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Discretisations of Constrained KP Hierarchies

By Ralph Willox and Madoka Hattori

Abstract. We present a discrete analogue of the so-called sym-
metry reduced or ‘constrained’ KP hierarchy. As a result we obtain
integrable discretisations, in both space and time, of some well-known
continuous integrable systems such as the nonlinear Schrödinger equa-
tion, the Broer-Kaup equation and the Yajima-Oikawa system, to-
gether with their Lax pairs. It will be shown that these discretisations
also give rise to a discrete description of the entire hierarchy of as-
sociated integrable systems. The discretisations of the Broer-Kaup
equation and of the Yajima-Oikawa system are thought to be new.

1. Introduction

There has been remarkable progress in the study of integrable discrete

systems, since the initial discovery of integrable difference schemes for the

nonlinear Schrödinger (NLS) equation [1] or the Korteweg-de Vries (KdV)

equation [17], now more than 35 years ago. However, although tremendous

conceptual as well as technical advances were made during the 1980’s (see

e.g. the remarkable series of papers of which [6, 7] constitute the middle

part), interest in integrable discretisations temporarily waned during the

latter half of that decade, as most research activity focused on purely ana-

lytical approaches to integrability, better suited to continuous systems. All

this changed dramatically however during the following decade, and this

mainly due to a series of simultaneous but at first seemingly unrelated dis-

coveries. First there was the (re-)discovery of a discrete form of the Painlevé

I equation in the context of a field-theoretical model of 2-dimensional grav-

ity [3], which led to an explosion of results on discrete Painlevé equations,

and to the development of integrability tests for discrete mappings [12]

(cf. [13] for a review of the history and the mathematical particulars of
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the field). Secondly, there was the discovery of the first solitonic cellular

automaton [46], followed by the discovery that this system is intimately

related to the discrete KdV equation through a special limiting procedure,

the ultradiscrete limit [47]. These results and the subsequent realization

that systems obtained through ‘ultradiscretisation’ are in fact related to

certain exactly solvable lattice models (at their crystal limits), spawned an

enormous amount of research activity in both quantum integrable as well as

classically integrable cellular automata. However, over the years, a strange

situation has developed. Whereas considerable advances have been made

in the field of integrable automata, or tropical integrable systems as they

are also known, and whereas numerous examples of such systems associ-

ated to a large variety of symmetry algebras have been constructed, the

1+1 dimensional, classical, discrete integrable systems that ought to con-

tain the tropical ones at the ultradiscrete limit are still largely unknown

(recent advances in the theory of geometric crystals and their relation to

Yang-Baxter maps notwithstanding). Similarly, although the relationship

between continuous Painlevé equations and 1+1 dimensional integrable sys-

tems through similarity reduction has become text-book material, the sit-

uation in the discrete case is quite different. The structure and properties

of discrete Painlevé equations are, by now, of course quite well-understood.

But the precise relationship these systems bear to discrete 1+1 dimensional

(lattice) equations is still very much an open problem. An exception is

the case of multiplicative discretisations (or q-analogues) of continuous inte-

grable systems, in which case not only numerous examples of reductions of

q-lattice equations to q-Painlevé equations are known, but for which there

is also the beginning of a general theory [15, 23, 24, 28, 45]. The fact that

q-lattice equations allow for a simple notion of ‘similarity’, analogous to

the continuous one, is of course partly responsible for this success. It is

worth pointing out that a discrete equivalent of a similarity reduction is

much harder to define in the case of additive discrete equations. Such a

notion does exist for certain types of such equations [34, 36], but it is very

much tied up with the method that is used to generate the original discrete

systems – discretisations of the Gelfand-Dikii hierarchy [10], formulated in

terms of linear integral equations that arise from an infinite-matrix scheme

[35] – and it is therefore difficult to implement in other cases.

Which brings us to the third major development that took place during
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the 1990’s: the realization that there is a deep relation between integrable

quantum field theories and crucial elements of the theory of classical discrete

integrable systems [27], and the ensuing resurgence of interest in discretisa-

tions of classical integrable systems. However, whereas q-deformed versions

of the Gelfand-Dikii hierarchies – i.e. of systems with underlying A-type

(affine) symmetry algebras – are rather easily obtained, obtaining additive

discretisations is a much harder problem and obtaining a discrete analogue

of the Drinfeld-Sokolov construction [8] for general symmetry algebras turns

out to be even more difficult. In fact, despite recent interesting results for

Toda field equations related to certain types of affine Lie algebras [11], one

cannot escape the impression that the situation has not changed all that

much since the middle of the 1990’s, when the problem of constructing dis-

crete integrable systems related to general affine Lie algebras was originally

raised [49]. This problematic situation is compounded by the fact that,

even if for a certain affine Lie algebra a discrete integrable system is known,

it almost always corresponds to what is called the principal realization of

that algebra. Examples of discrete integrable systems related to other, e.g.

homogeneous [9, 19], realizations of affine Lie algebras are exceedingly rare.

On the other hand, given an integrable lattice system, to date, there is no

known procedure for deducing the associated symmetry algebra and for sev-

eral well-known discrete integrable systems it is in fact not clear at all what

affine Lie algebra they are related to.

The results presented in this paper will hopefully shed some new light on

the problematics sketched above. Our main aim is to investigate a discrete

analogue of a technique which can be used to obtain 1+1 dimensional inte-

grable systems, associated to non-principal realizations of A-type affine Lie

algebras, through dimensional reduction of the KP hierarchy: the so-called

symmetry-constraint or symmetry reduction technique. This technique was

introduced in [43] and was developed further in [26] and [5]. In a stan-

dard dimensional reduction of the KP hierarchy, a subset of the flows in

the hierarchy is trivialized, for example by demanding that the solutions of

the equations in the hierarchy do not depend on a certain set of variables.

In the case of a symmetry constraint however, the squared eigenfunction

symmetry – which in a certain sense realizes the general action of GL(∞)

on the Sato-Grassmannian [33, 51, 52] – is restricted to coincide with one

of the flows in the hierarchy, which results in an integrable dimensional re-



616 Ralph Willox and Madoka Hattori

duction. Given this close connection between the symmetry constraint and

the general symmetry group that underlies the KP theory, it is natural to

implement this technique directly on the KP tau functions, rather than on

the nonlinear variables. This reformulation, in fact, leads to important new

insights into the nature of the solutions of these hierarchies [29] and it is

this approach that is best suited to the discrete setting and that will be

adopted here.

The next section will be devoted to a quick overview of the necessary

technical background material on symmetry constraints and on the discrete

KP hierarchy. The main object we shall be concerned with throughout this

paper, is the celebrated Hirota-Miwa (HM) equation [18, 32]

(1.1) (µ− ν) τ(l + 1,m, n)τ(l,m+ 1, n+ 1)

+ (ν − λ) τ(l,m+ 1, n)τ(l + 1,m, n+ 1)

+ (λ− µ) τ(l,m, n+ 1)τ(l + 1,m+ 1, n) = 0 ,

where the complex valued functions τ(l,m, n) are, for now, defined on Z
3.

The parameters λ, µ, ν ∈ C
× are taken to be mutually distinct and their

reciprocals play the role of lattice parameters in the continuum limit of

(1.1) with respect to the continuous variables x1, x2 and x3 [32]:

x1 = x0
1 +

l

λ
+
m

µ
+
n

ν
,

x2 = x0
2 +

l

2λ2
+

m

2µ2
+

n

2ν2
,(1.2)

x3 = x0
3 +

l

3λ3
+

m

3µ3
+

n

3ν3
,

(where x0
1, x

0
2 and x0

3 are arbitrary complex numbers). Indeed, taking the

(formal) limits |λ|, |µ|, |ν| → ∞ in (1.1) (in any particular order) yields, at

lowest order, the Hirota-bilinear form of the KP equation:(
4Dx3Dx1 −D4

x1
− 3D2

x2

)
τ(x1, x2, x3) · τ(x1, x2, x3) = 0 ,(1.3)

where we have used the same symbol ‘τ ’ to denote the continuum limit of

the original, discrete, object τ(l,m, n). Since this is only a minor abuse of

notation, we shall adhere to this convention in an attempt to restrict the
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number of different variable names that will appear in the paper. As for the

Hirota D operators, the reader is referred to [22] for their precise definition.

The HM equation (1.1) is said to be an integrable system first and

foremost because it arises in a natural way in the Sato formulation of the

KP hierarchy [32], but also, in a more restricted sense, because it can be

obtained as the compatibility condition of a set of linear equations, just as

the KdV equation is obtained from its Lax pair or the NLS equation from

the Zakharov-Shabat equations. This is the definition of integrability we

shall adopt throughout the paper. If a particular nonlinear system, defined

on a two dimensional lattice, can be obtained as the compatibility condition

of a system of linear equations involving a non-trivial spectral parameter,

then we shall say that that nonlinear system is integrable.

Returning to the HM equation (1.1), it should be noted that there is

of course only one true degree of freedom in the coefficients of the equa-

tion, but that this slightly contrived way of writing the equation is partic-

ularly well-suited to taking the continuum limit. Moreover, this particular

parametrization has the added advantage that the continuum limit can be

taken with similar ease on the solutions of the equation. However, the issue

of parametric freedom in the coefficients of integrable lattice equations is

not an entirely innocuous one. As we shall see (and as was already pointed

out in [25]), it can happen for lower dimensional lattice equations that the

continuum limit does not yield a non-trivial integrable system for generic

values of the coefficients in the equation and that the need arises to impose

conditions on those coefficients. The original discrete system, without any

restrictions on its coefficients, is nonetheless an integrable system (in the

sense explained above) and we shall adopt the convention of referring to

such a system as a discrete analogue of the continuous integrable system

that can be obtained from it, at the continuum limit, by suitably restrict-

ing the freedom in the coefficients. What we shall call a discretisation of a

continuous integrable system is a lattice equation for which the continuum

limit can be carried out without any further restrictions.

The discrete NLS, Broer-Kaup and Yajima-Oikawa equations we shall

derive are integrable discretisations of their continuous namesakes in the

above strict sense. These equations, together with the symmetry-constraint

method used to obtain them from the HM equation (1.1) will be presented

in section 3, which is devoted to the main results of the paper. These
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include the Lax pairs for the aforementioned systems, but also the interpre-

tation of these systems as discrete forms of the entire associated hierarchy

of integrable systems, as explained in section 5. The proofs of the results

presented in section 3 make up most of the remainder of the paper. In the

final section we shall explain some of the problems one encounters when one

tries to extend the reduction method to higher order lattice equations and

we shall present a discretisation of a Melnikov system [31], i.e. a Boussinesq

equation with sources, which we believe to be integrable but for which so

far we have been unable to obtain a Lax pair.

