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The Magnus Representation and Homology Cobordism

Groups of Homology Cylinders

By Takuya Sakasai

Abstract. A homology cylinder over a compact manifold is a ho-
mology cobordism between two copies of the manifold together with a
boundary parametrization. We study abelian quotients of the homol-
ogy cobordism group of homology cylinders. For homology cylinders
over general surfaces, it was shown by Cha, Friedl and Kim that their
homology cobordism groups have infinitely generated abelian quotient
groups by using Reidemeister torsion invariants. In this paper, we first
investigate their abelian quotients again by using another invariant
called the Magnus representation. After that, we apply the machinery
obtained from the Magnus representation to higher dimensional cases
and show that the homology cobordism groups of homology cylinders
over a certain series of manifolds regarded as a generalization of sur-
faces have big abelian quotients. In the proof, a homological localiza-
tion, called the acyclic closure, of a free group and its automorphism
group play important roles and our result also provides some informa-
tion on these groups from a group-theoretical point of view.

1. Introduction

Let Σg,1 be a compact connected oriented surface of genus g with one

boundary component. A homology cylinder over Σg,1 is a homology cobor-

dism between two copies of Σg,1 together with a boundary parametriza-

tion. The set of all isomorphism classes of homology cylinders has a natural

product operation given by stacking, so that it forms a monoid denoted

by Cg,1. The study of the monoid Cg,1 was initiated by Goussarov [7] and

Habiro [9] in their theory of clasper surgery and finite type invariants of

3-dimensional manifolds. In their study, a quotient group of the monoid by

clasper surgery equivalence was introduced and its structure was intensively

clarified in Massuyeau-Meilhan [19, 20] and Habiro-Massuyeau [10].
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On the other hand, Garoufalidis and Levine [4] introduced another

equivalence relation by considering homology cobordisms of homology cylin-

ders and they defined the quotient groupHg,1 called the homology cobordism

group of homology cylinders. Investigating the structure of the group Hg,1

is considered to be important because it provides an efficient way of under-

standing the set of homology cobordism classes of 3-dimensional manifolds

as the braid group contributes to knot theory. In this paper, we focus on

this group Hg,1 as well as its generalization to higher dimensional cases.

Another motivation for studying the monoid and groups of homology

cylinders comes from the fact that they include the mapping class group

Mg,1 of Σg,1. They share many properties. For example, Garoufalidis-

Levine [4], Levine [18] and Habegger [8] gave a deep relationship to the

theory of Johnson homomorphisms used originally in the study ofMg,1 and

its subgroups. In pursuing more relationships between Mg,1 and Hg,1, it

should be an important step to determine and compare their abelianizations.

As forMg,1, it was first shown by Harer [11] that the abelianization is trivial

(namely, the group Mg,1 is perfect) except a few low genus cases. On the

other hand, the abelianization of Hg,1 has not yet been determined (see

Section 5 for details).

In our previous paper [26], we introduced two kinds of invariants of ho-

mology cylinders, the Magnus representation and the Reidemeister torsion.

Both invariants are crossed homomorphisms from the monoid Cg,1 to some

groups of matrices. It was observed that the Magnus representation factors

through Hg,1, while the Reidemeister torsion does not so. In the same pa-

per, we found many abelian quotients of submonoids of Cg,1 and subgroups

of Hg,1. However no information was extracted on abelian quotients of the

whole monoid and group. It had been conjectured that Hg,1 was perfect for

general g as in the case of Mg,1.

After that, however, Cha, Friedl and Kim [2] succeeded in showing that

the abelianization of Hg,1 is infinitely generated by using a version of the

Reidemeister torsion which we will call the H-torsion in this paper. In

fact, they took an appropriate reduction of the torsion invariant so that the

resulting map becomes a homology cobordism invariant homomorphism.

The purpose of the first half of this paper is to use (the determinant

of) the Magnus representation together with Cha-Friedl-Kim’s reduction

technique to investigate again abelian quotients of Hg,1. In Section 5, we
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will show that there exists a relationship between the invariant obtained

from the Magnus representation and Cha-Friedl-Kim’s torsion invariant.

Our invariant using the Magnus representation can be easily applied to

homology cylinders over higher dimensional manifolds, which seem to have

their own interest. Investigating this invariant is the purpose of the second

half. The main theorem (Theorem 6.1) is that the homology cobordism

groups of homology cylinders over a certain series of manifolds regarded

as a higher dimensional generalization of surfaces have abelian quotients

isomorphic to the free abelian group of infinite rank. For the proof, we use

a purely group-theoretical description of the Magnus representation as the

representation of the automorphism group of the acyclic closure of a free

group. This description was first given by Le Dimet [15] in the context

of string links, and then we clarified its relationship to homology cylinders

in our previous paper [24]. The definition of the acyclic closure, which is

originally due to Levine [16, 17], and its fundamental properties are reviewed

in Section 7. We prove the theorem by constructing first an epimorphism

from the homology cobordism group onto the automorphism group of the

acyclic closure of a free group (Theorem 7.7) and then showing that this

automorphism group has an abelian quotient isomorphic to the free abelian

group of infinite rank (Theorem 8.5).

All manifolds are assumed to be smooth throughout this paper, while

similar statements hold for other categories. We use the same notation to

write a continuous map and the induced homomorphisms on fundamen-

tal groups and homology groups. Also, all homology groups are with Z-

coefficients.

The author would like to thank Yasushi Kasahara and Gwénaël Mas-

suyeau for helpful comments and discussions. This research was partially

supported by JSPS KAKENHI (No. 21740044 and No. 24740040), Japan

Society for the Promotion of Science, Japan.

2. Homology Cylinders over a Manifold

We begin by giving the definition of homology cylinders over a manifold.

Originally, homology cylinders are introduced and studied for surfaces by

Goussarov [7], Habiro [9], Garoufalidis and Levine [4, 18]. The definition

below is a natural generalization to it.

Let X be a compact oriented connected k-dimensional manifold. We
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assume for simplicity that the boundary ∂X of X is connected or empty.

Definition 2.1. A homology cylinder over X consists of a compact

oriented (k+1)-dimensional manifold M with two embeddings i+, i− : X ↪→
∂M such that:

(i) i+ is orientation-preserving and i− is orientation-reversing,

(ii) ∂M = i+(X) ∪ i−(X) and i+(X) ∩ i−(X) = i+(∂X) = i−(∂X),

(iii) i+|∂X = i−|∂X ,

(iv) i+, i− : H∗(X)→ H∗(M) are isomorphisms.

We denote a homology cylinder by (M, i+, i−) or simply M . The boundary

∂M of M is the double of X if ∂X �= ∅. Otherwise it is the disjoint union

of two copies of X.

Two homology cylinders (M, i+, i−) and (N, j+, j−) over X are said

to be isomorphic if there exists an orientation-preserving diffeomorphism

f : M
∼=−→ N satisfying j+ = f ◦ i+ and j− = f ◦ i−. We denote by C(X)

the set of all isomorphism classes of homology cylinders over X. We define

a product operation on X by

(M, i+, i−) · (N, j+, j−) := (M ∪i−◦(j+)−1 N, i+, j−)

for (M, i+, i−), (N, j+, j−) ∈ C(X), which endows C(X) with a monoid

structure. The unit is the trivial homology cylinder (X× [0, 1], id×1, id×0),

where collars of i+(X) = (id×1)(X) and i−(X) = (id×0)(X) are stretched

half-way along (∂X)× [0, 1] so that i+(∂X) = i−(∂X).

