of purely insepara-
bility, we compute the reductions of some of the affinoids defined in (2.2) by
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using Proposition 2.5. As a result of these computations, we deduce some
informations on irreducible components in the stable reduction of Xy (p™)
in Corollary 3.15.

3.1. Reduction of Y;;"l

In this subsection, we compute the reduction of Y,ﬁl for n > 1. The
reduction of Yﬁl is essentially calculated in [E, §2.1.3] and [E2, Theorem
2.1.1].

By Proposition 2.5.1, we have

Yo~ {({Xi}o<z‘<n+1) e| II Cf/?p”*“(pﬂ))

0<i<n—1
A0 A0
<GSy X Cljpr) ‘

FpﬂO(XhXi—&-l) =0(0<i<n), X,_1# Xn+1}-

We simply write & for pcy. We choose elements {a, }02 ; C C, such that

n—1 1
o Pt A

n1> We set

=rkand o =a,_1forn>2. OnY

Xo=oanz, X; :afjxi (1<i<n-2),

n—1 n—1

Xpa1=ad z, X,=adlu, X,p1=0a oy,

where we have v(z),v(x;),v(z),v(y) = 0 for any i and v(u) > 0. For o €
Qso, if v(f — g) > a, we write f = g mod a+. Then, as in [T, Corollary
4.5), by FP°(X;, Xi41) =0 for i =n —1,n and X,,_; # X,,41, we obtain

(3.2) zy(z —y)» =1 mod 0+ on Yfl{l.

LEMMA 3.2. 1. Forn > 1, the reduction onﬁ{l 1s defined by

n— n— p—l
(3.3) 2P 1y (zp - y) =1.

This is a smooth affine curve with genus (p —1)/2.
2. The curve defined by (3.3) is isomorphic to the curve defined by
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st(s —t)P~t =1.
3. The map m, induces a purely inseparable map T, : ?Zlﬂ’l — ?;371;
(2,9) = (2,9).

PrROOF. By F}?O(Xi,XiH) =0for0<i<n-—2on Y4, we obtain

n,17
2P""" =z mod 0+ by (2.1). Hence, the first assertion follows from (3.2).
The second assertion follows from [T, Lemma 4.8]. The map 7,: Y} 11—
Y;;l,1 is given by ({X;}o<i<n+2) — ({Xi}i<i<nt2). The third assertion fol-

lows from the proof of 1.

3.2. Reduction of Y,ﬁ{z

In this subsection, we compute the reduction of Yéz C Wa(p™+?) for
any n > 2. In [T, §4.3], when n = 2, we have calculated the reduction of
Y§1’2. To deduce defining equations of ?3,2 in Corollary 3.4, we give defining
congruences in appropriate moduli of the affinoid Y;?’2 in Proposition 3.3.

In the following, every formal group is always assumed to be one-dimen-
sional. Let 9 be the formal Z,2-module over Z,> whose x-multiplication has
the following form:

[Klg(X) = XP° — kX.

See [Iw, Chapter IV] for more details on formal groups. Let @) € C,, be an
element such that [k2]¢(cwh) = 0 and [k]g(oh) # 0. We set 8 = [k]q(ch)
and 0; = @) /3. Then we have

(3.4) R S N

We put K} = Q,2(8,61) = Qu2(wh). Note that we have v(861) = (p*(p? —
1))~!. By multiplying the second equality in (3.4) by 3P° taking the (p?—1)-
th power of it and dividing it by (601)1”2(?2*1), we obtain

2

{1-(w/(o00" )}

This induces £/(861)P"®*~D = 1 4 (k/(861)P"~') mod 1+. We take ele-
ments {a, }22; C C, such that o = (801)P~t and of, = ay,—1 for n > 2.
We have v(a,—1) = (p"(p+1))~! and

= /(0

(3.5) H/aﬁi(;fﬂ) =1+ (ﬁ/aiif(pﬂ)) mod 1 +.
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2
_ p—1
We set v,—1 = Q,_1 -

By Proposition 2.5.1, we have

A7
Yo {({Xi}0<i<n+2) € 0<1<_[ 1 Cl/?pnfifl(pﬂ))

A0 A0 A0
X G X Cjprn) X Clipm) ‘
(36) Fpﬁo(XiaXi—&-l) =0 (OSZ §n+1), Xn—1 #Xn—i-l}'

Let g(T') be the polynomial in §2.1. For a while, we assume that n = 2. We
set

(3.7) Xo=dz, Xy=dy withv(z)=0andv(y)=0

on Yég.
Let f(S,T) and $H(X,Y) be as in §2.1. We set

H(z,y) = ¢y (9P, ") = fla,y){zy(z —y)P*}P).

Let H' be as in [T, (4.19)]. Then, we have H(z,y) = H' mod 0+ by [T,
(4.15), (4.16) and Lemma 4.12].
We set ¢ = g(aly) — g(afz) and

(3.8) zy(z —y)P P =14+1Z + Baypa(x —y) "

Note that ¢9 is divisible by of. We have v(Z) > 0 and its consequence
(zy(z — y)pfl)p =1 mod p~'4 on YQQ. This can be shown as follows.
By plugging in [T, (4.15), (4.16), (4.18)] into the congruence in [T, Lemma
4.12] and using

p2 2

g(al u) — g(af v)

_ <g(a]fata);:z(a}fy)xy>p mod (p;l B L) N

uv
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we obtain this.
By [T, (4.19)] and H(x,y) = H' mod 0+, we have
ZP — 1+ {wy(z =yl + ofga(a —y) 7P
(3.9) + ol (yPg(ahz) + aPg(oly)) (x — y)PP~ V) 4 2= PH) 4= (D)
= 1ol (xy) P(z + y)?P — azf(pH)H(x, y) mod p~' +.
The term {zy(z — y)P~1} 71 + ada(z — y) P in the left hand side of (3.9)
equals
(1 + ofzyde(z —y) ") / (zy(z —y)P') .
Further, by (3.8), we acquire

1+ ofayge(r —y)™ 1+ afayge(z—y) ™
zy(z — y)r-! 1+ ajzyda(z —y)t +mZ

=1-—vZ modp 4+,

because we have v('ylafp) =(p-Dp2+2(p(p+1))~t >p~tandv(Z) > 0.
Hence, by taking (x,y, Z) as (ug, v2, Z2), the congruence (3.9) can be written
to the form (3.11) for n = 2 below.

ProrosiTiON 3.3. Let n > 2 be an integer. We consider the isomor-
phism (3.6) and set Xo = of _ju, with v(u,) = 0 on Y;?Q. Then, there
exist rigid analytic functions v, and Z, such that, on the affinoid Y;;{Q, we
have v(v,) >0, v(Z,) > 0,

unvn(un - vn)p_l =1+ ’Yn—lZn

3.10
( ) + aﬁ_lunvnén(un — ’Un)_l mod p_(n—1)+,
(Zn + 1P = Yn-1(Zn + 1)
ol (WPg(al _yup) + uPg(al_ vp)) (U — v,)PPY
(3.11) + u;(l""‘l) + U;(P-‘rl)

= c10d_ (unvn) P (uy + vp)P

p(p+1)
-,

H(up,v,) mod pi(nil)'h
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where we set ¢n, = g(af_jv,) — g(ad_juy,). The functions {un,vn, Zn}n>2
satisfy

p — Y —(n—1
Uy = Upy, Vg =0 mod p ( )—I—,

(3.12)
ZP =2, modp "+ onYi,.

PrROOF. We prove the first assertion by induction on n. We have al-
ready proved the assertion for n = 2. By assuming the assertion in the case
n, we prove the assertion in the case n + 1. We simply write H, Z, u, w
and v for H(up,vn), Zn, Un, Unt+1 and v,. We consider every congruence
below on Yﬁ+1,2' We recall the identification of Y£+1,2 in (3.6). We set

Xo = abw and X; = of, u with v(w) =0 and v(u) = 0. Then we have
(3.13) wP =u mod p~ " 4
by (2.1). We set

h' = —v_l{Z — A+ 14+ w P — 0P () u 4 v)
(3.14)
-1
+ abvglatuw)(u— v~ |

and put W = 7 — ag(pH)H. By the congruence (3.10) deduced from the
induction hypothesis, we have uv(u — v)P~t = 1 mod (p" (p + 1))~ 1+.
Therefore, we have o {uv(u—v)p_l}pg(afv) = ab g(ah v) mod p~("~ D4,
Hence, by multiplying (3.11) by vP and using (3.14), we acquire

(315)  —hP o7 (1 + a?fvg(aﬁzv)> = ~PoPW mod p~ ™Y .
We put

~1
(3.16) v = v (1 + afug(ag"‘v)) ,

We take the power series ¢1(X) € Zp[[X]] such that

X' =X1+Xg(X) ! = X=X'(1+X'g: (X)) .
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By (3.16), we have
2 2 -1
(3.17) v="1 (1 +al v'gi(af v’)) .
p2 N\ e . . . . A

Note that gi(an v') is a rigid analytic function on Y, 5.

By (3.15), (3.16) and v(v") = 0, we have v(h’) = 0 and
(3.18) o' = hP — AP (vh2PW = BP — 4PRPPHAW  mod p~ (Y 4+
We put
(3.19) h=h (1+ah gi(ah')) ™
Then we have
(3.20) B =h(1+4alhg(alh)™".

We write v with respect to h. By substituting (3.18) to (3.17), and using
(3.19) and v(aipzfyﬁ) > p~ ("D we acquire

h'P — AR P2

v=
L+ o (WP —ARRPE+OW) gy (ob 1P
B/p(p+2)
=hP — AP ; ; W mod p D 4
{1 +ah h'Pgy(ah h’P)}
Since we have vﬁh’p(p”) {1 + aﬁQh’pgl(aﬁQh’p)}_ = yﬁhp(p”)
mod p~ =D+ by the definition of & in (3.19), we obtain
(3.21) v=hP —APRPPTDW  mod p~ D) 4
We set

Z' = wh(w — h)P7L,  f =w?hPT2(w — h)P72
By substituting (3.13) and (3.21) to uv(u — v)P~!, we acquire

(322 w(u—vp Tt =27 W modp .
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We introduce a new parameter Z’ by
(3.23) Z' =1+ y,2" + a2wh (g(alh) — g(cPw)) (w — h) ™t

Substituting this and (3.22) to the left hand side of the congruence (3.10)
in the case n, and dividing it by ~5, we obtain

(3.24) 2P =Z 4 fPW = Z + fP (Z - ag@“m) mod p~" + .

