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On a Tower of Good Affinoids in X0(p
n) and

the Inertia Action on the Reduction

By Takahiro Tsushima

Abstract. Coleman and McMurdy calculate the stable reduction
of X0(p

3) for any prime number p ≥ 13, on the basis of rigid geometry
in [CM]. Further, in [CM2], they compute also the inertia action on
the stable reduction of X0(p

3). In [T], we have determined the stable
model of X0(p

4) for any prime p ≥ 13. In this paper, we calculate
the reductions of some “good” affinoids in X0(p

n) and determine the
inertia action on them. As a result, we study the middle cohomology
of the reductions in terms of the type theory for GL2(Qp) given in
[BH].

1. Introduction

Let K be a non-archimedean local field, and let h be a non-negative

integer. As in [Ca], the non-abelian Lubin-Tate theory asserts that the lo-

cal Langlands correspondence and the local Jacquet-Langlands correspon-

dence for GLh(K) are realized in the cohomology of the Lubin-Tate space.

Harris-Taylor and Boyer prove this by using global automorphic represen-

tations in [HT] and [Bo] in the cases where K has mixed and equal char-

acteristics respectively. The correspondence given by them seems not so

explicit. In a series of papers [BH1], [BH2] and [BH3], without geome-

try, Bushnell-Henniart study supercuspidal representations of GLh(K) in a

purely representation-theoretic manner on the basis of [BK], and give an ex-

plicit description of the local Langlands correspondence for essentially tame

representations. See [He, §6] for more details on explicit local Langlands

correspondence. To know a purely local and geometric proof of non-abelian

Lubin-Tate theory, it needs to understand purely local geometric properties

of Lubin-Tate spaces. In [We], when the residual characteristic of K is odd

and h = 2, Weinstein classifies types of irreducible components in the stable
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reduction of the Lubin-Tate curve with full-level structure up to purely in-

separable map. To prove this, he regards the projective limit of Lubin-Tate

spaces as a perfectoid space, which is called the Lubin-Tate perfectoid space.

Then, he constructs a family of affinoids in the Lubin-Tate perfectoid curve

and determines the reductions of them. As a result, with the help of the

non-abelian Lubin-Tate theory, the CM theory and the type theory due to

Bushnell and Henniart in [BH], he deduces that any irreducible component

in the stable reduction of the Lubin-Tate curve with finite full-level structure

admits a purely inseparable map from one of the smooth compactifications

of the reductions of the affinoids in the Lubin-Tate perfectoid curves. In

this paper, without ambiguity of the purely inseparability and without de-

pending on the above theories, we explicitly determine the reductions of

some affinoids in the modular curve X0(p
n) for any prime p ≥ 13. Since

some of the smooth compactifications of the reductions have positive genera,

we conclude that the reductions actually appear as Zariski open subsets of

irreducible components in the stable reduction of X0(p
n) by [IT4, Proposi-

tion 7.11] (cf. Corollary 3.15). Such verifications are useful for a complete

understanding of a concrete configuration of the stable reduction of X0(p
n)

for each n. Note that the Lubin-Tate curve in the case where K = Qp

and h = 2 is isomorphic to the generic fiber of the formal completion of

the Katz-Mazur model of a modular curve at a supersingular point with j-

invariant �= 0, 1728. See [KM] for the Katz-Mazur model. Except for some

examples, a concrete understanding of configurations of stable reductions of

Lubin-Tate curves or of modular curves with fixed finite level structures is

not known. Our ultimate aim is to understand local geometry of Lubin-Tate

space, to give a geometric realization of Galois representations and the type

theory and, as a result, an explicit and geometric understanding of the lo-

cal Langlands correspondence in a purely local manner (cf. [Ha, Questions

8,9 in §3] ). We believe that the study in this direction will give a new

insight to explicit local Langlands correspondence. Actually, in the higher

dimensional case, we will give a geometric realization for epipelagic repre-

sentations, for which the explicit local Langlands correspondence is studied

in [BH4] up to unramified twists, and remove the ambiguity of unramified

twists in [IT5].

Let p be a prime number. For a non-negative integer n, let X0(p
n) be

the modular curve over Q, which is the moduli space whose valued point
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corresponds to an isomorphism class of a pair (E,C), where E is a general-

ized elliptic curve and C is its cyclic subgroup of order pn. We consider the

stable reduction of X0(p
n) at p. Assume that p ≥ 13. In [CM], Coleman

and McMurdy calculate the stable reduction of X0(p
3) on the basis of rigid

geometry. As a result, they find that several copies of the Artin-Schreier

curve with affine model ap − a = s2 appear as irreducible components in

the stable reduction of X0(p
3). Moreover, they determine the inertia action

on the stable reduction of X0(p
3) in [CM2]. In [T], we computed the stable

reduction of X0(p
4) using techniques in [CM]. As a result, in [T], we proved

that some copies of the Hermitian curve appear as irreducible components

in the stable reduction of X0(p
4). The main part in loc. cit. is in prov-

ing that singular residue classes in some affinoid of X0(p
4) are basic wide

open spaces whose underlying affinoids reduce to the affine curves defined

by ap − a = tp+1. In this paper, we will partially generalize the results to

general level in some sense. In the following, we explain the contents of the

generalization.

By p ≥ 13 and Howe’s result in [CM, Theorem B.1], there exists a

supersingular elliptic curve over Fp such that its j-invariant is neither 0

nor 1728. We fix such an elliptic curve A. We regard X0(p
n) as the rigid

analytic curve over Qp and focus on the tubular neighborhood in X0(p
n) of

A, which we denote by WA(pn). We define several affinoids in WA(pn). The

space WA(p) is known to be isomorphic to an annulus A(p−1, 1). We fix

an isomorphism WA(p) � A(p−1, 1) appropriately. We consider two special

circles TSA = C[p
− p

p+1 ] ⊂ WA(p) and SDA = C[p−1/2] ⊂ WA(p). Let

πf , πν : X0(p
n)→ X0(p

n−1) be natural level-lowering finite morphisms (cf.

Definition 2.3). For a, b ∈ Z≥0, we put πa,b = πaν ◦ πbf . Let n ≥ 2 be an

integer. Then we define

YA
a,b = π−1

a,b−1(TSA) ⊂WA(pn) with a+ b = n ≥ 2, a, b ≥ 1,

ZAc,d = π−1
c,d (SDA) ⊂WA(pn) with c+ d = n− 1 ≥ 2, c, d ≥ 1.

In this paper, we will compute the reductions of YA
n,1, ZAn,1 for n ≥ 1 and

YA
n,2 for n ≥ 2 and analyze their singular residue classes. To calculate the

reductions of them, we use some machinery constructed in [T, Corollary

2.19]. Further, we explicitly describe the inertial action on the reductions

and study the middle cohomology of the reductions.
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For an irreducible affine curve over an algebraic closure of a finite field, its

genus means the genus of the smooth compactification of its normalization.

Let Cp be the completion of a fixed algebraic closure Qp of Qp. Let K

be a complete subfield of Cp, and let FK be the residue field of K. For

an affinoid space W over K, we write W for its canonical reduction. Let

Red: W(Cp) → W(Fp) be the reduction map. For a point P ∈ W(FK),

let RW(P ) be the rigid analytic space over K such that RW(P )(Cp) =

Red−1(P ), which we call the residue class in W at P . In particular, if P

is a singular point on W, we call RW(P ) the singular residue class at P .

For any n ≥ 1, the reduction Y
A
n,1 is defined by st(s− t)p−1 = 1 with genus

(p−1)/2. This type of curve does not fit into the classification of Weinstein,

because we consider stable reduction of X0(p
n). This curve is a quotient of

the Deligne-Lusztig curve for SL2(Fp), which is defined by xqy − xyq = 1.

The curve defined by xqy − xyq = 1 is called also the Drinfeld curve. For

any n ≥ 1, the reduction Z
A
n,1 is defined by

Zp +Xp+1 +X−(p+1) = 0 in A2
Fp
,(1.1)

which has genus 0. This curve has the 2(p + 1) singular points defined by

X = ζ with ζ2(p+1) = 1. Each singular residue class S in ZAn,1 is a basic

wide open whose underlying affinoid XS reduces to the affine curve defined

by ap− a = s2 with genus (p− 1)/2. The complement S \XS is an annulus

of width (4pn)−1. For n ≥ 2, the reduction Y
A
n,2 is defined by

xy(x− y)p−1 = 1, Zp + 1 + x−(p+1) + y−(p+1) = 0 in A3
Fp
,(1.2)

which has genus (p − 1)/2. The curve (1.2) has the p + 1 singular points

which are defined by (x, y) = (−ζ, ζ) with ζp+1 = −1. Each singular residue

class T in YA
n,2 is a basic wide open whose underlying affinoid reduces to the

affine curve defined by ap − a = tp+1 with genus p(p − 1)/2. We can show

that the complement T \XT is an annulus of width (pn(p + 1))−1. When

n = 2, these things are proved in [T]. However, there is a gap in the proof

of [T, Corollary 4.8], and this will be fixed in the proof of Proposition 3.8.1.

We write Tn for the set of the singular residue classes in YA
n,2. As a result,

we prove that, for each n ≥ 2, the map πν : YA
n+1,2 → YA

n,2 induces a purely

inseparable map π̄ν : Y
A
n+1,2 → Y

A
n,2 and πν(Tn+1) = Tn. The restriction

of πν induces πν :
∐
T ′∈Tn+1

XT ′ →
∐
T∈Tn XT . We show that this map
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induces a purely inseparable map π̄ν :
∐
T ′∈Tn+1

XT ′ →
∐
T∈Tn XT . Similar

things are proved for ZAn,1 with n ≥ 1.

In [CM2, §6.3], the inertia action on the stable reduction of X0(p
3) is

described using Fake CM, Weil pairing etc. In this paper, we give explicit

descriptions of the inertia actions on the reductions of the affinoids explained

above in terms of the Lubin-Tate theory. In particular, we make more ex-

plicit the inertia action on the components with affine model ap− a = s2 in

the stable reduction of X0(p
3) described in [CM2, Corollary 6.11]. As ap-

plication, we explicitly understand the structure of the middle cohomology

of the irreducible components as representations of the inertia subgroup.

We can conclude that the restrictions to the inertia subgroup of all two-

dimensional Galois representations of exponential conductor ≤ 4 and with

trivial determinant character appear in the middle cohomology of them.

Using the description and the type theory in [BH], we can also describe the

cohomology in terms of the language of the local Langlands correspondence.

See Corollaries 4.9, 4.14 and 4.22 for precise statements. Such descriptions

in finite levels in a purely local manner are not known except for [Yo].

Unfortunately, by using these descriptions, we cannot construct the local

Langlands correspondence for GL2(Qp) for representations of exponential

Artin conductor 4. A complete treatment in this direction for representa-

tions of exponential Artin conductor three is given in [IT4]. The results in

this paper will be used in a subsequent paper in which we determine the

stable reduction of X0(p
5).
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Notation. We fix some p-adic notations. We let Cp be the completion

of a fixed algebraic closure Qp of Qp. Let K be a complete subfield of Cp.

Let OK denote the ring of integers of K, and let pK denote the maximal

ideal of OK . Set FK = OK/pK . We simply write F for FCp . For an element

a ∈ OK , we write ā ∈ FK for the reduction of a. Let v(·) denote the

valuation of K such that v(p) = 1, and let | · | denote the absolute value
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given by |x| = p−v(x) for x ∈ K∗ and |0| = 0. For a positive integer n ≥ 1,

we set UnK = 1 + pnK . This is an open compact subgroup of K∗.
For a non-negative integer n, let Qpn denote the unramified extension of

Qp of degree n in Qp. We write Zpn for OQpn
. Let Fpn be the extension of

Fp of degree n. Then, we have Fpn = FQpn
in the above notation.

Put R = pQ. Let K be a complete subfield of Cp. For r ∈ R, we

let BK [r] and BK(r) denote the closed and open disks over K of radius r

around 0, i.e. the rigid spaces over K whose Cp-valued points are {x ∈ Cp |
|x| ≤ r} and {x ∈ Cp | |x| < r} respectively. If r, s ∈ R and r ≤ s, let

AK [r, s] and AK(r, s) be the rigid spaces over K whose Cp-valued points

are {x ∈ Cp | r ≤ |x| ≤ s} and {x ∈ Cp | r < |x| < s}, which we call a

closed annulus and an open annulus respectively. By the width of such an

annulus, we mean logp(s/r). A closed annulus of width 0 is called a circle,

which we denote the circle AK [s, s] also by CK [s].

Let K be a complete subfield of Cp and A a reduced K-affinoid algebra.

Let | · |sup be the supremum norm on A (cf. [BGR, §6.2]). We set

A◦ = {f ∈ A | |f |sup ≤ 1},
A◦◦ = {f ∈ A | |f |sup < 1}

and A = A◦/A◦◦. The ring A◦ is the set of all topologically bounded

elements in A, and A◦◦ is the set of all topologically nilpotent elements

in A. For the affinoid space X = SpA, the canonical reduction X means

SpecA (cf. [BGR, §6.3]). The reduction of X always means the canonical

reduction of X.

2. Preliminaries

In this section, we collect some known facts and recall some machinery

in Proposition 2.5 needed to compute the reductions of affinoids in later

sections.

2.1. Kronecker’s polynomial

As in [dSh, §0] or [T, §2.1], we recall Kronecker’s polynomial

Fp(j,X) = (X − j(pτ))
∏

0≤a≤p−1

(
X − j

(
τ + a

p

))
∈ Z[j,X].
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Kronecker proved that

the equation Fp(j,X) = 0 gives a plane model of X0(p) over Q,

Fp(j,X) = Fp(X, j), Fp(j,X) ≡ (jp −X)(j −Xp) mod pZ[j,X].

We write Fp(S, T ) = (Sp − T )(S − T p) + pf(S, T ), where f(S, T ) ∈ Z[S, T ]

is a symmetric polynomial.

Let p ≥ 13 be a prime number. Let A be a supersingular elliptic

curve over Fp with j(A) �= 0, 1728. Let β0 ∈ Z∗
p lift j(A) ∈ Fp. We put

F β0
p (X,Y ) = Fp(X + β0, Y + β0).

Lemma 2.1 ([T, Lemma 2.1]). 1. We have

F β0
p (X,Y ) = (Xp − Y )(X − Y p) mod pZp[X,Y ].

2. We set f1(X,Y ) =
(
F β0
p (X,Y )− (Xp − Y )(X − Y p)

)
/p ∈ Zp[X,Y ].

Then f1(X,Y ) is symmetric and f1(0, 0) is a unit of Zp.

Let c0 be the leading coefficient of f1 and set g(X,Y ) = f1(X,Y )− c0.
We define g(X) and h(X) by

g(X,Y ) ≡ Xg(X) + h(X)Y mod (Y 2).

Let c1 be the leading coefficient of h(X), which is also the one of g(X) by

Lemma 2.1.2.

Lemma 2.2 ([T, Lemma 2.2]). We consider the equation F β0
p (X,Y ) =

0. Assume that 0 < v(X), v(Y ) < 1 and v(X) < v(Y p). Then we have

Y = Xp +
pc0
X

+
pg(X,Y )

X
+

∞∑
n=1

(
Y p

X

)n
H(X,Y ),(2.1)

where we put H(X,Y ) = (pc0/X) + (pg(X,Y )/X).

