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The Fatou Property of Block Spaces

By Yoshihiro Sawano and Hitoshi Tanaka

Abstract. Around thirty years ago, block spaces, which are the
predual of Morrey spaces, had been considered. However, it seems
that there is no proof that block spaces satisfy the Fatou property.
In this paper the Fatou property for block spaces is verified and the
predual of block spaces is characterized.

1. Introduction

The purpose of this paper is to verify the Fatou property for block spaces,

which in turn yields a characterization for the predual of block spaces. The

Morrey space Mp
q(Rn) is a properly wider space than the Lebesgue space

Lp(Rn) when 0 < q < p < ∞ and this space works well with the fractional

integral operators (cf. [8, 9, 10, 11]). We first recall the definition of Morrey

spaces and consider block spaces which are Morrey spaces if we pass to the

predual.

1.1. Morrey spaces

Let 0 < q ≤ p < ∞ be two real parameters. For f ∈ Lq
loc(R

n), define

‖f‖Mp
q(Rn) := sup

Q∈Q
|Q|

1
p
− 1

q

(∫
Q
|f(x)|q dx

) 1
q

= sup
Q∈Q

|Q|
1
p

(
1

|Q|

∫
Q
|f(x)|q dx

) 1
q

,
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where we have used the notation Q to denote the family of all cubes in R
n

with sides parallel to the coordinate axes and |Q| to denote the volume of

Q. The Morrey space Mp
q(Rn) is defined to be the subset of all Lq locally

integrable functions f on R
n for which ‖f‖Mp

q(Rn) is finite. It is easy see

that ‖ · ‖Mp
q(Rn) becomes the norm if q ≥ 1 and that ‖ · ‖Mp

q(Rn) becomes

the quasi norm otherwise. Letting 0 < r < q ≤ p < ∞ and using Hölder’s

inequality, we have

|Q|
1
p

(
1

|Q|

∫
Q
|f(x)|r dx

) 1
r

≤ |Q|
1
p

(
1

|Q|

∫
Q
|f(x)|q dx

) 1
q

(1.1)

and, hence,

‖f‖Mp
q(Rn) ≥ ‖f‖Mp

r(Rn).

This tells us that

Lp(Rn) = Mp
p(R

n) ⊂ Mp
q(R

n) ⊂ Mp
r(R

n) when p ≥ q > r > 0.(1.2)

If we let f(x) = |x|−n/p, then the cube R = (−t/2, t/2)n, t > 0, attains its

Morrey-norm. In fact, if 0 < q < p < ∞, then

sup
Q∈Q

|Q|
1
p
− 1

q

(∫
Q

1

|x|nq/p dx
) 1

q

≤ c|R|
1
p
− 1

q

(∫
R

1

|x|nq/p dx
) 1

q

= O
(
(n(1 − q/p))−1/q

)
and f belongs to Mp

q(Rn). Because then f does not belong to Lp(Rn), we

see that the Morrey space Mp
q(Rn) is properly wider than the Lebesgue

space Lp(Rn). The completeness of Morrey spaces follows easily by that of

Lebesgue spaces.

If the sequence of nonnegative functions {fk}∞k=1 ⊂ Mp
q(Rn) satisfies

fk(x) ↑ f(x) (a.e. x ∈ R
n), then we have

‖fk‖Mp
q(Rn) ↑ ‖f‖Mp

q(Rn)(1.3)

from the definition of the Morrey norm ‖ · ‖Mp
q(Rn). However, the following

property is different from that of Lebesgue spaces.

For any measurable set E ⊂ R
n such that |E| < ∞ and any f ∈ Lp(Rn),

we have by Hölder’s inequality∣∣∣∣∫
E
f(x) dx

∣∣∣∣ ≤ ∫
E
|f(x)| dx =

∫
Rn

χE(x)|f(x)| dx ≤ |E|
1
p′ ‖f‖Lp(Rn) < ∞,
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where p′ is the conjugate number defined by 1/p+ 1/p′ = 1 and χE stands

for the characteristic function of E. While, if f ∈ Mp
q(Rn) then it follows

from the definition of Morrey-norm that∫
Q
|f(x)| dx = |Q|

(
1

|Q|

∫
Q
|f(x)| dx

)
≤ |Q|

(
1

|Q|

∫
Q
|f(x)|q dx

) 1
q

= |Q|1−
1
p · |Q|

1
p

(
1

|Q|

∫
Q
|f(x)|q dx

) 1
q

≤ ‖f‖Mp
q(Rn)|Q|

1
p′ .