By this and the induction hypothesis, we obtain v(Z’) > 0. We set H' =
H(w,h). Then we have aﬁ(pH)H'p = aﬁ(pH)H mod p~ "+ by plugging in
(3.13) and (3.21) into olPTV | In characteristic p, there is no common
root of two equations wh(w — h)P~t =1 and 1+ f = 0. Hence, by v(w) = 0
and v(h) = 0, we have v(1 + f) = 0. We set

(3.25) Z'=1+ )" (Z + o2 fH).

Note that v(Z") > 0 by v(Z’) > 0 and v(1 + f) = 0. By (3.24) and (3.25),
we acquire

(3.26) Z"=7Z modp " +.
We put Wi = 272" — o2 and
(3.27) B = h — y RPT2W.

We show that the parameter h” plays a role of the parameter v,41 in the
congruences (3.10) and (3.11) for the case n+1. By (3.21) and the definition
of A" in (3.27), we acquire

(3.28) KW'?=v modp "V 4.
By (3.14), we obtain

Z =+ 1+ w P 1 (h'o) ™ 4 alog(ebw)(u — v)P~?
(3.29)
= c10® (uv) " Hu + v).

In the following, we rewrite the term (h’v)~! in the left hand side of the
equality (3.29) under the variables (h”,w,Z"). By (3.20) and (3.28), we
obtain

(3.30) (R'v)"t = (W) (1 + aPhg(alh)) mod p~™ +.
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Hence, by the definition of A" in (3.27), we obtain

1+ ahhg(ahh) =1+ ahh"g(ahh")

(3.31) )
—i—g(agh”)odi’ynh”er Wi mod p~ "+,

(3.32) (hR"")"t = 1"~ Wi mod p" +
By considering (3.31) x (3.32) and using (3.30), we acquire
(3.33) (W)t =h" Y (14 0l (k")) — 4 W1 mod p" + .
Hence, by (3.26), (3.29) and (3.33), we obtain

(Z" +1)P — (2" + 1) + w— @t 4 pr—(p+1)
(3.34) +abh" Pg(ah ") + abug(ahw)(u — v)P !

= c10?(uww) M (u+v) — a2PTVH mod p" .

By (3.23), we have
(3.35)  wh(w — )Pt =14+ ,Z" + alwh (g(afh) — g(abw)) (w — h)~".

We rewrite this equality under the variables (Z”,h”). Substituting h =
B+ P2 W to wh(w — k)P, we acquire

(3.36) wh(w — h)P~ = wh” (w — KPP~ + v, fW1 mod p~" +.
Hence, by (3.35), (3.36) and Z” = Z' — fW}, we obtain

(337 wh” (w — WP =14~,2" + aLwh” (g(abh") — g(bw))
' x (w—h")"1 modp ™ +.

Since we have w?h/?(w—h")P®?=1) =1 mod p~"+ by (3.37), on the term in
the left hand side of (3.34), we obtain of,h”"Pg(ahh”) = ahwPg(ahh)(w —
R"PP=1) mod p~"+. By taking (Z”,w,h") as (Zni1,Uns1,Vns1), the re-
quired assertion in the case n + 1 follows from (3.13), (3.28), (3.34) and
(3.37). The second assertion (3.12) follows from (3.13) and (3.26). OJ
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COROLLARY 3.4. Letn > 2 be an integer.
1. Over K)(an—1), the reduction ?ﬁp is defined by

ay(x —y)P ' =1, ZP+ 142 @) 4=+ =g
A

2. The map m, induces a purely inseparable map 7,: Y, 110 — Y
(Z,2,y) = (27,27, yP).

A

n,2»

PROOF. We obtain the first assertion by considering (3.10) and (3.11)
mod 0+, and the second assertion by considering (3.12) mod 0+. O

REMARK 3.5. By the isomorphism wy1o: Y;;{2 = Yén, if we replace

7, in Corollary 3.4.2 by 7y, the similar things as Corollary 3.4 hold for ?124’".

3.3. Singular residue classes in Y;i2

In this subsection, we analyze the singular residue classes in Y,ﬁQ for
n > 2. As a result, we show that each singular residue class in Y,fb"Q is a
basic wide open whose underlying affinoid reduces to the affine curve defined
by a? —a = tPT'. When n = 2, the analysis of the singular residue classes
in YQQ given in [T, §4.4] is incomplete. There is a gap in arguments in [T,
Corollary 4.18], and the gap will be fixed in this subsection.

Let K be a non-archimedean local field and A a K-affinoid algebra. For
a finite extension L over K, we write Ay, for the base change A®x L. Now,
we introduce an elementary lemma in rigid geometry.

LEMMA 3.6. Let K be a non-archimedean local field. Let f: Y — X
be a morphism between reduced rigid analytic varieties over K. Let {U;}ier
be an admissible affinoid covering of X. For any i € I, assume that the
inverse V; = f~Y(U;) is an affinoid, and over some finite extension L; over
K, the morphism f induces an isomorphism between reductions:

(3.38) fr, =f xx Li: Vi xg Li = U; xk L.
We write U; = Sp A; and V; = Sp B;. Furthermore, we assume that
(3.39) (Air,)* =pr,(AiL,)%  (Biz,)™ = pr,(BiL,)°-

Then, f:Y — X is an isomorphism.
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PROOF. Since {U;}icr and {V;};cs are admissible affinoid coverings of
X and Y respectively, to prove that f: Y — X is an isomorphism, it suffices
to show that, for any i € I, the restriction f: V; — U, is an isomorphism.
Now, we fix ¢ € I. Let f*: A; — B; be the morphism of K-affinoid algebras
corresponding to f: V; — U;. By faithfully flat descent, to prove that f* is
an isomorphism, it suffices to show that the base change of f* from K to
L;:

* .
fLZ-' Ai7Li - BZ}LI'

is an isomorphism. The image of (4;,)° by f;. is contained in (B;r,)°.
Hence, we have the restriction map

fo,, = frlye: (Air,)” = (Bin)"

Note that f5, ®o, L;= f[,. By the assumptions (3.38) and (3.39), the
morphism fz,‘)L_ induces the isomorphism

(3.40) f(*QLi: Airn, = (Air,)° /L, (AiL,)° = Bir, = (Bir,)°/pr;(BiL)°

Since (A; 1,)° and (B; 1,)° are reduced, they are separated (cf. [BGR, Propo-
sition 4(iii) in §6.2.1]). Clearly, they are pr,-torsion free. They are py,-adic
complete (cf. [BGR, Theorem 1 in §6.2.4]). By these properties, the iso-
morphism (3.40) implies that f5 is an isomorphism. Therefore, the map
le = f(*%i ®o,, L;: A1, — B, L; is also an isomorphism. Hence, we have
known that f: V; — U; is an isomorphism. [

We go back to the original situation. We keep the same notation as in
the previous subsection. We change variables
1 rp — 1

3.41 = —
( ) tn 28, n 25,

similarly as in [CM, the proof of Proposition 5.2] and [T, §4.4]. We simply
write Z, r, s and ¢ for Z,,, rp, s, and o | ¢, respectively. The congruence
(3.10) has the following form:

r?—1

(3.42) (-9 =1+ w2 mod p Y 4
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(cf. [T, (4.20)]). Let 7, = {¢ € F,2 | 4¢P*! 4+ 1 = 0}. The set 7, naturally
corresponds to the set of the singular residue classes in Y;i 5. Let ¢ € 7T,,. We

:}2, which
is defined by (r,s) = (0,¢). On T, ¢, we have aﬁ(ﬁrl)H(u,fu) = aﬁ(ffl)dn
mod p~ "~V with some constant d,, € Zye. Let so¢ € py2_1(Zy2) be the
element such that 59 = ¢. We simply write sg for sg . We simply write K

for the local field K)(ay,—1) in §3.2.

write Tj, ¢ C Y;?Q for the singular residue class at the point on Y

LEMMA 3.7. 1. Let co be the leading coefficient of the polynomial
(9(X) —c1)/X. We set s=s9+s5 on Ty, ¢. Then, on Ty, ¢, we have

(3.43) 5= (4sh)H(r? - 2P 023871) +t(s,7) mod 2pv(a,—1) +

n—1

with some t(s,r) € Ok|[s]][r] satisfying t(s,r) € (aip_lr, aip_ls,sp).
2. On T, ¢, we have

- (Z = 1P + yp1(Z — 1) — 2P 4 F(s, 7, Z) + oP¥{Vd,
‘ =0 modp "4,

with some F(s,r, Z) € Ok|[s,r]|[Z] contained in the ideal (ai{lrp, abl | sP,
r? o rPtl).

PROOF. In this proof, we simply write a, v, u and v for of |, v,1,
uy, and v, respectively. In the following, we consider everything on T, ¢.
We prove the first assertion. By (3.42) and v(vy) > 2v(«), we have

(3.45) 4P =42 1 —r2sP¢ + sP¢  mod 2u(a) + .

For a € Q>¢, we write f = g mod a if v(f —g) > a. By (3.45) and
4518+1 = —1 mod 1, we obtain

4(sPTE — P =12 — 12PG 4 5P mod 2v(a) + .
By this and s = s¢ + 5, we have

(3.46) dshs = 1% — r?sP¢ + sP¢ + 4dshtg(s) mod 2v(a)+,
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where we set t(s) = — (s 's)P(so +5). Recall that g(X) € Z,[X]. Then,

we have
slan) =g (o' ) = (arzﬁol > (‘%)) e Oxlillir)

slan) =g (a5 ) = (arg;f > (“)) e O[]l

Therefore, we obtain

(3.47)

(3.48) ¢ = alg(av) — g(au)) € a*Ok[[s]][r].
Furthermore, we can write
(3.49) = —a’casy +¢1 mod 2v(a) +

with some ¢1 € (a?s)O/[[s]][r]. Hence, on the right hand side of (3.46), we
obtain

r? —r?sP + sP¢ + dshlo(s) = r* — a?egsht 4 4sbt(s,r) mod 2v(a)+

with some t(s,7) € (a?r,a?s,5P) C Ok|[[s]][r]. The claim follows from this
and (4sh)~! x (3.46).