2.2. Circles in X0(p)

We briefly recall supersingular annuli from [CM, §3.1] or [T, §2.2]. Only

in this subsection, we do not assume that p ≥ 13. We think of X0(p
n) as

the rigid analytic curve over Qp whose points over Cp are in a one-to-one
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correspondence with isomorphism classes of pairs, (E,C), where E/Cp is

a generalized elliptic curve and C is a cyclic subgroup of order pn. We

implicitly make use of this correspondence, when we speak loosely of “the

point (E,C).”

Definition 2.3. Let C[pi] denote the kernel of multiplication by pi in

C. Let

πf , πν :
∐
n≥1

X0(p
n)→

∐
n≥0

X0(p
n)

be the level-lowering maps given by πf (E,C) = (E, pC) and πν(E,C) =

(E/C[p], C/C[p]) respectively.

Let a, b ∈ Z≥0. Then by setting πa,b = πbf ◦ πaν , we obtain maps

πa,b :
∐

n≥a+b
X0(p

n)→
∐
n≥0

X0(p
n).

Let wn : X0(p
n) → X0(p

n) be the automorphism defined by (E,C) �→
(E/C,E[pn]/C), which is called the Atkin-Lehner involution. We define

w :
∐
n≥0

X0(p
n)→

∐
n≥0

X0(p
n)

by wn = w|X0(pn). The Atkin-Lehner involution is compatible with the level-

lowering maps in the sense that πf◦w = w◦πν or equivalently, w◦πf = πν◦w,
since w is an involution.

Definition 2.4 ([CM, Definition 3.3]). For a fixed elliptic curve A

over a finite field, let WA(pn) represent the rigid subspace of X0(p
n) whose

points over Cp are represented by pairs (E,C) with E � A.

The WA(1) is just a residue disk of the j-line. If E is an elliptic curve

over Cp, we let h(E) denote the minimum of 1 and the valuation of a

lifting of the Hasse invariant of the reduction of a non-singular model of

E mod p, if it exists, and 0 otherwise. When A is a supersingular elliptic

curve, it is well-known that WA(p) is isomorphic, over Qp2 , to an open

annulus of width i(A) = |Aut(A)|/2. This means that one can choose a



Affinoids in X0(p
n) and Inertia Action 297

parameter xA on WA(p) over Qp2 which identifies it with the open annulus

AQp2
(p−i(A), 1). In fact, we can and will always do this in such a way that

v(xA(E,C)) = i(A)h(E) when C is a canonical subgroup of order p in E

and otherwise i(A)(1 − h(E/C)) (cf. [Bu, Theorem 3.3 and §4]). See also

[Ka] for canonical subgroups.

In [CM, §3.1], Coleman-McMurdy considered the following concentric

circles in BQp2
(1):

SDA = CQp2

[
p−

i(A)
2

]
which they call the “self-dual circle”

or the “Atkin-Lehner circle,”

TSA = CQp2

[
p
− pi(A)

p+1

]
which they call the “too supersingular circle.”

We fix an isomorphism WA(1) � BQp2
(1) as in de Shalit’s theorem in [CM,

Theorem 3.5] or [T, Theorem 2.9]. Under the above identification WA(1) �
BQp2

(1), for r ∈ (0, 1) ∩ Q, let CA,0
r and CA,0

≥r denote the circle CQp2
[p−r]

and the closed ball BQp2
[p−r] respectively.

2.3. Affinoids in WA(pn)

From now until the end of the paper, we assume that p ≥ 13 and fix a

supersingular elliptic curve A/Fp with j(A) �= 0, 1728. Let n ∈ Z≥2. We

define

YA
a,b = π−1

a,b−1(TSA) ⊂WA(pn) for a+ b = n, a, b ≥ 1,

ZAc,d = π−1
c,d (SDA) ⊂WA(pn) for c+ d = n− 1 ≥ 2, c, d ≥ 1.

(2.2)

In the following proposition, we consider embeddings of YA
a,b and ZAc,d into

products of subspaces of WA(1). Let β0 ∈ Z∗
p be a lifting of j(A).

Proposition 2.5 ([T, Corollary 2.19]). Let π0
n be the map∏

0≤i≤n πi,n−i : WA(pn) ↪→WA(1)×(n+1).

1. The affinoid YA
a,b with a+ b = n ≥ 2 is isomorphic to the following space

by the map π0
n:{

({Xi}0≤i≤n) ∈

 ∏
0≤i≤a−1

CA,0
1

pa−i−1(p+1)


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×CA,0
≥ p

p+1
×

 ∏
a+1≤i≤n

CA,0
1

pi−a−1(p+1)

 ∣∣∣
F β0
p (Xi, Xi+1) = 0 for 0 ≤ i ≤ n, Xa−1 �= Xa+1

}
.

2. The affinoid ZAc,d with c + d = n − 1 ≥ 2 is isomorphic to the following

space by the map π0
n:{

({Xi}0≤i≤n) ∈

 ∏
0≤i≤c

CA,0
1

2pc−i

×
 ∏
c+1≤i≤n

CA,0
1

2pi−c−1

 ∣∣∣
F β0
p (Xi, Xi+1) = 0 for 0 ≤ i ≤ n

}
.

3. Reductions of Affinoids

In [We, Theorem 1.0.1], Weinstein proves the following:

Theorem 3.1. Let K be a non-archimedean local field. Let q be the

cardinality of the residue field FK . We simply write p for pK . Let X(pn) de-

note the Lubin-Tate curve with Drinfeld level pn-structure. Assume that q is

odd. Then, every irreducible component in the stable reduction of X(pn) ad-

mits a purely inseparable map to one of the following four projective smooth

curves over F:

1. The projective line P1,

2. The curve with affine model xqy − xyq = 1,

3. The curve with affine model aq + a = tq+1,

4. The curve with affine model aq − a = s2.

Roughly speaking, if we replace K by Qp, and the second curve by the

curve with affine model xy(x − y)p−1 = 1, similar things are expected to

hold for irreducible components in the stable reduction of X0(p
n) except for

ordinary components. In this section, without ambiguity of purely insepara-

bility, we compute the reductions of some of the affinoids defined in (2.2) by
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using Proposition 2.5. As a result of these computations, we deduce some

informations on irreducible components in the stable reduction of X0(p
n)

in Corollary 3.15.

3.1. Reduction of YA
n,1

In this subsection, we compute the reduction of YA
n,1 for n ≥ 1. The

reduction of YA
1,1 is essentially calculated in [E, §2.1.3] and [E2, Theorem

2.1.1].

By Proposition 2.5.1, we have

YA
n,1 �

{
({Xi}0≤i≤n+1) ∈

 ∏
0≤i≤n−1

CA,0
1/(pn−i−1(p+1))


×CA,0

≥p/(p+1) ×CA,0
1/(p+1)

∣∣∣
F β0
p (Xi, Xi+1) = 0 (0 ≤ i ≤ n), Xn−1 �= Xn+1

}
.

We simply write κ for pc0. We choose elements {αn}∞n=1 ⊂ Cp such that

α
pn−1(p+1)
n = κ and αpn = αn−1 for n ≥ 2. On YA

n,1, we set

X0 = αnz, Xi = αp
i

n xi (1 ≤ i ≤ n− 2),

Xn−1 = αp
n−1

n x, Xn = αp
n

n u, Xn+1 = αp
n−1

n y,
(3.1)

where we have v(z), v(xi), v(x), v(y) = 0 for any i and v(u) ≥ 0. For α ∈
Q>0, if v(f − g) > α, we write f ≡ g mod α+. Then, as in [T, Corollary

4.5], by F β0
p (Xi, Xi+1) = 0 for i = n− 1, n and Xn−1 �= Xn+1, we obtain

xy(x− y)p−1 ≡ 1 mod 0 + on YA
n,1.(3.2)

Lemma 3.2. 1. For n ≥ 1, the reduction of YA
n,1 is defined by

zp
n−1
y
(
zp

n−1 − y
)p−1

= 1.(3.3)

This is a smooth affine curve with genus (p− 1)/2.

2. The curve defined by (3.3) is isomorphic to the curve defined by
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st(s− t)p−1 = 1.

3. The map πν induces a purely inseparable map πν : Y
A
n+1,1 → Y

A
n,1;

(z, y) �→ (zp, y).

Proof. By F β0
p (Xi, Xi+1) = 0 for 0 ≤ i ≤ n − 2 on YA

n,1, we obtain

zp
n−1 ≡ x mod 0+ by (2.1). Hence, the first assertion follows from (3.2).

The second assertion follows from [T, Lemma 4.8]. The map πν : YA
n+1,1 →

YA
n,1 is given by ({Xi}0≤i≤n+2) �→ ({Xi}1≤i≤n+2). The third assertion fol-

lows from the proof of 1. �

3.2. Reduction of YA
n,2

In this subsection, we compute the reduction of YA
n,2 ⊂ WA(pn+2) for

any n ≥ 2. In [T, §4.3], when n = 2, we have calculated the reduction of

YA
2,2. To deduce defining equations of Y

A
n,2 in Corollary 3.4, we give defining

congruences in appropriate moduli of the affinoid YA
n,2 in Proposition 3.3.

In the following, every formal group is always assumed to be one-dimen-

sional. Let � be the formal Zp2-module over Zp2 whose κ-multiplication has

the following form:

[κ]�(X) = Xp2 − κX.

See [Iw, Chapter IV] for more details on formal groups. Let 1′
2 ∈ Cp be an

element such that [κ2]�(1′
2) = 0 and [κ]�(1′

2) �= 0. We set β = [κ]�(1′
2)

and θ1 = 1′
2/β. Then we have

βp
2−1 = κ, θp

2

1 − θ1 = κ−1.(3.4)

We put K ′
2 = Qp2(β, θ1) = Qp2(1

′
2). Note that we have v(βθ1) = (p2(p2 −

1))−1. By multiplying the second equality in (3.4) by βp
2
, taking the (p2−1)-

th power of it and dividing it by (βθ1)
p2(p2−1), we obtain{

1−
(
κ/(βθ1)

p2−1
)}p2−1

= κ/(βθ1)
p2(p2−1).

This induces κ/(βθ1)
p2(p2−1) ≡ 1 + (κ/(βθ1)

p2−1) mod 1+. We take ele-

ments {αn}∞n=1 ⊂ Cp such that αp
n−1

n = (βθ1)
p−1 and αpn = αn−1 for n ≥ 2.

We have v(αn−1) = (pn(p+ 1))−1 and

κ/α
pn(p+1)
n−1 ≡ 1 +

(
κ/α

pn−2(p+1)
n−1

)
mod 1 + .(3.5)
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We set γn−1 = αp
2−1
n−1 .

By Proposition 2.5.1, we have

YA
n,2 �

{
({Xi}0≤i≤n+2) ∈

 ∏
0≤i≤n−1

CA,0
1/(pn−i−1(p+1))


×CA,0

≥p/(p+1) ×CA,0
1/(p+1) ×CA,0

1/(p(p+1))

∣∣∣
F β0
p (Xi, Xi+1) = 0 (0 ≤ i ≤ n+ 1), Xn−1 �= Xn+1

}
.(3.6)

Let g(T ) be the polynomial in §2.1. For a while, we assume that n = 2. We

set

X0 = αp1x, X4 = αp1y with v(x) = 0 and v(y) = 0(3.7)

on YA
2,2.

Let f(S, T ) and H(X,Y ) be as in §2.1. We set

H(x, y) = c−1
0

(
H(xp, yp)− f(x, y){xy(x− y)p−2}p

)
.

Let H ′ be as in [T, (4.19)]. Then, we have H(x, y) ≡ H ′ mod 0+ by [T,

(4.15), (4.16) and Lemma 4.12].

We set φ2 = g(αp1y)− g(α
p
1x) and

xy(x− y)p−1 = 1 + γ1Z + αp1xyφ2(x− y)−1.(3.8)

Note that φ2 is divisible by αp1. We have v(Z) ≥ 0 and its consequence(
xy(x− y)p−1

)p ≡ 1 mod p−1+ on YA
2,2. This can be shown as follows.

By plugging in [T, (4.15), (4.16), (4.18)] into the congruence in [T, Lemma

4.12] and using

g(αp
2

1 u)− g(α
p2

1 v)

u− v uv

≡
(
g(αp1x)− g(α

p
1y)

x− y xy

)p
mod

(
p− 1

p
− 1

p+ 1

)
+,
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we obtain this.

By [T, (4.19)] and H(x, y) ≡ H ′ mod 0+, we have

Zp − γ1 + {xy(x− y)p−1}−1 + αp1φ2(x− y)−p

+ αp1(y
pg(αp1x) + xpg(αp1y))(x− y)p(p−1) + x−(p+1) + y−(p+1)(3.9)

≡ c1αp1(xy)−p(x+ y)p − αp(p+1)
1 H(x, y) mod p−1 + .

The term {xy(x − y)p−1}−1 + αp1φ2(x − y)−p in the left hand side of (3.9)

equals (
1 + αp1xyφ2(x− y)−1

)
/
(
xy(x− y)p−1

)
.

Further, by (3.8), we acquire

1 + αp1xyφ2(x− y)−1

xy(x− y)p−1
=

1 + αp1xyφ2(x− y)−1

1 + αp1xyφ2(x− y)−1 + γ1Z

≡ 1− γ1Z mod p−1+,

because we have v(γ1α
2p
1 ) = (p−1)p−2 +2(p(p+1))−1 > p−1 and v(Z) ≥ 0.

Hence, by taking (x, y, Z) as (u2, v2, Z2), the congruence (3.9) can be written

to the form (3.11) for n = 2 below.

Proposition 3.3. Let n ≥ 2 be an integer. We consider the isomor-

phism (3.6) and set X0 = αpn−1un with v(un) = 0 on YA
n,2. Then, there

exist rigid analytic functions vn and Zn such that, on the affinoid YA
n,2, we

have v(vn) ≥ 0, v(Zn) ≥ 0,

unvn(un − vn)p−1 ≡ 1 + γn−1Zn

+ αpn−1unvnφn(un − vn)−1 mod p−(n−1)+,
(3.10)

(Zn + 1)p − γn−1(Zn + 1)

+ αpn−1(v
p
ng(α

p
n−1un) + upng(α

p
n−1vn))(un − vn)p(p−1)

+ u−(p+1)
n + v−(p+1)

n

≡ c1αpn−1(unvn)
−p(un + vn)

p

− αp(p+1)
n−1 H(un, vn) mod p−(n−1)+,

(3.11)
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where we set φn = g(αpn−1vn) − g(α
p
n−1un). The functions {un, vn, Zn}n≥2

satisfy

upn+1 ≡ un, vpn+1 ≡ vn mod p−(n−1)+,

Zpn+1 ≡ Zn mod p−n + on YA
n+1,2.

(3.12)

Proof. We prove the first assertion by induction on n. We have al-

ready proved the assertion for n = 2. By assuming the assertion in the case

n, we prove the assertion in the case n + 1. We simply write H, Z, u, w

and v for H(un, vn), Zn, un, un+1 and vn. We consider every congruence

below on YA
n+1,2. We recall the identification of YA

n+1,2 in (3.6). We set

X0 = αpnw and X1 = αp
2

n u with v(w) = 0 and v(u) = 0. Then we have

wp ≡ u mod p−(n−1) +(3.13)

by (2.1). We set

h′ = −v−1
{
Z − γn + 1 + w−(p+1) − c1αpn(uv)−1(u+ v)

+ αpnvg(α
p
nw)(u− v)p−1

}−1
(3.14)

and put W = Z − αp(p+1)
n H. By the congruence (3.10) deduced from the

induction hypothesis, we have uv(u − v)p−1 ≡ 1 mod (pn−1(p + 1))−1+.