2. Preliminaries

We define functions τ : Z
r → C on an r dimensional lattice, for arbi-

trary r ∈ N, characterized by an r-tuple (a1, a2, . . . , ar) of mutually distinct

complex numbers aj ∈ C
×, each associated (exclusively) to a particular

direction on the lattice. Locally, we shall require τ(�), � ∈ Z
r, to satisfy

the HM-equation (1.1) for every possible triple (l,m, n) of distinct direc-

tions on the lattice. The parameters λ, µ and ν that appear in the equation

represent the lattice parameters aj associated to the l,m and n directions,

respectively. In order to make the notation a little lighter, especially in

longer formulae, we shall denote a shift in a particular direction as a sub-

script to the symbol for the function on which that shift acts, and we shall

only explicitly state the overall variable dependence of the functions when

there is a risk of ambiguity. The HM equation (1.1) shall therefore, from

now on, be written as

(µ− ν) τlτmn + (ν − λ) τmτln + (λ− µ) τnτlm = 0 .(2.1)

The limit r → ∞ of this construction defines the discrete KP hierarchy and

its tau functions.

Definition 2.1. The discrete KP hierarchy is the set of all possible

HM-equations (2.1) on the infinite dimensional lattice that is obtained as

r → ∞.

A tau function will then be defined as a function that satisfies this

infinite set of HM-equations. However, in this definition, it is preferable

to identify all tau functions that only differ by trivial symmetries: it is
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clear that if τ(�) satisfies (2.1), then so does c0c
l
1c

m
2 c

n
3 τ(�), for arbitrary

cj ∈ C
×(j = 0, . . . , 3), which obviously defines an equivalence relation on

the solution space of the HM-equations.

Definition 2.2. A tau function for the discrete KP hierarchy is a

function τ in the quotient set of the solution space of all HM-equations in

the hierarchy, by the equivalence relation

∀ cj ∈ C
× (j = 0, . . . , 3) : c0c

l
1c

m
2 c

n
3 τ(�) ∼ τ(�) ,

for any triple (l,m, n) of distinct directions on the lattice.

It should be noted that this definition of the discrete KP hierarchy is

different from the usual one, formulated in terms of quadratic difference

equations of increasing order (cf. [40] or the appendix A in this paper

for further details). Definition 2.1 however is more elementary than the

standard one and it can be easily seen that it implies the latter. This

fact, although fundamental, does not seem to be widely appreciated in the

integrable systems community and the proof of this statement is therefore

included in the appendix A.

The discrete KP hierarchy is obtained as the compatibility condition of

an infinite set of linear equations, satisfied by the so-called eigenfunctions

ψ(�), associated to a tau function τ(�), which are complex valued functions

defined on the same lattice as τ . As the discrete KP hierarchy consists of

infinitely many copies of (2.1), it suffices to give the linear system associated

to that particular equation:

ψlm =
1

λ− µ

τlτm
ττlm

[λψm − µψl ] ,

ψmn =
1

µ− ν

τmτn
ττmn

[µψn − ν ψm ] ,(2.2)

ψln =
1

λ− ν

τlτn
ττln

[λψn − ν ψl ] ,

the full set being obtained by repetition of the same basic pattern in all

other directions. It is important to stress that the HM-equation (2.1) is

only obtained as the compatibility condition of all 3 equations in (2.2), and

not of just two of them. The third equation is required to fix the excess

(gauge) freedom that would otherwise leave one of the coefficients in the
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HM equation undetermined. On the other hand, any two equations in (2.2),

taken together with (2.1), imply the third.

There also exists an alternative linear system, which plays a similar role

as (2.2):

ψ∗ =
1

λ− µ

τlτm
ττlm

[λψ∗
l − µψ∗

m ] ,

ψ∗ =
1

µ− ν

τmτn
ττmn

[µψ∗
m − ν ψ∗

n ] ,(2.3)

ψ∗ =
1

λ− ν

τlτn
ττln

[λψ∗
l − ν ψ∗

n ] .

These relations arise because of the invariance of the HM equation (2.1)

under point reflections � �→ −� with respect to the origin of the lattice, and

are therefore said to constitute the adjoint linear system for the discrete KP

hierarchy. Its solutions ψ∗(�) are called the adjoint eigenfunctions associated

to τ(�). Both sets of linear equations will play a crucial role in what follows.

The discrete KP hierarchy can also be obtained directly from the

fermionic construction of the continuous KP hierarchy [22] to which it is

related by the so-called Miwa-transformation [32],

∀j = 1, 2, 3, · · · : xj =

∞∑
i=1

a−j
i

j
�i ,(2.4)

which generalizes the relations in (1.2). Here, x1, x2, x3, · · · represent the

coordinates in which the continuous hierarchy is expressed and �1, �2, �3, · · ·
represent the discrete KP lattice coordinates, with associated lattice param-

eters a1, a2, a3, · · · . Most importantly, this relation implies that the discrete

KP hierarchy can be associated with the A∞ Kac-Moody algebra [22], just

as the continuous KP hierarchy. Integrable lattice equations associated with

affine Lie algebras of type A
(1)
N [14] can be obtained from the discrete KP

hierarchy by a process called reduction. For example, imposing the period-

icity condition τlm = τ on the tau functions and requiring that λ = −µ in

the HM equation (2.1), one obtains the Hirota bilinear form of the discrete

KdV equation

(µ− ν) τm′τmn + (ν + µ) τmτm′n − 2µ ττn = 0 ,(2.5)



Discretisations of Constrained KP Hierarchies 621

where a primed subscript denotes a down-shift on the lattice, e.g.: m′ :

m �→ m−1. Introducing continuous coordinates through (1.2), this equation

indeed yields the Hirota form of the KdV equation at the continuous limit

|µ|, |ν| → ∞, (
4Dx3Dx1 −D4

x1

)
τ · τ = 0 ,

and one can therefore claim that the 2-dimensional lattice equation (2.5)

which the reduced tau functions now satisfy, should be associated with the

same A
(1)
1 affine Lie algebra that underlies the continuous equation. Note

that the discrete equation (2.5) still possesses one degree of freedom in its

coefficients.

Other famous 1+1 dimensional integrable systems, the discretisations

of which can be obtained through similar reductions, include the modified

KdV equation, the sine-Gordon equation or the Boussinesq equation (which

will appear in the final part of the paper). However, discrete analogues (or,

for that matter, discretisations) of 1+1 dimensional integrable systems that

arise as non-principal realizations of (A-type) affine Lie algebras cannot be

obtained through this elementary reduction technique. Perhaps the most

famous example of such a system is the NLS equation, which is obtained

as a homogeneous realization of the A
(1)
1 algebra [19, 20]. The (fully dis-

crete) Ablowitz-Ladik equation [1] is without any doubt the best-known

discretisation of the NLS equation but in [44] another, related, discretisa-

tion is presented which is in fact better suited to numerical calculations.

Both discretisations have been shown to be related to the 2-component KP

hierarchy [42]. However, as we shall see, there exists a remarkably simple

discretisation which, although originally discovered in the context of the 2-

component KP hierarchy [7], can be obtained directly from the HM equation

(2.1) through a new reduction technique. From a numerical point of view,

this discretisation has the added benefit of possessing a semi-continuous

limit which yields a time-discretisation of the NLS equation, as opposed

to the Ablowitz-Ladik equation (or related discretisations) which only offer

semi-discrete equations that are space-discretisations of NLS. Unfortunately,

apart from a single oblique reference to it at the end of [44], this discrete

form of NLS seems to have been completely forgotten over the years.

The mathematical object that is of crucial importance in the reduction

technique we shall introduce in this paper, is the so-called squared eigen-

function potential.
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Theorem 2.3. For any tau function τ for the discrete KP hierarchy,

given an eigenfunction ψ and an adjoint eigenfunction ψ∗ associated to τ ,

there exists a squared eigenfunction potential Ω(ψ,ψ∗), uniquely defined by

the difference relations

∆	jΩ(ψ,ψ∗) = ψ	jψ
∗ (j = 1, 2, . . .) ,

up to an additive constant.

Here, we denote by ∆	j the forward difference operator in the �j direc-

tion :

∆	jf(�j) = aj
[
f(�j + 1) − f(�j)

]
.(2.6)

The well-definedness of the squared eigenfunction potential for arbitrary tau

functions is shown in [51, 50] using the fermionic representation of the KP

hierarchy and properties of the KP vertex operators. The connection be-

tween Ω(ψ,ψ∗) and the KP vertex operators was first noted in [2]. Whereas

the proof of the existence of the squared eigenfunction potential requires

relatively sophisticated techniques, the fact that the defining equations of

the potential are compatible, can be checked by elementary calculations.

For example, using the evolution along the lattice directions m and n in the

linear problem (2.2) and its adjoint (2.3), one immediately finds that

∆n(ψmψ
∗) =

µν

µ− ν

τmτn
ττmn

[ψnψ
∗
n − ψmψ

∗
m] ,

which is symmetric in the m and n directions. Hence, ∆n(ψmψ
∗) =

∆m(ψnψ
∗).

The connection with the KP vertex operator becomes apparent in the

following theorem:

Theorem 2.4. Given a tau function τ for the discrete KP hierarchy

and an associated squared eigenfunction potential Ω(ψ,ψ∗), the map

τ �→ τ × Ω(ψ,ψ∗) ,

is a map between tau functions, or in other words, τ̂ = τ Ω(ψ,ψ∗) satisfies

the discrete KP hierarchy.
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The proofs given in [50, 51] also deal with the fermionic representation

of this map and with its interpretation as an extension of the action of a

solitonic vertex operator. However, it turns out that a simple, algebraic,

verification that τ̂ indeed satisfies the HM equation (2.1) is possible. It

suffices to verify that:

(µ− ν) τ̂lτ̂mn + (ν − λ) τ̂mτ̂ln + (λ− µ) τ̂nτ̂lm

=
τlτmτn
τ ψ∗

[
Ωl

(
µψ∗

m − νψ∗
n

)
Ωmn

+ cyclic perm.

(
l → m → n → l

λ → µ → ν → λ

)]
=

τlτmτn
τ ψ∗ [µΩlψ

∗
mΩn − νΩmψ

∗
nΩl + cyclic perm.] ≡ 0 ,

because of the HM equation (2.1) and the linear equations (2.3). This result

was first obtained in [37], using the notion of a binary Darboux transforma-

tion.