Example 2.2. For a self-diffeomorphism ϕ of X which restricts to the

identity map on a neighborhood of ∂X, we can construct a homology cylin-

der by setting

(X × [0, 1], id× 1, ϕ× 0)

with the same treatment of the boundary as above. It is easily checked

that the isomorphism class of (X × [0, 1], id × 1, ϕ × 0) depends only on

the isotopy (fixing a neighborhood of ∂X pointwise) class of ϕ and that
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this construction gives a monoid homomorphism from the diffeotopy group

M(X) to C(X).

Remark 2.3. The homomorphism M(X) → C(X) is not necessarily

injective. In fact, if [ϕ] ∈ Ker (M(X)→ C(X)), the definition of the homo-

morphism only says that ϕ is a pseudo isotopy over X.

We also introduce homology cobordisms of homology cylinders, which

define an equivalence relation among homology cylinders.

Definition 2.4. Two homology cylinders (M, i+, i−) and (N, i+, i−)

over X are said to be homology cobordant if there exists a compact oriented

(k + 2)-dimensional manifold W such that:

(1) ∂W = M ∪ (−N)/(i+(x) = j+(x), i−(x) = j−(x)) x ∈ X,

(2) the inclusions M ↪→W , N ↪→W induce isomorphisms on the homol-

ogy group,

where −N denotes the manifold N with the opposite orientation.

We denote by H(X) the quotient set of C(X) with respect to the equiv-

alence relation of homology cobordism. The monoid structure of C(X) in-

duces a group structure of H(X). We call H(X) the homology cobordism

group of homology cylinders over X.

3. Homology Cylinders over a Surface

Let Σg,1 be a compact oriented surface of genus g with one boundary

component. We take a base point p of Σg,1 on the boundary ∂Σg,1 and

2g oriented loops γ1, γ2, . . . , γ2g as in Figure 1. These loops form a spine

R2g of Σg,1 and they give a basis of π1(Σg,1), a free group of rank 2g. The

boundary loop ζ is given by ζ = [γ1, γg+1][γ2, γg+2] · · · [γg, γ2g]. We denote

the first homology group H1(Σg,1) by H for simplicity. The group H can be

identified with Z
2g by choosing {γ1, γ2, . . . , γ2g} as a basis of H, where we

write γj again for γj as an element of H. This basis is a symplectic basis

with respect to the intersection pairing on H.

We use the notation Mg,1 := M(Σg,1), Cg,1 := C(Σg,1) and Hg,1 :=

H(Σg,1) following our previous papers. The diffeotopy group Mg,1 is also



746 Takuya Sakasai

Fig. 1. Our basis of π1(Σg,1).

called the mapping class group of Σg,1. It was shown by Garoufalidis-Levine

[4, Section 2.4] that the homomorphism Mg,1 → Cg,1 and the composition

Mg,1 → Cg,1 → Hg,1 are injective.

Example 3.1 (Levine [18]). Let L be a string link of g strings, which is

a generalization of a pure braid. We embed a g-holed disk D2
g into Σg,1 as

a closed regular neighborhood of the union of the loops γg+1, γg+2, . . . , γ2g

in Figure 1. Let C be the complement of an open tubular neighborhood of

L in D2 × [0, 1]. By choosing a framing of L, we can fix a diffeomorphism

h : ∂C
∼=−→ ∂(D2

g × [0, 1]). Then the manifold ML obtained from Σg,1× [0, 1]

by removing D2
g × [0, 1] and regluing C by h becomes a homology cylinder

with the same boundary parametrizations i+, i− as the trivial homology

cylinder.

The monoid Cg,1 and the group Hg,1 share many properties with the

group Mg,1. The most fundamental one is given by their action on H.

Define a map

σ : Cg,1 −→ Aut (H)

by assigning to (M, i+, i−) ∈ Cg,1 the automorphism i−1
+ ◦ i− of H. This

map extends the natural action of Mg,1 on H and it is a monoid homomor-

phism. The image of ϕ consists of the automorphisms of H preserving the

intersection pairing. Therefore, under the identification H ∼= Z
2g mentioned

above, we have an epimorphism

σ : Cg,1 −→ Sp(2g,Z).
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We put ICg,1 := Kerσ, which is an analogue of the Torelli group Ig,1 =

Ker(σ : Mg,1 → Sp(2g,Z)). We can see that σ induces a group homomor-

phism σ : Hg,1 → Sp(2g,Z) and we denote its kernel by IHg,1.

4. Magnus Representation and H-torsion for Homology Cylin-

ders

Here, we recall two kinds of invariants for homology cylinders from [5,

26], which are analogous to invariants for string links defined by Le Dimet

[15] and Kirk-Livingston-Wang [13].

Since the group H = H1(Σg,1) is free abelian, the group ring Z[H] is

isomorphic to the Laurent polynomial ring of variables γ1, γ2, . . . , γ2g. We

can embed Z[H] into the fractional field KH := Z[H](Z[H]− {0})−1.

Let (M, i+, i−) ∈ Cg,1 be a homology cylinder. Since H1(M) ∼= H1(Σg,1),

the field KH1(M) := Z[H1(M)](Z[H1(M)]−{0})−1 is defined. We regard KH

and KH1(M) as local coefficient systems on Σg,1 and M respectively. By an

argument using covering spaces, we have the following. We refer to [3,

Proposition 2.10] and [13, Proposition 2.1] for the proof.

Lemma 4.1. i± : H∗(Σg,1, p; i
∗
±KH1(M)) → H∗(M,p;KH1(M)) are iso-

morphisms of right KH1(M)-vector spaces.

This lemma plays an important role in defining our invariants below.

(I) Magnus representation

By using the spine R2g taken in the previous section, we identify

π1(Σg,1) = 〈γ1, . . . , γ2g〉 with a free group F2g of rank 2g. Since R2g ⊂ Σg,1

is a deformation retract, we have

H1(Σg,1, p ; i∗±KH1(M)) ∼= H1(R2g, p ; i∗±KH1(M))

= C1(R̃2g)⊗F2g i∗±KH1(M)
∼= K2g

H1(M)

with a basis {γ̃1 ⊗ 1, . . . , γ̃2g ⊗ 1} ⊂ C1(R̃2g)⊗F2g i∗±KH1(M) as a right free

KH1(M)-module, where γ̃i is a lift of γi on the universal covering R̃2g. We

denote by K2g
H1(M) the space of column vectors with 2g entries in KH1(M).
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Definition 4.2. (1) For M = (M, i+, i−) ∈ Cg,1, we denote by

r′(M) ∈ GL(2g,KH1(M)) the representation matrix of the right KH1(M)-

isomorphism

K2g
H1(M)

∼= H1(Σg,1, p ; i∗−KH1(M))
∼=−−−−→

i−1
+ ◦i−

H1(Σg,1, p ; i∗+KH1(M)) ∼= K2g
H1(M)

(2) The Magnus representation for Cg,1 is the map r : Cg,1 → GL(2g,KH)

which assigns to M = (M, i+, i−) ∈ Cg,1 the matrix r(M) := i−1
+ r′(M)

obtained from r′(M) by applying i−1
+ to each entry.

We call r(M) the Magnus matrix for M . The map r has the following

properties:

Theorem 4.3 ([26, 25]). (1) (Crossed homomorphism) For M1,M2 ∈
Cg,1, we have

r(M1 ·M2) = r(M1) · σ(M1)r(M2).

In particular, the restriction of r to ICg,1 is a homomorphism.