Therefore, we have αp
2

n {uv(u−v)p−1}pg(αp
2

n v) ≡ αp
2

n g(α
p2
n v) mod p−(n−1)+.

Hence, by multiplying (3.11) by vp and using (3.14), we acquire

−h′−p + v−1
(
1 + αp

2

n vg(α
p2

n v)
)
≡ γpnvpW mod p−(n−1) + .(3.15)

We put

v′ = v
(
1 + αp

2

n vg(α
p2

n v)
)−1

.(3.16)

We take the power series g1(X) ∈ Zp[[X]] such that

X ′ = X(1 +Xg(X))−1 ⇐⇒ X = X ′(1 +X ′g1(X
′))−1.
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By (3.16), we have

v = v′
(
1 + αp

2

n v
′g1(α

p2

n v
′)
)−1

.(3.17)

Note that g1(α
p2
n v′) is a rigid analytic function on YA

n+1,2.

By (3.15), (3.16) and v(v′) = 0, we have v(h′) = 0 and

v′ ≡ h′p − γpn(vh′2)pW ≡ h′p − γpnh′p(p+2)W mod p−(n−1) + .(3.18)

We put

h = h′
(
1 + αpnh

′g1(α
p
nh

′)
)−1

.(3.19)

Then we have

h′ = h (1 + αpnhg(α
p
nh))

−1 .(3.20)

We write v with respect to h. By substituting (3.18) to (3.17), and using

(3.19) and v(α2p2
n γpn) > p−(n−1), we acquire

v ≡ h′p − γpnh′p(p+2)W

1 + αp
2

n

(
h′p − γpnh′p(p+2)W

)
g1(α

p2
n h′p)

≡ hp − γpn
h′p(p+2){

1 + αp
2

n h′pg1(α
p2
n h′p)

}2W mod p−(n−1) + .

Since we have γpnh′p(p+2)
{

1 + αp
2

n h′pg1(α
p2
n h′p)

}−2
≡ γpnhp(p+2)

mod p−(n−1)+ by the definition of h in (3.19), we obtain

v ≡ hp − γpnhp(p+2)W mod p−(n−1) + .(3.21)

We set

Z ′ = wh(w − h)p−1, f = w2hp+2(w − h)p−2.

By substituting (3.13) and (3.21) to uv(u− v)p−1, we acquire

uv(u− v)p−1 ≡ Z ′p − γpnfpW mod p−(n−1) + .(3.22)
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We introduce a new parameter Z ′ by

Z ′ = 1 + γnZ
′ + αpnwh (g(αpnh)− g(αpnw)) (w − h)−1.(3.23)

Substituting this and (3.22) to the left hand side of the congruence (3.10)

in the case n, and dividing it by γpn, we obtain

Z ′p ≡ Z + fpW = Z + fp
(
Z − αp(p+1)

n H
)

mod p−n + .(3.24)

By this and the induction hypothesis, we obtain v(Z ′) ≥ 0. We set H ′ =

H(w, h). Then we have α
p(p+1)
n H ′p ≡ αp(p+1)

n H mod p−n+ by plugging in

(3.13) and (3.21) into α
p(p+1)
n H. In characteristic p, there is no common

root of two equations wh(w−h)p−1 = 1 and 1+ f = 0. Hence, by v(w) = 0

and v(h) = 0, we have v(1 + f) = 0. We set

Z ′′ = (1 + f)−1
(
Z ′ + αp+1

n fH ′) .(3.25)

Note that v(Z ′′) ≥ 0 by v(Z ′) ≥ 0 and v(1 + f) = 0. By (3.24) and (3.25),

we acquire

Z ′′p ≡ Z mod p−n + .(3.26)

We put W1 = Z ′′ − αp+1
n H ′ and

h′′ = h− γnhp+2W1.(3.27)

We show that the parameter h′′ plays a role of the parameter vn+1 in the

congruences (3.10) and (3.11) for the case n+1. By (3.21) and the definition

of h′′ in (3.27), we acquire

h′′p ≡ v mod p−(n−1) + .(3.28)

By (3.14), we obtain

Z − γn + 1 + w−(p+1) + (h′v)−1 + αpnvg(α
p
nw)(u− v)p−1

= c1α
p
n(uv)

−1(u+ v).
(3.29)

In the following, we rewrite the term (h′v)−1 in the left hand side of the

equality (3.29) under the variables (h′′, w, Z ′′). By (3.20) and (3.28), we

obtain

(h′v)−1 ≡ (hh′′p)−1 (1 + αpnhg(α
p
nh)) mod p−n + .(3.30)
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Hence, by the definition of h′′ in (3.27), we obtain

1 + αpnhg(α
p
nh) ≡ 1 + αpnh′′g(α

p
nh′′)

+g(αpnh′′)α
p
nγnh

′′p+2W1 mod p−n+,
(3.31)

(hh′′p)−1 ≡ h′′−(p+1) − γnW1 mod p−n + .(3.32)

By considering (3.31)× (3.32) and using (3.30), we acquire

(h′v)−1 ≡ h′′−(p+1) (
1 + αpnh

′′g(αpnh
′′)
)
− γnW1 mod p−n + .(3.33)

Hence, by (3.26), (3.29) and (3.33), we obtain

(Z ′′ + 1)p − γn(Z ′′ + 1) + w−(p+1) + h′′−(p+1)

+ αpnh
′′−pg(αpnh

′′) + αpnvg(α
p
nw)(u− v)p−1

≡ c1αpn(uv)−1(u+ v)− αp(p+1)
n H ′ mod p−n + .

(3.34)

By (3.23), we have

wh(w − h)p−1 = 1 + γnZ
′ + αpnwh (g(αpnh)− g(αpnw)) (w − h)−1.(3.35)

We rewrite this equality under the variables (Z ′′, h′′). Substituting h =

h′′ + γnh′′
p+2W1 to wh(w − h)p−1, we acquire

wh(w − h)p−1 ≡ wh′′(w − h′′)p−1 + γnfW1 mod p−n + .(3.36)

Hence, by (3.35), (3.36) and Z ′′ = Z ′ − fW1, we obtain

wh′′(w − h′′)p−1 = 1 + γnZ
′′ + αpnwh

′′ (g(αpnh′′)− g(αpnw)
)

× (w − h′′)−1 mod p−n + .
(3.37)

Since we have wph′′p(w−h′′)p(p−1) ≡ 1 mod p−n+ by (3.37), on the term in

the left hand side of (3.34), we obtain αpnh′′−pg(α
p
nh′′) ≡ αpnwpg(αpnh′′)(w−

h′′)p(p−1) mod p−n+. By taking (Z ′′, w, h′′) as (Zn+1, un+1, vn+1), the re-

quired assertion in the case n + 1 follows from (3.13), (3.28), (3.34) and

(3.37). The second assertion (3.12) follows from (3.13) and (3.26). �
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Corollary 3.4. Let n ≥ 2 be an integer.

1. Over K ′
2(αn−1), the reduction Y

A
n,2 is defined by

xy(x− y)p−1 = 1, Zp + 1 + x−(p+1) + y−(p+1) = 0.

2. The map πν induces a purely inseparable map π̄ν : Y
A
n+1,2 → Y

A
n,2;

(Z, x, y) �→ (Zp, xp, yp) .

Proof. We obtain the first assertion by considering (3.10) and (3.11)

mod 0+, and the second assertion by considering (3.12) mod 0+. �

Remark 3.5. By the isomorphism wn+2 : YA
n,2

∼−→ YA
2,n, if we replace

πν in Corollary 3.4.2 by πf , the similar things as Corollary 3.4 hold for Y
A
2,n.

3.3. Singular residue classes in YA
n,2

In this subsection, we analyze the singular residue classes in YA
n,2 for

n ≥ 2. As a result, we show that each singular residue class in YA
n,2 is a

basic wide open whose underlying affinoid reduces to the affine curve defined

by ap − a = tp+1. When n = 2, the analysis of the singular residue classes

in YA
2,2 given in [T, §4.4] is incomplete. There is a gap in arguments in [T,

Corollary 4.18], and the gap will be fixed in this subsection.

Let K be a non-archimedean local field and A a K-affinoid algebra. For

a finite extension L over K, we write AL for the base change A⊗̂KL. Now,

we introduce an elementary lemma in rigid geometry.

Lemma 3.6. Let K be a non-archimedean local field. Let f : Y → X

be a morphism between reduced rigid analytic varieties over K. Let {Ui}i∈I
be an admissible affinoid covering of X. For any i ∈ I, assume that the

inverse Vi = f−1(Ui) is an affinoid, and over some finite extension Li over

K, the morphism f induces an isomorphism between reductions:

fLi = f ×K Li : Vi ×K Li ∼−→ Ui ×K Li.(3.38)

We write Ui = SpAi and Vi = SpBi. Furthermore, we assume that

(Ai,Li)
◦◦ = pLi(Ai,Li)

◦, (Bi,Li)
◦◦ = pLi(Bi,Li)

◦.(3.39)

Then, f : Y → X is an isomorphism.
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Proof. Since {Ui}i∈I and {Vi}i∈I are admissible affinoid coverings of

X and Y respectively, to prove that f : Y → X is an isomorphism, it suffices

to show that, for any i ∈ I, the restriction f : Vi → Ui is an isomorphism.

Now, we fix i ∈ I. Let f∗ : Ai → Bi be the morphism of K-affinoid algebras

corresponding to f : Vi → Ui. By faithfully flat descent, to prove that f∗ is

an isomorphism, it suffices to show that the base change of f∗ from K to

Li:

f∗Li
: Ai,Li → Bi,Li

is an isomorphism. The image of (Ai,Li)
◦ by f∗Li

is contained in (Bi,Li)
◦.

Hence, we have the restriction map

f∗OLi
= f∗Li

|(Ai,Li
)◦ : (Ai,Li)

◦ → (Bi,Li)
◦.

Note that f∗OLi
⊗OLi

Li = f∗Li
. By the assumptions (3.38) and (3.39), the

morphism f∗OLi
induces the isomorphism

f∗OLi
: Ai,Li = (Ai,Li)

◦/pLi(Ai,Li)
◦ ∼−→ Bi,Li = (Bi,Li)

◦/pLi(Bi,Li)
◦.(3.40)

Since (Ai,Li)
◦ and (Bi,Li)

◦ are reduced, they are separated (cf. [BGR, Propo-

sition 4(iii) in §6.2.1]). Clearly, they are pLi-torsion free. They are pLi-adic

complete (cf. [BGR, Theorem 1 in §6.2.4]). By these properties, the iso-

morphism (3.40) implies that f∗OLi
is an isomorphism. Therefore, the map

f∗Li
= f∗OLi

⊗OLi
Li : Ai,Li → Bi,Li is also an isomorphism. Hence, we have

known that f : Vi → Ui is an isomorphism. �

We go back to the original situation. We keep the same notation as in

the previous subsection. We change variables

un =
rn + 1

2sn
, vn =

rn − 1

2sn
,(3.41)

similarly as in [CM, the proof of Proposition 5.2] and [T, §4.4]. We simply

write Z, r, s and φ for Zn, rn, sn and αpn−1φn respectively. The congruence

(3.10) has the following form:

r2 − 1

4sp+1
(1− spφ) ≡ 1 + γn−1Z mod p−(n−1) +(3.42)



Affinoids in X0(p
n) and Inertia Action 309

(cf. [T, (4.20)]). Let Tn = {ζ ∈ Fp2 | 4ζp+1 + 1 = 0}. The set Tn naturally

corresponds to the set of the singular residue classes in YA
n,2. Let ζ ∈ Tn. We

write Tn,ζ ⊂ YA
n,2 for the singular residue class at the point on Y

A
n,2, which

is defined by (r, s) = (0, ζ). On Tn,ζ , we have α
p(p+1)
n−1 H(u, v) ≡ αp(p+1)

n−1 dn
mod p−(n−1)+ with some constant dn ∈ Zp2 . Let s0,ζ ∈ µp2−1(Zp2) be the

element such that s̄0,ζ = ζ. We simply write s0 for s0,ζ . We simply write K

for the local field K ′
2(αn−1) in §3.2.

Lemma 3.7. 1. Let c2 be the leading coefficient of the polynomial

(g(X)− c1)/X. We set s = s0 + s on Tn,ζ . Then, on Tn,ζ , we have

s ≡ (4sp0)
−1(r2 − α2p

n−1c2s
p−1
0 ) + t(s, r) mod 2pv(αn−1) +(3.43)

with some t(s, r) ∈ OK [[s]][r] satisfying t(s, r) ∈ (α2p
n−1r, α

2p
n−1s, s

p).

2. On Tn,ζ , we have

(Z − 1)p + γn−1(Z − 1)− 2rp+1 + F(s, r, Z) + α
p(p+1)
n−1 dn

≡ 0 mod p−(n−1)+,
(3.44)

with some F(s, r, Z) ∈ OK [[s, r]][Z] contained in the ideal (α2p
n−1r

p, αpn−1s
p,

r2p, αpn−1r
p+1).

Proof. In this proof, we simply write α, γ, u and v for αpn−1, γn−1,

un and vn respectively. In the following, we consider everything on Tn,ζ .

We prove the first assertion. By (3.42) and v(γ) > 2v(α), we have

4sp+1 ≡ r2 − 1− r2spφ+ spφ mod 2v(α) + .(3.45)

For a ∈ Q≥0, we write f ≡ g mod a if v(f − g) ≥ a. By (3.45) and

4sp+1
0 ≡ −1 mod 1, we obtain

4(sp+1 − sp+1
0 ) ≡ r2 − r2spφ+ spφ mod 2v(α) + .

By this and s = s0 + s, we have

4sp0s ≡ r2 − r2spφ+ spφ+ 4sp0t0(s) mod 2v(α)+,(3.46)
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where we set t0(s) = −(s−1
0 s)p(s0 + s). Recall that g(X) ∈ Zp[X]. Then,

we have

g(αu) = g

(
α

r + 1

2(s0 + s)

)
= g

(
α
r + 1

2s0

∞∑
i=0

(
− s

s0

)i)
∈ OK [[s]][r],

g(αv) = g

(
α

r − 1

2(s0 + s)

)
= g

(
α
r − 1

2s0

∞∑
i=0

(
− s

s0

)i)
∈ OK [[s]][r].

(3.47)

Therefore, we obtain

φ = α(g(αv)− g(αu)) ∈ α2OK [[s]][r].(3.48)

Furthermore, we can write

φ ≡ −α2c2s
−1
0 + φ1 mod 2v(α) +(3.49)

with some φ1 ∈ (α2s)OK [[s]][r]. Hence, on the right hand side of (3.46), we

obtain

r2 − r2spφ+ spφ+ 4sp0t0(s) ≡ r2 − α2c2s
p−1
0 + 4sp0t(s, r) mod 2v(α)+

with some t(s, r) ∈ (α2r, α2s, sp) ⊂ OK [[s]][r]. The claim follows from this

and (4sp0)
−1 × (3.46).