Under the Miwa-transformation (2.4), the continuum limit of the defin-

ing relations for the squared eigenfunction potential yields the coupled equa-

tions [51]

∂xj

(
Ω(ψ,ψ∗)

)
= jψ∗pj−1(∂̃)(ψ) −

j−1∑
k=1

∂xk
[ψ∗pj−k−1(∂̃)(ψ)]

(j = 1, 2, . . .) ,

subject to the conditions

pj(−∂̃)(ψ) = ψ pj−1(−∂̃)(∂x1 log τ) (j = 2, 3, . . .) ,(2.7)

and

pj(∂̃)(ψ∗) = − ψ∗ pj−1(∂̃)(∂x1 log τ) (j = 2, 3, . . .) ,(2.8)

where pj(±∂̃) denotes the weight j Schur polynomial, obtained from the

generating function e
∑ +∞

i=1 uiλ
i
=
∑+∞

j=0 pj(u1, u2, u3, ...)λ
j , in the (weighted)

partial differential operators ±∂x1 ,±∂x2/2,±∂x3/3, · · · . The systems (2.7)

and (2.8) are very compact forms of the Zakharov-Shabat system for the
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KP hierarchy and its adjoint. It can be shown that the above relations in

fact define a (formal) exact differential

dΩ(ψ,ψ∗) = ψψ∗dx1 + (ψx1ψ
∗ − ψψ∗

x1
)dx2 + · · · ,

(where subscripts stand for partial derivatives), hence the name squared

eigenfunction potential. It is well-known [26] that the x1 derivative of the

squared eigenfunction ψψ∗ is the generator for most of the symmetries of

the KP hierarchy, a fact that is of course rooted in its deep relation to

the KP vertex operator, but which can also be understood in the following

way. Given a KP tau function τ , the (continuous) KP equation is usually

expressed in terms of the variable u = ∂2
x1

log τ . Now, since Theorem 2.4 also

holds at the continuum limit, one can use the tau function τ̂ to obtain a new

solution to the KP equation: û = ∂2
x1

log τ̂ . As the squared eigenfunction

potential Ω is only defined up to an arbitrary constant, it follows that the

expansion

û = ∂2
x1

log(τΩ + τ/ε) = u+ ∂2
x1

log(1 + εΩ) = u+ ε (ψψ∗)x1 + O(ε2) ,

satisfies the KP equation to all orders in ε, and thus also up to first order.

Hence, (ψψ∗)x1 generates a generalized symmetry for the KP equation.

Standard reductions of the KP equation (hierarchy) to 1+1 dimensional

integrable equations rely on a simple invariance with respect to translations

in a particular direction. E.g., requiring that ux2 = 0 (or, more fundamen-

tally that τx2 ∼ τ) reduces KP to the KdV equation. A symmetry reduction

of the KP equation (and of the hierarchy as a whole) relies on constrain-

ing the general symmetry generator (ψψ∗)x1 to translations in a particular

direction: uxk
= (ψψ∗)x1 . Such a restriction involving both the solutions

to the linear equations (ψ,ψ∗) and those of the nonlinear equations (u) is

called a symmetry constraint [26] or a k-constraint [5].

3. Main Results

In [29], symmetry constraints were reinterpreted as constraints on the

KP tau functions of the form: τxk
= τ Ω(ψ,ψ∗). The aim of this paper is to

implement a similar constraint in the discrete case, and to obtain explicit

forms for the systems that result from the first few constraints: i.e. for

k = 1, 2 and 3.
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Theorem 3.1. Let S represent an arbitrary shift on the discrete KP

lattice, and let γ ∈ C
×. The constraint

γ Sτ = τ Ω(φ, φ∗) ,(3.1)

on a tau function τ and an eigenfunction φ and adjoint eigenfunction φ∗

associated to it through the linear equations (2.2) and (2.3), is compatible

with the discrete KP hierarchy. The constrained hierarchy obtained by im-

posing this condition on the discrete KP hierarchy and its linear and adjoint

linear system, has solutions τ, φ, φ∗ that can be expressed by bi-directional

Casorati determinants

τ (N) :=
∣∣∣∆i−1

S ∆j−1f(�)
∣∣∣
i,j=1..N

, τ (0) := 1 ,(3.2)

where ∆ is the (forward) difference operator (2.6) in an arbitrary but fixed

direction on the lattice and ∆S := γ(S−1). The function f(�) should satisfy

the dispersion relations ∆	jf(�) = ∆	if(�) for all possible directions �i, �j
on the lattice. Solutions τ, φ, φ∗ to the constraint are given by:

τ = τ (N) , φ =
Sτ (N−1)

τ (N)
, φ∗ =

τ (N+1)

τ (N)
,

for an arbitrary positive integer N .

These solutions can in fact be extended to the case N = 0 by assuming

τ (−1) = 0 whenever this makes sense in the actual equations.

The simplest example of such a constraint leads to the discretisation of

the NLS equation mentioned in the previous section.

Proposition 3.2. The case γ = ν, S = Tn, in terms of the shift op-

erator Tn in the n direction, yields the following integrable discretisation of

the NLS equation: 
µφ∗m − νφ∗n =

(µ− ν)φ∗

1 − 1
µνφ

∗ϕmn

µϕn − νϕm =
(µ− ν)ϕmn

1 − 1
µνφ

∗ϕmn
.

(3.3)
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This equation can be cast into the Hirota bilinear form

µν(ττmn − τmτn) = τ∗τ ′mn(3.4)

(µ− ν)τmnτ
∗ = µτnτ

∗
m − ντmτ

∗
n(3.5)

(µ− ν)ττ ′mn = µτmτ
′
n − ντnτ

′
m(3.6)

by means of the transformation

φ∗ =
τ∗

τ
, ϕ =

τ ′

τ
.

This discrete system was discovered 30 years ago [7] but has almost been

completely forgotten since. It was recently rediscovered in [16].

A first continuum limit, based on (1.2), where |µ| → ∞, yields the

differential-difference system [16]{
ν(φ∗n − φ∗) = φ∗x1

− 1
ν (φ∗)2ϕn

ν(ϕn − ϕ) = (ϕn)x1 + 1
νφ

∗(ϕn)2
(3.7)

which is a time-discretisation of the NLS equation. The NLS equation in

its so-called complexified form, is obtained at the next continuum limit

(|ν| → ∞) {
φ∗x2

= −(φ∗x1x1
+ 2(φ∗)2ϕ)

ϕx2 = ϕx1x1 + 2φ∗ϕ2 .
(3.8)

It will be shown in section 5, that the discrete system (3.3) can be used to

obtain a compact form of the entire continuous NLS hierarchy.

The continuum limits of the tau functions (3.2) in this case are of course

nothing but the well-known bi-directional Wronski determinants

τ = τ (N) :=
∣∣∣( ∂

∂x1

)i+j−2
f
∣∣∣
i,j=1..N

, τ ′ = τ (N−1) , τ∗ = τ (N+1) ,(3.9)

that solve the NLS equation in its bilinear form:
1

2
D2

x1
τ · τ = τ ′τ∗(

Dx2 −D2
x1

)
τ ′ · τ = 0(

Dx2 +D2
x1

)
τ∗ · τ = 0 ,
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which is obtained from (3.4–3.6), at the continuum limit. The function

f(x1, x2, . . .) that defines the determinant (3.9), is required to satisfy the

dispersion relations fxk
= (−1)k+1fkx1 (for arbitrary k = 1, 2, . . .).

Moreover, the tau functions that satisfy the bilinear system (3.4)–(3.6)

also yield solutions to a discretisation of the Broer-Kaup equation [4]:

Proposition 3.3. The system
Hmn =

HnUn(µ− νHm)

Um(µ− νHn)

U =
µν(Hn −Hm)

(µ− νHn)(µ− νHm)
+

µUm

(µ− νHm)
− νUnHn

(µ− νHn)

(3.10)

is an integrable discretisation of the Broer-Kaup equation,{
hx2 =

(
hx1 + 2u+ h2

)
x1

ux2 =
(
2uh− ux1

)
x1
.

(3.11)

It is related to the tau functions τ and τ ′ of the dNLS equation (3.3) through

the dependent variable transformations:

U =
τ τmn

τmτn
, H =

τnτ
′
m

τmτ ′n
,

and u = (log τ)x1x1 and h = (log τ ′/τ)x1 for the continuous system. The

discrete Broer-Kaup system (3.10) corresponds to the Hirota bilinear form:

(µ− ν)ττ ′mn = µτmτ
′
n − ντnτ

′
m

(µ− ν)ττ ′mnn = µτmτ
′
nn − ντnτ

′
mn ,

which has solutions τ = τ (N) and τ ′ = τ (N−1) with τ (N) as in (3.2).

An integrable discretisation of the Yajima-Oikawa system [54] is ob-

tained from a second order shift operator S:

Proposition 3.4. The case γ = −µν, S = TmTn, in terms of shift op-

erators Tm and Tn in the m and n directions, yields an integrable discreti-

sation of the Yajima-Oikawa system if one imposes the restriction ν = −µ
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on the lattice parameters:
2µ3(Um′n′ − U) = ϕmφ

∗
n′ − ϕnφ

∗
m′

φ∗m + φ∗n = 2Uφ∗

ϕm + ϕn = 2Uϕmn

.(3.12)

This equation can be cast into the Hirota bilinear form

µ3(ττmmn − τmτmn) = τ∗τ ′mmn(3.13)

2τmnτ
∗ = τnτ

∗
m + τmτ

∗
n(3.14)

2ττ ′mn = τmτ
′
n + τnτ

′
m(3.15)

by means of the transformation

U =
τ τmn

τmτn
, φ∗ =

τ∗

τ
, ϕ =

τ ′

τ
.

At the continuum limit, system (3.12) indeed yields the Yajima-Oikawa

system: 
ux2 = (φ∗ϕ)x1

φ∗x2
= −(φ∗x1x1

+ 2uφ∗)

ϕx2 = ϕx1x1 + 2uϕ

(3.16)

where u = (log τ)x1x1 . In this case, the continuum limits of the tau functions

(3.2) are of course again bi-directional Wronski determinants,

τ = τ (N) :=
∣∣∣ ∂i+j−2

∂x2
i−1∂x1

j−1
f(�)

∣∣∣
i,j=1..N

, τ ′ = τ (N−1) , τ∗ = τ (N+1) ,

for f(x1, x2, . . .) subject to the dispersion relations fxk
= (−1)k+1fkx1 (k =

1, 2, . . .). These tau functions solve the system of Hirota bilinear equations
1

2
Dx1Dx2τ · τ = τ ′τ∗(
Dx2 −D2

x1

)
τ ′ · τ = 0(

Dx2 +D2
x1

)
τ∗ · τ = 0 ,

which is obtained as the continuum limit of (3.13–3.15).
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4. Solutions, Lax Pairs and Continuum Limits

In this section we shall prove the theorem and propositions presented in

section 3. Let φ be an eigenfunction for a given discrete KP tau function τ .