This implies that for any family of counterable open cubes {Qj}∞j=1 such

that E ⊂
⋃

j Qj , we have∣∣∣∣∫
E
f(x) dx

∣∣∣∣ ≤ ∫
E
|f(x)| dx(1.4)

≤
∑
j

∫
Qj

|f(x)| dx ≤ ‖f‖Mp
q(Rn)

∑
j

|Qj |
1
p′ .

In general, for two real parameters 0 < r ≤ ∞ and 0 < d ≤ 1, the Hausdorff

capacity or the Hausdorff content of the set E is defined by

Hd
r (E) := inf

∑
j

|Qj |d,

where the infimum is taken over all counterable cubes {Qj}∞j=1 which cover

E with the side-length less than r. Using this definition, we have by (1.4)∣∣∣∣∫
E
f(x) dx

∣∣∣∣ ≤ H1/p′
∞ (E)‖f‖Mp

q(Rn).(1.5)

Of course, |E| < ∞ does not always imply H
1/p′
∞ (E) < ∞. Thus, we cannot

conclude from the fact that |E| < ∞ that the left-hand side of this inequality

is finite.



666 Yoshihiro Sawano and Hitoshi Tanaka

1.2. Block spaces

We shall define block spaces following [4]. Let 1 < q ≤ p < ∞. We say

that a function b on R
n is a (p′, q′)-block provided that b is supported on a

cube Q ∈ Q and satisfies(∫
Q
|b(x)|q′ dx

) 1
q′

≤ |Q|
1
p
− 1

q .(1.6)

(The cube Q will be called the support cube of b.) The space Bp′

q′ (R
n) is

defined by the set of all functions f locally in Lq′(Rn) with the norm

‖f‖Bp′
q′ (R

n)
:= inf

{
‖{λk}‖l1 : f =

∑
k

λkbk

}
< ∞,

where ‖{λk}∞k=1‖l1 =
∑

k |λk| < ∞ and bk is a (p′, q′)-block, and the infimum

is taken over all possible decompositions of f . By the definition of the norm

we see that the inclusion

Lp′(Rn) = Bp′

p′ (R
n) ⊃ Bp′

q′ (R
n) ⊃ Bp′

r′ (R
n) when p ≥ q > r > 1.(1.7)

In [4, Theorem 1] and [16, Proposition 5] the following was proved.

Proposition 1.1. Let 1 < q ≤ p < ∞. Then the predual space of

Mp
q(Rn) is Bp′

q′ (R
n) in the following sense:

If g ∈ Mp
q(Rn), then f ∈ Bp′

q′ (R
n) �→

∫
Rn f(x)g(x) dx is an element of

Bp′

q′ (R
n)∗ and∣∣∣∣∫

Rn

f(x)g(x) dx ∈ R

∣∣∣∣ ≤ ‖f‖Bp′
q′ (R

n)
‖g‖Mp

q(Rn), (f ∈ Bp′

q′ (R
n)).

Moreover, for any L ∈ Bp′

q′ (R
n)∗, there exists g ∈ Mp

q(Rn) such that

L(f) =

∫
Rn

f(x)g(x) dx, (f ∈ Bp′

q′ (R
n)),

and

‖L‖Bp′
q′ (R

n)∗
= ‖g‖Mp

q(Rn).
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See [7] for more details about the predual spaces. We refer [1, 2, 5] for

recent development of the theory of the predual spaces.

In this paper we shall prove the following theorem which assert the Fatou

property of block spaces.

Theorem 1.2. Let 1 < q ≤ p < ∞. Suppose that f and fk, (k =

1, 2, . . . ), are nonnegative, ‖fk‖Bp′
q′ (R

n)
≤ 1 and fk ↑ f a.e. Then f ∈

Bp′

q′ (R
n) and ‖f‖Bp′

q′ (R
n)

≤ 1.

This quite simple fact can not be found in any literature as far as we

know. Since the case when p = q is clear from the Fatou lemma, Theorem

1.2 is significant only when q < p. Seemingly, it is clear that we have

f ∈ Lp′(Rn). However, it is difficult to find an expression of f .

The letter C will be used for constants that may change from one occur-

rence to another. Constants with subscripts, such as C1, C2, do not change

in different occurrences.

2. Proof of Theorem 1.2

In what follows we shall prove Theorem 1.2. We need the following

lemmas.

Lemma 2.1. Let 1 < q ≤ p < ∞. Then, a function f belongs to

Bp′

q′ (R
n) if and only if there exists g ∈ Bp′

q′ (R
n) such that |f(x)| ≤ g(x) (a.e.

x ∈ R
n).