We prove the second assertion. We compute the terms in (3.11) one by
one under the variables (r, s, Z). We set

_2(1 4Pt
fr) = N

On the terms on the left hand side of (3.11), by simple computations, we

have
a(vPg(au) + uPg(awv))(u — v)p(p_l)
_ar? o
= 95P° (g(au) + g(av)) + 9P mod 1,
(3.50) o) 4 o1 — g opr1 20T
u” P TP = 4P R

Il
~

1-s"¢ ~(n—1)
(T)<1+’YZ) mod p +
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by (3.41) and (3.42) (cf. [T, Lemma 4.15 (3),(4)]). We simply write R for
[

Okl|[s,r]]. By s =50+ s and (3.47), we have
p
(3851) > (g(ou) + glav)) = (C;‘“) " 4 §1(s,r) mod p "D ¢
50

with some F1(s,7) € (as?,a?r?) C R. We have

<u+v>p < 4sr )p
1 = C1 3
uv re—1

oo
= —dcia(sr)? Z 2Pt

(3.52)

= —deiafsor)? + Fals,r) mod p~ 4

with some Fa(s,7) € (arP as?) C R. By (3.51), (3.52) and the definition
of sg, we acquire

2sP uv

(3.53) B (4sg(p+1) 1

= 2
D
5o

O (gla) + glaw)) — cro (“ - )

= ) crar? + Fi(s,r) — Fa(s,r)

=Fi(s,7) — Fols,r) mod p~ "V 4.
Note that f(r) = —2(14rPT1) 32 7% mod 1. Therefore, by using (3.48)
and v(a?y) > p~ (Y we obtain

flr)s? 1

(1557 ) o= (04 )
= <2 ) &+ &q(s,r)

(3.54)

p+1
( ) ¢ + @2(5 T)
230

= By(s,7) mod p " D4

with some &1 (s,7) € (a?r?) C R and Bs(s,7) € (a?*rP, as?) C R.
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By 2v(v) > p~ =Y and v(y) > 2v(a), we have
f(r)
p_
(Z+1) 7<Z+1)+1+WZ

(3.55) = (Z+1)P —y(Z+ 1)+ f(r)(1—72)

=(Z—-1P4~5(Z—-1) =2/ 4+ &(r,Z) mod p~ "4,
with some &(r, Z) € (r?P, a?rP) C Ok[[r]][Z]. We put
F(s,r,Z) =F1(s,r) — Fa(s,r) + &a(s,7) + &(r, Z)
€ (a*rP, as?, r’P ar?™) C Ok|[s, r]][Z].
Then, the required assertion follows from (3.11), (3.50), (3.53), (3.54), (3.55)

and o?t H(u,v) = aP*'d, mod p~ V4. O

Let Q" be the maximal unramified extension of @, in C,. We choose
elements b, and ¢j in Q" such that b + b, = —d, and C(’)p2_1 = -1

respectively. We put (y = —QC(’)pH and M,, = Q2 (bn, (), n—1). Further,
we set

(3.56) B = oot € Oy Ao =1+ 510, € Oy

n

Note that v(8,) = p~". We have

_ +1
B = et (b= P+ 9t (o — 1) + 02V

(3.57)
=0 mod p~ ™1 4.

Let X, ¢ C T, ¢ be the affinoid which is defined by v(r) > (p"~(p +
1))~1. By (3.44) and the second congruence in (3.57), we obtain

(358) (Z=0,0)" +n-1(Z = 20,0) =2 mod p~" D+ on X, .

On X,,¢, by (3.43) and v(s) > 0, we have v(s) > 2(p" " '(p +1))~!. By
(3.58), we have v(Z —~;,,) > p~" on X, ¢. On X,, ¢, we put

r= ai_lgét, 5= aip_ls', Z = 7(/),71 + Bha
(3.59)
with v(t),v(s"),v(a) > 0.
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By substituting (3.59) to (3.43) and dividing it by o” |, we obtain

n—1»
(3.60) s’ = (4s0) 7! <((6t)2 ~ @3{;‘1) mod 0+ on X, c.

There is an error in the congruence s; = (t2 — cosh ') /sh mod 0+, which is
stated in [T, Lemma 4.16]. It should be corrected as s1 = (2 —025‘8_1)/(438)
mod 0+.

We have 5 = —Cgaﬁ(ffl) mod pv(B,)+ by ¢ = —(y mod 0+ and
(3.56). Hence, by substituting (3.59) to (3.58), we acquire

(3.61) BE(a? —a—t") =0 mod p ™YV on Xoc

PROPOSITION 3.8. Letn > 2 be an integer.
1. Over My, the affinoid X, ¢ reduces to the affine curve defined by a” —a =
tP*L. The complement T, ¢ \ Xy ¢ is an annulus with width (p™(p + 1)) 7L

2. The map m, induces a purely inseparable map 7, : Xyi1¢c — Xy c0;
(a,t) — (aP,tP).

PROOF. The first assertion in 1 follows from (3.60) and (3.61).

We prove the second assertion in 1. In the following, we consider on
T \ Xpc- We have 0 < v(r) < (p"1(p+1))~! by the definitions of X, ¢
and T, .. We set

s=s0+8, Z=1,+z withuv(s),v(z)>0.

Note that sp is a unit. By (3.43), we have v(s) = 2v(r). By this, v(r) <
v(af_,) and (3.44), we have

n—1
2P — 12— 2P =0 mod (p+ Do(r) +.

By considering the Newton polygon of this polynomial, we acquire pv(z) =
(p + Dv(r). Now, we set 3 = z/(2r). Then, we have v(3) = v(r)/p and
0 <v(3) < (p*(p+1))~t. We consider a morphism between rigid analytic
curves over M,

1
(362) e Tn,C \ Xn,{ — A= AMn(p_p7L<p+1) 5 1)7 (5737 7") = 3-
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We will show that this is an isomorphism by using Lemma 3.6. We note
that

{AMn [p—pz s p_pl] }0<p1 <p2<(p™(p+1))~1, p1,02€Q

is an admissible affinoid covering of A. Now, we fix such two rational num-
bers p; < pa. We simply write A for A, [p~*2,p ']. To apply Lemma
3.6, we should check (3.38) and (3.39) via 77!(A) — A. The inverse image
771(A) is the affinoid which is defined by

(3.63) p1<v(E) < p2, o(r) =pu(3), v(s) = 2pu(3).

We will compute the reductions of A = Sp A; and 7~ 1(A) = Sp A, and
understand the induced map 7=1(A) — A. First, we recall the reduction of

(1) . .
A. For each i € {1,2}, we write p; = % with positive integers m&z), mg)
my

. . (@)
such that (mgl),mg)) = 1, and take an element ¢; € Oc, such that e =

pmgi). We have v(¢;) = p;. We simply write M for M,(c1,c2). On A, we
put
(3.64) 3=cat, d=c/c.
Then, we have 0 < v(t;) < v(d) on A, and isomorphisms
Apy = Mt t)/ (it — d), A~ SpecFy[ti, to]/(t1t2) = Af, U A, ,

where the two affine lines intersect at the origins. Note that

(365) (ALM)OO = pM(ALM)O.

Secondly, we compute the reduction of 77!(A). In the following, we
consider on 7 1(A). We set

2p
T:czlj?”l, 5=1¢C 51

(3.66)
with 0 < v(r;) < pv(d), 0<wv(s1) < 2pv(d)

and

T = M(ry,72,51, 52, 1, t2),
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B = T/(?“l’l"g — dp, 5159 — d2p, t1f2 — d)
By (3.63), we can consider natural surjections
(3.67) 0:T 25 B2 Ay

We write ¢ for the composite g2 0 p1. We consider (3.43) mod 2pv(ay,—1).
By ¢;? x (3.43), we have

= (4s5)"'r? + (H(c}"s1)/cF)  mod 2pv(an—1/c1).
Hence, by using t(s) € s?Ok|s], we obtain
(3.68) 51 = (4sh) "M (14 f(r1))  mod 2pv(an_1/c1)

with some f(r1) € parOp(r1). By this, we have

2 _
(3.69) s2= - = 4shr3 (1+ (1))t mod 2pv(ay_1/c1).

We write A, for the subring p2(B°) = o(T°) C Az m. In the sequel, under
the notation of (3.44), we show that

(3.70) F(s,r, Z)/r]"+1 € pmi,.

y (3.68), we have

2p
— s i) + () g

with some g € A,. Hence, by (3.66) and r;ry = dP, we have

p D
:pﬂ = (anae{ )" 11>+1
- (p+1)
16} p—1 p p? an-1)" p+1
e 1
( 1t ) ry (L4 §(r) +any o Ty b
with some h € A,. Note that v(ay,—1/c2) > 0. Therefore, we obtain
af | sP
(3.71) 1 e paA,

P+1
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Similarly, by (3.66) and r173 = dP, we have

o?? an—1\?
(3.72) =l Ozﬁil < n > T9 € pMAQ.
T C2

Then, (3.70) follows from (3.71) and (3.72).
By using z = 273, (3.64), (3.66), rir2 = dP, v(yn-1) = (p* — )v(an-1)
and v(c1) < v(c2) < v(an—1), we obtain

Y12 _ Yn-1-2rc1it
(2rcy)P 2P cHrp

3.73
( ) Tn—1
2p710€flcg(p*1)

Hence, by considering (2rc;) P x (3.44), and using (3.70) and (3.73), we
acquire

) 7“12)_1{1 =0 mod v(ap—1/c1).

(3.74) r(1+g1) =t modv(an_1/c1)

with some g1 € parA,. By this, we have

P
(3.75) rp= = (1 +g1) mod v(an_1/c1).