(2) (Symplecticity) For any M ∈ Cg,1, we have the equality

r(M)T J̃ r(M) = σ(M)J̃ ,

where r(M)T is obtained from r(M) by taking the transpose and applying

the involution induced from the map (H � x �→ x−1 ∈ H) to each entry, and

J̃ ∈ GL(2g,Z[H]) is the matrix which appeared in Papakyriakopoulos’ paper

[23]. (The matrix J is mapped to the usual symplectic matrix by applying

the trivializer Z[H]→ Z to each entry.)

(3) (Homology cobordism invariance) The map r : Cg,1 → GL(2g,KH)

induces a crossed homomorphism r : Hg,1 → GL(2g,KH) and its restriction

to IHg,1 is a homomorphism.

(II) H-torsion

Since the relative complex C∗(M, i+(Σg,1);KH1(M)) obtained from any

smooth triangulation of (M, i+(Σg,1)) is acyclic by Lemma 4.1, we can define

its Reidemeister torsion

τ(C∗(M, i+(Σg,1);KH1(M))) ∈ K×
H1(M)/(±H1(M)),
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where K×
H1(M) := KH1(M) − {0} is the unit group of KH1(M). We refer to

Milnor [21] and Turaev [29] for generalities of Reidemeister torsions.

Definition 4.4. The H-torsion τ(H) of a homology cylinder M =

(M, i+, i−) ∈ Cg,1 is defined by

τ(M) := i−1
+ τ(C∗(M, i+(Σg,1);KH1(M))) ∈ K×

H/(±H),

where K×
H = KH − {0} is the unit group of KH .

The map τ : Cg,1 → K×
H/(±H) has the following properties:

Theorem 4.5. (1) (Crossed homomorphism [26]) For M1,M2 ∈ Cg,1,
we have

τ(M1 ·M2) = τ(M1) · σ(M1)τ(M2).

In particular, the restriction of τ to ICg,1 is a homomorphism.

(2) (Cha-Friedl-Kim [2, Theorem 3.10], Turaev [28, Theorem 1.11.2]) If

M,N ∈ Cg,1 are homology cobordant, then there exists q ∈ K×
H such that

τ(M) = τ(N) · q · q ∈ K×
H/(±H).

Note that the restriction of τ toMg,1 is trivial since Σg,1×[0, 1] is simple

homotopy equivalent to Σg,1 × {1}.
Explicit formulas for r(M) and τ(M) are given in [5, Section 4], which

are based on the formulas for the corresponding invariants of string links by

Kirk-Livingston-Wang [13]. An admissible presentation of π1(M) is defined

to be a presentation of the form

〈i−(γ1), . . . , i−(γ2g), z1, . . . , zl, i+(γ1), . . . , i+(γ2g) | r1, . . . , r2g+l〉

for some integer l ≥ 0. That is, it is a finite presentation with deficiency 2g

whose generating set includes i−(γ1), . . . , i−(γ2g), i+(γ1), . . . , i+(γ2g) and

is ordered as above. Such a presentation always exists. For any admissible

presentation, we define 2g× (2g + l), l× (2g + l) and 2g× (2g + l) matrices

A,B,C by

A =

i−1
+
((

∂rj
∂i−(γi)

))
1≤i≤2g

1≤j≤2g+l

, B =

i−1
+
((

∂rj
∂zi

))
1≤i≤l

1≤j≤2g+l

,
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C =

i−1
+
((

∂rj
∂i+(γi)

))
1≤i≤2g

1≤j≤2g+l

over Z[H] ⊂ KH .

Proposition 4.6 ([5, Propositions 4.5, 4.6]). For any homology cylin-

der M = (M, i+, i−) ∈ Cg,1, the square matrix

(
A

B

)
is invertible over KH

and we have

r(M) = −C

(
A

B

)−1(
I2g

0(l,2g)

)
∈ GL(2g,KH),

τ(M) = det

(
A

B

)
∈ K×

H/(±H).

Example 4.7 ([26, Examples 4.4, 6.2]). Let L be the string link of

2 strings depicted in Figure 2. We can construct a homology cylinder

(ML, i+, i−) ∈ C2,1 as mentioned in Example 3.1.

An admissible presentation of π1(ML) is given by

〈
i−(γ1), . . . , i−(γ4)

z
i+(γ1), . . . , i+(γ4)

i+(γ1)i−(γ3)
−1i+(γ4)i−(γ1)

−1,
[i+(γ1), i+(γ3)]i+(γ2)zi−(γ2)

−1[i−(γ3), i−(γ1)],
i+(γ4)i−(γ3)i+(γ4)

−1z−1,
i−(γ3)i+(γ3)

−1i−(γ3)
−1z, i−(γ4)z

−1i+(γ4)
−1z

〉
.

Fig. 2. The string link L.
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By using Proposition 4.6, we have

r(ML) =



1 0 0 0

0 1 0 0

−γ−1
1

γ−1
3 +γ−1

4 −1

γ−1
2 γ−1

3 γ−1
4 −γ−1

4 +1

γ−1
3 +γ−1

4 −1

γ−1
3

γ−1
3 +γ−1

4 −1

γ−1
4 (γ−1

4 −1)

γ−1
3 +γ−1

4 −1

γ−1
1 γ3γ

−1
4

γ−1
3 +γ−1

4 −1

(1−γ−1
3 )(γ−1

2 γ−1
3 −γ−1

2 −1)

γ−1
3 +γ−1

4 −1

γ−1
3 −1

γ−1
3 +γ−1

4 −1

−γ−1
3 γ−1

4 +γ−1
3 +2γ−1

4 −1

γ−1
3 +γ−1

4 −1


,

τ(ML) = −1 + γ3 − γ3γ
−1
4 = −γ3(γ

−1
3 + γ−1

4 − 1).

Note that

det(r(ML)) = γ−1
3 γ−1

4

γ3 + γ4 − 1

γ−1
3 + γ−1

4 − 1
.

5. Abelian Quotients

In this section, we discuss abelian quotients of Cg,1 and Hg,1 by compar-

ing them to the corresponding result for Mg,1. First, as commented in [6],

we point out that Cg,1 has the monoid θ3
Z

of homology 3-spheres as a big

abelian quotient. In fact, we have a forgetful homomorphism F : Cg,1 → θ3
Z

defined by F (M, i+, i−) = S3(X1(X2( · · · (Xn for the prime decomposition

M = M0(X1(X2( · · · (Xn of M where M0 is the unique factor having non-

empty boundary and Xi ∈ θ3
Z

(1 ≤ i ≤ n). The map F owes its well-

definedness to the uniqueness of the prime decomposition of 3-manifolds

and it is a monoid epimorphism.

The underlying 3-manifolds of homology cylinders obtained from Mg,1

are all Σg,1 × [0, 1] and, in particular, irreducible. Therefore it seems more

reasonable to compare Mg,1 with the submonoid Cirr
g,1 of Cg,1 consisting of

all (M, i+, i−) with M irreducible.

In contrast with the fact that Mg,1 is a perfect group for g ≥ 3 (see

Harer [11]), many infinitely generated abelian quotients for monoids and

homology cobordism groups of irreducible homology cylinders have been

found until now. For example, we have the following results:

• In [26, Corollary 6.16], we showed that the submonoids Cirr
g,1∩ICg,1 and

Ker (Cirr
g,1 → Hg,1) have abelian quotients isomorphic to (Z≥0)

∞. The

proof uses the H-torsion τ and its non-commutative generalization.
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• Morita [22, Corollary 5.2] used what is called the trace maps to show

that the group IHg,1, which coincides with the quotient of Cirr
g,1∩ICg,1

by homology cobordisms, has an abelian quotient isomorphic to Z
∞.