Proof. Suppose that f ∈ Bp′

q′ (R
n). Then there exist a sequence

{λk}∞k=1 ∈ l1 and a (p′, q′)-block bk such that f =
∑

k λkbk. Letting

g =
∑

k |λk||bk|, we have g ∈ Bp′

q′ (R
n) and |f | ≤ g. Conversely, suppose

that there exists g ∈ Bp′

q′ (R
n) that satisfies |f(x)| ≤ g(x). Decompose g as

g =
∑

k λ
′
kb

′
k where {λ′k}∞k=1 ∈ l1 and b′k is a (p′, q′)-block. Then we see that

χ{y: g(y) 
=0}(x) =
∑
k

λ′k
1

g(x)
b′k(x)χ{y: g(y) 
=0}(x)

and, hence,

f(x) =
∑
k

λ′k
f(x)

g(x)
b′k(x)χ{y: g(y) 
=0}(x).
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Since |f(x)|/g(x) ≤ 1 as long as g(x) �= 0, the function (f/g)b′kχ{y: g(y) 
=0}
becomes a (p′, q′)-block. This proves the lemma. �

We denote by D the family of all dyadic cubes of the form Q = 2−k(i+

[0, 1)n), k ∈ Z, i ∈ Z
n.

Lemma 2.2. Let 1 < q ≤ p < ∞ and f ∈ Bp′

q′ (R
n) with ‖f‖Bp′

q′ (R
n)

≤ 1.

Then f can be decomposed as

f =
∑
Q∈D

λ(Q)b(Q),

where λ(Q) is a positive number with∑
Q∈D

λ(Q) ≤ 2 · 3n

and b(Q) is a (p′, q′)-block with supp b(Q) ⊂ 3Q.

Proof. First, decompose f as

f =
∑
k∈K

λkbk

where K ⊂ N is an index set,
∑

k∈K |λk| ≤ 2 and bk is a (p′, q′)-block with

the support cube Qk. We divide K into the disjoint sets K(Q) ⊂ N, Q ∈ D,

as

K =
⋃
Q∈D

K(Q)

and K(Q) fulfills, when k ∈ K(Q),

Qk ⊂ 3Q and |Qk| ≥ |Q|.
We now rewrite f as

f =
∑
k∈K

λkbk =
∑
Q∈D

 ∑
k∈K(Q)

λkbk


=

∑
Q∈D

3n
∑

k∈K(Q)

|λk|

 ·


3n

∑
k∈K(Q)

|λk|

−1 ∑
k∈K(Q)

λkbk


=:

∑
Q∈D

λ(Q)b(Q).
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It follows that

∑
Q∈D

λ(Q) = 3n
∑
Q∈D

 ∑
k∈K(Q)

|λk|

 = 3n
∑
k∈K

|λk| ≤ 2 · 3n

and that 3n
∑

k∈K(Q)

|λk|

−1 ∥∥∥∥∥∥
∑

k∈K(Q)

λkbk

∥∥∥∥∥∥
Lq′ (Rn)

≤

3n
∑

k∈K(Q)

|λk|

−1 ∑
k∈K(Q)

|λk|‖bk‖Lq′ (Rn)

≤

3n
∑

k∈K(Q)

|λk|

−1 ∑
k∈K(Q)

|λk||Qk|
1
p
− 1

q

≤

3n
∑

k∈K(Q)

|λk|

−1

|Q|
1
p
− 1

q

∑
k∈K(Q)

|λk|

≤ |3Q|
1
p
− 1

q ,

which imply that b(Q) is a (p′, q′)-block with supp b(Q) ⊂ 3Q. These com-

plete the proof. �

Proof of Theorem 1.2. We may assume that 1 < q < p < ∞ as we

remarked just below the statement of the theorem. By Lemma 2.2 fk can

be decomposed as

fk =
∑
Q∈D

λk(Q)bk(Q),

where λk(Q) is a positive number with∑
Q∈D

λk(Q) ≤ 2 · 3n(2.1)

and bk(Q) is a (p′, q′)-block with supp bk(Q) ⊂ 3Q and

‖bk(Q)‖Lq′ (Rn) ≤ |3Q|
1
p
− 1

q .(2.2)
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Noticing (2.1), (2.2) and using the weak∗-compactness of the Lebesgue space

Lq′(3Q), we now apply a diagonalization argument and, hence, we can select

an infinite subsequence {fkj}∞j=1 ⊂ {fk}∞k=1 that satisfies the following:

fkj =
∑
Q∈D

λkj (Q)bkj (Q),

lim
j→∞

λkj (Q) = λ(Q),(2.3)

lim
j→∞

bkj (Q) = b(Q) in the weak∗-topology of Lq′(3Q),(2.4)

where b(Q) is a (p′, q′)-block with supp b(Q) ⊂ 3Q. We set

f0 :=
∑
Q∈D

λ(Q)b(Q).