1
By (3.68), (3.69), (3.74) and (3.75), we know that Spec(4, ®o,, Far) is
isomorphic to
SpeCFM[T'l, T9, 61, 52, t1, 12]/(7‘1 — t]f, ro — tg,
(3.76) 51 — (450P) 12, 59 — 45073, tity)
= SpecFyr(ty, ta]/(t1ty) =~ AllFM U AllFM'

Since this is a reduced scheme, we conclude that p is distinguished by [BLR,

Proposition 1.1]. Namely, the residue norm ||, equals the supremum norm
| - |sup on As ps. By [BGR, Proposition 3 (i) in §6.4.3], we obtain

(3.77) AQ = (AQ,M)O D) (AZM)OO = pM(A2,M)O = pMAQ

Therefore, the reduction 7=1(A) = Spec(Aa ar)°/(A2,nm)°° = Spec(4, ®o,,
Fys) is isomorphic to the scheme (3.76). Hence, 7 induces an isomorphism

(3.78) 7w L (A) = Ay (r1,72, 81,82, 1, ) — (t, &).
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By (3.65), (3.77) and (3.78), the required assertion follows from Lemma 3.6.
The second assertion follows from (3.12) and (3.59). O

REMARK 3.9. We can show that 7 in (3.62) is an isomorphism in the
proof of Proposition 3.8.1 by applying [IT3, Lemma 2.1]. To apply this
lemma, we show that, for each circle C' C A, the inverse image 7= 1(C) is
an affinoid, and the induced morphism

7. HC) - C

is an isomorphism over some finite extension of M,, by using Lemma 3.7. In
the proof of [IT3, Lemma 2.1], we depend on theory of adic spaces. Here,
to avoid adic formalism, we have given a proof of Proposition 3.8.1 by using
Lemma 3.6.

3.4. Reduction of Z;il
In this subsection, we compute the reduction of Zﬁl C Wa(p™t?) for

n > 1. The reduction of Zfl is already computed in [CM, §7].
By Proposition 2.5.2, we have

Ziyy =~ {({Xi}0<i<n+2) el IJ ¢ | xcixch? ’

. n—1 2 2
0<i<n 2P P

(3.79)
FP (X, Xi41) =0 (0<i<n+ 1)}.

We choose a square root /s of k. We set L = Q,2(v/k). We consider the
formal Op-module & over O whose y/k-multiplication is given by

(Vi J5(X) = X¥ — VkX.

Let wa € Oc, be an element such that [x]g(w2) = 0 and [k |g (w2) # 0.
We put @y = [\/k |g(w2) and K9 = L(ws). Further, we set

(3.80) B=wi 0=wyw.

Then, we easily check that

2 2

(3.81) 3" T — Ve, 0P —0=(/r)L
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Note that we have Ko = L(wi,0). We set K3 = L(5,0) C Ki. Let
{an}z; € Oc, be elements such that o' =6 and ol = ay_y for
n > 2. We set v, = ab . Then, we have v(ay) = (2p"*1)~! and v(y,) =
(p — 1)(2p"*t1)~1. By multiplying the second equality in (3.81) by \/EH*I’Q
and taking the second power of it, we acquire

(3.82) K (1 — 20[%”*1(};271)) =a?"" mod (3/2) +.
For a while, we assume that n = 1. We set

(3.83) Xo=aolzy, Xsz=dly1 withv(z1) =0, v(y1) =0,
' Ty =1+7121.

By [T, (3.5)], we acquire
(3.84) ZP+ LL’I{+1(1 —mZ1) + x;(erl) =2y, mod (2p)”' + on Zﬁl.
In particular, we have v(Z;) > 0 on Zfl.

PROPOSITION 3.10. On Z# |, we set Xo = ahx, withv(z,) = 0. Then,

n,17
there exists a rigid analytic function Z, on Zﬁl satisfying v(Zy) > 0,

(3.85) ZP 4+ 2Pt (1 — 7, Zn) + 2P =24, mod (2p") "' + on Z;il.
Further, the functions {Zy, xp}n>1 satisfy

(3.56) ah =z, mod 2p™) "4,
’ ZP. =7, mod (2p") '+ on Z4
n+l — “n n+1,1*

PrROOF. The second assertion is proved in the following proof of the
first assertion. We prove the first assertion by induction on n. When n =1,
this follows from (3.84).

Assuming the assertion in the case n, we prove the assertion in the
case n + 1. In the following, we consider everything on Z2 111 We set
Xo = afLHan and X| = ohx, with v(z,41) = 0 and v(z,) = 0. Then,
by FpﬂO(XO,Xl) = 0 and (2.1), we acquire 2} .| = z, mod (2p") " '+. We
introduce a new parameter Z, 1 by

(3.87) Zo+ 2285 (1= yu1 Zosr) + 2,57 = 294,
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Substituting this to the congruence (3.85) obtained by the induction hypoth-
esis, and dividing it by 'ynxi(ffl), we have Z | = Z, mod (2p"™)7! +.
Substituting this to (3.87), we obtain the required congruence in the case

n + 1. Hence, we have proved the required assertion. [

COROLLARY 3.11. Letn > 1 be an integer.
1. The reduction of the affinoid Zﬁyl is defined by ZP + xPt1 4z~ (P+) = 0,

The genus of the curve is 0.
A

n,1»

2. The map m, induces a purely inseparable map Ty: Zy 1, — Z
(Z,3) > (29, 27).

Proor. We obtain the required assertions 1 and 2 by considering
(3.85) and (3.86) mod 0+ respectively. [J

REMARK 3.12. Corollary 3.11 for n = 1,2 is proved in [CM, Proposi-
tion 8.2] and [T, Proposition 3.1 and Lemma 4.1].

REMARK 3.13. As in Remark 3.5, the same things as Corollary 3.11
can be proved for an.

3.5. Singular residue classes in Zﬁ;

We show that each singular residue class in Zfl"l is a basic wide open
whose underlying affinoid reduces to the curve defined by a? —a = s2. When
n = 1, there is a gap in the proof of [T, Corollary 3.6], and the gap is fixed
in this subsection in the same way as the proof of Proposition 3.8.1.

Let Sp¢ C Z£,1 denote the singular residue class at the point (Z,z) =

A
(0,2,) on Z,, |, where x, = (1 € ug(p+1)(IF‘pz)._Let C1 € papr1)(Fp2), and
let (1 € po(p+1)(Zy2) be the element such that (1 = 1. We set

(3.88) 200 =G (1 — %5%’“) L Yoqm =20

For simplicity, we write v and zg for vy ¢, » and xq, , respectively. There
exists an element ¢’ € fi4(,—1)(Qp12) such that C’z(p_l) = g{’“ € {£1}. We
set I, = K3(ap) - Qp2 and

p(" -1

o~ 2— _——
(3.89) o= —CPan, Bu=C0B" T an 2 €OF,.
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We have v(ca,) = (2p" 1)1 and v(3,) = (4p")~!. By (3.88) and (3.89), we
have

W+ 2™ (1= m0) + 2 o = =2y, mod (2p") '+,
(3.90)
ol = yna:gﬂo/n =— Zxa(ers) mod (2p")~1 +.

By (3.85) and the first congruence in (3.90), we obtain
(Zn —70)F — 'Ynzﬂo (Z - )
(3.91) + (2Pt — x€+1)(1 — AnZn) + @ —(p+1) _ a(pﬂ)
=0 mod (2p")"' + on Zn,l

Let X,,.¢; C Sny, be the affinoid defined by v(x, —z¢) > (4p™)~'. On X, ¢,,

we have
_ —(p+1
(@0 — 2B (1 = 7, Z,) + 2y, 0T — g HD)
= —n2h(Zn — 70) (@ — 70) + 25 P (2 — 20)?

mod (2p™) "+ (cf. [T, Corollary 3.6]). Hence, by (3.91), we acquire v(Z,, —
'70) (2pn+1)71 and

sopy G0l = =0+ T @ - a0)?
=0 mod (2p") '+
on X, ¢,. On X,, ¢, we put
3.93 Ty =20+ Bns, Zn=10+aa with v(s), v(a) > 0.
n

By substituting (3.93) to (3.92) and using the second congruence in (3.90),
we acquire

(3.94) o’ (aP —a— 32) =0 mod (2p")"'+ on X,¢,-

n

PROPOSITION 3.14. Let n > 1 be an integer.

1. Over Fy, the affinoid X,, ¢, reduces to the affine curve defined by a? —a =

s. The complement Sp.¢, \ Xp¢, is an annulus with width (4p"T1)~1
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2. The map m, induces a purely inseparable map 7, : Xpp16, — Xn,gf§
(a,s) — (aP, sP).

PROOF. We obtain the first assertion in 1 by dividing (3.94) by a/,”.
We prove the second assertion in 1. In the following, we consider everything
on Sp¢, \ Xn¢,- By definition, we have 0 < v(z,, — ) < (4p™)~!. We set

Zn=9+2 n=z0+x withv(z),v(z)>0.
We have

) i\ pt1
—p+1) _ 1) _ 1 _z 1
.Tn x() $p+1 (Z ( xo) )

0 i=0
2

_ x z 3
:—W‘i‘ P13 +x g(l‘) mod 1
o o

with some §(z) € Op,[[z]]. Hence, by (3.91), we acquire

2P — Ptz 4 (1 — Y Y0)(xh + zoaP + 2Pt

(3.95) T 72 _
) + i3 + Z3S(I) =0 mod (Qpn) 1
Lo Lo

By v(yn) > v(z) > 0 and the above congruence, we have

+1 2(p+1 rm
2P — Ayl z+xp+2(x0(p )_1)+F:0 mod 2v(z) + .
0 0
Since U(;C(Q)(erl) — 1) = v(yy), the third term vanishes and we obtain

2

1
2P — bty

o735 =0 mod 2u(x) +.
Lo

By considering the Newton polygon of this polynomial, we obtain pv(z) =
2v(z) and 0 < v(z) < (2p™*1)~L. Hence, we have

2
(3.96) 2P+

>3 =0 mod 2u(z) +.
Zo



322 Takahiro TSUSHIMA

By setting r = .%'/Zp_gl and dividing (3.96) by zP~!, we have z = —(p2/$g+3)

mod v(z)+. Therefore, we have 0 < v(x) < (4p"™!)~1. We consider a
morphism between rigid analytic curves over Fj,

_ 1
7 Sne \Xne, = A=Ap,(p #71,1); (2,1) — 1

Then, in the same way as the proof of Proposition 3.8.1, by using (3.95), for
each closed annulus A C A, we can check (3.38) and (3.39) with respect to
7 1(A) — A. Hence, the required assertion follows from Lemma 3.6. We
omit the details.

The second assertion follows from (3.86) and (3.93). O

3.6. Conclusion

As a result of the computations of the reductions in the previous subsec-
tions, we state a conclusion in this section that the reductions are related
to irreducible components in the stable reduction of Xg(p™).

COROLLARY 3.15.  The reductions of the affinoids in Corollary 3.4.1,
Propositions 3.8.1 and 3.14.1 are isomorphic to Zariski open subsets of ir-
reducible components in the stable reduction of Xo(p"*?2).