In other words, φ satisfies the relation

φlk =
1

al − ak

τlτk
ττlk

(
alφk − akφl

)
,(4.1)

for all possible choices of two (different) directions l and k on the discrete

KP lattice. Similarly, let φ∗ be an adjoint eigenfunction for that same tau

function:

φ∗ =
1

al − ak

τlτk
ττlk

(
alφ

∗
l − akφ

∗
k

)
,(4.2)

for all choices of different lattice directions l and k. These functions will be

parametrized in terms of τ and new functions τ̄ for (φ) and τ∗ for (φ∗) :

φ :=
τ̄

τ
, φ∗ :=

τ∗

τ
.(4.3)

The linear and adjoint linear equations (4.1) and (4.2) then give rise to

Hirota bilinear relations for all different pairs of lattice directions for these

new functions. In particular, in the m and n directions we find

(µ− ν)τ τ̄mn = µτmτ̄n − ντnτ̄m ,(4.4)

for τ and τ̄ , and

(µ− ν)τmnτ
∗ = µτnτ

∗
m − ντmτ

∗
n ,(4.5)

for τ and τ∗.
First, we shall prove the following crucial Lemma:

Lemma 4.1. If τ , φ and φ∗ satisfy the constraint

γ Sτ = τ Ω(φ, φ∗) ,

for some shift S on the discrete KP lattice, and for some γ ∈ C
×, then

ϕ :=
τ ′

τ
,(4.6)
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where τ ′ := S−1τ̄ , also satisfies the defining equation (4.1) for an eigen-

function.

Proof. We give the proof for the m,n directions, which is representa-

tive for all possible pairs of directions. On account of the definition of the

potential Ω in Theorem (2.3), taking (forward) differences of the constraint

in the m and n directions, one obtains

µγ

(
Sτm
τm

− Sτ

τ

)
= φ∗φm =

τ∗(Sτ ′m)

ττm

νγ

(
Sτn
τn

− Sτ

τ

)
= φ∗φn =

τ∗(Sτ ′n)

ττn
,

from which it follows that

τ
[
µS(τmτ

′
n) − νS(τnτ

′
m)
]

= (Sτ)
[
µτmτ̄n − ντnτ̄m

]
.

Because of (4.4), i.e. because of the fact that φ is a discrete KP eigen-

function, the r.h.s. in this last expression is nothing but (µ − ν)τ τ̄mn or

(µ− ν)τ(Sτ ′mn), and one finds that

(µ− ν)ττ ′mn = µτmτ
′
n − ντnτ

′
m .(4.7)

Hence, ϕ – as defined by (4.6) – satisfies

ϕmn =
1

µ− ν

τmτn
ττmn

(
µϕn − νϕm

)
. �(4.8)

Remark 4.2. Note that this proof can also be read backwards: i.e.,

under the constraint, one also has that the fact that ϕ = τ ′/τ satisfies the

discrete KP linear system for the tau function τ , necessarily implies that

φ = (Sτ ′)/τ satisfies these equations as well.

Remark 4.3. In fact, a similar property holds for the function τ∗,
which can be seen to satisfy:

(µ− ν)(Sτmn)τ∗ = µ(Sτn)τ∗m − ν(Sτm)τ∗n .

Hence, one finds that the ratio τ∗/(Sτ) satisfies the adjoint linear equations

(4.2), not for the tau function τ itself, but for the shifted tau function Sτ . In
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fact, this observation amounts to an explicit verification of the commutativ-

ity of the following Bianchi diagram for (adjoint) Darboux transformations

[51]

τ̄
✟✟✟✟✟✯1/Sϕ

❍❍❍❍❍❥1/φ

τ̂

τ

❍❍❍❍❍❥

τ ∗/Sτ

✟✟✟✟✟✯

φ∗

τ ∗

where τ̂ = τ Ω(φ, φ∗) ∼ Sτ under the constraint.

We now proceed with the proof of Theorem 3.1, for which it suffices

to show that the constraint shares (a nontrivial) part of the solution space

of the discrete KP hierarchy and its associated linear (and adjoint linear)

system.

Proof of Theorem 3.1. It is well-known [40, 37] that the discrete

KP hierarchy has tau functions in the form of Casorati determinants

τ (N) =
∣∣∣∆j−1f (i)(�)

∣∣∣
i,j=1..N

,

defined in terms of functions f (i)(�) that are required to satisfy the dis-

persion relations ∆	jf
(i)(�) = ∆	kf

(i)(�) for all possible directions �j , �k on

the lattice. The difference operator ∆ acts in a fixed, but arbitrary lattice

direction, and the value of the resulting determinant is obviously indepen-

dent of the particular choice of lattice direction. Furthermore, the ratios

τ (N−1)/τ (N) and τ (N+1)/τ (N) are known to satisfy, respectively, the linear

equations (4.1) and adjoint linear equations (4.2) associated to τ = τ (N).

In fact, the functions f (i)(�) can be thought of as solutions to the adjoint

linear system (4.2), for a vacuum tau function τ(�) = 1, from which the

Casorati determinants are then constructed through iterated (adjoint) Dar-

boux transformations [37, 50].

It now suffices to find a restriction on the functions f (i)(�), besides the

dispersion relations, such that the resulting Casorati determinants can si-

multaneously satisfy the discrete KP hierarchy and the constraint. In fact,
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Lemma 4.1 offers an important clue. In the simplest non-trivial case, i.e.

N = 2, one has that the pair of tau functions

(τ, τ ′) =
( ∣∣∣∣f (1) ∆f (1)

f (2) ∆f (2)

∣∣∣∣ , f (1)
)
,

defines a solution to the linear system (4.1) for the discrete KP hierarchy.

However, as pointed out in Remark 4.2, the constraint implies that the pair

(τ, Sτ ′) =
( ∣∣∣∣f (1) ∆f (1)

f (2) ∆f (2)

∣∣∣∣ , Sf (1)
)
,

should also define an eigenfunction. The only conceivable way in which this

can happen in a generic fashion, without any conflict with the structure of

the solutions for the discrete KP hierarchy, is when f (2) is in fact nothing

but Sf (1), which is the obvious choice that restores the symmetry in this

otherwise rather peculiar situation. Hence the ansatz :

τ = τ (N) , ϕ =
τ (N−1)

τ (N)
, φ∗ =

τ (N+1)

τ (N)
,

for the bi-directional Casorati determinants

τ (N) :=
∣∣∣∆i−1

S ∆j−1f(�)
∣∣∣
i,j=1..N

.

Note that, if the constraint is indeed verified for such Casorati determinants,

Remark 4.2 implies that φ = (Sτ (N−1))/τ (N) is an eigenfunction for τ (N).

All that remains then is the verification that the constraint is indeed

satisfied. Because of the definition of the potential Ω (Theorem 2.3), it is

sufficient to verify the constraint in its difference form, i.e. ∆(Sτ/τ) = ∆Ω,

in an arbitrary lattice direction. For example, in the m direction one has

that

µγ
(
τ(Sτm) − τm(Sτ)

)
= τ∗(Sτ ′m)

should be verified. Obviously, in the case N = 1, this is satisfied by

τ ′ = 1, τ = f(�) (with f(�) subject to the discrete KP dispersion relations

∆	jf(�) = ∆	if(�) ) and µγ
(
f (Sfm) − fm(Sf)

)
= τ∗, i.e.

τ∗ = µγ

∣∣∣∣ f Tmf

Sf TmSf

∣∣∣∣ = γ

∣∣∣∣ f ∆mf

Sf S∆mf

∣∣∣∣ =

∣∣∣∣ f ∆mf

∆Sf ∆S∆mf

∣∣∣∣ ,
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which is nothing but τ (2). Expressing the general size N > 1 determinant

τ (N) in terms of shift operators S and Tm rather than difference operators,

τ (N) = (µγ)
N(N−1)

2

∣∣∣Si−1T j−1
m f(�)

∣∣∣
i,j=1..N

,

one finds that the condition µγ
(
τ (N)(Sτ

(N)
m ) − τ

(N)
m (Sτ (N))

)
=

τ (N+1)(Sτ
(N−1)
m ) is nothing but the Jacobi identity for the determinants

(µγ)N(N−1)+1

[ ∣∣∣Si−1T j−1
m f(�)

∣∣∣
i,j=1..N

∣∣∣SiT j
mf(�)

∣∣∣
i,j=1..N

−
∣∣∣Si−1T j

mf(�)
∣∣∣
i,j=1..N

∣∣∣SiT j−1
m f(�)

∣∣∣
i,j=1..N

]
= (µγ)N

2−N+1
∣∣∣Si T j

mf(�)
∣∣∣
i,j=1..N−1

∣∣∣Si−1T j−1
m f(�)

∣∣∣
i,j=1..N+1

.

Hence, τ ′ = τ (N−1) and τ∗ = τ (N+1), which proves Theorem 3.1. �

Next, we show how to obtain Lax pairs for constrained HM equations.

The following Lemma is essential for this task.

Lemma 4.4. Choose an arbitrary lattice direction k on the KP lattice,

with lattice parameter κ. If we denote down-shifts on the lattice by primed

subscripts, then the function

ψ :=
τk′

τ

∏
j (	j �=k)

(
aj − κ

aj

)−	j

satisfies the discrete KP linear system (2.2) for any pair of different direc-

tions, distinct from k. Furthermore,

i) if τ is a constrained tau function, i.e. if as in Theorem 3.1 or Lemma

4.1 it satisfies γSτ = τΩ(φ, φ∗), for some specific eigenfunction φ and

adjoint eigenfunction φ∗, then the eigenfunction ψ will satisfy

κγ
[
ψ − Γ (Sψ)

]
= (Sϕ)φ∗k′ψ ,(4.9)
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with ϕ as defined in Lemma 4.1. The constant Γ is given by

Γ :=

S
[∏

j (	j �=k)

(
aj − κ

aj

)	j ]
∏

j (	j �=k)

(
aj − κ

aj

)	j
.

ii) the quantity

χ :=
1

κ
φ∗k′ψ(4.10)

that appears in (4.9) satisfies the eigenfunction potential-like equation

∆ χ = φ∗(Tψ) ,(4.11)

for a shift T (and forward difference ∆) in an arbitrary direction,

different from the direction k.

Proof. Consider the HM equation in the k,m and n directions, down-

shifted once in all three directions:

(µ− ν) τk′τm′n′ + (ν − κ) τm′τk′n′ + (κ− µ) τn′τk′m′ = 0 .

Then, setting τk′ = τ ψ
∏

j (	j �=k)

(
aj − κ

aj

)	j

, one immediately obtains the

linear equation

ψmn =
1

µ− ν

τmτn
ττmn

[µψn − ν ψm ] ,(4.12)

downshifted in m and n. As the equations in the other directions can be

obtained in a similar fashion, this settles the first part of the Lemma.

For the second part, take the difference ∆k(Sτ/τ) = ∆kΩ of the con-

straint, which yields

κγ

(
Sτ

τ
− Sτk′

τk′

)
= φφ∗k′ ,
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after a downshift in k. Using the above substitution for τk′ in terms of ψ,

one obtains

κγ
Sτ

τ

[
1 − Γ

Sψ

ψ

]
= φφ∗k′ =

Sτ ′

τ
φ∗k′ =

Sτ

τ
(Sϕ)φ∗k′ ,

which proves statement i). As for statement ii), since φ∗ is an adjoint

eigenfunction for the discrete KP hierarchy, it satisfies e.g. the equation

φ∗ =
1

µ− κ

τmτk
ττmk

[
µφ∗m − κφ∗k

]
,

and hence, taking a downshift in the k direction and replacing τk′ and φ∗k′ in

this relation by their respective expressions in terms of ψ and χ, one obtains

χ =
1

µ

[
µχm − φ∗ψm

]
,

which proves the Lemma. �

Note that the functions ψ and χ defined in Lemma 4.4, satisfy a set

of equations (4.9,4.11) which are – essentially – linear in these two fields.

