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This paper is dedicated to the memory of Kunihiko Kodaira, on the occasion of his centenary

Abstract. We prove an unconditional (but slightly weakened)
version of the main result of [13], which was, starting from dimension
4, conditional to the Lefschetz standard conjecture. Let X be a variety
with trivial Chow groups, (i.e. the cycle class map to cohomology is
injective on CH(X)Q). We prove that if the cohomology of a general
hypersurface Y in X is “parameterized by cycles of dimension c”, then
the Chow groups CHi(Y )Q are trivial for i ≤ c− 1.

Let X be a smooth complex projective variety. We will say that X has

geometric coniveau ≥ c if the transcendental cohomology of X, that is, the

orthogonal complement with respect to Poincaré duality of the “algebraic

cohomology” of X generated by classes of algebraic cycles,

H∗(X,Q)tr := H∗(X,Q)⊥alg,

is supported on a closed algebraic subset W ⊂ X, with codimW ≥ c.

According to the generalized Hodge conjecture [7], X has geometric

coniveau ≥ c if and only if X has Hodge coniveau ≥ c, where we define the

Hodge coniveau of X as the minimum over k of the Hodge coniveaux of the

Hodge structures Hk(X,Q)tr. Here we recall that the Hodge coniveau of a

weight k Hodge structure (L,Lp,q) is the integer c ≤ k/2 such that

LC = Lk−c,c ⊕ Lk−c−1,c+1 ⊕ . . .⊕ Lc,k−c

with Lk−c,c �= 0. As the Hodge coniveau is computable by looking at

the Hodge numbers, we know conjecturally how to compute the geomet-

ric coniveau.
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A fundamental conjecture on algebraic cycles is the generalized Bloch

conjecture (see [17, Conjecture 1.10]), which was formulated by Bloch [1] in

the case of surfaces, and can be stated as follows:

Conjecture 0.1. Assume X has geometric coniveau ≥ c. Then the

cycle class map

CHi(X)Q → H2n−2i(X,Q), n = dimX,

is injective for any i ≤ c− 1.

Concrete examples are given by hypersurfaces in projective space, or

more generally complete intersections. For a smooth complete intersection

Y of r hypersurfaces in Pn, the Hodge coniveau of Y is equal to the Hodge

coniveau of Hn−r(Y,Q)tr, the last space being for the very general mem-

ber Y , except in a small number of cases, equal to the Hodge coniveau of

Hn−r(Y,Q)prim. The latter is computed by Griffiths:

Theorem 0.2. If Y ⊂ Pn is a complete intersection of hypersurfaces

of degrees d1 ≤ . . . ≤ dr, the Hodge coniveau of Hn−r(Y,Q)prim is ≥ c if

and only if n ≥
∑

i di + (c− 1)dr.

Conjecture 0.1, combined with the Grothendieck-Hodge conjecture, thus

predicts that for such a Y , the Chow groups CHi(Y )Q are equal to Q for

i ≤ c − 1, a result which is essentially known only for coniveau 1 (then Y

is a Fano variety, so CH0(Y ) = Z) and a small number of particular cases

for coniveau ≥ 2, e.g. cubic hypersurfaces of dimension ≤ 8 or complete

intersections of quadrics [9]. Note that weaker statements are known, thanks

to the work of Paranjape [10] or Esnault-Levine-Viehweg [5], saying that for

fixed multidegree d1 ≤ . . . ≤ dr and for fixed i, the Chow groups CHi(Y )Q
are equal to Q for Y as above and very large n.