We prove the second assertion. We compute the terms in (3.11) one by

one under the variables (r, s, Z). We set

f(r) =
2(1 + rp+1)

(r2 − 1)p
.

On the terms on the left hand side of (3.11), by simple computations, we

have

α(vpg(αu) + upg(αv))(u− v)p(p−1)

≡ αrp

2sp2
(g(αu) + g(αv)) +

φ

2sp2
mod 1,

u−(p+1) + v−(p+1) ≡ 4sp+1 2(1 + rp+1)

(r2 − 1)p+1

≡ f(r)
(

1− spφ
1 + γZ

)
mod p−(n−1)+

(3.50)
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by (3.41) and (3.42) (cf. [T, Lemma 4.15 (3),(4)]). We simply write R for

OK [[s, r]]. By s = s0 + s and (3.47), we have

αrp

2sp2
(g(αu) + g(αv)) ≡

(
c1α

sp
2

0

)
rp + F1(s, r) mod p−(n−1) +(3.51)

with some F1(s, r) ∈ (αsp, α2rp) ⊂ R. We have

c1α

(
u+ v

uv

)p
= c1α

(
4sr

r2 − 1

)p
≡ −4c1α(sr)p

∞∑
i=0

r2pi

≡ −4c1α(s0r)
p + F2(s, r) mod p−(n−1)+

(3.52)

with some F2(s, r) ∈ (αrp+1, αsp) ⊂ R. By (3.51), (3.52) and the definition

of s0, we acquire

αrp

2sp2
(g(αu) + g(αv))− c1α

(
u+ v

uv

)p
≡
(

4s
p(p+1)
0 + 1

sp
2

0

)
c1αr

p + F1(s, r)− F2(s, r)

≡ F1(s, r)− F2(s, r) mod p−(n−1) + .

(3.53)

Note that f(r) ≡ −2(1+rp+1)
∑∞

i=0 r
2pi mod 1. Therefore, by using (3.48)

and v(α2γ) > p−(n−1), we obtain(
− f(r)s

p

1 + γZ
+

1

2sp2

)
φ ≡

(
−f(r)sp +

1

2sp2

)
φ

≡
(

2sp +
1

2sp2

)
φ+ G1(s, r)

≡
(

4s
p(p+1)
0 + 1

2sp
2

0

)
φ+ G2(s, r)

≡ G2(s, r) mod p−(n−1)+

(3.54)

with some G1(s, r) ∈ (α2rp) ⊂ R and G2(s, r) ∈ (α2rp, αsp) ⊂ R.
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By 2v(γ) > p−(n−1) and v(γ) > 2v(α), we have

(Z + 1)p − γ(Z + 1) +
f(r)

1 + γZ

≡ (Z + 1)p − γ(Z + 1) + f(r)(1− γZ)

≡ (Z − 1)p + γ(Z − 1)− 2rp+1 + G(r, Z) mod p−(n−1)+,

(3.55)

with some G(r, Z) ∈ (r2p, α2rp) ⊂ OK [[r]][Z]. We put

F(s, r, Z) = F1(s, r)− F2(s, r) + G2(s, r) + G(r, Z)

∈ (α2rp, αs
p, r2p, αrp+1) ⊂ OK [[s, r]][Z].

Then, the required assertion follows from (3.11), (3.50), (3.53), (3.54), (3.55)

and αp+1H(u, v) ≡ αp+1dn mod p−(n−1)+. �

Let Qur
p be the maximal unramified extension of Qp in Cp. We choose

elements bn and ζ ′0 in Qur
p such that bpn + bn = −dn and ζ ′0

p2−1 = −1

respectively. We put ζ0 = −2ζ ′0
p+1 and Mn = Qp2(bn, ζ

′
0, αn−1). Further,

we set

βn = ζ0α
p+1
n−1 ∈ OMn , γ′0,n = 1 + αp+1

n−1bn ∈ O∗
Mn
.(3.56)

Note that v(βn) = p−n. We have

βp−1
n ≡ −γn−1, (γ′0,n − 1)p + γn−1(γ

′
0,n − 1) + α

p(p+1)
n−1 dn

≡ 0 mod p−(n−1) + .
(3.57)

Let Xn,ζ ⊂ Tn,ζ be the affinoid which is defined by v(r) ≥ (pn−1(p +

1))−1. By (3.44) and the second congruence in (3.57), we obtain

(Z − γ′0,n)p + γn−1(Z − γ′0,n) ≡ 2rp+1 mod p−(n−1) + on Xn,ζ .(3.58)

On Xn,ζ , by (3.43) and v(s) > 0, we have v(s) ≥ 2(pn−1(p + 1))−1. By

(3.58), we have v(Z − γ′0,n) ≥ p−n on Xn,ζ . On Xn,ζ , we put

r = αpn−1ζ
′
0t, s = α2p

n−1s
′, Z = γ′0,n + βna

with v(t), v(s′), v(a) ≥ 0.
(3.59)
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By substituting (3.59) to (3.43) and dividing it by α2p
n−1, we obtain

s′ ≡ (4sp0)
−1
(
(ζ ′0t)

2 − c2sp−1
0

)
mod 0 + on Xn,ζ .(3.60)

There is an error in the congruence s1 ≡ (t2−c2sp−1
0 )/sp0 mod 0+, which is

stated in [T, Lemma 4.16]. It should be corrected as s1 ≡ (t2−c2sp−1
0 )/(4sp0)

mod 0+.

We have βpn ≡ −ζ0αp(p+1)
n−1 mod pv(βn)+ by ζp0 ≡ −ζ0 mod 0+ and

(3.56). Hence, by substituting (3.59) to (3.58), we acquire

βpn
(
ap − a− tp+1

)
≡ 0 mod p−(n−1) + on Xn,ζ .(3.61)

Proposition 3.8. Let n ≥ 2 be an integer.

1. Over Mn, the affinoid Xn,ζ reduces to the affine curve defined by ap−a =

tp+1. The complement Tn,ζ \Xn,ζ is an annulus with width (pn(p+ 1))−1.

2. The map πν induces a purely inseparable map π̄ν : Xn+1,ζ → Xn,ζp ;

(a, t) �→ (ap, tp).

Proof. The first assertion in 1 follows from (3.60) and (3.61).

We prove the second assertion in 1. In the following, we consider on

Tn,ζ \Xn,ζ . We have 0 < v(r) < (pn−1(p+ 1))−1 by the definitions of Xn,ζ

and Tn,ζ . We set

s = s0 + s, Z = γ′0,n + z with v(s), v(z) > 0.

Note that s0 is a unit. By (3.43), we have v(s) = 2v(r). By this, v(r) <

v(αpn−1) and (3.44), we have

zp − γn−1z − 2rp+1 ≡ 0 mod (p+ 1)v(r) + .

By considering the Newton polygon of this polynomial, we acquire pv(z) =

(p + 1)v(r). Now, we set z = z/(2r). Then, we have v(z) = v(r)/p and

0 < v(z) < (pn(p + 1))−1. We consider a morphism between rigid analytic

curves over Mn

π : Tn,ζ \Xn,ζ → A = AMn(p
− 1

pn(p+1) , 1); (s, z, r) �→ z.(3.62)
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We will show that this is an isomorphism by using Lemma 3.6. We note

that

{AMn [p−ρ2 , p−ρ1 ]}0<ρ1<ρ2<(pn(p+1))−1, ρ1,ρ2∈Q

is an admissible affinoid covering of A. Now, we fix such two rational num-

bers ρ1 < ρ2. We simply write A for AMn [p−ρ2 , p−ρ1 ]. To apply Lemma

3.6, we should check (3.38) and (3.39) via π−1(A)→ A. The inverse image

π−1(A) is the affinoid which is defined by

ρ1 ≤ v(z) ≤ ρ2, v(r) = pv(z), v(s) = 2pv(z).(3.63)

We will compute the reductions of A = SpA1 and π−1(A) = SpA2, and

understand the induced map π−1(A)→ A. First, we recall the reduction of

A. For each i ∈ {1, 2}, we write ρi =
m

(i)
1

m
(i)
2

with positive integers m
(i)
1 ,m

(i)
2

such that (m
(i)
1 ,m

(i)
2 ) = 1, and take an element ci ∈ OCp such that c

m
(i)
2

i =

pm
(i)
1 . We have v(ci) = ρi. We simply write M for Mn(c1, c2). On A, we

put

z = c1t1, d = c2/c1.(3.64)

Then, we have 0 ≤ v(t1) ≤ v(d) on A, and isomorphisms

A1,M �M〈t1, t2〉/(t1t2 − d), A � Spec FM [t1, t2]/(t1t2) � A1
FM
∪ A1

FM
,

where the two affine lines intersect at the origins. Note that

(A1,M )◦◦ = pM (A1,M )◦.(3.65)

Secondly, we compute the reduction of π−1(A). In the following, we

consider on π−1(A). We set

r = cp1r1, s = c2p1 s1

with 0 ≤ v(r1) ≤ pv(d), 0 ≤ v(s1) ≤ 2pv(d)
(3.66)

and

T =M〈r1, r2, s1, s2, t1, t2〉,
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B = T/(r1r2 − dp, s1s2 − d2p, t1t2 − d).

By (3.63), we can consider natural surjections

= : T
�1−→ B

�2−→ A2,M .(3.67)

We write = for the composite =2 ◦ =1. We consider (3.43) mod 2pv(αn−1).

By c−2p
1 × (3.43), we have

s1 ≡ (4sp0)
−1r21 + (t(c2p1 s1)/c

2p
1 ) mod 2pv(αn−1/c1).

Hence, by using t(s) ∈ spOK [s], we obtain

s1 ≡ (4sp0)
−1r21 (1 + f(r1)) mod 2pv(αn−1/c1)(3.68)

with some f(r1) ∈ pMOM 〈r1〉. By this, we have

s2 =
d2p

s1
≡ 4sp0r

2
2 (1 + f(r1))

−1 mod 2pv(αn−1/c1).(3.69)

We write A� for the subring =2(B
◦) = =(T ◦) ⊂ A2,M . In the sequel, under

the notation of (3.44), we show that

F(s, r, Z)/rp+1 ∈ pMA�.(3.70)

By (3.68), we have

s1 = (4sp0)
−1r21 (1 + f(r1)) +

(
αn−1

c1

)2p

g

with some g ∈ A�. Hence, by (3.66) and r1r2 = dp, we have

αpn−1s
p

rp+1
= (αn−1c

p−1
1 )p

s
p
1

rp+1
1

=

(
αn−1c

p−1
1

4sp0

)p
rp−1
1 (1 + f(r1))

p + αp
2

n−1

(
αn−1

c2

)p(p+1)

rp+1
2 h

with some h ∈ A�. Note that v(αn−1/c2) > 0. Therefore, we obtain

αpn−1s
p

rp+1
∈ pMA�.(3.71)
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Similarly, by (3.66) and r1r2 = dp, we have

α2p
n−1

r
= αpn−1

(
αn−1

c2

)p
r2 ∈ pMA�.(3.72)

Then, (3.70) follows from (3.71) and (3.72).

By using z = 2rz, (3.64), (3.66), r1r2 = dp, v(γn−1) = (p2 − 1)v(αn−1)

and v(c1) < v(c2) < v(αn−1), we obtain

γn−1z

(2rc1)p
=
γn−1 · 2rc1t1

2pcp1r
p

=

(
γn−1

2p−1cp−1
1 c

p(p−1)
2

)
rp−1
2 t1 ≡ 0 mod v(αn−1/c1).

(3.73)

Hence, by considering (2rc1)
−p × (3.44), and using (3.70) and (3.73), we

acquire

r1(1 + g1) ≡ t
p
1 mod v(αn−1/c1)(3.74)

with some g1 ∈ pMA�. By this, we have

r2 =
dp

r1
≡ t

p
2(1 + g1) mod v(αn−1/c1).(3.75)

By (3.68), (3.69), (3.74) and (3.75), we know that Spec(A� ⊗OM
FM ) is

isomorphic to

Spec FM [r1, r2, s1, s2, t1, t2]/(r1 − t
p
1, r2 − t

p
2,

s1 − (4s0
p)−1r21, s2 − 4s0

pr22, t1t2)
∼−→Spec FM [t1, t2]/(t1t2) � A1

FM
∪ A1

FM
.

(3.76)

Since this is a reduced scheme, we conclude that = is distinguished by [BLR,

Proposition 1.1]. Namely, the residue norm | · |� equals the supremum norm

| · |sup on A2,M . By [BGR, Proposition 3 (i) in §6.4.3], we obtain

A� = (A2,M )◦ ⊃ (A2,M )◦◦ = pM (A2,M )◦ = pMA�.(3.77)

Therefore, the reduction π−1(A) = Spec(A2,M )◦/(A2,M )◦◦ = Spec(A� ⊗OM

FM ) is isomorphic to the scheme (3.76). Hence, π induces an isomorphism

π : π−1(A)
∼−→ A; (r1, r2, s1, s2, t1, t2) �→ (t1, t2).(3.78)
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By (3.65), (3.77) and (3.78), the required assertion follows from Lemma 3.6.

The second assertion follows from (3.12) and (3.59). �

Remark 3.9. We can show that π in (3.62) is an isomorphism in the

proof of Proposition 3.8.1 by applying [IT3, Lemma 2.1]. To apply this

lemma, we show that, for each circle C ⊂ A, the inverse image π−1(C) is

an affinoid, and the induced morphism

π : π−1(C)→ C

is an isomorphism over some finite extension of Mn by using Lemma 3.7. In

the proof of [IT3, Lemma 2.1], we depend on theory of adic spaces. Here,

to avoid adic formalism, we have given a proof of Proposition 3.8.1 by using

Lemma 3.6.

3.4. Reduction of ZAn,1
In this subsection, we compute the reduction of ZAn,1 ⊂ WA(pn+2) for

n ≥ 1. The reduction of ZA1,1 is already computed in [CM, §7].

By Proposition 2.5.2, we have

ZAn,1 �
{

({Xi}0≤i≤n+2) ∈

 ∏
0≤i≤n

CA,0
1

2pn−i

×CA,0
1
2

×CA,0
1
2p

∣∣∣
F β0
p (Xi, Xi+1) = 0 (0 ≤ i ≤ n+ 1)

}
.

(3.79)

We choose a square root
√
κ of κ. We set L = Qp2(

√
κ). We consider the

formal OL-module � over OL whose
√
κ-multiplication is given by

[
√
κ ]�(X) = Xp2 −

√
κX.

Let 12 ∈ OCp be an element such that [κ]�(12) = 0 and [
√
κ ]� (12) �= 0.

We put 11 = [
√
κ ]�(12) and K2 = L(12). Further, we set

β = 12
1, θ = 12/11.(3.80)

Then, we easily check that

β
p2−1

2 =
√
κ, θp

2 − θ = (
√
κ)−1.(3.81)
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Note that we have K2 = L(11, θ). We set K3 = L(β, θ) ⊂ K2. Let

{αn}∞n=1 ⊂ OCp be elements such that αp
n−1

n = θ−1 and αpn = αn−1 for

n ≥ 2. We set γn = αp−1
n . Then, we have v(αn) = (2pn+1)−1 and v(γn) =

(p − 1)(2pn+1)−1. By multiplying the second equality in (3.81) by
√
κθ−p

2

and taking the second power of it, we acquire

κ
(
1− 2αp

n−1(p2−1)
n

)
≡ α2pn+1

n mod (3/2) + .(3.82)

For a while, we assume that n = 1. We set

X0 = αp1x1, X3 = αp1y1 with v(x1) = 0, v(y1) = 0,

x1y1 = 1 + γ1Z1.
(3.83)

By [T, (3.5)], we acquire

Zp1 + xp+1
1 (1− γ1Z1) + x

−(p+1)
1 ≡ 2γ1 mod (2p)−1 + on ZA1,1.(3.84)

In particular, we have v(Z1) ≥ 0 on ZA1,1.