• In a joint work with Goda in [6, Theorem 2.6], we showed that Cirr
g,1

has an abelian quotient isomorphic to (Z≥0)
∞ by using sutured Floer

homology (a variant of Heegaard Floer homology). However, the pro-

jection map to this abelian quotient does not factor through Hg,1.

By taking into account the similarity between the two groups Mg,1 and

Hg,1, it had been conjectured that Hg,1 was perfect. However, Cha-Friedl-

Kim [2] found a method for extracting homology cobordism invariants of

homology cylinders from the H-torsion τ : Cg,1 → K×
H/(±H), which is a

crossed homomorphism, as follows.

First they consider the subgroup A ⊂ K×
H defined by

A := {f−1 · ϕ(f) | f ∈ K×
H , ϕ ∈ Sp(2g,Z)},

by which we can obtain a homomorphism

τ : Cg,1 −→ K×
H/(±H ·A).

Note that f = f holds in K×
H/(±H · A) since −I2g ∈ Sp(2g,Z). Second,

they use the equality mentioned in Theorem 4.5 (2). Namely, if we put

N := {f · f | f ∈ K×
H},

then we obtain a homomorphism

τ̃ : Hg,1 −→ K×
H/(±H ·A ·N).

Note that f2 = ff = 1 holds for any f ∈ K×
H/(±H ·A ·N).

The structure of K×
H/(±H · A · N) is given as follows. Recall that

KH = Z[H](Z[H] − {0})−1. The ring Z[H] is a Laurent polynomial ring

of 2g variables and it is a unique factorization domain. Thus every Lau-

rent polynomial f is factorized into irreducible polynomials uniquely up to

multiplication by a unit in Z[H]. In particular, for every irreducible poly-

nomial λ ∈ Z[H], we can count the exponent of λ in the factorization of f .

This counting naturally extends to that for elements in K×
H by using nega-

tive numbers for denominators. Under the identification by ±H ·A ·N , an
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element in K×
H/(±H ·A ·N) is determined by the exponents of all Sp(2g,Z)-

orbits of irreducible polynomials (up to multiplication by a unit in Z[H])

modulo 2. Note that the action of Sp(2g,Z) keeps the irreducibility of a

polynomial in Z[H] and the number of its monomials unchanged. There-

fore K×
H/(±H ·A ·N) is isomorphic to (Z/2Z)∞. Finally by using infinitely

many (Z/2Z)-torsion elements of the knot concordance group, they show

the following:

Theorem 5.1 (Cha-Friedl-Kim [2]). The image of the homomorphism

τ̃ : Hg,1 −→ K×
H/(±H ·A ·N)

is isomorphic to (Z/2Z)∞ and it splits.

Remark 5.2. In [2], Cha-Friedl-Kim further applied the above method

to homology cylinders over a compact oriented surface Σg,n of genus g with

n ≥ 2 boundaries and showed that the abelianization of the homology cobor-

dism group H(Σg,n) has infinite rank.

Now we try to investigate abelian quotients of Hg,1 by using the Magnus

representation r. It looks easier to extract information of Hg,1 from the

representation r together with Cha-Friedl-Kim’s idea, since r itself is an

homology cobordism invariant as mentioned in Theorem 4.3 (3). Consider

two maps

r̂ : Hg,1
r−→ GL(2g,KH)

det−−→ K×
H −→ K×

H/(±H),

r̃ : Hg,1
r̂−→ K×

H/(±H) −→ K×
H/(±H ·A).

While r̂ is a crossed homomorphism, its restriction to IHg,1 and r̃ are ho-

momorphisms. Note that both K×
H/(±H) and K×

H/(±H ·A) are isomorphic

to Z
∞.

Theorem 5.3. (1) For (M, i+, i−) ∈ Cg,1, the equality

r̂(M) = τ(M) · (τ(M))−1 ∈ K×
H/(±H)

holds.

(2) For g ≥ 1, the homomorphism r̃ : Hg,1 → K×
H/(±H ·A) is trivial.
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(3) For g ≥ 2, the image of the homomorphism r̂|IHg,1 : IHg,1 → K×
H/(±H)

is isomorphic to Z
∞.

Proof. (1) Let

〈i−(γ1), . . . , i−(γ2g), z1, . . . , zl, i+(γ1), . . . , i+(γ2g) | r1, . . . , r2g+l〉

be an admissible presentation of π1(M). We calculate the matrices A, B,

C as in the previous section. By the formula in Proposition 4.6, we have an

equality

(
r(M) Z

)
= −C

(
A

B

)−1

for some 2g × l matrix Z. It follows that r(M)A = −ZB − C. By taking

the determinant of(
r(M) 0(2g,l)

0(l,2g) Il

)(
A

B

)
=

(
r(M)A

B

)
=

(
−ZB − C

B

)
,

we have the equality

det(r(M)) det

(
A

B

)
= det

(
−ZB − C

B

)
= det

(
−C

B

)
= det

(
C

B

)
.

Again by Proposition 4.6, we have det

(
A

B

)
= τ(M) and it is easy to see

that

det

(
C

B

)
= σ(M)τ(M−1),

where M−1 = (−M, i−, i+) ∈ Cg,1. Recall that τ(M) is the pullback of

the torsion of the complex C∗(M, i+(Σg,1);KH1(M)) by i+, and τ(M−1) is

that of C∗(M, i−(Σg,1);KH1(M)) by i−. These complexes are related by the

Poincaré duality. By the duality of Reidemeister torsions (see Milnor [21]

or Turaev[29]), we have

i−τ(M−1) = τ(C∗(M, i−(Σg,1);KH1(M)))

= τ(C∗(M, i+(Σg,1);KH1(M))) = i+τ(M) ∈ KH1(M)/(±H1(M)).
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Therefore we have σ(M)τ(M−1) = τ(M). Our claim follows from this.

(2) As mentioned above, the action of Sp(2g,Z) implies that f = f for

any f ∈ K×
H/(±H · A). Then the claim immediately follows from (1). (We

may also use the symplecticity of the image of r mentioned in Theorem 4.3

(2).)

(3) We use the homology cylinder ML ∈ C2,1 in Example 4.7. While

ML /∈ IC2,1, we can adjust it by some g1 ∈ M2,1 so that ML · g1 ∈ IC2,1.

Since r̂ is trivial on M2,1, we have

r̂(ML · g1) = r̂(ML) =
γ3 + γ4 − 1

γ−1
3 + γ−1

4 − 1
∈ K×

H/(±H).

Take f ∈M2,1 such that σ(f) ∈ Sp(4,Z) maps

γ1 �−→ γ1 + γ4, γ2 �−→ γ2, γ3 �−→ γ2 + γ3, γ4 �−→ γ4.

Consider fm ·ML ∈ C2,1 and adjust it by some gm ∈M2,1 so that fm ·ML ·
gm ∈ IC2,1. Then we have

r̂(fm ·ML · gm) = σ(fm)r̂(ML) =
γm

2 γ3 + γ4 − 1

γ−m
2 γ−1

3 + γ−1
4 − 1

∈ K×
H/(±H).