Proor. All the smooth compactifications of the reductions have pos-
itive genera. Hence, the required assertion follows from [IT4, Proposition
7.11]. O

4. Inertial Action and the Middle Cohomology

In this section, we will describe the inertia action on the reductions which
are computed in the previous section, and analyze the middle cohomology of
the reductions as representations of the inertia subgroup through the type
theory in [BH]. Throughout this section, let K be a non-archimedean local
field in @p.

4.1. Preliminary

We recall the action of inertia on the reduction of a reduced affinoid
from [CM2, §6]. Let K™ be the maximal unramified extension of K in Q.
If Y is a reduced affinoid over K, there is a homomorphism

(4.1) wy : I = Auteont (Cp/K™) — Aut(Y)
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such that
(4.2) o(P) = wy (0)(P)

for each P € Y(Cp) and o € Ix. Let Y, denote the base change of Y
to Cp. Let A(Yc,) denote Oy (Yc,). Then, we have Y¢, = Sp A(Yc,).
The inertia subgroup I preserves A(Yc,)® and A(Yc,)®. Since we have

Y = Spee (A(Yc,)?/A(Yc,)™).

the existence of the homomorphism (4.1) follows.
Moreover, inertia action satisfies some compatibility with respect to mor-
phisms in the following sense.

LemMA 4.1 ([CM2, Lemma6.1]). If f: X — Y is a morphism between
reduced affinoids over K, then wy (o) o f = fowx(o) for any o € Ix.

4.2. Inertia action on the reductions in §3.4 and §3.5
We compute the inertia action on the reduction of affinoids whose re-
ductions have been computed in §3.4 and §3.5.

PROPOSITION 4.2.  Let the notation be as in (3.84). Let o € Ig, and
Pe Zfl((Cp). We write o(ay) = £,a1. Then, we have

s 21(0(P)) = o (z1(P)),
' Z\(0(P)) = €77 (Z1(P)) + 71 1 (€2 - 1).

ProOOF. For any 0 < i < 3, we have o(X;(P)) = X;(c(P)). By Xo =
ofzy and X3 = ofy; in (3.83), we acquire z1(c(P)) = &o(x1(P)) and
y1(c(P)) = &o(y1(P)). ThlS proves the first equality in (4.3). By 11 =

0471’71, we have o(vyy) = &5 191, Therefore, by using z1y1 = 1 + mZ; in

(3.83), we obtain

Z1(o(P)) = 71 (z1(o(P)yi(o(P)) = 1) = 71 (&P o (21(P))o(y1(P)) — 1)
= (€Po(m)o(Z1(P)) +€F ~ 1)
=& 1o (Zu(P)) + 7 1 (EP — D).

This implies the second equality in (4.3). O
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Let m be a positive integer prime to p. We choose a uniformizer w € K
and its m-th root @w'/™. Let tkm: Ik — pm(F) be the character defined
by o — o(w!/™)/wl/™ for o € I, which is independent of choices of w
and its m-th root. Furthermore, we have tx ,,(0) = o(z)/x for any z € C,
whose valuation is 1/m. We call tk ,, the tame character of order m. We
have % ., = tkmn for any n,m > 1. For K = Q,, we simply write t,, for
t@ﬁvm' PR

We will describe the inertia action on the reduction [ [ iagpsy (F) Xi¢-

First, we consider the case n = 1.
PROPOSITION 4.3.  Let 3 and 6 be as in (3.80). Let o € Ig,. We set
o = (k) /VE € {£1}, 0, =0(0) — 1,0.

Then, we have 0, € Fp2. Moreover, we set by, = 2Trp , /R, (§0/</2p>’
p

where (' associated to (1 is chosen as in §3.5. The element o acts on

HCleuz(pH)(F) X1 by

o XLQ — Xl,tz(o—)éﬁ (a,s) — (tg(a)(a + bU,Cl),t4(a)p+23) .

PrROOF. By applying o to the second equality in (3.81) and using ¢, €
{£1}, we have
a(0) — 0(0) = 1o(vV/r) ' = 1o(67" —0).
Hence, we obtain 052 = 6, mod 0+ by v(d) = —(2p?)~!. Therefore, we
obtain 6, € Oc, and 0, € F,2. We set i, = o(83)/8. By the first equality
in (3.81), we have L;(p271)/2 =1, mod 0+. By oy = 67! and (3.82) for
n = 1, we have (o(a1)/01)?” = 1 mod 0+ and hence (o(a)/a1)? =1

mod 0+. Note that (p? — 1)/2 is even. By (3.89) and ¢’,{1 € QU', we have

a(p)/B1 = Lf,p<p2_1)/4 mod 0+. Let P € X (Cp). Recall that & = (4
mod 0+ and o(v0) = 70 by o € Ig, and (3.88). Hence, by (3.93), (4.3) and
o € Ig,, we have

s(o(P)) = §UL’O.p(p2_1)/4a(s(P)) = LULf,p(p2_1)/4s(P) mod 0+,

(44)  a(o(P)) = &P (o(ah) /) (a(P))

+(1100) 7 (62 — 1) +y00q TH(EFT — 1),
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By a1 = 07!, we have

0, = (o)™ — 1pa7! = 0(a1) " (1~ 1) = (€ra1) " (1 — 10y,
Hence, by (2 = 1, we obtain
(4.5) & = to(1 = &pa10y).

By considering the (2p)-th power of this equality and using v(a1) = (2p?)~}
and v(6,) > 0, we obtain

£ =1—2(&,010,)P mod p~L.
Hence, by the definition of o} in (3.89), v1 = 0/1)_1 and ¢"*P~Y = 1, we have

(4.6)  (y10h) 7 (EF = 1) = 2(&85)7/¢* = 20(65/C'*F)P mod 0+

Similarly, by considering the (3p — 1)-th power of (4.5) and using (3.88) and

Zf“ = C’2(p_1), we have

(4.7) oo, (€PN = 1) = 2(PT) by = 205 (05/¢"P) mod 0 + .

[

By o € Ig,, we have (o)) /o) = o(a1)/a1 = 1, mod 0+. We have t3(0) =

— (p2—
Io and be,p(p D/ _ ty(c)PT2. Hence, by this, (4.4), (4.6) and (4.7), the
required assertion follows. [J

REMARK 4.4. Compare Proposition 4.3 with [CM2, Corollary 6.11].

COROLLARY 4.5.  The inertia subgroup Ig, acts on HCleug(p+1>(F) Xn,@
by

0 Xy = Kngaforcri (,5) = <t2<a><a+b gpno,m(a)p(”)ﬂs)
7,61

Jor o € Ig,.

Proor. The required assertion follows from Proposition 3.14.2,
Lemma 4.1 and Proposition 4.3. U
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Let Wg denote the Weil group of K. Let ag: Wf;b = K* be the Artin
reciprocity map normalized such that the geometric Frobenius is sent to a
prime element. We write ax : W — K™ for the composite Wx —» Wf(b 2K,
K*. Let ak: Ix — O} be the restriction of ax: Wx — K* to Ik.

COROLLARY 4.6. Let L = Qg(Vk). We fix the isomorphism
(Op/(K)* ~ Fre x Fpe2s a + bk +— (a,a"'b). We write a for the com-
posite

I 25 0F =5 (Op/(K)) ~ iy x Fpe 22 Fp.
For each (1 € popi1) (F), the group Ip, stabilizes X”aCl and acts on it by

0: Xpe, — Xy (a,8) — (a - 2Ter2/]Fp <a(a)/§'2pn> ,tL72<J)S)

foroeIy.

PrROOF. Let & be the formal O;-module over Oy, such that
VAlg (X) = X7 4+ V/RX.
Let w) and w) be elements satisfying
(4.8) @ #0, [Velg(@1) =0, [Vilg (=) =t

If we set 8 = w)/w], by (4.8), we obtain

2

0/17 —9 = _(\/E)fl.
Hence, by (3.80) and v(#) = v(#') = —(2p?)~!, we acquire
(4.9) =—0+c mod0+
with some ¢ € p2_1(Or). We write ar(0) = ag +bov/k+ Y 0y bio(vE) €
O7 with ag € py2_1(0L), b, bi s € pye_1(Or) U{0}. By the Lubin-Tate
theory (cf. [Iw, Chapter VI]), we have

lac]g (@) = o(@1),  lag + bov/Klg (w5) = o(w).
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This implies

(=)

’ / /
Qg = y QW9 + bawl = 0(w2)‘

@
Dividing the second equality by o (@), we obtain b,/a, = o(6')—6'. Hence,
by (4.9) and o € I, we obtain 6, = —a(c). Hence, the required assertion
follows from Corollary 4.5. [J

For a positive integer m prime to p, let X,,, be the affine smooth curve
over F which is defined by a? — a = t™. Let X,, be the smooth com-
pactification of X,,. By the Riemann-Hurwitz formula, the genus of X,,
equals %ém_l). Let F X pm(F) act on X, by (a,t) — (a + ¢, pt) for
(¢, ) € Fp X i (F). Let £ # p be a prime number. For an affine variety X
over IF and an integer i, we simply write H’(X) for the i-th étale cohomology
group with compact support Hi(X,Q,). For a finite abelian group A, let
AV denote the character group Homgz(A4,Q,). By [Ka2, Corollary 2.2.(1)],
we have an isomorphism

(4.10) HMX,,) ~ P VR Y
PER\{1}, x€pm (F)V\{1}
as [, % pi (F)-representations.

Let b: Ig,(m) — Fp be the composite of the map a: Ig,(ymy = IL — Fp2
in Corollary 4.6 and the trace map Tr]Fp2 JF,: Fpz2 — Fp. Let ¢ € Fj2 be an

element such that (P~! = —1. Let Tt': F,e — [, be the map defined by
T — Tr]Fpg/]Fp (x¢~1). Let b’ be the composite of a and Tt'. We define an

equivalence relation ~ on F \ {1} by ¢ ~ ¢! for any ¢ € F)/ \ {1}. For
cach ¢ € F) \ {1}, we define a two-dimensional irreducible representation
of Ig, by

() _ [nd'® /
(4.11) ) =mai (@ ob") @ lg,m2) -

By the Frobenius reciprocity, the isomorphism class of this representation
depends only on the equivalence class [¢] € (Fy \ {1})/ ~ and, for [¢] #
[] € (Fy \ {1}) / ~, we have 7, 2 7y as Ig,-representations.