Proposition 3.10. On ZAn,1, we set X0 = αpnxn with v(xn) = 0. Then,

there exists a rigid analytic function Zn on ZAn,1 satisfying v(Zn) ≥ 0,

Zpn + xp+1
n (1− γnZn) + x−(p+1)

n ≡ 2γn mod (2pn)−1 + on ZAn,1.(3.85)

Further, the functions {Zn, xn}n≥1 satisfy

xpn+1 ≡ xn mod (2pn)−1+,

Zpn+1 ≡ Zn mod (2pn+1)−1 + on ZAn+1,1.
(3.86)

Proof. The second assertion is proved in the following proof of the

first assertion. We prove the first assertion by induction on n. When n = 1,

this follows from (3.84).

Assuming the assertion in the case n, we prove the assertion in the

case n + 1. In the following, we consider everything on ZAn+1,1. We set

X0 = αpn+1xn+1 and X1 = αpnxn with v(xn+1) = 0 and v(xn) = 0. Then,

by F β0
p (X0, X1) = 0 and (2.1), we acquire xpn+1 ≡ xn mod (2pn)−1+. We

introduce a new parameter Zn+1 by

Zn + xp+1
n+1 (1− γn+1Zn+1) + x

−(p+1)
n+1 = 2γn+1.(3.87)
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Substituting this to the congruence (3.85) obtained by the induction hypoth-

esis, and dividing it by γnx
p(p+1)
n+1 , we have Zpn+1 ≡ Zn mod (2pn+1)−1 + .

Substituting this to (3.87), we obtain the required congruence in the case

n+ 1. Hence, we have proved the required assertion. �

Corollary 3.11. Let n ≥ 1 be an integer.

1. The reduction of the affinoid ZAn,1 is defined by Zp + xp+1 + x−(p+1) = 0.

The genus of the curve is 0.

2. The map πν induces a purely inseparable map π̄ν : Z
A
n+1,1 → Z

A
n,1;

(Z, x) �→ (Zp, xp).

Proof. We obtain the required assertions 1 and 2 by considering

(3.85) and (3.86) mod 0+ respectively. �

Remark 3.12. Corollary 3.11 for n = 1, 2 is proved in [CM, Proposi-

tion 8.2] and [T, Proposition 3.1 and Lemma 4.1].

Remark 3.13. As in Remark 3.5, the same things as Corollary 3.11

can be proved for ZA1,n.

3.5. Singular residue classes in ZAn,1
We show that each singular residue class in ZAn,1 is a basic wide open

whose underlying affinoid reduces to the curve defined by ap−a = s2. When

n = 1, there is a gap in the proof of [T, Corollary 3.6], and the gap is fixed

in this subsection in the same way as the proof of Proposition 3.8.1.

Let Sn,ζ1 ⊂ ZAn,1 denote the singular residue class at the point (Z, x) =

(0, xn) on Z
A
n,1, where xn = ζ1 ∈ µ2(p+1)(Fp2). Let ζ1 ∈ µ2(p+1)(Fp2), and

let ζ̃1 ∈ µ2(p+1)(Zp2) be the element such that ζ̃1 = ζ1. We set

x0,ζ1,n = ζ̃1

(
1− γnζ̃p+1

1

)
, γ0,ζ1,n = −2ζ̃p+1

1 .(3.88)

For simplicity, we write γ0 and x0 for γ0,ζ1,n and x0,ζ1,n respectively. There

exists an element ζ ′ ∈ µ4(p−1)(Qp12) such that ζ ′2(p−1) = ζ̃p+1
1 ∈ {±1}. We

set Fn = K3(αn) ·Qp12 and

α′n = −ζ ′2αn, βn = ζ ′ζ̃1β
p(p2−1)

4 α
− p(pn+1−1)

2
n ∈ OFn .(3.89)
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We have v(α′n) = (2pn+1)−1 and v(βn) = (4pn)−1. By (3.88) and (3.89), we

have

γp0 + xp+1
0 (1− γnγ0) + x

−(p+1)
0 ≡ 2γn mod (2pn)−1+,

α′n
p ≡ γnxp+1

0 α′n ≡ −β2
nx

−(p+3)
0 mod (2pn)−1 + .

(3.90)

By (3.85) and the first congruence in (3.90), we obtain

(Zn − γ0)p − γnxp+1
0 (Zn − γ0)

+ (xp+1
n − xp+1

0 )(1− γnZn) + x−(p+1)
n − x−(p+1)

0

≡ 0 mod (2pn)−1 + on ZAn,1.

(3.91)

Let Xn,ζ1 ⊂ Sn,ζ1 be the affinoid defined by v(xn−x0) ≥ (4pn)−1. On Xn,ζ1 ,

we have

(xp+1
n − xp+1

0 )(1− γnZn) + x−(p+1)
n − x−(p+1)

0

≡ −γnxp0(Zn − γ0)(xn − x0) + x
−(p+3)
0 (xn − x0)

2

mod (2pn)−1+ (cf. [T, Corollary 3.6]). Hence, by (3.91), we acquire v(Zn−
γ0) ≥ (2pn+1)−1 and

(Zn − γ0)
p − γnxp+1

0 (Zn − γ0) + x
−(p+3)
0 (xn − x0)

2

≡ 0 mod (2pn)−1+
(3.92)

on Xn,ζ1 . On Xn,ζ1 , we put

xn = x0 + βns, Zn = γ0 + α′na with v(s), v(a) ≥ 0.(3.93)

By substituting (3.93) to (3.92) and using the second congruence in (3.90),

we acquire

α′n
p (
ap − a− s2

)
≡ 0 mod (2pn)−1 + on Xn,ζ1 .(3.94)

Proposition 3.14. Let n ≥ 1 be an integer.

1. Over Fn, the affinoid Xn,ζ1 reduces to the affine curve defined by ap−a =

s2. The complement Sn,ζ1 \Xn,ζ1 is an annulus with width (4pn+1)−1.
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2. The map πν induces a purely inseparable map π̄ν : Xn+1,ζ1 → Xn,ζp1
;

(a, s) �→ (ap, sp).

Proof. We obtain the first assertion in 1 by dividing (3.94) by α′n
p.

We prove the second assertion in 1. In the following, we consider everything

on Sn,ζ1 \Xn,ζ1 . By definition, we have 0 < v(xn − x0) < (4pn)−1. We set

Zn = γ0 + z, xn = x0 + x with v(x), v(z) > 0.

We have

x−(p+1)
n − x−(p+1)

0 =
1

xp+1
0

( ∞∑
i=0

(
− x
x0

)i)p+1

− 1


≡ − x

xp+2
0

+
x2

xp+3
0

+ x3
F(x) mod 1

with some F(x) ∈ OFn [[x]]. Hence, by (3.91), we acquire

zp − γnxp+1
n z + (1− γnγ0)(xp0x+ x0x

p + xp+1)

− x

xp+2
0

+
x2

xp+3
0

+ x3
F(x) ≡ 0 mod (2pn)−1.

(3.95)

By v(γn) > v(x) > 0 and the above congruence, we have

zp − γnxp+1
0 z +

x

xp+2
0

(x
2(p+1)
0 − 1) +

x2

xp+3
0

≡ 0 mod 2v(x) + .

Since v(x
2(p+1)
0 − 1) = v(γn), the third term vanishes and we obtain

zp − γnxp+1
0 z +

x2

xp+3
0

≡ 0 mod 2v(x) + .

By considering the Newton polygon of this polynomial, we obtain pv(z) =

2v(x) and 0 < v(z) < (2pn+1)−1. Hence, we have

zp +
x2

xp+3
0

≡ 0 mod 2v(x) + .(3.96)
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By setting x = x/z
p−1
2 and dividing (3.96) by zp−1, we have z ≡ −(x2/xp+3

0 )

mod v(z)+. Therefore, we have 0 < v(x) < (4pn+1)−1. We consider a

morphism between rigid analytic curves over Fn

π : Sn,ζ1 \Xn,ζ1 → A = AFn(p
− 1

4pn+1 , 1); (z, x) �→ x.

Then, in the same way as the proof of Proposition 3.8.1, by using (3.95), for

each closed annulus A ⊂ A, we can check (3.38) and (3.39) with respect to

π−1(A) → A. Hence, the required assertion follows from Lemma 3.6. We

omit the details.

The second assertion follows from (3.86) and (3.93). �

3.6. Conclusion

As a result of the computations of the reductions in the previous subsec-

tions, we state a conclusion in this section that the reductions are related

to irreducible components in the stable reduction of X0(p
n).

Corollary 3.15. The reductions of the affinoids in Corollary 3.4.1,

Propositions 3.8.1 and 3.14.1 are isomorphic to Zariski open subsets of ir-

reducible components in the stable reduction of X0(p
n+2).

Proof. All the smooth compactifications of the reductions have pos-

itive genera. Hence, the required assertion follows from [IT4, Proposition

7.11]. �

4. Inertial Action and the Middle Cohomology

In this section, we will describe the inertia action on the reductions which

are computed in the previous section, and analyze the middle cohomology of

the reductions as representations of the inertia subgroup through the type

theory in [BH]. Throughout this section, let K be a non-archimedean local

field in Qp.

4.1. Preliminary

We recall the action of inertia on the reduction of a reduced affinoid

from [CM2, §6]. Let Kur be the maximal unramified extension of K in Qp.

If Y is a reduced affinoid over K, there is a homomorphism

wY : IK = Autcont(Cp/K
ur)→ Aut(Y)(4.1)



Affinoids in X0(p
n) and Inertia Action 323

such that

σ(P ) = wY(σ)(P )(4.2)

for each P ∈ Y(Cp) and σ ∈ IK . Let YCp denote the base change of Y

to Cp. Let A(YCp) denote OYCp
(YCp). Then, we have YCp = SpA(YCp).

The inertia subgroup IK preserves A(YCp)
◦ and A(YCp)

◦◦. Since we have

Y = Spec
(
A(YCp)

◦/A(YCp)
◦◦) ,

the existence of the homomorphism (4.1) follows.

Moreover, inertia action satisfies some compatibility with respect to mor-

phisms in the following sense.

Lemma 4.1 ([CM2, Lemma 6.1]). If f : X→ Y is a morphism between

reduced affinoids over K, then wY(σ) ◦ f̄ = f̄ ◦ wX(σ) for any σ ∈ IK .

4.2. Inertia action on the reductions in §3.4 and §3.5

We compute the inertia action on the reduction of affinoids whose re-

ductions have been computed in §3.4 and §3.5.

Proposition 4.2. Let the notation be as in (3.84). Let σ ∈ IQp and

P ∈ ZA1,1(Cp). We write σ(α1) = ξσα1. Then, we have

x1(σ(P )) = ξpσσ(x1(P )),

Z1(σ(P )) = ξ3p−1
σ σ(Z1(P )) + γ−1

1 (ξ2pσ − 1).
(4.3)

Proof. For any 0 ≤ i ≤ 3, we have σ(Xi(P )) = Xi(σ(P )). By X0 =

αp1x1 and X3 = αp1y1 in (3.83), we acquire x1(σ(P )) = ξpσσ(x1(P )) and

y1(σ(P )) = ξpσσ(y1(P )). This proves the first equality in (4.3). By γ1 =

αp−1
1 , we have σ(γ1) = ξp−1

σ γ1. Therefore, by using x1y1 = 1 + γ1Z1 in

(3.83), we obtain

Z1(σ(P )) = γ−1
1 (x1(σ(P ))y1(σ(P ))− 1) = γ−1

1 (ξ2pσ σ(x1(P ))σ(y1(P ))− 1)

= γ−1
1 (ξ2pσ σ(γ1)σ(Z1(P )) + ξ2pσ − 1)

= ξ3p−1
σ σ(Z1(P )) + γ−1

1 (ξ2pσ − 1).

This implies the second equality in (4.3). �



324 Takahiro Tsushima

Let m be a positive integer prime to p. We choose a uniformizer 1 ∈ K
and its m-th root 11/m. Let tK,m : IK � µm(F) be the character defined

by σ �→ σ(11/m)/11/m for σ ∈ IK , which is independent of choices of 1

and its m-th root. Furthermore, we have tK,m(σ) = σ(x)/x for any x ∈ Cp

whose valuation is 1/m. We call tK,m the tame character of order m. We

have tmK,mn = tK,n for any n,m ≥ 1. For K = Qp, we simply write tm for

tQp,m.

We will describe the inertia action on the reduction
∐
ζ1∈µ2(p+1)(F) X1,ζ1 .

First, we consider the case n = 1.

Proposition 4.3. Let β and θ be as in (3.80). Let σ ∈ IQp. We set

ισ = σ(
√
κ)/
√
κ ∈ {±1}, θσ = σ(θ)− ισθ.

Then, we have θ̄σ ∈ Fp2. Moreover, we set bσ,ζ1 = 2TrFp2/Fp

(
θ̄σ/ζ

′2p
)
,

where ζ ′ associated to ζ1 is chosen as in §3.5. The element σ acts on∐
ζ1∈µ2(p+1)(F) X1,ζ1 by

σ : X1,ζ1 → X1,t2(σ)ζ1 ; (a, s) �→
(
t2(σ)(a+ bσ,ζ1), t4(σ)

p+2s
)
.

Proof. By applying σ to the second equality in (3.81) and using ισ ∈
{±1}, we have

σ(θ)p
2 − σ(θ) = ισ(

√
κ)−1 = ισ(θ

p2 − θ).

Hence, we obtain θp
2

σ ≡ θσ mod 0+ by v(θ) = −(2p2)−1. Therefore, we

obtain θσ ∈ OCp and θ̄σ ∈ Fp2 . We set ι′σ = σ(β)/β. By the first equality

in (3.81), we have ι′σ
(p2−1)/2 ≡ ισ mod 0+. By α1 = θ−1 and (3.82) for

n = 1, we have (σ(α1)/α1)
2p2 ≡ 1 mod 0+ and hence (σ(α1)/α1)

2 ≡ 1

mod 0+. Note that (p2 − 1)/2 is even. By (3.89) and ζ ′, ζ̃1 ∈ Qur
p , we have

σ(β1)/β1 ≡ ι′σp(p
2−1)/4 mod 0+. Let P ∈ X1,ζ1(Cp). Recall that ξσ ≡ ισ

mod 0+ and σ(γ0) = γ0 by σ ∈ IQp and (3.88). Hence, by (3.93), (4.3) and

σ ∈ IQp , we have

s(σ(P )) ≡ ξσι′σ
p(p2−1)/4

σ(s(P )) ≡ ισι′σ
p(p2−1)/4

s(P ) mod 0+,

a(σ(P )) = ξ3p−1
σ (σ(α′1)/α

′
1)σ(a(P ))

+ (γ1α
′
1)

−1
(
ξ2pσ − 1

)
+ γ0α

′
1
−1

(ξ3p−1
σ − 1).