We will say that a smooth projective variety X has trivial Chow groups

if for any i, the cycle class map CHi(X)Q → H2n−2i(X,Q), n = dimX,

is injective. By [8], this implies that the whole rational cohomology of X

is algebraic, that is, consists of cycle classes. The class of such varieties

includes projective spaces and more generally toric varieties, Grassmanni-

ans, projective bundles over a variety with trivial Chow groups, see [13] for

further discussion of this notion.
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In [13], we proved Conjecture 0.1 for very general complete intersections

of very ample hypersurfaces in a smooth projective variety X with trivial

Chow groups, assuming the Lefschetz standard conjecture. More precisely,

the results proved in loc. cit. are unconditional in the case of complete inter-

sections surfaces and threefolds, for which the Lefschetz standard conjecture

is not needed. They have been improved later on for families of surfaces

in [14], where the geometric setting is much more general: instead of the

universal family of complete intersection surfaces in some X, we consider

any family of smooth projective surfaces S → B satisfying the condition

that S ×B S → B has a smooth projective completion which is rationally

connected or more generally has trivial CH0 group.

The purpose of this paper is to prove unconditionally, in the geometric

setting of general complete intersections Y in a variety X with trivial Chow

groups, a slightly weaker form of Conjecture 0.1, which is equivalent to it

in dimension 2, 3, or assuming the Lefschetz standard conjecture.

Assume Y has dimension m and geometric coniveau c. Then there exist

a smooth projective variety W with dimW = m − c, and a morphism

j:W → Y such that j∗ : Hm−2c(W,Q) → Hm(Y,Q)tr is surjective. This

follows from the definition of the geometric coniveau and from Deligne’s

results on mixed Hodge structures [4] (see [17, proof of Theorem 2.39]). Let

us now introduce a stronger notion, which we will reformulate later on in a

more geometric form (see Lemma 1.1).

Definition 0.3. Let Y be smooth projective of dimension m. We will

say that the degree m cohomology of Y (or its primitive part with respect

to a polarization) is parameterized by algebraic cycles of dimension c if

a) There exist a smooth projective variety T of dimension m− 2c and a

correspondence P ∈ CHm−c(T × Y )Q, such that

P ∗ : Hm(Y,Q) → Hm−2c(T,Q)

is injective (or equivalently: P∗ : Hm−2c(T,Q) → Hm(Y,Q) is surjective),

resp.

P ∗ : Hm(Y,Q)prim → Hm−2c(T,Q)

is injective.

b) Furthermore P ∗ is compatible up to a coefficient with the intersection

forms: for some rational number N �= 0, < P ∗α, P ∗β >T= N < α, β >Y

for any α, β ∈ Hm(Y,Q), (resp. for any α, β ∈ Hm(Y,Q)prim).
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Remark 0.4. The condition a) in Definition 0.3 obviously implies that

Hm(Y,Q) has geometric coniveau ≥ c, since it vanishes away from the

image in Y of the support of P , which is of dimension ≤ m − c. The

more precise condition that Hm(Y,Q) comes from the cohomology of a

variety T of dimension ≤ m − 2c is formulated explicitly in [12], where

it is shown that the two conditions are equivalent assuming the Lefschetz

standard conjecture. Our definition is still stronger since we also impose

the condition b) concerning the comparison of the intersection forms.

Remark 0.5. Assume

(i) The Hodge structure on Hm(Y,Q)prim is simple and does not admit

other polarizations than the multiples of the one given by < , >Y .

(ii) The Hodge structure on Hm(Y,Q)prim is exactly of Hodge coniveau c.

Then the nontriviality of P ∗ : Hm(Y,Q)prim → Hm−2c(T,Q) implies

its injectivity by the simplicity of the Hodge structure and also the con-

dition b) of compatibility with the cup-product. Indeed, by assumption,

Hm−c,c(Y )prim �= 0 hence by injectivity of P ∗, we get nonzero classes

P ∗α ∈ Hm−2c,0(T ). By the second Hodge-Riemann bilinear relations [17,

2.2.1], we then have < P ∗α, P ∗α >T �= 0. Thus the pairing < P ∗α, P ∗β >T

on the Hodge structure Hm(Y,Q)prim is nondegenerate and polarizes this

Hodge structure. Hence it must be by uniqueness a nonzero rational mul-

tiple of the pairing < , >Y and thus, condition b) is automatically satisfied

in this case.

Assumption (i) above, which is a Noether-Lefschetz type statement, is

easy to prove in practice for the very general member of the family of hyper-

surfaces or complete intersections, using a Mumford-Tate groups argument.