They will therefore play a crucial role in the construction of Lax pairs for

the constrained systems.

Let us start with the construction of the Lax pair for the discrete NLS

equation (3.3), which can be regarded as a proof of its integrability.

Proof of Proposition 3.2. Take the shift operator S and multi-

plicative constant γ in the constraint (3.1) to be γ = ν and S = Tn. In that

case, the constraint

ν τn = τ Ω(φ, φ∗)

will yield

τx1 = τ Ω(φ, φ∗) ,

at the continuum limit. This follows immediately from the fact that the

squared eigenfunction potential Ω(φ, φ∗) is only determined up to an (ar-

bitrary) additive constant. The constraint can therefore also be expressed

as

∆S τ = ν(τn − τ) = τ Ω(φ, φ∗) ,
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which, under the Miwa-transformation (1.2), behaves as

τx1 + O(ν−1) = τ Ω(φ, φ∗) ,

for |ν| → ∞. The x1-derivative of the continuum limit of this constraint

is nothing but the symmetry constraint which is used to obtain the NLS

equation from the KP hierarchy [26] :

∂2

∂x2
1

log τ = Ωx1 = φφ∗ .

Note that, at the continuum limit, both φ = τ ′n/τ and ϕ = τ ′/τ tend to the

same function, at lowest order. We can therefore also write this result in a

more suggestive way, using the variable names of the discrete system:

∂2

∂x2
1

log τ = φ∗ϕ .

On the contrary, taking e.g. the difference in the m direction of the discrete

constraint

∆m

(τn
τ

)
=

1

ν
φ∗φm ,

just as in the proof of Lemma 4.1, we obtain,

τnτm
ττmn

= 1 − 1

µν
φ∗ϕmn ,(4.13)

which is the discrete equivalent of the above continuous constraint.

Turning our attention now to the Lax pair, it is readily verified that in

this case (S = Tn) the constant Γ in equation (4.9) is simply Γ = (ν−κ)/ν.

Then, introducing the function χ defined by (4.10) into that same relation,

we obtain a very simple linear equation connecting ψ and χ:

ψn =
1

ν − κ

[
ν ψ − ϕnχ

]
.(4.14)

Furthermore, the dependence on the n direction of χ is also known because

of (4.11):

∆nχ = ν(χn − χ) = φ∗ψn ,

which on account of (4.14) can be rewritten as

χn =
1

ν − κ

[
φ∗ψ +

(
(ν − κ) − 1

ν
φ∗ϕn

)
χ
]
.(4.15)
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Let us choose an auxiliary direction (different from k) on the lattice, say

m, and let us calculate the evolution of ψ in that direction from (4.14).

Bearing in mind that both ψ and ϕ satisfy the linear equations for the dKP

hierarchy (and in particular equations (4.12) and (4.8)), and using (4.11)

to define the shift of χ in the m direction, the Tm-shift of (4.14) can be

re-arranged in the following way:

ψmn =
1

ν − κ

[
ν ψm − ϕmnχm

]

⇔ 1

µ− ν

τnτm
ττmn

[
µψn − νψm

]
=

1

ν − κ

[
ν(1 − 1

µν
φ∗ϕmn)ψm

− χ

µ− ν

τnτm
ττmn

(
µϕn − νϕm

)]
,

which, using relation (4.13) for the constraint and equation (4.14), is nothing

but

ψm =
1

µ− κ

[
µψ − ϕmχ

]
.

Note that this is exactly the same relation as that in the n direction, i.e.

equation (4.14). Hence, the m evolution of χ will take the same form as

(4.15) and we obtain the following system of linear equations for the (vector)

function Ψ := t(ψ χ):

Ψm =
1

µ− κ

(
µ −ϕm

φ∗ µ− κ− 1
µφ

∗ϕm

)
· Ψ ,(4.16)

Ψn =
1

ν − κ

(
ν −ϕn

φ∗ ν − κ− 1
νφ

∗ϕn

)
· Ψ .(4.17)

The compatibility condition TnΨm = TmΨn of these linear equations yields

exactly equation (3.3), independently of κ. Hence, one can conclude that

the linear system (4.16,4.17) is a Lax pair, with spectral parameter κ, for

the dNLS equation (3.3).

The Hirota bilinear form of the dNLS equation is obtained directly from

equations (4.13), (4.5) and (4.7). �
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Taking the continuum limit (1.2) for |µ| → ∞ of (4.16), one obtains

Ψx1 =

(
κ −ϕ
φ∗ 0

)
· Ψ ,(4.18)

which together with (4.17) forms a Lax pair for the semi-discrete NLS equa-

tion (3.7). Taking, finally, the continuum limit |ν| → ∞ in (4.17), subject

to (4.18), one obtains

Ψx2 =

(
κ2 + ϕφ∗ −ϕx1 − κϕ

κφ∗ − φ∗x1
−φ∗ϕ

)
· Ψ ,

which together with (4.18) constitutes a Lax pair for the NLS equation

(3.8). Note that in the usual theory of symmetry constraints, the constraint

is formulated in terms of a pseudo-differential form of the Lax equations [5].

In fact, as equation (4.11) tells us that the function χ is very similar to a

squared eigenfunction potential defined for the pair (ψ, φ∗), the first linear

equation (4.18) can be thought of as saying that ψx1 = κψ − ϕ Ω(ψ, φ∗),
which is one way to interpret the relation

(
∂x1 + ϕ∂−1φ∗

)
ψ = κψ in [5].

Although the choice of the function χ (4.10) turned out to be quite

judicious, especially in view of the deeper meaning of the equations (4.11),

one can wonder whether it is the only interesting one. It so happens that

there is another interesting candidate for a function that can be used to

construct a Lax pair from (4.9):

χ̃ :=
1

κ
φ∗k′(Sϕ)ψ .

This choice allows one to completely eliminate the tau function τ∗ from the

problem. The proof of Proposition 3.3 will illustrate this fact for the case

of the reduction to the dNLS equation.

Proof of Proposition 3.3. In case S = Tn, the change of variables

χ �→ χ̃ corresponds to a gauge transformation on the Lax pair (4.16,4.17)

Ψ �→ Ψ̃ :=

(
ψ

χ̃

)
=

(
1 0

0 ϕn

)
· Ψ ,
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which yields the linear equations:

Ψ̃m =
1

µ− κ

 µ −ϕm

ϕn

φ∗ϕmn (µ− κ)
ϕmn

ϕn
− 1

µφ
∗ϕmϕmn

ϕn

 · Ψ̃ ,

Ψ̃n =
1

ν − κ

(
ν −1

φ∗ϕnn (ν − κ)
ϕnn

ϕn
− 1

νφ
∗ϕnn

)
· Ψ̃ .

If we now introduce the new variables

H :=
τnτ

′
m

τmτ ′n
=
ϕm

ϕn
,

U :=
ττmn

τmτn
,

which, because of the constraint (4.13) can also be written as

U =
1

1 − 1
µνφ

∗ϕmn
,

one readily obtains the linear system:

Ψ̃m =
1

µ− κ

 µ −H

µν
U − 1

U

µ− κ

µ− ν

(µ− νH)

U
+ ν

H(1 − U)

U

 · Ψ̃ ,(4.19)

Ψ̃n =
1

ν − κ

 ν −1

µν
U − 1

UHn

ν − κ

µ− ν

(µ− νH)

UHn
+ ν

(1 − U)

UHn

 · Ψ̃ .(4.20)

The compatibility condition of this linear system is independent of the

spectral parameter κ and is identical to the discrete Broer-Kaup equation

(3.10). The tau functions τ and τ ′ that define the solutions U and H are of

course those of the dNLS equation and the Hirota bilinear equations they

satisfy are (4.7) and (4.4) with τ̄ = Sτ ′ = τ ′n.

The continuum limit is obtained through the ansatz

U = 1 +
1

µν
u , H = 1 +

ν − µ

µν
h ,
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which yields the tau function expressions

u = (log τ)x1x1 , h =
(
log

τ ′

τ

)
x1
,

for the solutions u and h to the (continuous) Broer-Kaup system (3.11). �

Note that a Lax pair for the BK equation (3.11) can be easily obtained

at the continuum limit |µ|, |ν| → ∞ of the linear equations (4.19) and(4.20):

Ψ̃x1 =

(
κ −1

u h

)
· Ψ̃ ,(4.21)

Ψ̃x2 =

(
κ2 + u −κ− h

κu+ uh− ux1 −u− hx1 − h2

)
· Ψ̃ .(4.22)

This construction of a discretisation of the Broer-Kaup equation through

a gauge transformation and subsequent change of variables applied to the

Lax pair for the (discrete) NLS equations, in fact offers a remarkably faithful

analogy to the continuous situation. As described in [21, 41], the Lax pair for

the Broer-Kaup equation (4.21,4.22) can be obtained from that for the NLS

equation in the context of a rather general scheme of gauge transformations

for so-called energy dependent scattering problems.

Finally, let us consider the case of the discrete Yajima-Oikawa system,

for which S = TmTn:

Proof of Proposition 3.4. In this case, once again exploiting the

freedom in the squared eigenfunction potential, the constraint

γ (τmn − τ) = τ Ω(φ, φ∗)

can, under the Miwa-transformation (1.2), be expanded for large µ and ν

as

γ
(
(
1

µ
+

1

ν
) τx1 +

1

2
(

1

µ2
+

1

ν2
) τx2 +

1

2
(
1

µ
+

1

ν
)2 τx1x1 + · · ·

)
= τ Ω(φ, φ∗) ,

which clearly cannot yield the required constraint on the x2 derivative of τ

unless ν = −µ. Hence, imposing ν = −µ, we choose γ = −µν = µ2, so that

we have

τx2 + O(µ−1) = τ Ω(φ, φ∗) ,
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and therefore

τx2 = τ Ω(φ, φ∗) ,

or
∂2

∂x1∂x2
log τ = Ωx1 = φφ∗ = φ∗ϕ ,

at the continuum limit.

Taking the difference in the m direction of the discrete constraint, one

easily obtains

µ3(ττmmn − τmτmn) = τ∗τ ′mmn ,

which is the discrete equivalent of the above continuous constraint. It is

also the first equation in the Hirota bilinear form (3.13–3.15) presented in

Proposition 3.4. The remaining two bilinear equations (3.14) and (3.15) are

nothing but the equations (4.5) and (4.7) for ν = −µ.