Then, by the Fatou theorem and (2.1),∑
Q∈D

λ(Q) ≤ lim inf
j→∞

∑
Q∈D

λkj (Q) ≤ 2 · 3n,(2.5)

which implies f0 ∈ Bp′

q′ (R
n).

We shall verify that

lim
j→∞

∫
Q0

fkj (x) dx =

∫
Q0

f0(x) dx(2.6)

for all Q0 ∈ D. Once (2.6) is established, we will see that f = f0 and

f ∈ Bp′

q′ (R
n) by virtue of the Lebesgue differentiation theorem because at

least we know that f0 locally in Lq′(Rn).

Let ε > 0 be given. We set
D1(Q0) := {Q ∈ D : Q ∩Q0 �= ∅, |3Q| ≤ c1},
D2(Q0) := {Q ∈ D : Q ∩Q0 �= ∅, |3Q| ∈ (c1, c2)},
D3(Q0) := {Q ∈ D : Q ∩Q0 �= ∅, |3Q| ≥ c2},

where we have defined, keeping in mind that 1/p− 1/q < 0,
c

1
p

1 =
ε

12 · 3n ,

c
1
p
− 1

q

2 =
ε

12 · 3n|Q0|1/q
.
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It follows that ∑
Q∈D1(Q0)

∫
Q0

∣∣λkj (Q)bkj (Q)(x) − λ(Q)b(Q)(x)
∣∣ dx

≤
∑

Q∈D1(Q0)

(λkj (Q) + λ(Q))|3Q|
1
p ≤ 4 · 3nc

1
p

1 =
ε

3
,

where we have used (2.1), (2.5) and∫
3Q

|bkj (Q)(x)| dx,
∫

3Q
|b(Q)(x)| dx ≤ |3Q|

1
p

(see (1.6)). It follows from Hölder’s inequality that∑
Q∈D3(Q0)

∫
Q0

∣∣λkj (Q)bkj (Q)(x) − λ(Q)b(Q)(x)
∣∣ dx

≤ |Q0|
1
q

∑
Q∈D3(Q0)

(λkj (Q) + λ(Q))|3Q|
1
p
− 1

q ≤ 4 · 3n|Q0|
1
q c

1
p
− 1

q

2 =
ε

3
,

where we have used the fact that 1/p− 1/q < 0 and

‖bkj (Q)‖Lq′ (3Q), ‖b(Q)‖Lq′ (3Q) ≤ |3Q|
1
p
− 1

q .

Finally, ∑
Q∈D2(Q0)

∣∣∣∣∫
Q0

λkj (Q)bkj (Q)(x) dx−
∫
Q0

λ(Q)b(Q)(x) dx

∣∣∣∣
≤

∑
Q∈D2(Q0)

∣∣∣∣∫
Q0

λkj (Q)bkj (Q)(x) dx−
∫
Q0

λ(Q)bkj (Q)(x) dx

∣∣∣∣
+

∑
Q∈D2(Q0)

∣∣∣∣∫
Q0

λ(Q)bkj (Q)(x) dx−
∫
Q0

λ(Q)b(Q)(x) dx

∣∣∣∣ .
From (2.3) and the fact that D2(Q0) contains the only finite number of

dyadic cubes,∑
Q∈D2(Q0)

∣∣∣∣∫
Q0

λkj (Q)bkj (Q)(x) dx−
∫
Q0

λ(Q)bkj (Q)(x) dx

∣∣∣∣
≤ c

1
p

2

∑
Q∈D2(Q0)

|λkj (Q) − λ(Q)| ≤ ε

6
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for large j. From (2.4),

∑
Q∈D2(Q0)

∣∣∣∣∫
Q0

λ(Q)bkj (Q)(x) dx−
∫
Q0

λ(Q)b(Q)(x) dx

∣∣∣∣
≤ 2 · 3n sup

Q∈D2(Q0)

∣∣∣∣∫
Q0

bkj (Q)(x) dx−
∫
Q0

b(Q)(x) dx

∣∣∣∣ ≤ ε

6

for large j. These prove (2.6).

Since fk ↑ f a.e., we must have by (2.6)∫
Q0

f(x) dx =

∫
Q0

f0(x) dx

for all Q0 ∈ D. This yields f = f0 a.e., by the Lebesgue differential theorem,

and, hence, f ∈ Bp′

q′ (R
n).

Since we have verified f ∈ Bp′

q′ (R
n), by the Hahn-Banach theorem, we

see that there exists an L ∈ Bp′

q′ (R
n)∗ such that

L(f) = ‖f‖Bp′
q′ (R

n)
and ‖L‖Bp′

q′ (R
n)∗

= 1,

which imply by Proposition 1.1

‖f‖Bp′
q′ (R

n)
= sup

{∣∣∣∣∫
Rn

f(x)g(x) dx

∣∣∣∣ : ‖g‖Mp
q(Rn) = 1

}
.