Thus the remark above says that in practice and for the very general mem-

ber of a family, the hard point to check in Definition 0.3 is a), as b) follows.

Actually, we will use in the paper a reformulation (which is in fact a

weakening) of Definition 0.3 (see Lemma 1.1). Namely, assuming that the

cohomology of Y splits as the orthogonal direct sum

H∗(Y,Q) = K
⊕
⊥

Hm(Y,Q)prim, K ⊂ H∗(Y,Q)alg,

our set of conditions a) and b) for primitive cohomology is equivalent to the



On the Grothendieck-Hodge and Bloch Conjectures for Complete Intersections 495

fact that there is a cohomological decomposition of the diagonal

[∆Y ] = [Z] +
∑
i

αi[Zi × Z ′
i] in H2m(Y × Y,Q),

where Zi, Z
′
i are algebraic subvarieties of Y , dimZi + dimZ ′

i = m, and Z

is an m-cycle of Y × Y which is supported on W × W , where W ⊂ Y is a

closed algebraic subset with dimW ≤ m− c.

The main result we prove in this paper is:

Theorem 0.6. Let X be a smooth projective n-fold with trivial Chow

groups and let L be a very ample line bundle on X. Assume that for the gen-

eral hypersurface Y ∈ |L|, the cohomology group Hn−1(Y,Q)prim is nonzero

and parameterized by algebraic cycles of dimension c in the sense of Defi-

nition 0.3.

Then for any smooth member Y of |L|, the cycle class map

CHi(Y )Q → H2n−2−2i(Y,Q), n = dimX,

is injective for any i ≤ c− 1.

Remark 0.7. One can more generally consider a very ample vector

bundle E on X and the smooth varieties Y ⊂ X of codimension r = rankE

obtained as zero loci of sections of E. This however immediately reduces to

the hypersurface case by replacing X with P(E∗), (see [17, 4.1.2] for details).

Remark 0.8. The condition that Hn−1(Y,Q)prim is nonzero is not

very restrictive: very ample hypersurfaces with no nonzero primitive co-

homology are rather rare (even if they exist, for example odd dimensional

quadrics in projective space). Typically, if X is defective, that is, its projec-

tive dual is not a hypersurface, its hyperplane sections have no nonzero

primitive cohomology. We refer to [18], [19] for the study of this phe-

nomenon.

We will give in section 2 one concrete application of Theorem 0.6. It

concerns hypersurfaces obtained as hyperplane sections of the Grassmannian

G(3, 10) which were studied in [3].

We will finally conclude the paper explaining how to modify the assump-

tions of Theorem 0.6 in order to cover cases where the line bundle L is not
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very ample (see Proposition 3.1, Theorem 3.3). This is necessary if we want

to apply these methods to submotives of G-invariant hypersurfaces cut-out

by a projector of G, where G is a finite group acting on X.

Let us say a word on the strategy of the proof. First of all, our assump-

tion can be reformulated by saying that an adequate correction ∆Y,prim of

the diagonal ∆Y of Y by a cycle restricted from X ×X is cohomologous to

a cycle Z supported on W ×W , where W ⊂ Y is a closed algebraic subset

of codimension ≥ c.

We then deduce from the fact that this last property is satisfied by a

general Y ∈ |L| that an adequate correction ∆Y,prim of the diagonal ∆Y

of Y by a cycle restricted from X × X is rationally equivalent to a cycle

Z supported on W × W , where W ⊂ Y is a closed algebraic subset of

codimension ≥ c. We finally use the following lemma (see [13]):

Lemma 0.9. Assume X has trivial Chow groups and that we have a

decomposition

∆Y = Z1 + Z2 in CHn−1(Y × Y )Q,(1)

where Z1 is the restriction of a cycle on X × X and Z2 is supported on

W ×W , with codimW ≥ c, then CHi(Y )Q,hom = 0 for i ≤ c− 1.