Obtaining the Lax pair for the discrete Yajima-Oikawa equation turns

out to be a lot easier than in the case of the discrete NLS equation. First

of all, for S = TmTn and ν = −µ, the constant Γ in Lemma 4.4 takes the

value

Γ =
µ2 − κ2

µ2
,

and the linear equation (4.9) can be cast into the form

ψmn =
1

µ2 − κ2

(
µ2ψ − ϕmnχ

)
.(4.23)

However, as was shown in the same Lemma, ψmn also satisfies equation

(4.12), which we shall rewrite as

ψmn =
ψm + ψn

2U
,

in terms of the (new) variable

U :=
ττmn

τmτn
.(4.24)

This of course gives a simple expression for the sum of ψm and ψn:

ψm + ψn =
2U

µ2 − κ2

(
µ2ψ − ϕmnχ

)
.
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It then suffices to define an auxiliary function ψ′

ψ′ :=
µ2 − κ2

2µ
(ψm − ψn) ,(4.25)

to obtain the linear equations

ψm =
1

µ2 − κ2

(
µ2Uψ + µψ′ − Uϕmnχ

)
,

ψn =
1

µ2 − κ2

(
µ2Uψ − µψ′ − Uϕmnχ

)
,

linking all three functions ψ,ψ′ and χ. Repeated use of equations (4.23)

and (4.11) in both the m and n directions then yields the following linear

system for the function Ψ := t(ψ ψ′ χ):

Ψm =
1

µ2 − κ2
(4.26)

×


µ2U µ −Uϕmn

µA Um

(
µ2 − 1

µϕmmnφ
∗) 1

µB

µUφ∗ φ∗ (µ2 − κ2) − 1
µUϕmnφ

∗

 · Ψ ,

Ψn =
1

µ2 − κ2
(4.27)

×


µ2U −µ −Uϕmn

µC Un

(
µ2 + 1

µϕmnnφ
∗) 1

µD

−µUφ∗ φ∗ (µ2 − κ2) + 1
µUϕmnφ

∗

 · Ψ ,

with

A = −(µ2 − κ2) + UUm

(
µ2 − 1

µ
ϕmmnφ

∗)
B = (µ2 − κ2)

(
ϕmn − Umϕmmn

)
− UUm

(
µ2 − 1

µ
ϕmmnφ

∗)ϕmn

C = (µ2 − κ2) − UUn

(
µ2 +

1

µ
ϕmnnφ

∗)
D = (µ2 − κ2)

(
− ϕmn + Unϕmnn

)
+ UUn

(
µ2 +

1

µ
ϕmnnφ

∗)ϕmn .
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This system is compatible, independently of the value of κ, provided that

the functions U, φ∗ and ϕ satisfy the discrete Yajima-Oikawa system (3.12).

Hence, (4.26,4.27) constitutes a Lax pair with spectral parameter κ for the

discrete Yajima-Oikawa system. �

The following Lax pair for the continuous Yajima-Oikawa system (3.16)

can be obtained at the continuum limit of the discrete Lax pair (4.26,4.27),

with the ansatz U = 1 − u/µ2 for the function U :

Ψx1 =

 0 1 0

κ2 − 2u 0 −ϕ
φ∗ 0 0

 · Ψ ,

Ψx2 =

 κ2 0 −ϕ
−ϕφ∗ κ2 −ϕx1

φ∗x1
φ∗ 0

 · Ψ .

Note that the continuum limit of ψ′ as given by (4.25) is just ψx1 , which

is nothing but the first relation in the Lax pair. Since the (continuous

function) χ can be regarded as the squared eigenfunction potential Ω(ψ, φ∗)
defined for ψ and φ∗, this equation can be interpreted as ψx1x1 = (κ2 −
2u)ψ−ϕΩ(ψ, φ∗) which gives a specific realization of the pseudo-differential

constraint
(
∂2
x1

+ 2u+ ϕ∂−1φ∗
)
ψ = κ2ψ discussed in [5].

5. Hierarchies and Extensions

In this section we shall discuss two possible extensions of our approach

to discrete constraints. A first extension concerns discretisations for entire

hierarchies of integrable systems. Using the example of the discrete NLS

equation we shall argue that we have, in fact, already obtained a discrete

form for the entire (continuous) NLS hierarchy. A second extension is that

to discrete constraints involving shift operators in more than 3 dimensions.

It will be explained that such constraints can indeed yield discretisations

of higher order constrained KP hierarchies such as that associated to the

Melnikov system [31], but that problems arise when one tries to construct

Lax pairs for single equations contained in the corresponding hierarchies.

As was explained in section 3, a first, simple continuum limit (e.g. |ν| →
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∞) of the discrete NLS equation (3.3), yields the semi-discrete system (3.7) µ(φ∗m − φ∗) = φ∗x1
− 1

µ(φ∗)2ϕm

µ(ϕm − ϕ) = (ϕm)x1 + 1
µφ

∗(ϕm)2 .
(5.1)

As explained before, a subsequent limit, |µ| → ∞, yields the NLS equation,

at lowest order.

It is however interesting to take a closer look at the general expansion of

the equations in this system, rather than just considering the lowest order

part. In general, for |µ| ≈ ∞, one obtains

∑+∞
j=2 µ

1−jpj(∂̃)φ∗ = −(φ∗)2
∑+∞

j=0 µ
−1−jpj(∂̃)ϕ∑+∞

j=2 µ
1−jpj(∂̃)ϕ =

(∑+∞
j=1 µ

−jpj(∂̃)ϕ
)
x1

+ µ−1 φ∗
(∑+∞

j=0 µ
−jpj(∂̃)ϕ

)2

(5.2)

where, as in the case of (2.7) and (2.8), pj(∂̃) denotes the weight j Schur

polynomial in the (weighted) partial differential operators ∂̃ = (∂x1 , ∂x2/2,

∂x3/3, · · · ). The NLS equation (3.8) is obtained from these expansions at

order µ−1. Supposing that these expansions are satisfied identically, i.e.

that they are satisfied at all orders in µ, one obtains the recursive system:
pj(∂̃)φ∗ = −(φ∗)2 pj−2(∂̃)ϕ

pj(∂̃)ϕ = pj−1(∂̃)ϕx1

+ φ∗
∑j−2

i=0

(
pi(∂̃)ϕ

)(
pj−2−i(∂̃)ϕ

) ( ∀j ≥ 2) .(5.3)

For example, at j = 3 one finds the system{
φ∗x3

= φ∗3x1
+ 6φ∗φ∗x1

ϕ

ϕx3 = ϕ3x1 + 6φ∗ϕϕx1

,

if one uses the NLS equation (3.8) to eliminate all x2 derivatives. This

system is readily identified as the first higher order flow in the NLS hierarchy,

generated by the recursion relation [5]:(
ϕ

φ∗

)
xr

=

(
∂x1 + 2ϕ∂−1φ∗ 2ϕ∂−1ϕ

−2φ∗∂−1φ∗ −∂x1 − 2φ∗∂−1ϕ

)r

·
(

ϕ

−φ∗
)

( ∀r ≥ 2) ,
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where ∂−1 denotes the formal inverse of ∂x1 : ∂x1∂
−1 = 1 = ∂−1∂x1 .

In fact, the nonlinear recursion (5.3) does yield the entire hierarchy of

commuting flows associated to the NLS equation (apart from the, trivial, x1

flow). Or, in other words, the expansion (5.2) is indeed valid at all orders.

This can be understood quite easily if one remembers how the discrete NLS

equation (3.3) was obtained. As was explained in the proof of Proposition

3.2 in section 4, the m direction that appears in de discrete NLS equation

is just one choice, among infinitely many possible directions on the discrete

KP lattice. One could have performed the same calculations as those for the

m direction, for each of these other directions, each time obtaining exactly

the same equation (3.3), but for the shifts in the m direction that need to

be replaced by shifts in the newly chosen direction. Since the constraint

was shown to be consistent with the entire discrete KP hierarchy, it turns

out that there is a single discrete equation which is valid in infinitely many

directions (e.g. �i, with lattice parameter ai):
aiφ

∗
	i
− νφ∗n =

(ai − ν)φ∗

1 − 1
νai

φ∗ϕn	i

aiϕn − νϕ	i =
(ai − ν)ϕn	i

1 − 1
νai

φ∗ϕn	i

.

Infinitely many copies of this equation, when considered simultaneously (so

as to make the expansion (5.2) valid at all orders) then offer a discretisation

of the entire NLS hierarchy. Needless to say, this situation faithfully mimics

that of the discrete KP hierarchy. This then leads to the proposition:

Proposition 5.1. The equations (3.3), (3.10) and (3.12) can be re-

garded as discretisations of the hierarchies of commuting flows associated

to, respectively, the NLS, Broer-Kaup and Yajima-Oikawa equations.

A similar property has been reported in [35] for the lattice KdV and

lattice Boussinesq equations (cf. also [48] for some intriguing connections

to other types of integrable equations).

We shall not present the precise forms of the recursion formulae for the

Broer-Kaup or Yajima-Oikawa hierarchies, as the relations become quite

cumbersome, but it is interesting to note that, instead of using the equation
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for ϕ in (5.1) to calculate the continuum limit, one could just as well have

started from its down-shifted version

µ(ϕ− ϕm′) = ϕx1 +
1

µ
φ∗m′(ϕ)2 ,

which then results in a different and much simpler recursive formula for the

ϕ-flows:

pj(−∂̃)ϕ = −ϕ2 pj−2(−∂̃)φ∗ ( ∀j ≥ 2) .(5.4)

Furthermore, as explained in the proof of proposition 3.2, the continuum

limit of the discrete constraint can be written as(
log τ

)
x1

= Ω(ϕ, φ∗) ,

which, combined with the fact that (the continuum limits) of ϕ and φ∗

satisfy the KP linear system (2.7) and adjoint linear problem (2.8), then

leads to yet another recursive formulation of the NLS hierarchy, in terms of

the squared eigenfunction potential Ω(ϕ, φ∗): pj(∂̃)φ∗ = −φ∗ pj−1(∂̃)Ω(ϕ, φ∗)

pj(−∂̃)ϕ = ϕpj−1(−∂̃)Ω(ϕ, φ∗)
( ∀j ≥ 2) .

Combining these expressions with those in (5.3) and (5.4), one obtains the

fundamental identities

∀j ≥ 2 : pj−1(∂̃)Ω(ϕ, φ∗) = φ∗ pj−2(∂̃)ϕ ,

pj−1(−∂̃)Ω(ϕ, φ∗) = −ϕpj−2(−∂̃)φ∗ ,

for the squared eigenfunction potential that were shown to hold for the case

of the (unconstrained) KP hierarchy in [51].

Another interesting problem is that of constructing higher order con-

straints which would offer integrable discretisations of general k-constrained

hierarchies. Let us consider the case of the 3-constrained KP hierarchy,

which yields the famous Melnikov system [31], as an example.