There holds also

sup

{∣∣∣∣∫
Rn

fk(x)g(x) dx

∣∣∣∣ : ‖g‖Mp
q(Rn) = 1

}
= ‖fk‖Bp′

q′ (R
n)

≤ 1, (k = 1, 2, . . . ).

These yield

‖f‖Bp′
q′ (R

n)
= sup

{∣∣∣∣∫
Rn

fk(x)g(x) dx

∣∣∣∣ : k = 1, 2, . . . , ‖g‖Mp
q(Rn) = 1

}
≤ 1.

This completes the proof of the theorem. �
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3. Banach Function Spaces

To state our next result, we need terminology from the theory of the

Banach function spaces introduced in the book [3]. We place ourselves in

the setting of a σ-finite measure space (R,µ). Let M
+ be the cone of all

µ-measurable functions on R assuming their values lie in [0,∞].

Definition 3.1. A mapping ρ : M
+ → [0,∞] is called a “Banach

function norm” if, for all f, g, fn, (n = 1, 2, 3, . . . ), in M
+, for all constants

a ≥ 0 and for all µ-measurable subsets E of R, the following properties

hold:

(P1) ρ(f) = 0 ⇔ f = 0 µ-a.e.; ρ(af) = aρ(f); ρ(f + g) ≤ ρ(f) + ρ(g);

(P2) 0 ≤ g ≤ f µ-a.e. ⇒ ρ(g) ≤ ρ(f);

(P3) 0 ≤ fn ↑ f µ-a.e. ⇒ ρ(fn) ↑ ρ(f);

(P4) µ(E) < ∞ ⇒ ρ(χE) < ∞;

(P5) µ(E) < ∞ ⇒
∫
E f dµ ≤ CEρ(f) for some constant CE , 0 < CE < ∞,

depending on E and ρ but independent of f .

Let M denote the collection of all extended scalar-valued (real or com-

plex) µ-measurable functions on R. As usual, any two functions coinciding

µ-a.e. shall be identified.

Definition 3.2. Let ρ be a Banach function norm. The collection

X = X(ρ) of all functions f in M for which ρ(|f |) < ∞ is called a “Banach

function space”. For each f ∈ X, define

‖f‖X := ρ(|f |).

Let 1 < q < p < ∞. The Morrey space Mp
q(Rn) and the block space

Bp′

q′ (R
n) are not Banach function spaces, since the norm ‖ · ‖Mp

q(Rn) fails

property P5 and the norm ‖ · ‖Bp′
q′ (R

n)
fails property P4.
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Example 3.3. Here, we exhibit an example showning that ‖ · ‖Mp
q(Rn)

fails property P5. From this example, we learn that the norm ‖ · ‖Bp′
q′ (R

n)

fails property P4 when 1 < q < p < ∞. For simplicity, we let n = 1 and

1 < q < p = 2; other cases are dealt analogously.

Let us consider the sequence

(a1, a2, . . . ) =

(
1,

1

4
,
1

4
,

1

16
,

1

16
,

1

16
,

1

16
, . . .

)
,

that is, aj is a decreasing sequence and 4−k appears 2k times for k = 0, 2, . . . .

We may write aj = 4−[log2 j], where [a] stands the largest integer not greater

than a.

Let α(2, q) � 1. We define

E :=
∞⋃
j=1

(α(2, q)j , α(2, q)j + aj).

Then |E| = 2. Define

f(t) :=
∞∑
j=1

1

(aj)1/2
χ(α(2,q)j ,α(2,q)j+aj)(t), (t ∈ R).

Then

‖f‖M2
q(R) = sup

j

(aj)
1/2

(aj)1/2
= 1.

Meanwhile, ∫
E
f(t) dt =

∞∑
j=1

4j/2−j · 2j = ∞.

This example also reads χE /∈ B2
q′(R) by a duality argument.

Definition 3.4. If ρ is a Banach function norm, its “associate norm”

ρ′ is defined on M
+ by

ρ′(g) := sup

{∫
R
fg dµ : f ∈ M

+, ρ(f) ≤ 1

}
, (g ∈ M

+).(3.1)
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We have the following property:

Theorem 3.5 ([3, Theorem 2.2]). Let ρ be a Banach function norm.

Then the associate norm ρ′ is itself a Banach function norm.

With Theorem 3.5 in mind, we define the associate space X ′ of X.

Definition 3.6. Let ρ be a Banach function norm and let X = X(ρ)

be the Banach function space determined by ρ as in Definition 3.2. Let ρ′

be the associate norm of ρ. The Banach function space X(ρ′) determined

by ρ′ is called the “associate space” of X and is denoted by X ′.