(4.4)
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By α1 = θ−1, we have

θσ = σ(α1)
−1 − ισα−1

1 = σ(α1)
−1(1− ισξσ) = (ξσα1)

−1(1− ισξσ).

Hence, by ι2σ = 1, we obtain

ξσ = ισ(1− ξσα1θσ).(4.5)

By considering the (2p)-th power of this equality and using v(α1) = (2p2)−1

and v(θσ) ≥ 0, we obtain

ξ2pσ ≡ 1− 2(ξσα1θσ)
p mod p−1.

Hence, by the definition of α′1 in (3.89), γ1 = αp−1
1 and ζ ′4(p−1) = 1, we have

(γ1α
′
1)

−1
(
ξ2pσ − 1

)
≡ 2(ξσθσ)

p/ζ ′2 ≡ 2ισ(θσ/ζ
′2p)p mod 0 + .(4.6)

Similarly, by considering the (3p−1)-th power of (4.5) and using (3.88) and

ζ̃p+1
1 = ζ ′2(p−1), we have

γ0α
′
1
−1

(ξ3p−1
σ − 1) ≡ 2(ζ̃p+1

1 ζ ′2)−1ισθσ ≡ 2ισ(θσ/ζ
′2p) mod 0 + .(4.7)

By σ ∈ IQp , we have σ(α′1)/α
′
1 = σ(α1)/α1 ≡ ισ mod 0+. We have t2(σ) =

ισ and ισι′σ
p(p2−1)/4

= t4(σ)
p+2. Hence, by this, (4.4), (4.6) and (4.7), the

required assertion follows. �

Remark 4.4. Compare Proposition 4.3 with [CM2, Corollary 6.11].

Corollary 4.5. The inertia subgroup IQp acts on
∐
ζ1∈µ2(p+1)(F) Xn,ζ1

by

σ : Xn,ζ1 → Xn,t2(σ)ζ1 ; (a, s) �→
(
t2(σ)(a+ b

σ,ζp
n−1

1

), t4(σ)
p−(n−2)+2s

)
for σ ∈ IQp .

Proof. The required assertion follows from Proposition 3.14.2,

Lemma 4.1 and Proposition 4.3. �
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Let WK denote the Weil group of K. Let aK : W ab
K

∼−→ K∗ be the Artin

reciprocity map normalized such that the geometric Frobenius is sent to a

prime element. We write aK : WK → K∗ for the compositeWK �W ab
K

aK−−→
K∗. Let aK : IK � O∗

K be the restriction of aK : WK → K∗ to IK .

Corollary 4.6. Let L = Qp2(
√
κ). We fix the isomorphism

(OL/(κ))∗ � F∗
p2 × Fp2 ; a + b

√
κ �→ (ā, ā−1b̄). We write a for the com-

posite

IL
aL−→ O∗

L
can.−−→ (OL/(κ))∗ � F∗

p2 × Fp2
pr2−−→ Fp2 .

For each ζ1 ∈ µ2(p+1)(F), the group IL stabilizes Xn,ζ1 and acts on it by

σ : Xn,ζ1 → Xn,ζ1 ; (a, s) �→
(
a− 2TrFp2/Fp

(
a(σ)/ζ ′2p

n
)
, tL,2(σ)s

)
for σ ∈ IL.

Proof. Let �′ be the formal OL-module over OL such that

[
√
κ]�′(X) = Xp2 +

√
κX.

Let 1′
1 and 1′

2 be elements satisfying

1′
1 �= 0, [

√
κ]�′(1′

1) = 0, [
√
κ]�′(1′

2) = 1′
1.(4.8)

If we set θ′ = 1′
2/1

′
1, by (4.8), we obtain

θ′p
2

− θ′ = −(
√
κ)−1.

Hence, by (3.80) and v(θ) = v(θ′) = −(2p2)−1, we acquire

θ ≡ −θ′ + c mod 0 +(4.9)

with some c ∈ µp2−1(OL). We write aL(σ) = aσ + bσ
√
κ+

∑∞
i=2 bi,σ(

√
κ)i ∈

O∗
L with aσ ∈ µp2−1(OL), bσ, bi,σ ∈ µp2−1(OL) ∪ {0}. By the Lubin-Tate

theory (cf. [Iw, Chapter VI]), we have

[aσ]�′(1′
1) = σ(1′

1), [aσ + bσ
√
κ]�′(1′

2) = σ(1′
2).
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This implies

aσ =
σ(1′

1)

1′
1

, aσ1
′
2 + bσ1

′
1 = σ(1′

2).

Dividing the second equality by σ(1′
1), we obtain bσ/aσ = σ(θ′)−θ′. Hence,

by (4.9) and σ ∈ IL, we obtain θ̄σ = −a(σ). Hence, the required assertion

follows from Corollary 4.5. �

For a positive integer m prime to p, let Xm be the affine smooth curve

over F which is defined by ap − a = tm. Let Xm be the smooth com-

pactification of Xm. By the Riemann-Hurwitz formula, the genus of Xm

equals (p−1)(m−1)
2 . Let Fp × µm(F) act on Xm by (a, t) �→ (a + ζ, µt) for

(ζ, µ) ∈ Fp × µm(F). Let A �= p be a prime number. For an affine variety X

over F and an integer i, we simply write H i
c(X) for the i-th étale cohomology

group with compact support H i
c(X,Q%). For a finite abelian group A, let

A∨ denote the character group HomZ(A,Q
∗
% ). By [Ka2, Corollary 2.2.(1)],

we have an isomorphism

H1
c (Xm) �

⊕
ψ∈F∨p \{1}, χ∈µm(F)∨\{1}

ψ ⊗ χ(4.10)

as Fp × µm(F)-representations.

Let b : IQp(
√
κ) → Fp be the composite of the map a : IQp(

√
κ) � IL → Fp2

in Corollary 4.6 and the trace map TrFp2/Fp : Fp2 → Fp. Let ζ ∈ Fp2 be an

element such that ζp−1 = −1. Let Tr′ : Fp2 → Fp be the map defined by

x �→ TrFp2/Fp(xζ
−1). Let b′ be the composite of a and Tr′. We define an

equivalence relation ∼ on F∨
p \ {1} by ψ ∼ ψ−1 for any ψ ∈ F∨

p \ {1}. For

each ψ ∈ F∨
p \ {1}, we define a two-dimensional irreducible representation

of IQp by

τ
(′)
ψ = Ind

IQp

IQp(
√

κ)

(
(ψ ◦ b(′))⊗ tQp(

√
κ),2

)
.(4.11)

By the Frobenius reciprocity, the isomorphism class of this representation

depends only on the equivalence class [ψ] ∈
(
F∨
p \ {1}

)
/ ∼ and, for [ψ] �=

[ψ′] ∈
(
F∨
p \ {1}

)
/ ∼, we have τψ � τψ′ as IQp-representations.

Corollary 4.7. We have an isomorphism⊕
ζ1∈µ2(p+1)(F)

H1
c (Xn,ζ1) �

⊕
ψ∈(F∨p \{1})/∼

(τψ ⊕ τ ′ψ)⊕(p+1)
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as IQp-representations.

Proof. For simplicity, we write t′2 for tQp(
√
κ),2. By Corollary 4.5, the

stabilizer of Xn,ζ1 in IQp equals IQp(
√
κ). By Corollary 4.6 and (4.10) for

m = 2, we have an isomorphism

H1
c (Xn,ζ1) �

{⊕
ψ∈F∨p \{1}((ψ ◦ b)⊗ t′2) if ζ1 ∈ µp+1(F),⊕
ψ∈F∨p \{1}((ψ ◦ b′)⊗ t′2) if ζ1 /∈ µp+1(F)

(4.12)

as IQp(
√
κ)-representations. Note that ζ ′2(p−1) = ζp+1

1 ∈ {±1}. For ε ∈
µ4(F), let ιε be the automorphism of X2 defined by (a, s) �→ (ε2a, εs). Then,

for any ζ ∈ Fp, we have an equality ιε ◦ ζ = ε2ζ ◦ ιε as automorphisms of

X2. By this, Corollary 4.5 and (4.12), we obtain isomorphisms⊕
ζ1∈µp+1(F)

H1
c (Xn,ζ1) �

⊕
ψ∈(F∨p \{1})/∼

τ
⊕(p+1)
ψ ,

⊕
ζ1 /∈µp+1(F)

H1
c (Xn,ζ1) �

⊕
ψ∈(F∨p \{1})/∼

τ ′ψ
⊕(p+1)

as IQp-representations. �

In the following two paragraphs, we fix some notations and collect

some known facts on supercuspidal representations of GL2(Qp) and two-

dimensional Galois representations.

For an admissible irreducible representation π of GL2(Qp), let c(π) de-

note its conductor in the sense of [Tu, §3], and let ωπ denote its central

character. For an integer n ≥ 1, we set

K0(p
n) =

{(
a b

c d

)
∈ GL2(Zp)

∣∣∣ c ≡ 0 (mod pn)

}
.

Let π be a supercuspidal representation of GL2(Qp) in the sense of [BH,

§9.1], and let πK0(pn) denote the K0(p
n)-fixed part of π. If c(π) = n, by

[De, Théorèm 2.2.6], we have

dimπK0(pn) =

{
1 if ωπ is trivial,

0 otherwise.
(4.13)
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Let Π0
n be the set consisting of all isomorphism classes of supercusidal repre-

sentations of GL2(Qp) with conductor n and with trivial central character.

Let E be any quadratic extension of Qp, and let (E∗)∨ be the set of

continuous characters E∗ → Q
∗
% . Let (E∗)∨,0 ⊂ (E∗)∨ denote the subset

consisting of all characters which do not factor through the Norm map

NE/Qp
: E∗ → Q∗

p. We identify a character χ ∈ (E∗)∨ with the character of

WE via the class field theory. For a character χ ∈ (E∗)∨, let a(χ) denote the

exponent of the Artin conductor of χ. We simply write IndE/Qp
χ for the two-

dimensional representation Ind
WQp

WE
χ. For χ ∈ (E∗)∨,0, the representation

IndE/Qp
χ is irreducible (cf. [BH, §34.1]). Let dE/Qp

be the exponent of the

relative discriminant of the extension, and let fE/Qp
be the residue class

degree of the extension. For an irreducible smooth representation σ of WQp

of degree 2, let a(σ) denote its Artin conductor exponent. We write detσ

for the determinant character of σ. By [Se, Corollary in VI §2], we have

a(IndE/Qp
χ) = dE/Qp

+ fE/Qp
a(χ).

This formula induces

a(IndE/Qp
χ) =

{
2a(χ) if E is unramifed,

1 + a(χ) if E is totally ramified.
(4.14)

Let Gal(E/Qp) denote the Galois group of the extension.

Let LL and LL% denote the local Langlands correspondence and the A-

adic local Langlands correspondence for GL2(Qp) in the sense of [BH, §34

and §35] respectively. We have

LL(π)
∣∣
IQp

= LL%(π)
∣∣
IQp

(4.15)

for any supercuspidal representation π by [BH, §35]. Note that, for a su-

percuspidal representation π, we have

c(π) = a (LL(π))(4.16)

by [Tu, §3] and

ωπ = det LL(π)(4.17)
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as characters of Q∗
p by [BH, Proposition in §33.4]. There are just two non-

isomorphic totally ramified extensions of Qp, for which we write L1 and L2.

We set

Xi =
{
χi ∈ (L∗

i )
∨,0 | a(χi) = 2, χi|Q∗

p
= 1

}/
Gal(Li/Qp).

For any [χi] ∈ Xi, the pair (Li/Qp, χi) is a minimal admissible pair in

the sense of [BH, §18.2]. We check this. First, note that χi does not

factor through NrLi/Qp
. Note that the level of χi in the sense of [BH,

Definition in §1.8] equals one. We have NrLi/Qp
(U1

Li
) = NrLi/Qp

(U2
Li

) =

U1
Qp

. Hence, if χi|U1
Li

factors through the Norm map NrLi/Qp
, the condition

χi|U2
Li

= 1 implies χi|U1
Li

= 1. However, this is inconsistent with a(χi) = 2.

Therefore, χ|U1
Li

does not factor through NrLi/Qp
. This implies that the pair

is admissible and minimal.

By [BH, Theorem in §34.1 and Tame Langlands correspondence (1) in

p. 219], we have a bijection

� :

2⊔
i=1

Xi ∼−→ Π0
3; [χi] �→ LL−1

(
IndLi/Qp

(
∆−1
χi
χi
))
,(4.18)

where ∆χi is defined in [BH, §34.4]. Note that ∆χi is a tamely ramified

character of L∗
i of order 4 by [BH, (34.4.2) and Lemma (1) in §34.4]. We have

det
(
IndLi/Qp

(
∆−1
χi
χi
))

= 1 by the definition of ∆χi and [BH, Proposition

in §29.2]. Hence, the well-definedness of the map � follows from (4.14),

(4.16) and (4.17).

We explain the surjectivity of (4.18) in more detail. Let π ∈ Π0
3. By

[BH, Tame Langlands correspondence (1) in p. 219], there exists an irre-

ducible two-dimensional WQp-representation τ such that LL(τ) � π. By

[BH, Theorem in §34.2], there exists an admissible pair (E/Qp, ξ) such that

IndE/Qp
ξ � τ . Since a(τ) = 3 by (4.16), the field E must be totally ram-

ified over Qp by (4.14), and a(ξ) equals two. Hence, we may assume that

E � L1. Let κE/Qp
be the non-trivial character of Q∗

p factoring through

Q∗
p/NrE/Qp

(E∗). By (4.17) and [BH, Proposition in §29.2], we acquire

1 = ωπ = det τ = det(IndE/Qp
ξ) = κE/Qp

⊗ (ξ|Q∗
p
).(4.19)

We set χ = ∆ξξ. Then, by [BH, (34.4.2)] and (4.19), we have χ|Q∗
p

= 1.

Since ∆ξ is tamely ramified, we have a(χ) = a(ξ) = 2. By [BH, Proposition-



Affinoids in X0(p
n) and Inertia Action 331

Definition (2) in §34.4], we acquire ∆χ = ∆ξ. As a result, we obtain [χ] ∈ X1

and �(χ) = π.

Lemma 4.8. Let L be a totally ramified quadratic extension of Qp. Let

τ = IndL/Qp
χ be an irreducible representation of degree two with some char-

acter χ : L∗ → Q
∗
% . Then, we have

τ |IQp
� Ind

IQp

IL
(χ|IL)

as IQp-representations.

Proof. Let σ ∈ Gal(L/Qp) be the non-trivial element. Then, we have

τ |WL
� χ⊕ χσ(4.20)

as WL-representations. Let (e1, e2) be the basis of τ |WL
on which WL acts

through the characters χ and χσ respectively. By the irreducibility of τ ,

the group WQp permutes the subspaces W1 = Q%e1 and W2 = Q%e2 in τ .