Since γm
2 γ3 + γ4 − 1 is a degree 1 polynomial with respect to the variable

γ3 and the coefficient of γ3 is a monomial, we see that it is irreducible. By

applying the involution, the irreducibility of γ−m
2 γ−1

3 + γ−1
4 − 1 follows. It

is easily checked that

γm
2 γ3 + γ4 − 1 �= γ−m

2 γ−1
3 + γ−1

4 − 1

γm
2 γ3 + γ4 − 1 �= γk

2γ3 + γ4 − 1 (m �= k)

as elements of K×
H/(±H) by considering the ratios among monomials, which

are invariant under the multiplication of any element of ±H. Therefore we

conclude that the values{
γm

2 γ3 + γ4 − 1

γ−m
2 γ−1

3 + γ−1
4 − 1

}∞

m=0

generate an infinitely generated subgroup of K×
H/(±H). This completes the

proof when g = 2. We can use the above computation for g ≥ 3 by a

stabilization. �

From the above theorem, we observe that it seems not easy to find new

abelian quotients of Hg,1 by using the Magnus representation.
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6. Generalization to Higher-Dimensional Cases

In the remaining sections, we apply the argument in the previous section

to higher dimensional cases and see that the determinant of the Magnus

representation works well for them.

For k ≥ 2 and n ≥ 1, we put

Xk
n := #

n
(S1 × Sk−1).

The manifold Xk
n may be regarded as a generalization of a closed surface

since X2
n = Σn,0.

Suppose k ≥ 3. Then we have π1(X
k
n) ∼= π1(X

k
n − IntDk) ∼= Fn, where

IntDk is an open k-ball. We choose a base point p of Xk
n − IntDk from

the boundary and take an ordered basis {γ1, γ2, . . . , γn} of Fn (and H1 :=

H1(Fn) ∼= Z
n).

Similarly to Lemma 4.1, we can check that

i± : H∗(X
k
n − IntDk, p ; i∗±KH1(M))→ H∗(M,p ;KH1(M))

are isomorphisms of right KH1(M)-vector spaces for any homology cylinder

(M, i+, i−) over Xk
n − IntDk, where KH1 = Z[H1](Z[H1] − {0})−1. Hence

we can define the Magnus representation

r : C(Xk
n − IntDk) −→ GL(n,KH1)

by the same procedure as before. The map r is a crossed homomorphism

and induces r : H(Xk
n − IntDk)→ GL(n,KH1). Consider the composition

r̃ : H(Xk
n − IntDk)

r−→ GL(n,KH1)
det−→ K×

H1
−→ K×

H1
/(±H1 ·A′) ∼= Z

∞,

where A′ := {f−1 ·ϕ(f) | f ∈ K×
H1

, ϕ ∈ Aut(H1)}, which gives a homomor-

phism.

Now we mention the main result in the remaining sections. Note that

we have a surjective homomorphism H(Xk
n − IntDk) � H(Xk

n) by gluing

a small trivial cylinder along the boundary, which corresponds to capping

the boundary of Xk
n − IntDk by a k-ball Dk.

Theorem 6.1. For any k ≥ 3 and n ≥ 2, we have:
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(1) The image of the homomorphism r̃ is an infinitely generated subgroup

of Z
∞. In particular, H1(H(Xk

n − IntDk)) has infinite rank.

(2) The homomorphism r̃ factors through H(Xk
n). Therefore H1(H(Xk

n))

has infinite rank.

For the proof, which occupies Sections 7 and 8, we use the action of

H(Xk
n − IntDk) on the group called the acyclic closure of Fn. This action

may be regarded as a generalization of the action of the diffeotopy group

M(Xk
n − IntDk) on Fn = π1(X

k
n − IntDk). Recall that the Magnus repre-

sentation was originally defined for automorphisms of Fn by using the Fox

derivatives. The Magnus representation for homology cylinders we have

seen is an extension of this representation by using twisted homology. In

the following sections, we describe an equivalent definition of our Magnus

representation by using the extended Fox derivatives first given by Le Dimet

[15].

7. The Acyclic Closure of a Group

The notion of the acyclic closure (or HE-closure in [17]) of a group was

defined as a variation of the algebraic closure of a group by Levine [16, 17].

We summarize here the definition and fundamental properties. We also

refer to Hillman’s book [12] and Cha’s paper [1].

Definition 7.1. Let G be a group, and let Fm = 〈x1, x2, . . . , xm〉 be

a free group of rank m.

(i) w = w(x1, x2, . . . , xm) ∈ G ∗ Fm, a word in x1, x2, . . . , xm and elements

of G, is said to be acyclic if

w ∈ Ker
(
G ∗ Fm

proj−−→ Fm −→ H1(Fm)
)
.

(ii) Consider the following “equation” with variables x1, x2, . . . , xm:
x1 = w1(x1, x2, . . . , xm)

x2 = w2(x1, x2, . . . , xm)
...

xm = wm(x1, x2, . . . , xm)

.
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When all words w1, w2, . . . , wm ∈ G ∗ Fm are acyclic, we call such an equa-

tion an acyclic system over G.

(iii) A group G is said to be acyclically closed (AC, for short) if every acyclic

system over G with m variables has a unique “solution” in G for any m ≥ 0,

where a “solution” means a homomorphism ϕ that makes the diagram

G

id

�������������������������

��

G ∗ Fm

〈〈x1w
−1
1 , . . . , xmw−1

m 〉〉 ϕ
�� G

commutative, where 〈〈x1w
−1
1 , . . . , xmw−1

m 〉〉 denotes the normal closure in

G ∗ Fm.

Example 7.2. Let G be an abelian group. For g1, g2, g3 ∈ G, consider

the equation {
x1 = g1x1g2x2x

−1
1 x−1

2

x2 = x1g3x
−1
1

,

which is an acyclic system. Then we have a unique solution x1 = g1g2, x2 =

g3.

As we see from this example, all abelian groups are AC. Moreover, it

is shown in [16, Proposition 1] that AC groups are closed under taking

intersections, direct products, central extensions, direct limits and inverse

limits. In particular, all nilpotent groups are AC.

Let us define the acyclic closure of a group.

Proposition 7.3 ([16, Proposition 3]). For any group G, there exists

a pair of a group Gacy and a homomorphism ιG : G → Gacy satisfying the

following properties:

(1) Gacy is an AC-group.

(2) Let f : G → A be a homomorphism and suppose that A is an AC-

group. Then there exists a unique homomorphism facy : Gacy → A

which satisfies facy ◦ ιG = f .
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Moreover such a pair is unique up to isomorphism.

Definition 7.4. We call ιG (or Gacy) obtained above the acyclic clo-

sure of G.

Taking the acyclic closure of a group is functorial, namely, for each

group homomorphism f : G1 → G2, we have the induced homomorphism

facy : Gacy
1 → Gacy

2 by applying the universal property of Gacy
1 to the homo-

morphism ιG2 ◦ f , and the composition of homomorphisms induces that of

the corresponding homomorphisms on acyclic closures.

The most important properties of the acyclic closure are the following,

where a homomorphism is said to be 2-connected if it induces an isomor-

phism on the first (group) homology and an epimorphism on the second

homology.

Proposition 7.5 ([16, Proposition 4]). For any group G, the acyclic

closure ιG : G→ Gacy is 2-connected.

Proposition 7.6 ([16, Proposition 5]). Let G1 be a finitely generated

group and G2 be a finitely presentable group. For each 2-connected homo-

morphism f : G1 → G2, the induced homomorphism facy : Gacy
1 → Gacy

2 on

acyclic closures is an isomorphism.