COROLLARY 4.7. We have an isomorphism

P HEa)= B o)t
€t (F) veFY\(1)/~
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as I@P -representations.

PROOF.  For simplicity, we write ¢, for tg, (/) 2. By Corollary 4.5, the

stabilizer of X, ¢, in Ig, equals Ig (- By Corollary 4.6 and (4.10) for
m = 2, we have an isomorphism

Dyery\ 3 (Pob)@ty) if ¢1 € ppia(F),

(4.12) He(Xng) = { .
Dyery\ (1) (Yo b) @ 15) if (1 & pp41(F)

as Ig,(,/m-representations. Note that (’2@_1) = Cf“ € {£1}. For € €
pa(F), let ¢ be the automorphism of X5 defined by (a, s) — (¢2a, es). Then,
for any ¢ € F),, we have an equality ¢ o ¢ = €2 o 1 as automorphisms of
Xo. By this, Corollary 4.5 and (4.12), we obtain isomorphisms

D H XK~ @ O

C€pp1(F) ve(FY\{1})/~
b #HX= H oA
Cépp1(F) Ppe(Ey\{1})/~

as Ig,-representations. [J

In the following two paragraphs, we fix some notations and collect
some known facts on supercuspidal representations of GL2(Q,) and two-
dimensional Galois representations.

For an admissible irreducible representation m of GL2(Qp), let ¢(m) de-
note its conductor in the sense of [Tu, §3|, and let w, denote its central
character. For an integer n > 1, we set

Ko(p") = {(‘C‘ Z) € GLy(Z,) | c=0 (mod pn)}.

Let 7 be a supercuspidal representation of GL2(Q,) in the sense of [BH,
§9.1], and let 7%0®") denote the Ky(p™)-fixed part of 7. If ¢(x) = n, by
[De, Théorem 2.2.6], we have

(4.13) dim Ko™ — 1 if wy is trivial,
0 otherwise.
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Let Hg be the set consisting of all isomorphism classes of supercusidal repre-
sentations of GLy(Q,) with conductor n and with trivial central character.

Let E be any quadratic extension of Q,, and let (E*)Y be the set of
continuous characters E* — Q,. Let (E*)VY c (E*)" denote the subset
consisting of all characters which do not factor through the Norm map
Ng/q,: E* — Q. We identify a character x € (E*)" with the character of
W via the class field theory. For a character x € (E*)V, let a(x) denote the
exponent of the Artin conductor of x. We simply write Ind g, x for the two-

dimensional representation Indggp x. For x € (E*)VY, the representation
Indg/q, x is irreducible (cf. [BH, §34.1]). Let dg/q, be the exponent of the
relative discriminant of the extension, and let fg,q, be the residue class
degree of the extension. For an irreducible smooth representation o of W,
of degree 2, let a(o) denote its Artin conductor exponent. We write det o
for the determinant character of o. By [Se, Corollary in VI §2], we have

a(IndE/QpX) =dg/Q, + fE/@pa(X)~
This formula induces

2a(x) if F is unramifed,

4.14 a(Ind =
( ) (Indg,q, x) {1 +a(y) if E is totally ramified.

Let Gal(E/Q,) denote the Galois group of the extension.

Let LL and LL; denote the local Langlands correspondence and the /-
adic local Langlands correspondence for GLy(Q,) in the sense of [BH, §34
and §35] respectively. We have

(4.15) LL(m) g, = LLe()

for any supercuspidal representation 7w by [BH, §35]. Note that, for a su-
percuspidal representation 7, we have

(4.16) c(m) = a(LL(m))
by [Tu, §3] and

(4.17) wr = det LL(7)
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as characters of Q) by [BH, Proposition in §33.4]. There are just two non-
isomorphic totally ramified extensions of Q,, for which we write L; and Ls.
We set

X = {Xi € (L)Y | alxi) = 2, xilg; = 1} /Gal(Li/Q).

For any [x;] € &j, the pair (L;/Qp, ;) is a minimal admissible pair in
the sense of [BH, §18.2]. We check this. First, note that x; does not
factor through Nrz, ,q,. Note that the level of y; in the sense of [BH,
Definition in §1.8] equals one. We have Nrp, ,q, (U} ) = Nry, /Qp(UL ) =
UQ Hence, if XZ\Ul factors through the Norm map Nrp, /q,, the condition

X1|U2 = 1 implies XZ]Ul = 1. However, this is inconsistent with a(x;) = 2.
Therefore X|U1 does not factor through Nry, /q,. This implies that the pair

is admissible and minimal.
By [BH, Theorem in §34.1 and Tame Langlands correspondence (1) in
p. 219], we have a bijection

2
(4.18) C: | | =19 [l - LLT (Indg, g, (A )

i=1
where A,, is defined in [BH, §34.4]. Note that A,, is a tamely ramified
character of L} of order 4 by [BH, (34.4.2) and Lemma (1) in §34.4]. We have
det (Indy, /Qp (A;}Xi)) = 1 by the definition of A,, and [BH, Proposition
in §29.2]. Hence, the well-definedness of the map &£ follows from (4.14),
(4.16) and (4.17).

We explain the surjectivity of (4.18) in more detail. Let m € II3. By
[BH, Tame Langlands correspondence (1) in p. 219], there exists an irre-
ducible two-dimensional W, -representation 7 such that LL(7) ~ 7. By
[BH, Theorem in §34.2], there exists an admissible pair (E/Q,,§) such that
Indg@,§ ~ 7. Since a(r) = 3 by (4.16), the field £ must be totally ram-
ified over Q, by (4.14), and a({) equals two. Hence, we may assume that
E ~ L;. Let kg, be the non-trivial character of Q) factoring through
Qp/Nrgq,(E*). By (4.17) and [BH, Proposition in §29.2], we acquire

(4.19) 1 = wy = det 7 = det(Indg/,&) = rr/q, @ (Elqy)-

We set x = A¢&. Then, by [BH, (34.4.2)] and (4.19), we have X|Q; = 1.
Since A¢ is tamely ramified, we have a(x) = a(§) = 2. By [BH, Proposition-
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Definition (2) in §34.4], we acquire A, = A¢. As a result, we obtain [x] € A
and £(x) =

.

LEMMA 4.8. Let L be a totally ramified quadratic extension of Q. Let
7 = Indy,q,X be an irreducible representation of degree two with some char-

acter x: L* — @Z Then, we have
I
T’IQP = Ind[(?p (X’IL)
as I@p -representations.

PRrROOF. Let o € Gal(L/Q,) be the non-trivial element. Then, we have
(4.20) Tlw, = x @ X’

as Wi -representations. Let (eq,e2) be the basis of 7|y, on which W, acts
through the characters y and x? respectively. By the irreducibility of T,
the group Wg, permutes the subspaces Wy = Quer and Wo = Qyesy in 7.
Since L is totally ramified over Q,, we have the canonical isomorphisms
Ig, /I, — Wgq,/Wr ~ {£1}. Hence, the action of the inertia subgroup Ig,
also permutes W; and Wa. By (4.20), we have 7|7, ~ (x|1,) ® (x%|1,) as

Ir-representations. Therefore, the required assertion follows. [

We choose a uniformizer wy, of L; such that w%i = pu; with u; € Z;
and fix the isomorphism U} /U ~Fy; 1+ wp,x — 2. For [x] € Xz, by
xlg; =1, we have x(wr,) € {£1}. By a(x) = 2, we have X\U% = 1. Then,

we have a bijection
(121) X () x E\ 1)) /25 b= (@)X, oz )

where =~ is the equivalence relation on {41} x (F, \ {1}) which is defined
by (1,9) ~ (1,97 1) for any (z,4) € {£1} x (Fy \ {1}). By (4.18) and (4.21),
we have |13 = 2(p — 1), which is stated also in [Tu, Remark after Theorem
3.9].

Let D denote the quaternion division algebra over Q,. Let Op be the
maximal order of D, and pp the unique maximal ideal of Op. We set
Up = 1+ p} for any integer n > 1. Let LJ denote the local Jacquet-
Langlands correspondence for GL2(Q),) (cf. [BH, §56]). For = € II,,, we
set

d(r) = (dim 70" dim LJ(Tr)) /2 € L.
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COROLLARY 4.9. 1. We have

d(r) = (p+1)/2 ifmell,
o if e I3 \ 19,

2. Let ¢ € pap1)(Qpe) \ tp-1(Qp).  We take (Qp(v/r),Qp(CV/R)) and
(Vk,CV/K) as (L1, La) and their uniformizers (wr,,,wr,) respectively. We
set HgLi = L&) C TY. Let %;: H%Li — (Fy \ {1})/ ~ be the com-
posite of the isomorphism &£: Hg’Li — X, the map (4.21) and the map
({£1} < Ey\{1})) / == Fy\ {1}/ ~ [(.9)] = [¥]. Then, we have

isomorphisms
Tepy (m) = LL[(T(NIQP forme Hg,le Tépg(w) o~ LL[(?T)|[QP for me Hg,L2

as I@p -representations.
3. We have an isomorphism

@ H(}(YMI) ~ @ (LLZ(W)‘[QP)EBd(n)

C1€pap41) (F) nells

as 1q,-representations.

PROOF. For 7 € 11, the admissible D*-representation LJ(7) has the
form I]fldng}3 x with some embedding L} — D* and some character x by
[BH, §56]. Hence, we have dimLJ(r) = [D* : LiU}] = [Fp2 : Fp] = p+ 1
for any 7 € II3 (cf. [Tu, Theorem 3.6]). The first assertion follows from this
and (4.13).

We prove the second assertion. Let [y;] € X. Then, A,,
ramified character of order two by [BH, Proposition-Definition (1) in §34.4].
Note that the canonical map Z;/ U@D — 027/ U iz gives an isomorphism.
Hence, we have

o is a tamely
P

(4.22) AXi|ILi =tr;2

For m; € Hg L let x; be a character of L} such that [y;] corresponds to m;
via (4.18). Let ¢; € Fy \ {1} be the character induced by Xi’Ui,/Ug (cf.