Proof. For any z ∈ CHi(Y )Q,hom, let both sides of (1) act on z. We

then get

z = Z1∗z + Z2∗z in CHi(Y )Q.

As Z1 is the restriction of a cycle on X ×X, the map Z1∗ on CHi(Y )Q,hom
factors through j∗ : CHi(Y )Q,hom → CHi(X)Q,hom and CHi(X)Q,hom is 0

by assumption. On the other hand, if i ≤ c − 1, Z2∗z = 0 because the

projection of the support of Z2 to Y is of codimension ≥ c so does not meet

a general representative of z. �

1. Proof of Theorem 0.6

We establish a few preparatory lemmas before giving the proof of the

main theorem. Let X be a smooth projective variety of dimension n with

trivial Chow groups, and L be a very ample line bundle on X. Let Y ⊂ X

be a smooth member of |L|.
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We start with the following lemma:

Lemma 1.1. Let T be a smooth projective variety of dimension n−1−2c

and P ∈ CHn−1−c(T × Y )Q such that

P ∗ : Hn−1(Y,Q)prim → Hn−2c−1(T,Q)

is compatible with cup-product up to a coefficient, that is

(P ∗α, P ∗β)T = N(α, β)Y , ∀α, β ∈ Hn−1(Y,Q)prim,(2)

for some N �= 0. Then

(P, P )∗([∆T ]) = N [∆Y ] + [Γ] + [Γ1] in H2n−2(Y × Y,Q),(3)

where the cycle Γ is the restriction to Y ×Y of a cycle with Q-coefficients on

X ×X, and the cycle Γ1 is 0 if n− 1 is odd, and of the form
∑

i αiZi×Z ′
i,

dimZi = dimZ ′
i = n−1

2 if n− 1 is even.

Here (P, P ) ∈ CH2n−2(T × T × Y × Y )Q is just the product P × P ⊂
T × Y × T × Y ∼= T × T × Y × Y if P is the class of a subvariety, and is

defined as pr∗13P · pr∗24P in general.

Proof. Indeed, let Γ′ := (P, P )∗(∆T ) ∈ CHn−1(Y × Y )Q. Observe

that Γ′ = tP ◦ P in CHn−1(Y × Y )Q. As P ∗ : Hn−1(Y,Q)prim →
Hn−2c−1(Z,Q) satisfies (2), we find that the cycle class [Γ′] ∈ H2n−2(Y ×
Y,Q) satisfies the property that

[Γ′]∗ = P∗ ◦ P ∗ : H∗(Y,Q) → H∗(Y,Q)

induces

NId : Hn−1(Y,Q)prim → Hn−1(Y,Q)prim

via the composite map

End (Hn−1(Y,Q))
rest→ Hom (Hn−1(Y,Q)prim, Hn−1(Y,Q))

proj→ Hom (Hn−1(Y,Q)prim, Hn−1(Y,Q)prim),

where the projection Hn−1(Y,Q) → Hn−1(Y,Q)prim is the transpose with

respect to the intersection pairing of the inclusion Hn−1(Y,Q)prim →
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Hn−1(Y,Q). As Hn−1(Y,Q) = Hn−1(Y,Q)prim ⊕⊥ Hn−1(X,Q)|Y , it fol-

lows that

[Γ′]∗|Hn−1(Y,Q)prim
= NId + η : Hn−1(Y,Q)prim → Hn−1(Y,Q),

where η takes value in Hn−1(X,Q)|Y .

To conclude, we use the orthogonal decomposition

H∗(Y,Q) ∼= H∗(X,Q)|Y
⊕
⊥

Hn−1(Y,Q)prim

given by the Lefschetz theorem on hyperplane sections and the hard Lef-

schetz theorem on Y . The class of the symmetric cycle

Γ′′ := Γ′ −N∆Y = (P, P )∗(∆T ) −N∆Y(4)

acts as 0 on Hn−1(Y,Q)prim, hence by the orthogonal decomposition above,

it lies in

H∗(X,Q)|Y ⊗H∗(X,Q)|Y
⊕

Hn−1(Y,Q)prim ⊗Hn−1(X,Q)|Y

⊕
Hn−1(X,Q)|Y ⊗Hn−1(Y,Q)prim.