From Proposition 7.5 and Stallings’ theorem [27], the nilpotent quotients

of a group and those of its acyclic closure are isomorphic. Note that the

homomorphism ιG is not necessarily injective: consider a perfect group G

and the 2-connected homomorphism G → {1}. As for a free group Fn, its

residual nilpotency shows that ιFn : Fn → F acy
n is injective. We write γi ∈

F acy
n again for the image of γi ∈ Fn by ιFn : Fn = 〈γ1, γ2, . . . , γn〉 ↪→ F acy

n .

Now we return to our discussion on homology cylinders. For each homol-

ogy cylinder (M, i+, i−) ∈ C(Xk
n − IntDk), the homomorphisms i± : Fn =

π1(X
k
n − IntDk) → π1(M) are 2-connected. Hence we have a commutative

diagram

Fn
i−−−−→ π1(M)

i+←−−− Fn

ιFn

� ιπ1(M)

� �ιFn

F acy
n

iacy−−−−→∼=
π1(M)acy

iacy+←−−−∼=
F acy
n
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by Proposition 7.6. From this, we obtain a monoid homomorphism

Acy : C(Xk
n − IntDk) −→ Aut (F acy

n )

defined by Acy(M, i+, i−) = (iacy
+ )−1 ◦ iacy

− and we can check that it induces

a group homomorphism

Acy : H(Xk
n − IntDk) −→ Aut (F acy

n ).

For homology cylinders over the closed manifold Xk
n, we have similar homo-

morphisms

Acy : C(Xk
n) −→ Out (F acy

n ),

Acy : H(Xk
n) −→ Out (F acy

n )

using the outer automorphism group Out (F acy
n ) := Aut (F acy

n )/Inn (F acy
n )

of F acy
n .

Theorem 7.7. For any k ≥ 3 and n ≥ 2, the homomorphisms

Acy : H(Xk
n − IntDk) −→ Aut (F acy

n ),

Acy : H(Xk
n) −→ Out (F acy

n )

are surjective.

Proof. It suffices to show the surjectivity of the upper one. Given an

element ϕ ∈ Aut(F acy
n ), we produce a homology cylinder M = (M, i+, i−) ∈

H(Xk
n−IntDk) satisfying Acy(M) = ϕ. The construction below is based on

the argument in Garoufalidis-Levine [4, Theorem 3] and its generalization

in [24, Theorem 6.1].

First we take two continuous maps f+, f− : Xk
n − IntDk → K(F acy

n , 1)

corresponding to homomorphisms ιFn , ϕ ◦ ιFn : Fn → F acy
n , respectively.

Since ∂(Xk
n − IntDk) = Sk−1 is simply connected, we can combine these

maps and obtain a map f := f+ ∪ f− : Xk
2n = (Xk

n − IntDk) ∪ (−(Xk
n −

IntDk)) → K(F acy
n , 1). Let i+, i− : Xk

n − IntDk → Xk
2n be the correspond-

ing embeddings onto the domains of f+ and f−. The manifold Xk
2n is the

boundary of M0 := 12n S1 ×Dk, the boundary connected sum of 2n copies

of S1 × Dk. Since π1(M0) ∼= π1(X
k
2n), we can extend f to the continuous
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map Φ : M0 → K(F acy
n , 1). Note that H1(M0) ∼= Z

2n and Hi(M0) = 0 for

all i ≥ 2.

Since f ◦ i+ = ιFn : Fn → F acy
n induces an isomorphism on the first

homology, we have H1(M0) ∼= i+(H1(X
k
n − IntDk)) ⊕ Ker Φ. To obtain a

homology cylinder satisfying Acy(M) = ϕ, we perform surgery to M0 to kill

Ker Φ ∼= Z
n with keeping Φ on Xk

2n = ∂M0. Take an element α ∈ H1(M0)

from a basis of Ker Φ.

(Case 1) Suppose there exists a representative C ∈ π1(M0) of α by

a simple closed curve with Φ(C) = 1 ∈ F acy
n . Let W1 be the (k + 2)-

manifold obtained from M0 × [0, 1] by attaching a 2-handle S1 × Dk+1 to

M0 × {1} ⊂ ∂(M0 × [0, 1]) with any framing. We have

π1(W1) = π1(M0)/〈〈C〉〉,

where 〈〈C〉〉 denotes the normal closure of the subgroup generated by C.

The relative chain complex C∗(W1,M0 × [0, 1]) associated with the handle

decomposition has only one generator in degree 2 and its homology class hits

α ∈ H1(M0 × [0, 1]) ∼= H1(M0). Therefore H1(W1) ∼= H1(M0)/〈α〉 ∼= Z
2n−1

and Hi(W1) ∼= Hi(M0) if i �= 1. Since Φ(C) = 1, we can extend Φ to W1.

We write Φ : W1 → K(F acy
n , 1) again for the extension.

Consider W1 to be a cobordism between M0 = M0 × {0} and a new

manifold M1. That is, ∂W1 = M0 ∪ (−M1). By duality, the cobordism W1

is obtained from M1× [0, 1] by attaching a k-handle. Since k ≥ 3, it follows

that H1(M1) ∼= H1(W1) with Ker Φ|M1
∼= Z

n−1.

(Case 2) Suppose there does not exist a representative C ∈ π1(M0) of

α by a simple closed curve with Φ(C) = 1 ∈ F acy
n . In this case, we replace

(M0, i+, i−) by another manifold (M0.5, i+, i−) which is homology bordant

to M0 over K(F acy
n , 1) and for which we can take a simple closed curve

representing α ∈ H1(M0.5) ∼= H1(M0) and its image by Φ is trivial in F acy
n .

Then we can apply the same argument as Case 1 to M0.5.

Such a manifold M0.5 is given as follows. The homomorphism i+ :

Fn → π1(M0) induces a homomorphism iacy
+ : F acy

n → π1(M0)
acy satisfying

iacy
+ ◦ιFn = ιπ1(M0)◦i+. Similarly we have Φacy : π1(M0)

acy → F acy
n satisfying

Φ = Φacy ◦ ιπ1(M0). Then

Φacy ◦ iacy
+ ◦ ιFn = Φacy ◦ ιπ1(M0) ◦ i+ = ιFn .

By the universality of the acyclic closure, we have Φacy ◦ iacy
+ = idF acy

n
. In

particular, Φacy is onto.
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Take a simple closed curve C representing α ∈ Ker Φ. Since Φ(α) = 0 ∈
H1(F

acy
n ), we can write Φ(C) =

∏l
i=1[hi1, hi2] with hij ∈ F acy

n . We take an

acyclic system

S : xi = wi(x1, x2, . . . , xm) (i = 1, 2, . . . ,m)

over π1(M0) whose solution in π1(M0)
acy includes

{iacy
+ (h11), i

acy
+ (h12), . . . , i

acy
+ (hl1), i

acy
+ (hl2)}.

We attach a 1-handle to M0 × {1} ⊂ ∂(M0 × [0, 1]) for each variable xi

and write xi again for the added generator on the fundamental group of the

resulting cobordism. We also attach a 2-handle along the loop xiw
−1
i for

each i = 1, 2, . . . ,m with any framing. We denote the resulting cobordism

by W0.5. Then

π1(W0.5) = (π1(M) ∗ 〈x1, x2, . . . , xm〉)
/
〈〈x1w

−1
1 , x2w

−1
2 , . . . , xmw−1

m 〉〉.

We define a homomorphism ΦS : π1(W0.5) → π1(M0)
acy which lifts ιπ1(M0)

by sending xi to the corresponding solution of S. The composite Φacy ◦ΦS :

π1(W0.5) → F acy
n induces a continuous map Φ : W0.5 → K(F acy

n , 1) which

extends Φ : M0 → K(F acy
n , 1).