Since L is totally ramified over Qp, we have the canonical isomorphisms

IQp/IL
∼−→WQp/WL � {±1}. Hence, the action of the inertia subgroup IQp

also permutes W1 and W2. By (4.20), we have τ |IL � (χ|IL) ⊕ (χσ|IL) as

IL-representations. Therefore, the required assertion follows. �

We choose a uniformizer 1Li of Li such that 12
Li

= pui with ui ∈ Z∗
p

and fix the isomorphism U1
Li
/U2

Li
� Fp; 1 +1Lix �→ x̄. For [χ] ∈ XLi , by

χ|Q∗
p

= 1, we have χ(1Li) ∈ {±1}. By a(χ) = 2, we have χ|U2
Li

= 1. Then,

we have a bijection

Xi ∼−→
(
{±1} × (F∨

p \ {1})
)
/ �; [χ] �→ [(χ(1Li), χ|U1

Li
/U2

Li

)],(4.21)

where � is the equivalence relation on {±1} × (F∨
p \ {1}) which is defined

by (ι, ψ) � (ι, ψ−1) for any (ι, ψ) ∈ {±1}× (F∨
p \{1}). By (4.18) and (4.21),

we have |Π0
3| = 2(p− 1), which is stated also in [Tu, Remark after Theorem

3.9].

Let D denote the quaternion division algebra over Qp. Let OD be the

maximal order of D, and pD the unique maximal ideal of OD. We set

UnD = 1 + pnD for any integer n ≥ 1. Let LJ denote the local Jacquet-

Langlands correspondence for GL2(Qp) (cf. [BH, §56]). For π ∈ Πn, we

set

d(π) =
(
dimπK0(pn) dim LJ(π)

)
/2 ∈ Z.
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Corollary 4.9. 1. We have

d(π) =

{
(p+ 1)/2 if π ∈ Π0

3,

0 if π ∈ Π3 \Π0
3.

2. Let ζ̃ ∈ µ2(p−1)(Qp2) \ µp−1(Qp). We take (Qp(
√
κ),Qp(ζ̃

√
κ)) and

(
√
κ, ζ̃
√
κ) as (L1, L2) and their uniformizers (1L1 , 1L2) respectively. We

set Π0
3,Li

= �(Xi) ⊂ Π0
3. Let �i : Π0

3,Li
→ (F∨

p \ {1})/ ∼ be the com-

posite of the isomorphism � : Π0
3,Li

→ Xi, the map (4.21) and the map(
{±1} × (F∨

p \ {1})
)
/ �→ (F∨

p \ {1})/ ∼; [(ι, ψ)] �→ [ψ]. Then, we have

isomorphisms

τ�1(π) � LL%(π)|IQp
for π ∈ Π0

3,L1
, τ ′�2(π) � LL%(π)|IQp

for π ∈ Π0
3,L2

as IQp-representations.

3. We have an isomorphism⊕
ζ1∈µ2(p+1)(F)

H1
c (Xn,ζ1) �

⊕
π∈Π3

(
LL%(π)

∣∣
IQp

)⊕d(π)

as IQp-representations.

Proof. For π ∈ Π0
3, the admissible D∗-representation LJ(π) has the

form IndD
∗

L∗
iU

1
D
χ with some embedding L∗

i ↪→ D∗ and some character χ by

[BH, §56]. Hence, we have dim LJ(π) = [D∗ : L∗
iU

1
D] = [Fp2 : Fp] = p + 1

for any π ∈ Π0
3 (cf. [Tu, Theorem 3.6]). The first assertion follows from this

and (4.13).

We prove the second assertion. Let [χi] ∈ X . Then, ∆χi

∣∣
Q∗

p
is a tamely

ramified character of order two by [BH, Proposition-Definition (1) in §34.4].

Note that the canonical map Z∗
p/U

1
Qp
→ O∗

Li
/U1

Li
gives an isomorphism.

Hence, we have

∆χi |ILi
= tLi,2.(4.22)

For πi ∈ Π0
3,Li

, let χi be a character of L∗
i such that [χi] corresponds to πi

via (4.18). Let ψi ∈ F∨
p \ {1} be the character induced by χi|U1

Li
/U2

Li

(cf.

(4.21)).
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We consider the second isomorphism. Recall that the reciprocity map is

compatible with the Norm map. We fix the canonical isomorphism i : IL1

∼−→
IL

∼←− IL2 . We have a commutative diagram

IL1

� ��

i ���
��

��
��

�
IL

aL �� (OL/(κ))∗ ��

NrL/L2
��

Fp2

Tr′

��
IL2

�

��

aL2 �� (OL2/(ζ̃
2κ))∗ �� Fp,

where the top rightmost horizontal map is given by a + b
√
κ �→ b̄/ā, the

bottom rightmost horizontal map is given by a+ bζ̃
√
κ �→ b̄/ā and the right

vertical map Tr′ is given by x �→ TrFp2/Fp(x/ζ̃). Under the identification

IL2 � IL1 , this diagram implies χ2|IL2
= ψ2 ◦ b′. Hence, by (4.15), Lemma

4.8 and (4.22), we have isomorphisms

LL%(π2)|IQp
= LL(π2)

∣∣
IQp
�
(
IndL2/Qp

(∆−1
χ2
χ2)
)
|IQp

� Ind
IQp

IL1
((ψ2 ◦ b′)⊗ tL1,2) = τ ′�2(π2)

as IQp-representations. Therefore, the second isomorphism is proved. The

first one is proved more easily than the second one.

The third assertion follows from the assertions 1, 2 and Corollary 4.7. �

Remark 4.10. We consider an equivalence relation on Π0
3 as follows:

π ∼ π′ ⇐⇒ LL%(π)
∣∣
IQp
� LL%(π

′)
∣∣
IQp

as IQp-representations.

Each equivalence class consists of two isomorphism classes of representa-

tions. The wide open rigid analytic curve WA(pn) admits a left action of

O∗
D through the Serre-Tate theorem as in [CM, §4B]. By using [CM, Re-

mark 4.7], we know that the affinoid
∐
ζ1∈µ2(p+1)(F) Xn,ζ1 is stable under the

action of O∗
D. It is expected that we have an isomorphism⊕

ζ1∈µ2(p+1)(F)

H1
c (Xn,ζ1) �

⊕
π∈Π0

3/∼

(
LL%(π)

∣∣
IQp
⊗ LJ(π)

∣∣
O∗

D

)

as IQp ×O∗
D-representations.
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Remark 4.11. Assume that j(A) equals 0 or 1728. We set c(A) =

(p+ 1)/(2i(A)) ∈ Z. The reduction of Z
A
n,1 is defined by

Zp + x2c(A) + x−2c(A) = 0.

Hence, the set of all the singular residue classes in ZAn,1 corresponds to

µ4c(A)(F). We set K(A) = µi(A)(p−1)(Zp2). We regard this as a subgroup of

D∗, which is not normal. For π ∈ Πn, we set

d(A, π) = (dimπK0(pn) dim LJ(π)K(A))/2 ∈ Z.

Note that we have dim LJ(π)K(A) = (p+ 1)/i(A) for any π ∈ Π0
3. Then we

have isomorphisms⊕
ζ1∈µ4c(A)(F)

H1
c (Xn,ζ1) �

⊕
ψ∈(F∨p \{1})/∼

(
τψ ⊕ τ ′ψ

)⊕2c(A)

�
⊕
π∈Π3

(
LL%(π)

∣∣
IQp

)⊕d(A,π)

as IQp-representations.

4.3. Inertia action on Y
A
n,1

Let the notation be as in §3.1. We determine the inertia action on

Y
A
n,1.

Lemma 4.12. The inertia subgroup IQp acts on the component Y
A
n,1 by

σ : Y
A
n,1 → Y

A
n,1; (z, y) �→

(
tp+1(σ)

(−1)n−1
z, tp+1(σ)y

)
for σ ∈ IQp .

Proof. Let σ ∈ IQp . For any P ∈ YA
n,1(Cp) and 0 ≤ i ≤ n+1, we have

Xi(σ(P )) = σ(Xi(P )). By X0 = αz and Xn+1 = αp
n−1
y in (3.1), we have

z(σ(P )) = (σ(α)/α)σ(z(P )) and y(σ(P )) = (σ(α)/α)p
n−1
σ(y(P )). Hence,

the required assertion follows from (σ(α)/α)
pn−1

= tp+1(σ) and tp+1(σ)
p =

tp+1(σ)
−1. �
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When n = 1, Lemma 4.12 is checked in [E, §2.3.3]. For a proper variety

X over F an an integer i, we simply write H i(X) for the i-th étale cohomol-

ogy group H i(X,Q%). Let Y be the smooth projective curve over F with

affine model xy(x−y)p−1 = 1. Let µp+1(F) act on Y by (x, y) �→ (ζx, ζy) for

ζ ∈ µp+1(F). Let IQp act on Y by the composite of the µp+1(F)-action and

the tame character tp+1 : IQp → µp+1(F). Let µp+1(F)∨,0 ⊂ µp+1(F)∨ be the

subset which consists of all characters not factoring through the ((p+ 1)/2)-

th power map µp+1(F) � {±1}. Note that |µp+1(F)∨,0| = p − 1. By [E,

Proposition 3.2.1] or [IT, §3], we have an isomorphism

H1(Y ) �
⊕

χ∈µp+1(F)∨,0

χ ◦ tp+1(4.23)

as IQp-representations.

Corollary 4.13. Let Y
A,c
n,1 be the smooth compactification of Y

A
n,1.

We have an isomorphism

H1(Y
A,c
n,1) �

⊕
χ∈µp+1(F)∨,0

χ ◦ tp+1

as IQp-representations.

Proof. We consider the purely inseparable map Y
A
n,1 → Y defined by

(z, y) �→ (zp
n−1
, y). By Lemma 4.12, this map is IQp-equivariant. Hence,

the required assertion follows from (4.23). �

We set

X =

{
χ ∈

(
Q∗
p2

)∨,0
| a(χ) = 1, χ|Q∗

p
= 1

}/
Gal(Qp2/Qp).

Let [χ] ∈ X . Then, the restriction χ|Z∗
p2

does not factor through NrQp2/Qp
:

if it factors through the Norm map, so does χ itself since χ(p) = 1 and

a(χ) = 1. Hence, (Qp2/Qp, χ) is admissible and minimal by definition.

By [BH, §34.1 and §34.2], we have a bijection

X ∼−→ Π0
2; [χ] �→ LL−1

(
IndQp2/Qp

(∆χχ)
)
,(4.24)
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where every ∆χ is the unramified character of Q∗
p2 of order 2 (cf. [BH,

Definition in §34.4]). We fix the isomorphism Z∗
p2/U

1
Qp2

� F∗
p2 ; x �→ x̄. For

any [χ] ∈ X , the restriction χ|Z∗
p2
/U1

Q
p2

induces the character χ̄ ∈ µp+1(F)∨,0

by χ|Q∗
p

= 1 and the fact that χ|Z∗
p2

does not factor through NrQp2/Qp
.

We define an equivalence relation ∼ on µp+1(F)∨,0 by χ ∼ χ−1 for any

χ ∈ µp+1(F)∨,0. We have a bijection

X ∼−→ µp+1(F)∨,0/ ∼; [χ] �→ [χ̄].(4.25)

By (4.24) and (4.25), we have |Π0
2| = (p− 1)/2.

Corollary 4.14. 1. We have

d(π) =

{
1 if π ∈ Π0

2,

0 if π ∈ Π2 \Π0
2.

2. We have an isomorphism

H1(Y
A,c
n,1) �

⊕
π∈Π2

(
LL%(π)

∣∣
IQp

)⊕d(π)

as IQp-representations.

Proof. We have dim LJ(π) = [D∗ : Q∗
pO∗

D] = 2 for any π ∈ Π0
2 by

the construction of LJ given in [BH, §56]. Hence, the first assertion follows

from (4.13).

We prove the second assertion. We consider the composite f : Π0
2

∼−→
µp+1(F)∨,0/ ∼ of the maps (4.24) and (4.25). Let π ∈ Π0

2 and [χ0] = f(π).

Then, by (4.15), (4.24) and IQp2

∼−→ IQp , we have

LL%(π)
∣∣
IQp
� (χ0 ◦ tp+1)⊕

(
χ−1

0 ◦ tp+1

)
as IQp-representations. Hence, the required assertion follows from Corollary

4.13 and the first assertion. �

Remark 4.15. For π ∈ Π0
2, the irreducible smooth D∗-representation

LJ(π) has the form IndD
∗

Q∗
p2
U1
D
χ with some character χ by [BH, §56.4]. Note
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that Q∗
p2U

1
D = Q∗

pO∗
D and LJ(π) is two-dimensional. Let L̃J(π) denote the

character χ
∣∣
O∗

D
. For d ∈ O∗

D, let d̄ denote its image by the reduction map

O∗
D � F∗

p2 . There exists a unique character χ0 ∈ µp+1(F)∨,0 such that

L̃J(π) equals the character O∗
D → Q

∗
% defined by d �→ χ0(d̄

p−1) for d ∈ O∗
D.

It is expected that O∗
D acts on Y

A
1,1 by (x, y) �→ (d̄p−1x, d̄p−1y) for d ∈ O∗

D.

If this is true, by (4.23), we have an isomorphism

H1(Y
A,c
n,1) �

⊕
π∈Π0

2

(
LL%(π)

∣∣
IQp
⊗ L̃J(π)

)
as IQp ×O∗

D-representations.

Remark 4.16. Assume that j(A) equals 0 or 1728. The reduction Y
A
1,1

is defined by

r2 = 4s2c(A) + 1

with genus c(A) − 1. This curve admits an action of µ2c(A)(F) by (r, s) �→
(r, ζs) for ζ ∈ µ2c(A)(F). Let µ2c(A)(F)∨,0 ⊂ µ2c(A)(F)∨ be the subset of

the characters not factoring through the c(A)-th power map µ2c(A)(F) →
{±1}. Let ΠA,0

2 be the subset of Π0
2 consisting of the representations which

correspond to characters whose restrictions toK(A) are trivial under (4.24).

Note that
∣∣∣ΠA,0

2

∣∣∣ = c(A)− 1. For π ∈ Π0
2, we have

dim LJ(π)K(A) =

{
dim LJ(π) if π ∈ ΠA,0

2 ,

0 otherwise.

Hence, by (4.23), we obtain isomorphisms

H1(Y
A,c
n,1) �

⊕
χ∈µ2c(A)(F)∨,0

(χ ◦ t2c(A)) �
⊕
π∈Π2

(
LL%(π)

∣∣
IQp

)⊕d(A,π)

as IQp-representations.

4.4. Inertia action on the reductions in §3.2 and §3.3

We compute the inertia action on the reduction of YA
n,2 for n ≥ 2.
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Lemma 4.17. Let the notation be as in (3.4) and (3.56). Let σ ∈ IQp.

We write σ(α1) = ξσα1. Then, we have

β−1
2 (1− ξp+1

σ ) ≡ θσ/ζ0 mod 0+,

(β2γ1)
−1(ξp(p+1)

σ − 1) ≡ (θσ/ζ0)
p mod 0 + .

(4.26)

In particular, we have v(ξp+1
σ − 1) ≥ p−2.