(4.21)).
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We consider the second isomorphism. Recall that the reciprocity map is
compatible with the Norm map. We fix the canonical isomorphism i: I}, —
I, — 1 L,- We have a commutative diagram

I, —=> I, —"—> (Op/())* —>Fp

N

I, —2= (0, /(C2k))* —= Fp,

where the top rightmost horizontal map is given by a + by/k b/a, the
bottom rightmost horizontal map is given by a + b¢ V/k — b/a and the right

vertical map Tr' is given by x — Trp , /F, (z/ Z) Under the identification
P
Ir, ~ Ip,, this diagram implies x2|r,, = ¥»2 o b’. Hence, by (4.15), Lemma

4.8 and (4.22), we have isomorphisms

LL¢(m2) 1, = LL(W2)|IQP ~ (Indp, g, (A, x2)) lrg,

I
~ Ind,%((% ob') @tr,2) = T4y

m2)

as Iqg,-representations. Therefore, the second isomorphism is proved. The
first one is proved more easily than the second one.
The third assertion follows from the assertions 1, 2 and Corollary 4.7. [J

REMARK 4.10. We consider an equivalence relation on Hg as follows:
T~ = LL@(?T)‘IQP ~ LLg(W')!IQp as Ig,-representations.
Each equivalence class consists of two isomorphism classes of representa-
tions. The wide open rigid analytic curve Wy (p™) admits a left action of

O7%, through the Serre-Tate theorem as in [CM, §4B]. By using [CM, Re-
mark 4.7], we know that the affinoid HC1 Epnprn) () X,¢; is stable under the

o)

action of OF,. It is expected that we have an isomorphism

D HEa)=~ P (LLg(ﬂ)]IQpQQLJ(W)

C1€pa(ps1y (F) mell/~

as Ig, x Op-representations.
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REMARK 4.11. Assume that j(A) equals 0 or 1728. We set ¢(A) =
(p+1)/(2i(A)) € Z. The reduction of ZfJ is defined by

7P 4 %) 4 =2 = g,

Hence, the set of all the singular residue classes in Z:} a1 corresponds to
fac(ay(F). We set K(A) = p1i(a)(p—1)(Zyp2). We regard thls as a subgroup of
D*, which is not normal. For 7 € II,,, we set

d(A, ) = (dim 75°®") dim LI (7)KW) /2 € Z.

Note that we have dim LJ(7)5(4) = (p +1)/i(A) for any 7 € TI3. Then we
have isomorphisms

@ H! (Xney) =~ @ (Tw @ Tw)EBZC(A)

CL€pac(a)(F) pe@\{1}H)/~

Dd(A,m)

mwells

as [ Qp—representations.

4.3. Inertia action on ?:71
Let the notation be as in §3.1. We determine the inertia action on
GA
n,l*

LEMMA 4.12.  The inertia subgroup IQ, acts on the component ?271 by

GA _1)n—
o: Y, — Yn 5 (zy) — <tp+1(a)( 1 lz,tp+1(o)y> for o € Ig,.

ProOOF. Leto € Ig,. Forany P € Y;f:l((Cp) and 0 <7 < n+1, we have
Xi(o(P)) = o(X;(P)). By Xo = oz and Xp4q = o 'y in (3.1), we have
z(0(P)) = (o(a)/a)o(z(P)) and y(o(P)) = ggga)/a)pn_la(y(P))- Hence,
the required assertion follows from (o(a)/a)’ = tpr1(o) and tpiq(0)P =
tpr1(o) 1 O
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When n = 1, Lemma 4.12 is checked in [E, §2.3.3]. For a proper variety
X over F an an integer i, we simply write H*(X) for the i-th étale cohomol-
ogy group H'(X,Q,). Let Y be the smooth projective curve over F with
affine model zy(z—y)P~! = 1. Let pp+1(F) act on Y by (z,y) — (Cz,Cy) for
¢ € pps1(F). Let Ig, act on Y by the composite of the ju,41(IF)-action and
the tame character tpi1: Ig, — pp+1(F). Let ppi1 (F)V0 C ppy1(F)Y be the
subset which consists of all characters not factoring through the ((p + 1)/2)-
th power map ppi1(F) — {£1}. Note that |p,+1(F)V°| = p — 1. By [E,
Proposition 3.2.1] or [IT, §3], we have an isomorphism

(4.23) HY)~ P xotpn
xEpp+1(F)V:0

as I @p—representations.

GA . . GA
COROLLARY 4.13. Let Yn:lc be the smooth compactification of Y, ;.
We have an isomorphism
1AcC
H(Y, )~ EB X © lpt1
X€Epp+1(F)V-0

as I@p -representations.

PROOF. We consider the purely inseparable map ?21,1 — Y defined by

(z,y) — (zpn_l,y). By Lemma 4.12, this map is Ig,-equivariant. Hence,
the required assertion follows from (4.23). O

We set
x={xe (@) a0 =1 xigg =1} /Gal@,2/0,)

Let [x] € X. Then, the restriction X’Zz*ﬂ does not factor through Ner2 /Qy

if it factors through the Norm map, so does x itself since x(p) = 1 and
a(x) = 1. Hence, (Q,2/Q,, x) is admissible and minimal by definition.
By [BH, §34.1 and §34.2], we have a bijection

(4.24) X 519 [y — LL7! (Ind@?2 0, (AXX)) ,
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where every A, is the unramified character of Q;Q of order 2 (cf. [BH,

Definition in §34.4]). We fix the isomorphism Lo/ U@pz ~ 2y @ — . For

any [x] € X, the restriction X|Z*2/U@p induces the character Y € pip4+1(F)V"°
P 2

by X|Q; = 1 and the fact that X|Z;2 does not factor through NrQ)2 /Q,-

We define an equivalence relation ~ on MPH(F)V’O by x ~ x~! for any
X € tp+1(F)V:9. We have a bijection

(4.25) X = pp (F)7°/ ~i ] = [
By (4.24) and (4.25), we have |[II9| = (p — 1)/2.

COROLLARY 4.14. 1. We have

1 ifrell,
d(m) = . 2
0 ifmellp\IL.

2. We have an isomorphism

— d()
HD = @ (Lam),, )
wells

as 1q,-representations.

PrOOF. We have dimLJ(7) = [D* : Q,Op] = 2 for any 7 € 19 by
the construction of LJ given in [BH, §56]. Hence, the first assertion follows
from (4.13).

We prove the second assertion. We consider the composite f: I1§ —
pip1(F)V:0/ ~ of the maps (4.24) and (4.25). Let m € II3 and [xo] = f(n).
Then, by (4.15), (4.24) and Ig, — Ig,, we have

LLZ(W)lep ~ (xo0© tp-i—l) 2] (Xal o tp-i—l)

as Iqg,-representations. Hence, the required assertion follows from Corollary
4.13 and the first assertion. [J

REMARK 4.15. For w € Hg, the irreducible smooth D*-representation
LJ(m) has the form Indé; 1 X With some character x by [BH, §56.4]. Note
p2 D
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that Q7,U b = Q05 and LJ() is two-dimensional. Let ﬁ](w) denote the
character y

or: For d € OF), let d denote its image by the reduction map
oy — F;‘)g. There exists a unique character xo € ppt1(F)""? such that
f:](ﬂ) equals the character 0% — @, defined by d — xo(d?~1) for d € OF,.
It is expected that O7, acts on ?{‘71 by (z,y) — (dP~lz, dP~1y) for d € O%.
If this is true, by (4.23), we have an isomorphism

H\(Y,5) ~ @ (LLe(m)],, @ L)

ﬂEHg

as Ig, x Op-representations.

REMARK 4.16. Assume that j(A) equals 0 or 1728. The reduction ?11471
is defined by

r? =452 41

with genus ¢(A) — 1. This curve admits an action of ig.4)(F) by (r,s) —
(r,¢s) for ¢ € poea)(F). Let ,LLQC(A)(IF)V’O C ,uQC(A)(]F)V be the subset of
the characters not factoring through the c(A)-th power map figq4)(F) —
{£1}. Let H’2470 be the subset of II9 consisting of the representations which
correspond to characters whose restrictions to K (A) are trivial under (4.24).

Note that ‘H’;’O =c(A) — 1. For € T1J, we have

dimLJ(r)  if 7 e 157,

0 otherwise.

&mLumKM%—{

Hence, by (4.23), we obtain isomorphisms

It (?;3,’;) ~ @ (x o tzc(A)) ~ @ (LLK(W)‘[QP>®d(

XEpac(a)(E)V:0 melly

A,m)

as I @p—representations.

4.4. Inertia action on the reductions in §3.2 and §3.3
We compute the inertia action on the reduction of Y,fb"Q for n > 2.
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LEMMA 4.17.  Let the notation be as in (3.4) and (3.56). Let o € Iq,.
We write o(ay) = £,a1. Then, we have

By (1 -2t = 6,/¢ mod 0+,

(4.26)
(Boy1) HERPTY —1) = (6,/¢o)P mod 0+ .

In particular, we have v(€2TH —1) > p=2.

PROOF. Asin (3.4), we have
(4.27) 7 =k, ar= (80", m=ab

By this, we have o(8)/8 € py2_1(Qp2). By using this, (3.56) and (4.27), we
have

RN T (a(ﬁfh))f’“
By (1 —¢&07) COOéZfH <1 30,
_ ! 1_<U(91)>”2_1
C()Ozle—l 01
1 0, \"" !
. <1_ (1+0) )

= Ve O b b a0+
= <0a€+191 <06p2719§)2 <0f{,9{)2 = C() ’

where we use v(A; 1) = p~2 and v(ay) = (p*(p+ 1))~ at the fourth congru-

ence, and use (3.56) at the last congruence. Similarly, by using (4.27) and
p—1 _

0 =—1 mod 0+, we have
2
. 1 o (601) p(p*-1)
Legp(p+1l) _ 1) = -1
(B2m1) ™ (€8 ) Coazlv(pﬂ) (( th >
o b P(r*-1) .
T
= _ = — = | — mod 0+ .
Go"Hey e\
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Hence, the required assertion follows. [

PROPOSITION 4.18.  Let the notation be as in (3.8). Let o € Ig, and
P e YQQ(CP). Then, we have

2(o(P)) = &o(x(P)), y(o(P)) = &a(y(P)),

Z(0(P) = @ Vo (2(P) + 47" (70 1) mod p~? +.

Proor. Note that
(4.28) Xi(o(P)) =o(X;(P)) for i =0,4.