The relative chain complex C∗(W0.5,M0 × [0, 1]) given by the handle

decomposition has its non-trivial part in degree 1 and 2 generated by the

above newly added handles. The acyclicity of the system S says that the

boundary of the 2-handle associated with the relation xiw
−1
i is of the form

[xi] + (1-handles in M0 × [0, 1]) ≡ [xi] ∈ C1(W0.5,M0 × [0, 1]).

Therefore H∗(W0.5,M0 × [0, 1]) ∼= H∗(W0.5,M0) = 0 holds.

Consider W0.5 to be a cobordism between M0 = M0 × {0} and a new

manifold M0.5. The dual handle decomposition of W0.5 is obtained from

M0.5 × [0, 1] by attaching k- and (k + 1)-handles. This shows that the

inclusion M0.5 ↪→ W0.5 induces an isomorphism π1(M0.5) ∼= π1(W0.5). By

the Poincaré-Lefschetz duality, H∗(W0.5,M0.5) ∼= H(k+2)−∗(W0.5,M0) = 0.

Therefore we see that M0 and M0.5 are homology bordant over K(F acy
n , 1)

by the bordism W0.5 and Φ. Note that this bordism preserves the direct

sum decomposition H1(M0) ∼= i+(H1(X
k
n − IntDk)) ⊕ Ker Φ, namely we
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also have H1(M0.5) ∼= i+(H1(X
k
n − IntDk)) ⊕ Ker Φ and we can take α ∈

Ker Φ ⊂ H1(M0.5) which corresponds to α.

Recall the simple closed curve C taken at the beginning of this argument.

Since π1(M0.5) → π1(W0.5) is an isomorphism, there exists a simple closed

curve C ⊂ M0.5 which attains C in π1(W0.5). Now hij ∈ F acy
n are in the

image of ΦS : π1(W0.5)→ F acy
n , so that we can take hij ∈ π1(M0.5) attaining

hij . Then the simple closed curve C
(∏l

i=1[hi1, hi2]
)−1

represents α and is

mapped by Φ to the trivial element of F acy
n . The manifold M0.5 and the

map Φ : M0.5 → K(F acy
n , 1) are what we are looking for in this case.

By iterating the above procedure, we succeed in killing Ker Φ ⊂ H1(M0)

with keeping f = Φ|Xk
2n

: Xk
2n = ∂M0 → K(F acy

n , 1) unchanged. That

is, we get a manifold Mn which is bordant to M0 over K(F acy
n , 1) by a

bordism Wn and a map Φ : Wn → K(F acy
n , 1) such that the kernel of

Φ|Mn : H1(Mn) → H1(K(F acy
n , 1)) is trivial. Since Φ ◦ i+ = ιFn , the maps

i+ : H1(X
k
n − IntDk) → H1(Mn) and Φ : H1(Mn) → H1(K(F acy

n , 1)) are

isomorphisms.

Let us show that (Mn, i+, i−) is a homology cylinder over Xk
n − IntDk.

The bordism Wn is obtained from M0 × [0, 1] by attaching 1-and 2-handles

with the number of 2-handles greater than that of 1-handles by n. The dual

handle decomposition is obtained from Mn × [0, 1] by attaching their dual

k-and (k + 1)-handles. Therefore we have

χ(Mn) + (−1)kn = χ(Wn) = χ(M0) + n = 1− n,

where χ(·) denotes the Euler characteristic, and

Hi(Mn) ∼= Hi(Wn) ∼= Hi(M0) = 0

if 2 ≤ i ≤ k − 2. Since Mn is a compact (k + 1)-dimensional manifold with

non-empty boundary, it is homotopy equivalent to a k-dimensional CW-

complex. Hence Hi(Mn) = 0 for i ≥ k+1 and Hk(Mn) is free. The inclusion

i+ : Xk
n−IntDk ↪→Mn is decomposed to Xk

n−IntDk ↪→ ∂Mn ↪→Mn, which

shows that H1(Mn, ∂Mn) = 0. By the Poincaré-Lefschetz duality, we have

Hk(Mn) ∼= H1(Mn, ∂Mn) = 0. It follows that Hk(Mn) = 0 and Hk−1(Mn) is

free. Comparing with χ(Mn) = 1−n+(−1)k−1n, we have Hk−1(Mn) ∼= Z
n.

Finally we check that i+ : Hk−1(X
k
n − IntDk) → Hk−1(Mn) is an isomor-

phism. The source and target are both isomorphic to Z
n. The homo-

morphism ϕ ◦ ιFn : π1(X
k
n − IntDk) → F acy

n is 2-connected and factors
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through π1(X
k
n − IntDk)

i−−→ π1(Mn)
Φ−→ F acy

n . From this, we see that

H1(Mn, i−(Xk
n − IntDk)) = 0. The Poincaré-Lefschetz duality shows that

Hk(Mn, i+(Xk
n − IntDk)) ∼= H1(Mn, i−(Xk

n − IntDk))

∼= Hom(H1(Mn, i−(Xk
n − IntDk)),Z) = 0

and it follows that Hk−1(Mn, i+(Xk
n − IntDk)) is a torsion module. In

fact, it is trivial because the universal coefficient theorem and the Poincaré-

Lefschetz duality say that

Hk−1(Mn, i+(Xk
n − IntDk)) ∼= Hk(Mn, i+(Xk

n − IntDk))

∼= H1(Mn, i−(Xk
n − IntDk)) = 0.

Hence M := (Mn, i+, i−) is a homology cylinder over Xk
n − IntDk. Now we

have a commutative diagram:

Xk
n − IntDk

f−
��

i−
���������������

K(F acy
n , 1) Xk

n − IntDk
f+

��

i+
���������������

Mn

Φ

��

From this diagram, we see that

Acy(M) = (iacy
+ )−1 ◦ iacy

− = (facy
+ )−1 ◦ facy

− = ϕ.

This completes the proof. �

Remark 7.8. Theorem 7.7 is considered to be an analogue of a part

of Laudenbach’s theorem [14, Théorème 4.3] that the natural action of the

diffeotopy group M(X3
n − IntD3) on π1(X

3
n − IntD3) = Fn gives an epi-

morphism M(X3
n − IntD3) � Aut (Fn), where the same statement holds

for Xk
n − IntDk with k ≥ 4.

Remark 7.9. For homology cylinders over a surface Σg,1, we can also

define a homomorphism Acy : Hg,1 → Aut (F acy
2g ), where F2g = π1(Σg,1).

In this case, however, it was shown in [24, Theorem 6.1] that Acy is not

surjective. In fact, the image is given by

{ϕ ∈ Aut(F acy
2g ) | ϕ(ζ) = ζ ∈ F acy

2g },
where ζ ∈ F2g ⊂ F acy

2g is the word corresponding to the boundary loop of

Σg,1. This may be regarded as an analogue of the Dehn-Nielsen theorem for

the action of the mapping class group Mg,1 on F2g.
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8. The Magnus Representation Revisited

Now we give an alternative description of the Magnus representation

for homology cylinders and use it to finish the proof of Theorem 6.1. For

that, we recall the extended free derivatives originally defined by Le Dimet

[15]. Precisely speaking, the derivatives given below are a reduced version

to commutative rings.

Let {γ1, γ2, . . . , γn} be a basis of a free group Fn. The definition of the

extended free derivatives is derived from the following lemma. The proof is

almost the same as that of [15, Proposition 1.1].