Let us impose the 3-constraint

τx3 = τ Ω(φ, φ∗)(5.5)
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on a KP tau function – i.e. τ satisfies (1.3) – and a KP eigenfunction φ and

adjoint eigenfunction φ∗. In other words, φ and φ∗ satisfy the KP linear

system (and its adjoint), the first few equations of which are:{
φx2 = φ2x1 + 2uφ

φ∗x2
= −

(
φ∗2x1

+ 2uφ∗
)(5.6)

and {
φx3 = φ3x1 + 3uφx1 + 3

2(ux1 + v)φ

φ∗x3
= φ∗3x1

+ 3uφ∗x1
+ 3

2(ux1 − v)φ∗ .

These two sets of equations are compatible if and only if u and v satisfy the

KP equation in the form,

ux2 = vx1 , ux3 =
1

4
(u3x1 + 12uux1) +

3

4
vx2 ,(5.7)

the first relation of which is trivial if one parametrizes u and v in terms of

the tau functions as u =
(
log τ

)
2x1

and v =
(
log τ

)
x1x2

. The 3-constraint

then implies

ux3 =
(
Ω(φ, φ∗)

)
2x1

=
(
φφ∗

)
x1

and

vx3 =
(
Ω(φ, φ∗)

)
x1x2

=
(
φx1φ

∗ − φφ∗x1

)
x1
,

and therefore immediately yields the third order coupled system
ux3 =

(
φφ∗

)
x1

vx3 =
(
φx1φ

∗ − φφ∗x1

)
x1

φx3 = φ3x1 + 3uφx1 + 3
2(ux1 + v)φ

φ∗x3
= φ∗3x1

+ 3uφ∗x1
+ 3

2(ux1 − v)φ∗ ,

(5.8)

which is however not the lowest member in its associated hierarchy of com-

muting flows. The lowest member is actually obtained from (5.6) by impos-

ing the KP equation (5.7) under the 3-constraint:
ux2 = vx1

3vx2 + u3x1 + 12uux1 = 4
(
φφ∗

)
x1

φx2 = φ2x1 + 2uφ

φ∗x2
= −

(
φ∗2x1

+ 2uφ∗
)
,

(5.9)
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which is the Melnikov system [31]. Because of the form of the nonlinear

equations for u and v, this system is often referred to as the “Boussinesq

equation with sources”. Although this is an integrable system in its own

right, with a Lax pair, bi-Hamiltonian structure [39] etc., from the above

construction it seems quite natural for it to appear alongside the next mem-

ber in the hierarchy, system (5.8). This situation is typical for all higher

order constrained systems, i.e. beyond the Yajima-Oikawa system. As we

will see next, this also seriously complicates the construction of any isolated

discrete counterparts.

It is quite easy to convince oneself that a discrete constraint (3.1) that

only involves two (or less) lattice directions, can never yield the 3-constraint

(5.5) at the continuum limit. The first possibility therefore arises for the

choice S = TlTmTn, involving all three lattice directions in a single HM

equation (2.1). However, as in the case of the Yajima-Oikawa reduction,

the lattice parameters in those three directions (λ, µ and ν) have to be

restricted as well, in order to find the correct limit. In short, restricting the

lattice parameters by

λ = ω2µ , ν = ωµ , for ω ∈ C : ω2 + ω + 1 = 0 ,

and choosing γ = λµν = µ3, the constraint (3.1) becomes

µ3(τlmn − τ) = τ Ω(φ, φ∗) ,(5.10)

which indeed yields (5.5) at the limit |µ| → ∞. As before, the functions φ

and φ∗ are required to satisfy the equations (4.1) and (4.2) in all possible

lattice directions.

It is now straightforward to construct a discrete system that, at its

continuum limit, will generate the Melnikov system (5.9). Eliminating all l

shifts in (2.1) by means of the constraint (5.10), one obtains the system

φmn =
1

1 − ω

τmτn
ττmn

(
φn − ωφm

)
φ∗ =

1

1 − ω

τmτn
ττmn

(
φ∗m − ωφ∗n

)
τmnτm′n′ Ω+

m′n′ + ω τmτm′ Ω+
m′ = (1 + ω) τnτn′ Ω+

n′

(5.11)

where Ω+ := Ω(φ, φ∗) + µ3. Note that the only reason for introducing this

explicit shift µ3 in the squared eigenfunctions, is that it is the correct ansatz
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for the continuum limit. Taking |µ| → ∞, we obtain the Melnikov system

(5.9) but with the equations for u and v replaced by the single equation(
3D2

x2
+D4

x1

)
τ · τ = 8τ̄ τ∗ ,

when φ and φ∗ are parametrized as in (4.3). This equation is in fact the

potential form of the equations for u and v in (5.9). Hence, although it is

very closely related to the Melnikov system and although it can be argued

that it is an integrable system as well, it is clear that the system (5.11)

cannot be obtained as the compatibility condition of a Lax pair. To obtain

a genuine discretisation of (5.9) one would need to take exactly the correct

discrete ‘derivative’ of the equation for τ and Ω+, possibly after implement-

ing a clever dependent variable transformation that would eliminate the

latter variable from the equation. However, even if one succeeds in doing

so, this will not eliminate all problems. The biggest hurdle to obtaining

an integrable discretisation of the Melnikov system is the construction of

its Lax pair. Note that the system (5.11) was expressed in φ and not in

the function ϕ of Lemma 4.1. This is to eliminate all occurrences of the l

direction, which would have resurfaced through the shift operator S had we

used ϕ in the equations. Similarly, from the construction of the Lax pair,

and especially because of (4.9) in Lemma 4.4, it is clear that it is extremely

difficult to eliminate the l direction from the Lax pair and obtain equations

defined on a 2 dimensional lattice. One way to circumvent this problem

would be to give up the ambition of constructing a discretisation of just

(5.9), and to aim for a discrete system that contains both (5.9) and (5.8)

at its continuum limit. The following, rather simple, system is in fact just

that, 

φmn =
1

1 − ω

τmτn
ττmn

(
φn − ωφm

)
φlm =

1

1 − ω2

τlτm
ττlm

(
φl − ω2φm

)
φ∗ =

1

1 − ω

τmτn
ττmn

(
φ∗m − ωφ∗n

)
=

1

1 − ω2

τlτm
ττlm

(
φ∗m − ω2φ∗l

)
µ3∆m

τlmn

τ
= φ∗φm

(5.12)

albeit for the potential forms of the equations for u and v that appear in

these systems.
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Note that also in the discrete case, the Melnikov system (5.11) is related

to the Boussinesq system. If we impose φ = φ∗ = 0, Ω+ = µ3 on this

system, we obtain

τmnτm′n′ + ω τmτm′ = (1 + ω) τnτn′ ,(5.13)

which is the Hirota bilinear form of the discrete Boussinesq equation [6].

Introducing the variable W := τ/τn′ , this bilinear form can be shown to be

related to the equation

Wmn

Wn
− Wn′

Wm′n′
= ω

(Wn′

Wm
− Wm′

Wn

)
,(5.14)

which, through the ansatz W = 1 + (ω2/µ) w + O(1/µ2), contains the

Boussinesq equation

w2x2 + w4x1 + 12wx1w2x1 = 0

at its continuum limit. (Compare this equation to the u, v part of (5.9)

with u = wx1 and v = wx2 .) The system (5.14) arises as the compatibility

condition of the Lax pair


ψm′ = ω

(
ψn′ + (1 − ω) W

Wm′ ψ
)

ψn′n′n′ + (ω − 1)
(Wm′n′

W + (1 + ω)
Wn′n′

Wm′n′n′

)
ψn′n′ + 3

Wn′
W ψn′ = κψ ,

which has the usual third order Lax pair for the Boussinesq equation
ψx2 = ψ2x1 + 2wx1ψ

ψ3x1 + 3wx1ψx1 +
3

2
(w2x1 + wx2)ψ = Kψ ,

as its continuum limit.

Under the above condition, φ = φ∗ = 0, Ω+ = µ3, the constraint reduces

to τlmn = τ , which is still expressible on a single HM equation, hence the

bilinear equation (5.13). Moreover, it is exactly the type of quasi-periodic

reduction of the discrete KP hierarchy that is known to yield discretisations

of continuous systems that are related to principal realizations of A
(1)
n -type,

when accompanied by the appropriate restrictions on the lattice parameters.
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Reductions of the HM equation that do not respect these conditions on the

parameters are also known [30], but it is not clear how the Miwa trans-

formation relates these systems to their continuous counterparts and, as a

result, their associated symmetry algebras are not understood. In this case

however, since the continuum limit goes through without any problems, one

can conclude that the system is associated to the A
(1)
2 algebra. The original

Melnikov system, however, is known to be related to a realization of the

A
(1)
3 algebra [52]. Hence, although the equations themselves appear to be

related, it is hard to imagine that their solution spaces will have much in

common. In fact, for the continuous Boussinesq equation, the only known

class of solutions that can be generated using bi-directional Wronskians such

as those that arise for the Melnikov system, consists essentially of polyno-

mials. The soliton solutions in particular have a different structure and the

exact nature of the interrelation of the Melnikov and Boussinesq equations,

in both the discrete and continuous realms, remains an interesting open

problem.

6. Prospects

In the preceding sections we explained how to construct discrete inte-

grable versions of the systems obtained through so-called symmetry reduc-

tions of the KP hierarchy. We succeeded in obtaining not only the integrable

discretisations of the NLS, Broer-Kaup and Yajima-Oikawa equations, but

in fact also of their entire associated hierarchies. It is an interesting open

problem to try to understand the recursive formulations of the continuous

hierarchies that are obtained from these discretisations, in relation to the

recursion operators or bi-Hamiltonian structures that generate the continu-

ous hierarchies. It seems highly unlikely that no explicit link between these

two descriptions exists.

The discretisations of the NLS and Yajima-Oikawa equations are par-

ticularly interesting because of the known links of their continuous counter-

parts to Painlevé equations. In fact, it might be interesting to try to find

non-autonomous extensions of these discrete systems, and to study their

reductions to non-autonomous mappings. It is worth pointing out however

that the constraint-based construction that led to these discrete systems,

does not seem to be applicable to the case of a non-autonomous lattice. The

most immediate (and most important problem) being that there does not
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seem to exist a non-autonomous version of Lemma 4.1.

All the discrete systems constructed here correspond to A
(1)
n -type sym-

metry algebras, albeit in realizations that (apart from the NLS-case which

was obtained in [7]) had not been studied in a discrete context, until now.

However, there exists an intriguing escape route that might make it pos-

sible to construct at least one system with a completely different under-

lying symmetry algebra. Just as with (5.9) and the discrete Boussinesq

equation, there exists a (further) reduction of (5.8) to a system associated

to a completely different symmetry algebra. The ‘self-adjoint’ reduction

φ = φ∗, v = 0 of the system (5.8){
ux3 =

(
φ2
)
x1

φx3 = φ3x1 + 3uφx1 + 3
2ux1φ

is in fact known [43] to be related to the D
(2)
3 algebra [53] . If it would be

possible to implement this reduction on the discrete system (5.12) (or on a

more sophisticated version of it), one would obtain what might be the first

example of an integrable additive (2 dimensional) discretisation of a system

associated with an affine algebra that is not of A
(1)
n or A

(2)
2n type. Such a

reduction on a discrete system must however be quite subtle, as requiring

self-adjointness most often entails the identification of several directions on

the lattice, which is to be avoided at all cost.