Proof. As in (3.4), we have

βp
2−1 = κ, α1 = (βθ1)

p−1, γ1 = αp
2−1

1 .(4.27)

By this, we have σ(β)/β ∈ µp2−1(Qp2). By using this, (3.56) and (4.27), we

have

β−1
2 (1− ξp+1

σ ) =
1

ζ0α
p+1
1

(
1−

(
σ(βθ1)

βθ1

)p2−1
)

=
1

ζ0α
p+1
1

(
1−

(
σ(θ1)

θ1

)p2−1
)

=
1

ζ0α
p+1
1

(
1−

(
1 +

θσ
θ1

)p2−1
)

≡ θσ

ζ0α
p+1
1 θ1

=
θσ

ζ0βp
2−1θp

2

1

=
θσ

ζ0κθ
p2

1

≡ θσ
ζ0

mod 0+,

where we use v(θ−1
1 ) = p−2 and v(α1) = (p2(p+1))−1 at the fourth congru-

ence, and use (3.56) at the last congruence. Similarly, by using (4.27) and

ζp−1
0 ≡ −1 mod 0+, we have

(β2γ1)
−1(ξp(p+1)

σ − 1) =
1

ζ0α
p(p+1)
1

((
σ(θ1)

θ1

)p(p2−1)

− 1

)

=
1

ζ0α
p(p+1)
1

((
1 +

θσ
θ1

)p(p2−1)

− 1

)

≡ − θpσ

ζ0α
p(p+1)
1 θp1

= − θpσ

ζ0(κθ
p2

1 )p
≡
(
θσ
ζ0

)p
mod 0 + .
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Hence, the required assertion follows. �

Proposition 4.18. Let the notation be as in (3.8). Let σ ∈ IQp and

P ∈ YA
2,2(Cp). Then, we have

x(σ(P )) = ξpσσ(x(P )), y(σ(P )) = ξpσσ(y(P )),

Z(σ(P )) ≡ ξ(p+1)(2p−1)
σ σ(Z(P )) + γ−1

1

(
ξp(p+1)
σ − 1

)
mod p−2 + .

Proof. Note that

Xi(σ(P )) = σ(Xi(P )) for i = 0, 4.(4.28)

We set α = αp1. By X0 = αx and X4 = αy in (3.7), we acquire x(σ(P )) =

ξpσσ(x(P )) and y(σ(P )) = ξpσσ(y(P )). We consider (3.8). We have

(xy(x− y)p−1)(σ(P )) = ξp(p+1)
σ σ((xy(x− y)p−1)(P )).(4.29)

We set s(x, y) = αxyφ2(x− y)−1. Since we have

s(x, y) = X0X4(g(X4)− g(X0))(X0 −X4)
−1,

we acquire s(x(σ(P )), y(σ(P ))) = σ(s(x(P ), y(P ))) by (4.28) and g(X) ∈
Zp[X]. Hence, by (3.8), (4.29) and σ(γ1) = ξp

2−1
σ γ1, we have

Z(σ(P )) = γ−1
1

(
(xy(x− y)p−1)(σ(P ))− 1− s(x(σ(P )), y(σ(P )))

)
= γ−1

1

(
ξp(p+1)
σ σ (1 + γ1Z(P ) + s(x(P ), y(P )))

− 1− σ(s(x(P ), y(P )))
)

= ξ(p+1)(2p−1)
σ σ(Z(P )) + γ−1

1 (ξp(p+1)
σ − 1)(1 + σ(s(x(P ), y(P )))).

Hence, the required assertion follows from Lemma 4.17 and v(s(x, y)) > 0. �

We describe the inertia action on
∐
ζ∈Tn Xn,ζ . First, we consider the

case n = 2. By x = (r + 1)/(2s) and y = (r − 1)/(2s) in (3.41), we have

r = (x + y)/(x − y) and s = 1/(x − y). Let ζ ∈ T2 and P ∈ X2,ζ(Cp). By

Proposition 4.18, we obtain

r(σ(P )) = σ(r(P )), s(σ(P )) = ξ−pσ σ(s(P )).(4.30)
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Proposition 4.19. Let σ ∈ IQp. We fix the isomorphism

(Zp2/(κ
2))∗ � F∗

p2 × Fp2 ; a + bκ �→ (ā, ā−1b̄). We write a for the com-

posite

IQp

∼←− IQp2

aQ
p2−−−→ Z∗

p2
can.−−→ (Zp2/(κ

2))∗ � F∗
p2 × Fp2

pr2−−→ Fp2 .

Let ζ0 be as in §3.3. We set b(σ) = TrFp2/Fp
(
a(σ)/ζ̄0

)
. Then, the element

σ acts on
∐
ζ∈T2

X2,ζ by

σ : X2,ζ → X2,tp+1(σ)ζ ; (a, t) �→
(
a− b(σ), tp+1(σ)

−1t
)
.

Proof. Let ζ ′0 be as in §3.3. By ζ ′0 ∈ Qur
p and σ ∈ IQp , we have

σ(ζ ′0) = ζ ′0. As in (3.56), we have β2 = ζ0α
p+1
1 and γ′0,2 = 1+αp+1

1 b2. Then,

we have σ(γ′0,2) = 1 + ξp+1
σ (γ′0,2 − 1). By (3.59) for n = 2 and (4.30), we

acquire

t(σ(P )) = ξpσσ(t(P )),

a(σ(P )) =
σ(β2)

β2
σ(a(P )) + γ′0,2β

−1
2 (ξ2p(p+1)

σ − 1)

+ ξ(p+1)(2p−1)
σ β−1

2 (1− ξp+1
σ ) + (β2γ1)

−1(ξp(p+1)
σ − 1)

≡ σ(a(P )) + β−1
2 (1− ξp+1

σ )

+ (β2γ1)
−1(ξp(p+1)

σ − 1) mod 0+,

(4.31)

where we use Lemma 4.17 at the last congruence. Let θ1 be as in (3.4).

We set θσ = σ(θ1) − θ1. By (3.4), we have σ(θ1)
p2 − σ(θ1) = θp

2

1 − θ1. By

v(θ1) = v(θ′1) = −p−2, we have θσ ∈ OCp and hence θσ ∈ Fp2 . By the

property of tame character and ξ̄σ ∈ µp2−1(Fp2), we have

tp+1(σ) = σ(αp
2

1 )/αp
2

1 = ξ̄p
2

σ = ξ̄σ.(4.32)

Let �′ be the formal Zp2-module over Zp2 such that [κ]�′(X) = Xp2+κX.

We take non-zero elements 1′
1 and 1′

2 such that

[κ]�′(1′
1) = 0, [κ]�′(1′

2) = 1′
1.(4.33)
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We put θ′1 = 1′
2/1

′
1. By (4.33), we have

1′
1
p2−1

= −κ, θ′1
p2 − θ′1 = −κ−1.

Hence, by v(θ1) = −p−2 and (3.4), we obtain θ1 ≡ −θ′1 + c mod 0+ with

some c ∈ µp2−1(Qp2). We set θ′σ = σ(θ′1)− θ′1. Then, by σ ∈ IQp , we have

θσ ≡ −θ′σ mod 0 + .(4.34)

We set aQp2
(σ) = aσ + bσκ +

∑∞
i=2 bi,σκ

i ∈ Z∗
p2 with aσ ∈ µp2−1(Qp2) and

bσ, bi,σ ∈ µp2−1(Qp2) ∪ {0}. By the Lubin-Tate theory, we have

[aσ]�′(1′
1) = σ(1′

1), [aσ + bσκ]�′(1′
2) = σ(1′

2).

This implies

aσ = σ(1′
1)/1

′
1, aσ1

′
2 + bσ1

′
1 = 1′

1.

Dividing the second equality by σ(1′
1), we obtain bσ/aσ = θ′σ. Hence, by

(4.34), we obtain θ̄σ = −a(σ). Hence, the required assertion follows from

(4.26), (4.31) and (4.32). �

Corollary 4.20. The inertia subgroup IQp acts on
∐
ζ∈Tn Xn,ζ by

σ : Xn,ζ → Xn,tp+1(σ)(−1)nζ ; (a, t) �→
(
a+ b(σ), tp+1(σ)

(−1)n−1
t
)

for σ ∈ IQp .

Proof. The required assertion follows from Proposition 3.8.2, Lemma

4.1 and Proposition 4.19. �

Corollary 4.21. We have an isomorphism⊕
ζ∈Tn

H1
c (Xn,ζ) �

⊕
ψ∈F∨p \{1}, χ∈µp+1(F)∨

((χ ◦ tp+1)⊗ (ψ ◦ b))⊕p

as IQp-representations.
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Proof. We note that the induced action of IQp on Tn factors through

the abelian quotient tp+1 : IQp � µp+1(F) by Corollary 4.20. By (4.10) and

Corollary 4.20, we obtain⊕
ζ∈Tn

H1
c (Xn,ζ) �

⊕
χ′∈µp+1(F)∨

⊕
ψ∈F∨p \{1}, χ∈µp+1(F)∨\{1}

× ((χ′ ◦ tp+1)⊗ (χ ◦ tp+1)⊗ (ψ ◦ b))
�

⊕
ψ∈F∨p \{1}, χ∈µp+1(F)∨

((χ ◦ tp+1)⊗ (ψ ◦ b))⊕p

as IQp-representations. �

We set

X =
{
χ ∈

(
Q∗
p2

)∨,0
| a(χ) = 2, χ|Q∗

p
= 1, χ|U1

Q
p2

not factoring through NrQp2/Qp

}/
Gal(Qp2/Qp).

For [χ] ∈ X , the pair (Qp2/Qp, χ) is minimal admissible pair by definition.

By [BH, §34.1 and §34.2], we have a bijection

X ∼−→ Π0
4; [χ] �→ LL−1

(
IndQp2/Qp

(∆χχ)
)
,(4.35)

where ∆χ is the unramified character of Q∗
p2 of order 2 (cf. [BH, §34.4]). No

element of Π0
4 does not come from an admissible pair (E/Qp, χ) with E/Qp

totally ramified. Assume that such pair exists. Since the central character

of π is trivial, we obtain χ|U1
Qp

= 1 by [BH, Proposition in §29.4]. By (4.14),

we have a(χ) = 3. By the canonical isomorphism U1
Qp
/U2

Qp

∼−→ U2
E/U

3
E , we

must have χ|U2
E

= 1. But, by a(χ) = 3, this is a contradiction.

We fix the isomorphism Z∗
p2/U

2
Qp2

∼−→ F∗
p2 ×Fp2 ; a+ bp �→ (ā, ā−1b̄). For

any [χ] ∈ X , the restriction χ|Z∗
p2
/U2

Q
p2

induces the character of F∗
p2 × Fp2 ,

for which we write χ̄. By χ|Q∗
p

= 1 and the condition that χ|U1
Q
p2

does not

factor through the Norm map NrQp2/Qp
: Q∗

p2 → Q∗
p, the character χ̄ induces

the element of the following set:

Y = {(χ′, ψ) ∈ µp+1(F)∨ × F∨
p2 | ψ dose not factor through

TrFp2/Fp : Fp2 → Fp, ψ|Fp = 1}/ �,
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where � is the equivalence relation defined by (χ′, ψ) � (χ′−1, ψ◦(x �→ xp)).

Hence, we obtain the map � : X → Y. This is bijective. Hence, we have

|Π0
4| = (p2 − 1)/2.

Corollary 4.22. 1. We have

d(π) =

{
p if π ∈ Π0

4,

0 if π ∈ Π4 \Π0
4.

2. We have an isomorphism⊕
ζ∈Tn

H1
c (Xn,ζ) �

⊕
π∈Π4

(
LL%(π)

∣∣
IQp

)⊕d(π)

as IQp-representations.

Proof. Let π ∈ Π0
4. By [BH, §56], we have an isomorphism LJ(π) �

IndD
∗

Q∗
p2
U1
D
ρ as D∗-representations, where ρ is some irreducible representation

of Q∗
p2U

1
D of dimension p. Hence, we have dim LJ(π) = 2p for any π ∈ Π0

4.

Hence, the first assertion follows from (4.13).

We prove the second assertion. We set [(χ, ψ)] = �(π). Then, by (4.15),

(4.35) and IQp2

∼−→ IQp , we have isomorphisms

LL%(π)|IQp
= LL(π)|IQp

� ((χ ◦ tp+1)

⊗ (ψ ◦ a))⊕ ((χ−1 ◦ tp+1)⊗ (ψ ◦ (x �→ xp) ◦ a))
(4.36)

as IQp-representations. We set tr′ : Fp2 → Fp; x �→ TrFp2/Fp(x/ζ̄0). Since

ζ̄p−1
0 = −1, we have tr′(x) = 0 for any x ∈ Fp. Since p is odd, we have

{ψ ◦ tr′ ∈ F∨
p2 | ψ ∈ F∨

p \ {1}}
= {ψ ∈ F∨

p2 | ψ does not factor through

TrFp2/Fp : Fp2 → Fp, ψ|Fp = 1}
(4.37)

Note that

b = tr′ ◦a.(4.38)
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Hence, the required assertion follows from the first assertion, Corollary 4.21,

(4.36), (4.37), (4.38) and the bijection X � Y. �

Remark 4.23. For π ∈ Π0
4, let L̃J(π) denote the unique irreducible

representation of O∗
D of dimension p which satisfies an isomorphism

L̃J(π)⊕2 � LJ(π)
∣∣
O∗

D
as O∗

D-representations. It is expected that
∐
ζ∈Tn Xn,ζ

is stable under the action of O∗
D, and we have an isomorphism⊕

ζ∈Tn
H1

c (Xn,ζ) �
⊕
π∈Π0

4

(
LL%(π)

∣∣
IQp
⊗ L̃J(π)

)
(4.39)

as IQp ×O∗
D-representations.

Remark 4.24. We consider the equalities which are obtained by taking

the dimensions of the both sides of the isomorphisms in Corollaries 4.9, 4.14

and 4.22. A reason why these equalities hold can be explained by using [IT2,

Proposition 4.3]. However, we do not explain this in detail, because we have

to recall the whole shape of the stable reduction or the stable covering of

the wide open rigid curve WA(pn) for 2 ≤ n ≤ 4 and need some facts in

representation theory.

Remark 4.25. Assume that j(A) ∈ {0, 1728}. Let T An =
{
ζ ∈ Fp2 |

4ζ2c(A) + 1 = 0
}
. Let ΠA,0

4 be the subset of Π0
4 consisting of representations

which correspond to characters whose restrictions to K(A) are trivial under

(4.35). For π ∈ Π0
4, we have

dim LJ(π)K(A) =

{
dim LJ(π) if π ∈ ΠA,0

4 ,

0 otherwise.

Hence, we acquire isomorphisms⊕
ζ∈T A

n

H1
c (Xn,ζ) �

⊕
ψ∈F∨p \{1}, χ∈µ2c(A)(F)∨

((
χ ◦ t2c(A)

)
⊗ (ψ ◦ b)

)⊕p
�
⊕
π∈Π4

(
LL%(π)

∣∣
IQp

)⊕d(A,π)

as IQp-representations.
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Remark 4.26. For a prime 5 ≤ p ≤ 13, it is expected that the same

isomorphisms as the ones in Remarks 4.11, 4.16 and 4.25 hold. Actually,

for p = 5, 7, we can check them by using computations given in [T2]. For

p = 3, the situation is considerably different, because of |Aut(A)| = 12

for the supersingular elliptic curve in characteristic 3. See [Mc, Theorem

3.11 and §4.1] on the stable reduction of X0(3
4) and the inertia action on

it. Since Galois representations in the case p = 2 become complicated, the

stable reduction of X0(p
n) is much more difficult to understand.
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