Theorem 3.7 ([3, Theorem 2.7]). Every Banach function space X co-

incides with its second associate space X ′′. In other words, a function f

belongs to X if and only if it belongs to X ′′, and in that case

‖f‖X = ‖f‖X′′ , (f ∈ X = X ′′).

4. Application of Theorem 1.2

In what follows we shall apply Theorem 1.2 and characterize the predual

of block spaces.

Theorem 4.1. Let 1 < q ≤ p < ∞. Then the associate space Mp
q(Rn)′

coincides with the block space Bp′

q′ (R
n).

Proof. We see that Bp′

q′ (R
n) ⊂ Mp

q(Rn)′ by Proposition 1.1. So we

shall verify the converse. Suppose that a measurable function f satisfies

sup

{∣∣∣∣∫
Rn

f(x)g(x) dx

∣∣∣∣ : ‖g‖Mp
q(Rn) ≤ 1

}
≤ 1.(4.1)

Then we first see that |f(x)| < ∞ (a.e. x ∈ R
n). Splitting f into its real

and imaginary parts and each of these into its positive and negative parts,

we may assume without loss of generality that f ≥ 0. For k = 1, 2, . . . , set

Qk := (−k, k)n and let

fk(x) := min(f(x), k)χQk
(x) (x ∈ R

n).
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We notice that fk ∈ Bp′

q′ (R
n) and ‖fk‖Bp′

q′ (R
n)

≤ 1 by Lemma 2.1, Proposition

1.1 and (4.1). Since fk ↑ f a.e., it follows from Theorem 1.2 that f ∈ Bp′

q′ (R
n)

and ‖f‖Bp′
q′ (R

n)
≤ 1. This proves the theorem. �

By Theorems 3.7 and 4.1 (or directly Proposition 1.1), one sees that

Bp′

q′ (R
n)′ = Mp

q(R
n)′′ = Mp

q(R
n).

Furthermore, from the fact that Mp
q(Rn)′′ = Mp

q(Rn), we are able to char-

acterize the predual of block spaces following the argument in [3].

Definition 4.2. Let 1 < q ≤ p < ∞. The closure in Mp
q(Rn) of the

set of all finite linear combination of the characteristic functions of sets of

finite measure is denoted by M̃p
q(Rn).

Theorem 4.3. Let 1 < q ≤ p < ∞. Then the predual space of Bp′

q′ (R
n)

is M̃p
q(Rn) in the following sense:

If g ∈ Bp′

q′ (R
n), then f ∈ M̃p

q(Rn) �→
∫
Rn f(x)g(x) dx is an element of

M̃p
q(Rn)∗ and∣∣∣∣∫

Rn

f(x)g(x) dx ∈ R

∣∣∣∣ ≤ ‖f‖Bp′
q′ (R

n)
‖g‖Mp

q(Rn), (f ∈ M̃p
q(R

n)).

Moreover, for any L ∈ M̃p
q(Rn)∗, there exists g ∈ Bp′

q′ (R
n) such that

L(f) =

∫
Rn

f(x)g(x) dx, (f ∈ M̃p
q(R

n)),

and that

‖L‖M̃p
q(Rn)∗ = ‖g‖Bp′

q′ (R
n)
.

Proof. The first assertion is clear. So we shall prove that M̃p
q(Rn)∗ ⊂

Bp′

q′ (R
n). Thanks to Theorem 4.1, we need only show

M̃p
q(R

n)∗ ⊂ Mp
q(R

n)′.



The Fatou Property of Block Spaces 677

Suppose that L belongs to M̃p
q(Rn)∗. We shall exhibit a function g in

Mp
q(Rn)′ such that we have

L(f) =

∫
Rn

f(x)g(x) dx, (f ∈ M̃p
q(R

n)).(4.2)

If we let Qi := i + [0, 1)n, i ∈ Z
n, then the sequence {Qi}i∈Zn forms

disjoint subsets of R
n, each of which has measure one and whose union is

all of R
n. For each i ∈ Z

n, let Ai denote the Lebesgue measurable subsets

of Qi and define a set-function λi on Ai by

λi(A) = L(χA), (A ∈ Ai).

Notice that λi(A) is well-defined for all A ∈ Ai because χA belongs to

M̃p
q(Rn).

We claim that λi is countably additive on Ai. Indeed, let (Ak)
∞
k=1 be a

sequence of disjoint sets from Ai and let

Bl =
l⋃

k=1

Ak, (l = 1, 2, . . . ), A =
∞⋃
k=1

Ak =
∞⋃
l=1

Bl.

It follows from (1.2) and the Lebesgue dominated convergence theorem that

‖χA − χBl
‖Mp

q(Rn) ≤ ‖χA − χBl
‖Lp(Qi) → 0 as l → ∞.