Proposition 8.1. The homomorphism

χ : Kn
H1
−→ I(F acy

n )⊗Z[F acy
n ] KH1

sending (a1, . . . , an)T ∈ Kn
H1

to
n∑

i=1

(γ−1
i − 1) ⊗ ai is a right KH1-isomor-

phism, where I(F acy
n ) is the kernel of the trivializer Z[F acy

n ]→ Z.

Definition 8.2. For 1 ≤ i ≤ n, the extended free derivative

∂

∂γi
: F acy

n −→ KH1

with respect to γi is the map assigning to v ∈ F acy
n the i-th component of

χ−1((v−1 − 1)⊗ 1) ∈ KH1 .

In Le Dimet [15, Proposition 1.3], the formulas

∂γj
∂γi

= δi,j ,
∂(gh)

∂γi
=

∂g

∂γi
+ g

∂h

∂γi
,

∂g−1

∂γi
= −g−1 ∂g

∂γi

for g, h ∈ F acy
n are given. By them, we see that the extended free derivatives

coincide with the original ones if we restrict them to Fn.

Definition 8.3. The Magnus representation for Aut(F acy
n ) is the map

r : Aut(F acy
n )→M(n,KH1)
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assigning to ϕ ∈ Aut(F acy
n ) the matrix

r(ϕ) :=

((
∂ϕ(γj)

∂γi

))
i,j

.

It is not difficult to check that the Magnus representation r is a crossed

homomorphism and hence the image of r is included in the set GL(n,KH1).

When we compute the Magnus matrix r(Acy(M)) for a homology cylinder

M ∈ H(Xk
n − IntDk), we shall meet the same formula as Proposition 4.6.

This shows that Definition 8.3 gives an alternative description of the Magnus

representation.

Example 8.4. Let f be a 2-connected endomorphism of Fn. By Propo-

sition 7.6, the endomorphism f is uniquely extended to an automorphism

facy of F acy
n . In this case, the Magnus matrix r(facy) is obtained by applying

the original free derivatives to f .

Consider the composition

r̃ : Aut(F acy
n )

r−→ GL(n,KH1)
det−−→ K×

H1
−→ K×

H1
/(±H1 ·A′) ∼= Z

∞,

where A′ := {f−1 · ϕ(f) | f ∈ K×
H1

, ϕ ∈ Aut(H1)} as before. The map r̃ is

a homomorphism.

Theorem 8.5. For any n ≥ 2, we have:

(1) The image of the homomorphism r̃ is an infinitely generated subgroup

of Z
∞. In particular, H1(Aut (F acy

n )) has infinite rank.

(2) The homomorphism r̃ factors through Out (F acy
n ). Therefore

H1(Out (F acy
n )) has infinite rank.

Proof. (1) Consider a homomorphism fm : Fn → Fn defined by

fm(γ1) = (γ1γ
−1
2 γ−1

1 γ−1
2 )mγ1γ

2m
2 , fm(γi) = γi (2 ≤ i ≤ n)

for each m ≥ 1. The homomorphism fm is 2-connected and therefore it

induces an automorphism facy
m of F acy

n . By using the original free derivatives
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(see Example 8.4), we see that the Magnus matrix r(facy
m ) is given by the

lower triangular matrix 1− γ2 + γ2
2 − γ3

2 + · · ·+ γ2m
2 0

∗ 1
0(2,n−2)

0(n−2,2) In−2

 .

Therefore we have

r̃(facy
m ) = 1− γ2 + γ2

2 − γ3
2 + · · ·+ γ2m

2

= 1 + (−γ2) + (−γ2)
2 + (−γ2)

3 + · · ·+ (−γ2)
2m.

By a well known fact on the cyclotomic polynomials, we see that the poly-

nomial r̃(facy
m ) is irreducible if 2m + 1 is prime. Moreover, the polynomials

{r̃(facy
m ) | 2m + 1 is prime} are independent in the module K×

H1
/(±H1 ·A′)

because their degrees are distinct. Therefore the claim for H1(Aut (F acy
n ))

follows.

(2) It suffices to show that the composition

Ψ : F acy
n � Inn (F acy

n ) ↪→ Aut (F acy
n )

r̃−→ K×
H1

/(±H1 ·A′)

is trivial. The restriction of the homomorphism Ψ to Fn is trivial because

the determinant of the Magnus matrix of an automorphism of Fn is in H1.

Therefore Ψ is an extension of the trivial map from Fn to the abelian group

K×
H1

/(±H1 ·A′) which is AC. Then by Proposition 7.3, we see that the map

Ψ is also trivial. �

Proof of Theorem 6.1. The Magnus representation mentioned in

Section 6 is the composition of the homomorphism Acy and the above r̃.

Therefore our claims immediately follow from Theorems 7.7 and 8.5. �

The isomorphisms fm in the proof of Theorem 8.5 can also be used to

show the following.

Theorem 8.6. The acyclic closure F acy
n is not finitely generated for

any n ≥ 2.

Proof. Suppose F acy
n had a finite generating set {g1, g2, . . . , gl}. Then

the above formulas for the extended free derivatives imply that the image
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of the derivative ∂
∂γi

for each i is in the subring R of KH1 obtained from

Z[H1] by adding
{

∂g1
∂γi

, ∂g2∂γi
, . . . , ∂gl

∂γi

}
. In particular, there are only finitely

many irreducible polynomials which appear as factors of the denominators

of reduced expressions for elements in R. However, for the automorphism

facy
m with 2m+ 1 prime constructed in the proof of Theorem 8.5, the (1, 1)-

entry of r̃((facy
m )−1) = (r̃(facy

m ))−1 is(
∂(facy

m )−1(γ1)

∂γ1

)
=

1

1− γ2 + γ2
2 − γ3

2 + · · ·+ γ2m
2

.

This contradicts to the property of R just mentioned. �

Remark 8.7. It is easy to see that the derivative
∂

∂γi
: F acy

n → KH1

factors through the metabelian quotient

F acy
n /[[F acy

n , F acy
n ], [F acy

n , F acy
n ]]

of F acy
n . Our proof of Theorem 8.6 shows that this metabelian quotient is

also infinitely generated for any n ≥ 2, and therefore it is not isomorphic to

that of Fn. This fact contrasts with the nilpotent quotients of Fn and F acy
n

which are isomorphic by Stallings’ theorem.

As mentioned in Section 7, the acyclic closure of a group is a variation of

the algebraic closure of a group. The argument in this section can be applied

to the algebraic closure F alg
n of a free group Fn. In fact, as shown in [16,

Proposition 5], an automorphism of F alg
n is induced from a normally sur-

jective 2-connected endomorphism of Fn. The 2-connected endomorphisms

fm of Fn constructed in the proof of Theorem 8.5 are normally surjective.

Indeed, γ1 = (γ1γ
−1
2 γ−1

1 γ−1
2 )−mfm(γ1)γ

−2m
2 is in the normal closure of the

image of fm because γ1γ
−1
2 γ−1

1 γ−1
2 = (γ1γ

−1
2 γ−1

1 )γ−1
2 is in it. Thus fm in-

duces an automorphism falg
m of F alg

n . By Le Dimet’s original construction,

we can define the Magnus representation for Aut (F alg
n ). The remaining

argument goes parallel to the case of F acy
n . Consequently, we have the fol-

lowing.

Theorem 8.8. For any n ≥ 2, we have:

(1) H1(Aut (F alg
n )) and H1(Out (F alg

n )) have infinite rank.
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(2) The algebraic closure F alg
n and its metabelian quotient F alg

n /

[[F alg
n , F alg

n ], [F alg
n , F alg

n ]] are not finitely generated.
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