Appendix A. Some Facts Concerning the Discrete KP Hierarchy

In this appendix it will be shown that the discrete KP hierarchy of

Y. Ohta et al., defined in [40], is generated by a rather small set of cou-

pled Hirota-Miwa equations. The notation used in the proof of this state-

ment differs slightly from that in the main body of the paper since we shall

need an arbitrary number of lattice directions. Let us define tau functions

τ : Z
n −→ C on an n dimensional lattice, the directions on which will

be denoted as �i (i = 1, 2, . . . , n). We shall write τ(�1, . . . , �n) for the value

the tau function takes at the lattice site (�1, . . . , �n). A shift operation on

this n dimensional lattice, say in the direction �j , will be denoted as Sj [·] :

Sj [τ ] := τ(�1, . . . , �j−1, �j + 1, �j+1, . . . , �n) or, alternatively, by a subscript

to the symbol τ : Sj [τ ] ≡ τj (and hence, τij will denote
(
SiSj

)
[τ ], etc.).
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Successive shifts will be denoted as

τj··j+κ :=
( κ∏

k=0

Sj+k

)
[τ ] ,

and successive shifts, with a shift in a single direction lacking, as:

τ
j·· î ··j+κ

:=
( κ∏

k=0
j+k �=i

Sj+k

)
[τ ] (j ≤ i ≤ j + κ) .

Similarly, Vj··j+κ denotes the Vandermonde determinant

Vj··j+κ :=

j+κ∏
k,m=j
k>m

(ak − am) ,

and V
j·· î ··j+κ

denotes a Vandermonde determinant with one column (and

its last row) missing:

V
j·· î ··j+κ

:=

j+κ∏
k,m=j

k,m�=i,k>m

(ak − am) (j ≤ i ≤ j + κ) .

Finally, by Eijk (i < j < k) we denote the Hirota-Miwa equation:

(ak − aj)τiτjk + (ai − ak)τjτik + (aj − ai)τkτij = 0 ,

where ai, aj , ak are the (reciprocals of) the lattice parameters in the direc-

tions �i, �j and �k, respectively.

In [40] it is shown that for increasing n ≥ 3, the n term bilinear relation∣∣∣∣∣∣∣∣∣∣∣∣

τ1 τ2··n τ2 τ1 2̂ ··n · · · τn−1 τ
1·· n̂−1 n

τn τ1··n−1

1 1 · · · 1 1

a1 a2 · · · an−1 a2
...

...
. . .

...
...

an−2
1 an−2

2 · · · an−2
n−1 an−2

n

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 ,(A.1)

generates, at the continuum limit, the entire bilinear KP hierarchy and can

therefore be regarded as its discrete version. Relation (A.1), for arbitrary n,
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is therefore commonly referred to as the discrete KP hierarchy. Note that

for n = 3, the determinant in (A.1) yields nothing but the Hirota-Miwa

equation E123. However, the above definition of the discrete KP hierarchy

is by no means elementary and in fact, the following proposition can be

proven:

Proposition A.1. The set of Hirota-Miwa equations

E =
{
Eijk

∣∣∣ i, j, k,∈ {1, 2, . . . , n}, i < j < k
}

generates the n term relation (A.1).

Proof. First of all, note that the coefficient of the ‘jth’ term in (A.1),

i.e. the term τj τ1·· ĵ ··n , is equal to (−1)j+1V
1·· ĵ ··n. Next, for n sufficiently

large, we consider two different n−1 term versions of the l.h.s. of (A.1), de-

fined on the n− 1 dimensional sub-lattices generated by the �1, �2, . . . , �n−1

and the �2, �3, . . . , �n directions respectively. We shall denote these expres-

sions as E1··n−1 and E2··n :

E1··n−1 : V2··n−1 τ1 τ2··n−1 − V
1 2̂ ··n−1

τ2 τ1 2̂ ··n−1

+ · · · + (−1)nV1··n−2 τn−1 τ1··n−2

E2··n : V3··n τ2 τ3··n − V
2 3̂ ··n τ3 τ2 3̂ ··n + · · · + (−1)nV2··n−1 τn τ2··n−1

For these expressions, we calculate the linear combination(
n−1∏
k=2

(an − ak)

)
τ1 Sn[E1··n−1] −

(
n−1∏
k=2

(ak − a1)

)
τn S1[E2··n] .(A.2)

The ‘1st’ term, i.e. the term in τ1τ1nτ2··n, in the resulting expression for

(A.2) has

V2··n−1

(
n−1∏
k=2

(an − ak)

)
= V2··n(A.3)

as a coefficient, whereas the last term, i.e. that in τn τ1n τ1··n−1, has coeffi-

cient

−
(

n−1∏
k=2

(ak − a1)

)
(−1)nV2··n−1 = (−1)n+1V1··n−1 .(A.4)
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Moreover, for j : 2 ≤ j ≤ n−1, the term in τj τ1·· ĵ ··n−1
in E1··n−1, combined

with that in τj τ2·· ĵ ··n in E2··n, gives rise to a contribution

(A.5) (−1)j+1V
1·· ĵ ··n−1

(
n−1∏
k=2

(an − ak)

)
τ1 τjn τ1·· ĵ ··n

− (−1)jV
2·· ĵ ··n

(
n−1∏
k=2

(ak − a1)

)
τn τ1j τ1·· ĵ ··n

= (−1)j+1τ
1·· ĵ ··nV2·· ĵ ··n

( n−1∏
k=2
k �=j

(ak−a1)
)[

(an−aj)τ1τjn+(aj−a1)τnτ1j
]

in the linear combination (A.2). Clearly, if the Hirota-Miwa equation E1jn

(an − aj)τ1τjn + (a1 − an)τjτ1n + (aj − a1)τnτ1j = 0 ,

in the �1, �j and �n directions is satisfied, then the combination (A.5) is

equal to :

(−1)j+1V
1·· ĵ ··n τj τ1n τ1·· ĵ ··n ( ∀j : 2 ≤ j ≤ n− 1) .(A.6)

It then follows from (A.3), (A.6) and (A.4) that the linear combination

(A.2) takes the form

τ1n

n∑
j=1

(−1)j+1 V
1·· ĵ ··n τj τ1·· ĵ ··n ≡ τ1nE1··n ,

where E1··n is identical to the l.h.s. of the n term bilinear relation (A.1).

Hence, one finds that the following induction proves the proposition.

At n = 4 : by taking the combination (A.2), the Hirota-Miwa equations

E123 and E234 generate the relation E1234 (along the way, we require E124

and E134 to be satisfied as well, in order to be able to perform a reduction

such as that from (A.5) to (A.6)).

At n = 5 : As for n = 4, the Hirota-Miwa equations E123, E124, E134 and

E234 generate E1··4, whereas the set of Hirota-Miwa equations {E234, E235,

E245, E345} will generate E2··5. The remaining

(
5

3

)
− (4 + 3) = 3 equations
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{E125, E135, E145} are required (in the reduction (A.5)→(A.6)) to generate

E1··5 from E1··4 and E2··5.

In general, the
(
n−1

3

)
Hirota-Miwa equations that do not involve the �n

direction are all needed to generate E1··n−1. The same number of equations

involving �2, . . . , �n is required to construct E2··n but among these there are(
n−2

3

)
equations that do not involve �n and that were already used before.

Hence, the number of extra equations required to construct E2··n is
(
n−1

3

)
−(

n−2
3

)
=
(
n−2

2

)
. Add to this the n−2 equations of the form E1jn (2 ≤ j ≤ n)

needed to obtain E1··n from E1··n−1 and E2··n (in the reduction of coefficients

like (A.5) to (A.6)), and we find that the total number of different Hirota-

Miwa equations used in the construction is(
n− 1

3

)
+

(
n− 2

2

)
+ (n− 2) =

(
n− 1

3

)
+

(
n− 1

2

)
=

(
n

3

)
,

i.e., exactly the number of equations in the set E. �

Moreover, it is easily seen that, as a generating set for the discrete KP

hierarchy (A.1), E is not minimal. Singling out one particular direction

(say, �1, for simplicity) as special, one has the following :

Proposition A.2. The set of Hirota-Miwa equations E is generated

by the
(
n−1

2

)
equations in{

E1jk

∣∣∣ j, k,∈ {2, . . . , n}, j < k
}
.

This set is (obviously) minimal.

Proof. In general, the E1jk equation

(ak − aj)τ1τjk + (a1 − ak)τjτ1k + (aj − a1)τkτ1j = 0 ,

can be rewritten as:

τ1 =
1

ak − aj

τjτk
τjk

[
(ak − a1)

τ1k
τk

+ (a1 − aj)
τ1j
τj

]
,(A.7)

and similarly, from E1j	 and E1k	 (j < k < �), one has that

τ1 =
1

a	 − aj

τjτ	
τj	

[
(a	 − a1)

τ1	
τ	

+ (a1 − aj)
τ1j
τj

]
=

1

a	 − ak

τkτ	
τk	

[
(a	 − a1)

τ1	
τ	

+ (a1 − ak)
τ1k
τk

]
,
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from which one immediately finds that

τ1
[
(a	 − ak)τjτk	 + (aj − a	)τkτj	 + (ak − aj)τ	τjk

]
= 0 . �

Hence, it becomes clear that one could in fact choose any particular

direction on the lattice and use the other (infinitely many!) directions to

define ‘deformation’ equations for the dependence of the eigenfunctions on

the preferred direction, very much as is done in classical Sato theory. This

is the approach taken in [25], to which the reader is referred for further

details.

Remark A.3. It is a well-known fact that the relation (A.7) gener-

ates a linear equation for the ratio τ1/τ , which is – up to a mere gauge

transformation – part of the adjoint linear problem (2.3) for the discrete

KP hierarchy. Indeed, as was done in Lemma 4.4 for the linear problem, it

suffices to define

ψ∗ :=
τ1
τ

n∏
s=2

(
as − a1

as

)	s

to obtain

ψ∗ =
1

ak − aj

τjτk
ττjk

[
akψ

∗
k − ajψ

∗
j

]
,

where, as for the tau functions, subscripts are used to denote shifts in the

indicated direction for the function ψ∗. This fact is just one incarnation of

the fundamental property of the discrete KP hierarchy, that a shift on the

lattice is indistinguishable from a Darboux transformation

τ �→ τ ψ∗ ∼ τ1

for the tau functions (defined, in this case, in terms of an adjoint eigen-

function ψ∗). This property, in fact, lies at the heart of extensions of the

discrete KP theory to the non-commutative case [38].
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