The continuity and linearity of L give

λi(A) = L(χA) = lim
l→∞

L(χBl
) = lim

l→∞

l∑
k=1

L(χAk
) =

∞∑
k=1

λi(Ak),

which establishes the claim.

Since |λi(A)| ≤ ‖L‖M̃p
q(Rn)∗ for all A ∈ Ai and λi(A) = 0 for all A ∈

Ai such that |A| = 0, by the Radon-Nikodym theorem, there is a unique

measurable function gi on Qi such that

L(χA) = λi(A) =

∫
Rn

χA(x)gi(x) dx, (A ∈ Ai).

Since the sets Qi are disjoint we may define a function g on all of R
n by

setting g = gi on each Qi. Clearly,

L(χE) =

∫
Rn

χE(x)g(x) dx(4.3)
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for all characteristic functions of sets of finite measure χE .

We first show that g belongs to Mp
q(Rn)′. Choose and fix f in Mp

q(Rn).

Let, for l = 1, 2, . . . ,

fl(x) :=
4l∑

k=1

k

2l
χFk,l

(x),

where

Fk,l :=

{
x ∈ R

n : |x| < 2l,
k

2l
≤ |f(x)| < k + 1

2l

}
.

If we suppose for the moment that g is real-valued, then fl· sgn (g) becomes a

finite linear combination of characteristic functions of sets of finite measure.

Hence, we may apply (4.3) and use the linearity of L to obtain∫
Rn

fl(x)|g(x)| dx = L(fl · sgn (g)) ≤ ‖L‖M̃p
q(Rn)∗‖fl‖Mp

q(Rn).

Letting l → ∞, we have∫
Rn

|f(x)g(x)| dx ≤ ‖L‖M̃p
q(Rn)∗‖f‖Mp

q(Rn)

from the monotone convergence theorem and the Fatou property of Morrey

norm. This means that g belongs to Mp
q(Rn)′. If g is complex-valued, then

the same argument applied separately to the real and imaginary parts of g

shows that each of these is in Mp
q(Rn)′ and, hence, that g again belongs to

Mp
q(Rn)′.
Write, for a function f which can be written as a finite linear combination

of characteristic functions of sets of finite measure,

L(f) =

∫
Rn

f(x)g(x) dx

and observe the continuity of both sides on Mp
q(Rn). Then we conclude

that (4.2) holds. This complete the proof of the theorem. �

Remark 4.4. Let 1 < q ≤ p < ∞. Let C0 be the class of continuous

functions with compact support in R
n. The Zorko space Zp

q (Rn) is defined

by the closure in Mp
q(Rn) of C0. In [2], Adams and Xiao pointed out (without

detailed proof) Zp
q (Rn) is the predual of Bp′

q′ (R
n). In [6], Izumi, Sato and
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Yabuta gave a detailed proof of this fact on the unit circle. The idea used

in the proof of Theorem 1.2 comes from their nice paper.

We shall use {Ek}∞k=1 to denote an arbitrary sequence of measurable

subsets of R
n. We shall write Ek → ∅ a.e., if the characteristic functions

χEk
converge to 0 pointwise a.e. Notice that the sets Ek are not required

to have finite measure.

Definition 4.5. Let 1 < q ≤ p < ∞. A function f in Mp
q(Rn) is said

to have “absolutely continuous norm” in Mp
q(Rn) if ‖fχEk

‖Mp
q(Rn) → 0 for

every sequence {Ek}∞k=1 satisfying Ek → ∅ a.e. The set of all functions in

Mp
q(Rn) of absolutely continuous norm is denoted by M̂p

q(Rn).

Theorem 4.6. Let 1 < q ≤ p < ∞. Then

M̃p
q(R

n) = M̂p
q(R

n).

Proof. By [3, Theorem 3.13], we need only verify that the character-

istic function χE has absolutely continuous norm for every set E of finite

measure. Let {Fk}∞k=1 be an arbitrary sequence for which Fk → ∅ a.e. Then

it follows from (1.2) and the Lebesgue dominated convergence theorem that

‖χEχFk
‖Mp

q(Rn) ≤ ‖χEχFk
‖Lp(Rn) → 0 as k → ∞,

which proves the theorem. �

Recently there are many closed subspaces of Morrey spaces. We refer to

[13] as well as [15, Definition 2.23]. Also, it might be interesting to compare

Theorem 4.3 with [12, Theorem 1.3], where they considered function spaces

called smoothness Morrey spaces. We refer to [14] for an exhaustive detail

of smoothness Morrey spaces.