We set o = of. By Xo = azx and Xy = ay in (3.7), we acquire z(o(P)) =
Lo (z(P)) and y(o(P)) = o (y(P)). We consider (3.8). We have

(4.29) (zy(z — )P ) (o (P)) = &P o ((zy(z — y)P ") (P)).
We set 5(z,y) = aryge(z — y) L. Since we have
s(z,y) = XoXa(9(Xa) — 9(Xo))(Xo — Xa) 7,

we acquire §(z(o(P)),y(o(P ))) o(s(z(P), y(P ))) by (4.28) and g(X) €
Zp|X]. Hence, by (3.8), (4.29) and o(v1) = §p Ly1, we have

Z(0(P)) =77 ((wy(e = )" ) (o(P) = 1 = s(2(a(P)), y(o(P))))
=27 (&0 (1431 Z(P) + s(2(P), y(P))
—1-o(s(2(P),y(P))))
= €PN (Z(P)) + 7 (P~ 1)(1+ a(s(w(P), y(P)))).

Hence, the required assertion follows from Lemma 4.17 and v(s(z,y)) > 0. O

We describe the inertia action on [].cr, X, ¢. First, we consider the
casen =2. Byxz = (r+1)/(2s) and y = (r — 1)/(2s) in (3.41), we have
r=(x+y)/(x—y)and s =1/(x —y). Let ( € 7o and P € X5 (Cp). By
Proposition 4.18, we obtain

(4.30) r(o(P)) = o(r(P)), s(a(P)) =& o(s(P)).



340 Takahiro TSUSHIMA

PrOPOSITION 4.19. Let o € Ig,. We fix the isomorphism
(Zy2 [ (k%)) ~ B2 x Fp2; a+ bk — (@,a"'b). We write a for the com-
posite

Iy, < Iy, 2 2 P (2 (k7)) 2 Fl x Fpp 225 F o
Let (p be as in §3.3. We set b(o) = Trg ,/F, (a(0)/Co). Then, the element

o acts on [[cr, Xoc by

o: Xz’g — XQ,tpH(U)C; (a,t) — (a — b(a),tp+1(0)_1t) )

PrROOF. Let () be as in §3.3. By ¢j € Q" and ¢ € Ig,, we have
o(¢h) = ¢} As in (3.56), we have 8y = (ot and Yoo =1 + a1y, Then,
we have o(v),) = 1 + 55“(76’2 —1). By (3.59) for n = 2 and (4.30), we
acquire

t(o(P)) = &o(t(P)),

a(o(P)) = U(ﬂiZ)o(a(P)) + ) 585 (€D — 1)
+ETIErN (1= ) o+ (Bn) T Y — 1)
=o(a(P)) + 52—1(1 _ 55“)

+ (Boy1) " H(E2PHY — 1) mod 0+,

where we use Lemma 4.17 at the last congruence. Let 6; be as in (3.4).
We set 0, = 0(61) — 61. By (3.4), we have 0(91)p2 —o(bh) = 0{’2 —6;. By
v(01) = v(0)) = —p~2, we have 6, € Oc, and hence §, € F,2. By the
property of tame character and & € p2_1(IF,2), we have

2

(4.32) tyr1(0) = o) ol = €8" = &,

Let %' be the formal Z,2-module over Z,2 such that [k]¢ (X) = X 4RX.
We take non-zero elements w} and ) such that

(4.33) [kl (1) =0, [kl () = .
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We put 0] = w)/w]. By (4.33), we have
2 2
wi? —— 0" — 0] = —r"L.

Hence, by v(0;) = —p~2 and (3.4), we obtain §; = —60] + ¢ mod 0+ with
some ¢ € p2_1(Qp2). We set 6, = o(07) — 0. Then, by o € Ig,, we have

(4.34) 0, =0

g

mod 0+ .

We set aQ, (0) = ag + bok + Y 2 biok' € Z;Z with a, € pp2_1(Q,2) and
bos bio € pp2_1(Qp2) U{0}. By the Lubin-Tate theory, we have

laclg () = o(@1), [ao + botly () = o(w)).
This implies
ay = o(w)) /@), a,wh+ byw| = w].
Dividing the second equality by o(w]), we obtain b,/a, = 0... Hence, by

(4.34), we obtain 0, = —a(c). Hence, the required assertion follows from
(4.26), (4.31) and (4.32). O

COROLLARY 4.20. The inertia subgroup Ig, acts on ngTn Xn’g by

J— _1\n—1
0: Xn = X"vtp-s-l(o)(*l)nc; (a,t) — (a + b(U)vtp+1(U)( b t)

for o € Ig,.

PRrROOF. The required assertion follows from Proposition 3.8.2, Lemma
4.1 and Proposition 4.19. [J

COROLLARY 4.21. We have an isomorphism

P HXng) = D ((x 0 tpr1) ® (1 0 )™

CeT, peFY\{1}, x€pp+1(F)V

as IQp—representations.
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PROOF. We note that the induced action of Ig, on 7, factors through
the abelian quotient #,,1: Ig, — pp+1(F) by Corollary 4.20. By (4.10) and
Corollary 4.20, we obtain

DX~ D D
CeTy, X' €pp+1(F)V YeFy\{1}, x€pp+1(F)V\{1}
X (X' otps1) ® (x 0 tpi1) ® (Yo b))
~ oy ((x © tp1) ® (1 0 b)) P

YeFY\{1}, x€ppt1(F)Y
as Ig,-representations. [

We set

x={xe <@1§2>V70 800 =2, Xlgs =1, Xl ,

not factoring through Nrg ,/q, } / Gal(Q,2/Qy).

For [x] € X, the pair (Q,2/Qp, x) is minimal admissible pair by definition.
By [BH, §34.1 and §34.2], we have a bijection

(4.35) x5 [ - LU (Tndg,, g, ()

where A, is the unramified character of Q7, of order 2 (cf. [BH, §34.4]). No
element of I19 does not come from an admissible pair (E/Q,, x) with E/Q,
totally ramified. Assume that such pair exists. Since the central character
of 7 is trivial, we obtain X‘U@p = 1 by [BH, Proposition in §29.4]. By (4.14),
we have a(x) = 3. By the canonical isomorphism U@p / Uép = U% /U3, we
must have X\U% = 1. But, by a(x) = 3, this is a contradiction.

We fix the isomorphism ZZQ/U(EPPQ = IF';Q xF2; a+bp— (a, a~'b). For

any [x] € X, the restriction x 7, /U(QPP induces the character of IE‘;Q X Fpe,
j2 2
for which we write x. By x|g; = 1 and the condition that x|y, does not
2

factor through the Norm map Ner2 /Q, " (@;‘)2 — @, the character x induces
the element of the following set:

V={(") € pp+1(F)" x F;z | 1 dose not factor through
Ter2/Fp: IFPQ - FP’ w’Fp = 1}/ =,
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where ~ is the equivalence relation defined by (y/, 1) ~ (X', vo(z — zP)).
Hence, we obtain the map ¥: X — Y. This is bijective. Hence, we have
) = (p2 — 1)/2.

COROLLARY 4.22. 1. We have

f e I1Y,
am =" ITEE
0 ifrelly\ 9.

2. We have an isomorphism

P (X, )~ D (LL@(W)‘IQP)@CZ(W)

CETn melly

as I@P -representations.

PrOOF. Let m € I19. By [BH, §56], we have an isomorphism LJ(7) ~
Ind(g;;Ul p as D*-representations, where p is some irreducible representation
D D

of Qs U} of dimension p. Hence, we have dim LJ(r) = 2p for any 7 € IIY.
Hence, the first assertion follows from (4.13).

We prove the second assertion. We set [(x,9)] = £(m). Then, by (4.15),
(4.35) and I@p2 — Ig,, we have isomorphisms

LLg(m)| g, = LL(7)|1g, ~ ((x © tp+1)

(4.36) 3
® (Yoa)) & (X~ otp1) ® (Yo (z— ar)oa))

as Ig,-representations. We set tr': F2 — Fp; x +— TI'[FPQ /Fp(:z /(o). Since

_6’71 = —1, we have tr'(z) = 0 for any = € FF,,. Since p is odd, we have

{otr' €F [y €Fy \{1}}
(4.37) ={ye F;,/z | 1 does not factor through
TerQ/Fp: Fpe — Fp, 1,Z)|[E‘p =1}

Note that

(4.38) b= tr' oa.
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Hence, the required assertion follows from the first assertion, Corollary 4.21,
(4.36), (4.37), (4.38) and the bijection X ~ Y. [

REMARK 4.23. For 7 € IIY, let If:j(w) denote the unique irreducible
representation of OF, of dimension p which satisfies an isomorphism
LJ(m)®2 ~ LJ(n) o

D

is stable under the action of 0%, and we have an isomorphism

as Op-representations. It is expected that 11 et Xn,(

(4.39) D X, ~ D (LLK(W)‘IQP ® f:](w))

CETn WEH%

as Ig, x Op-representations.

REMARK 4.24. We consider the equalities which are obtained by taking
the dimensions of the both sides of the isomorphisms in Corollaries 4.9, 4.14
and 4.22. A reason why these equalities hold can be explained by using [IT2,
Proposition 4.3]. However, we do not explain this in detail, because we have
to recall the whole shape of the stable reduction or the stable covering of
the wide open rigid curve W4 (p") for 2 < n < 4 and need some facts in
representation theory.

REMARK 4.25. Assume that j(A) € {0,1728}. Let 7' = {¢ € F2 |

4¢%A) 11 = 0}. Let H4A’0 be the subset of 11 consisting of representations
which correspond to characters whose restrictions to K (A) are trivial under
(4.35). For 7 € 119, we have

dimLJ(r)  if 7 e 57,

0 otherwise.

dim LJ ()X = {

Hence, we acquire isomorphisms

P H:Xno) =~ D ((x © tao(a)) ® (o b))

CeTA YEFY\{1}, xE€paca)()V

~ @ <LLg(7T) |IQp ) A

melly

as [ Qp—representations.
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REMARK 4.26. For a prime 5 < p < 13, it is expected that the same
isomorphisms as the ones in Remarks 4.11, 4.16 and 4.25 hold. Actually,
for p = 5,7, we can check them by using computations given in [T2]. For
p = 3, the situation is considerably different, because of |Aut(A4)| = 12
for the supersingular elliptic curve in characteristic 3. See [Mc, Theorem
3.11 and §4.1] on the stable reduction of X((3%) and the inertia action on
it. Since Galois representations in the case p = 2 become complicated, the
stable reduction of Xy(p™) is much more difficult to understand.
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