5. Miscellaneous

Example 5.1. Let 1 < q < p < ∞. We show that M̃p
q(Rn) and Mp

q(Rn)

are different spaces. In fact, the former is narrower than the latter. We prove

this by giving an example when n = 1; other cases can be dealt similarly.
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Set

E :=
∞⋃
k=1

(k − 1 + k
p

p−q , k + k
p

p−q ).

Then we see that χE belongs to Mp
q(Rn) but does not belong to M̃p

q(Rn).

Example 5.2. Let 1 < q < p < ∞ and L : Mp
q(Rn) → R be a bounded

linear functional. Then in view of the embedding Lp(Rn) ↪→ Mp
q(Rn), one

has a function g ∈ Lp′(Rn) such that

L(f) =

∫
Rn

f(x)g(x) dx, (f ∈ Lp(Rn)).

However, it can happen that L is not zero even when g ≡ 0; One can show

this by an example.

Recall the set E defined in Example 5.1. Set, for k = 1, 2, . . . ,

Ik := (k − 1 + k
p

p−q , k + k
p

p−q ).

Then,

lim
k→∞

∫
Ik

χE(x) dx = 1.

With this in mind, let us define a closed subspace H by

H :=

{
f ∈ Mp

q(R) : lim
k→∞

∫
Ik

f(x) dx exists

}
.

Then, from the definition of the norm, we have

lim
k→∞

∣∣∣∣∫
Ik

f(x) dx

∣∣∣∣ ≤ ‖f‖Mp
q(R).

Consequently, it follows from the Hahn-Banach theorem that the mapping

f ∈ H �→ lim
k→∞

∫
Ik

f(x) dx ∈ R

extends to a continuous linear functional L. Observe that L(χE) = 1 and,

hence, L �= 0. Meanwhile, L annihilates any compactly supported function
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in Mp
q(R) because such a function belongs to H. Therefore, if one considers

a function g satisfying

L(f) =

∫
Rn

f(x)g(x) dx

for all f ∈ Lp(Rn), then one obtains g ≡ 0 by virtue of the Lebesgue

dominated convergence theorem.

We end this paper with the following proposition.

Proposition 5.3. Let 1 < q ≤ p < ∞. Suppose that f ∈ Lq′(Rn) has

compact support. Then there exists a finite sequence {λj}Nj=1 of nonnegative

numbers and {bj}Nj=1 of (p′, q′)-blocks such that

f =
N∑
j=1

λjbj and
N∑
j=1

λj ≤ 8‖f‖Bp′
q′ (R

n)
.

Proof. The proof will be complete once we show that there exists a

finite sequence {λj}Nj=1 of nonnegative numbers and {bj}Nj=1 of (p′, q′)-blocks

such that

f =
N∑
j=1

λjbj and

N∑
j=1

λj ≤ 2‖f‖Bp′
q′ (R

n)

when f is positive.

We know that, as is illustrated by the proof of Lemma 2.1, there exist an

infinite sequence {Λj}∞j=1 of nonnegative numbers and an infinite sequence

{Bj}∞j=1 of nonnegative (p′, q′)-blocks such that

f =

∞∑
j=1

ΛjBj and

∞∑
j=1

Λj ≤
3

2
‖f‖Bp′

q′ (R
n)
.

Suppose that the support of f is engulfed by a large cube Q0. By using the

characteristic functions, we may as well assume that Bj is supported on Q0.

Then we have

f =
N−1∑
j=1

ΛjBj +
∞∑

j=N

ΛjBj
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and

N−1∑
j=1

Λj + |Q0|
1
q
− 1

p

∥∥∥∥∥∥
∞∑

j=N

ΛjBj

∥∥∥∥∥∥
Lq′ (Rn)

≤ 3

2
‖f‖Bp′

q′ (R
n)

+ |Q0|
1
q
− 1

p

∥∥∥∥∥∥f −
N−1∑
j=1

ΛjBj

∥∥∥∥∥∥
Lq′ (Rn)

.

By the monotone convergence theorem, we see that

N−1∑
j=1

Λj + |Q0|
1
q
− 1

p

∥∥∥∥∥∥
∞∑

j=N

ΛjBj

∥∥∥∥∥∥
Lq′ (Rn)

≤ 2‖f‖Bp′
q′ (R

n)

as long as N is sufficient large. Thus, if we define λ1, λ2, . . . , λN and

b1, b2, . . . , bN as

λj = Λj , bj = Bj when j = 1, 2, . . . , N − 1,

and

ΛN = |Q0|
1
q
− 1

p

∥∥∥∥∥∥
∞∑

j=N

ΛjBj

∥∥∥∥∥∥
Lq′ (Rn)

, bN =


1

λN

∑∞
j=N ΛjBj λN �= 0

0 λN = 0,

then we obtain the desired decomposition. �
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