Finally we use the fact that X has trivial Chow groups, so that its

cohomology is algebraic by [8]; hence H∗(X,Q)|Y ⊗H∗(X,Q)|Y consists of

classes of cycles on Y × Y restricted from X × X. In the decomposition

above, we thus find that

[Γ′′] = [Γ] + η + η′,(5)

for some classes η ∈ Hn−1(Y,Q)prim⊗Hn−1(X,Q)|Y , η
′ ∈ Hn−1(X,Q)|Y ⊗

Hn−1(Y,Q)prim, and [Γ] ∈ H∗(X,Q)|Y ⊗ H∗(X,Q)|Y for some algebraic

cycle Γ on Y × Y restricted from X × X. Note that if n − 1 is odd, then

Hn−1(X,Q)|Y = 0, so η = η′ = 0 and we get

[Γ′′] = [(P, P )∗(∆T )] −N [∆Y ] = [Γ]

so the lemma is proved in this case.

When n− 1 is even, for γ ∈ Hn−1(X,Q)|Y , we have

(η + η′)∗(γ) = η′∗(γ), (η + η′)∗(γ) = η∗(γ).
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As η+ η′ is an algebraic class on Y ×Y and γ is also algebraic, we conclude

that η∗(γ) is algebraic on Y for any γ ∈ Hn−1(X,Q)|Y and similarly for

η′∗(γ). It follows then from the fact that the intersection pairing of Y

restricted to Hn−1(X,Q)|Y is nondegenerate that both classes η and η′ can

be written as
∑

i αiZi × Z ′
i, dimZi = dimZ ′

i = n−1
2 , which provides by (4)

and (5) the desired cycle Γ1 with class η + η′, satisfying (3). �

Corollary 1.2. Under the same assumptions, there exist a closed al-

gebraic subset W ⊂ Y of codimension ≥ c, an n−1-cycle Z ⊂ W ×W , with

Q-coefficients and an n− 1-cycle Γ in Y × Y which is the restriction of an

n + 1-cycle in X ×X such that

[∆Y ] = [Z] + [Γ] in H2n−2(Y × Y,Q).(6)

Proof. Indeed, if n − 1 is odd, we have the equality of cohomology

classes

(P, P )∗([∆T ]) = N [∆Y ] + [Γ]

and (P, P )∗([∆T ]) is supported on W × W , where W is the image of the

support of P , hence has dimension ≤ n− 1 − c.

When n− 1 is even, we write as in (3)

(P, P )∗([∆T ]) = N [∆Y ] + [Γ] + [Γ1],

where Γ1 =
∑

i αiZi×Z ′
i, with dimZi = n−1

2 , and we take for W the union

of the image of the support of P and of the Zi and Z ′
i. (This works because

c ≤ n−1
2 .) �

Let now B ⊂ |L| be the Zariski open set parameterizing smooth hyper-

surfaces Yb in X with equation σb ∈ P(H0(X,L)) and let π : Y → B be the

universal family,

Y = {(t, x) ∈ B ×X, x ∈ Yt}, π = pr1.

We will be mainly interested in the fibered self-product Y ×B Y where the

relative diagonal ∆Y lies, but it is more convenient to blow it up in Y ×B Y.

The resulting variety Ỹ ×B Y was also considered in [13] and the following

lemma was proved (we include the proof for completeness):



500 Claire Voisin

Lemma 1.3. The quasi-projective variety Ỹ ×B Y is a Zariski open set

in a projective bundle M over the blow-up X̃ ×X of X ×X along its diag-

onal.

Proof. Indeed, a point in Ỹ ×B Y is a 4-uple (b, x1, x2, z) consisting

of a point of B, two points x1, x2 in Yb, and a length 2 subscheme z ⊂ Yb
whose associated cycle is x1 +x2. There is thus a morphism p from Ỹ ×B Y
to X̃ ×X which parameterizes triples (x1, x2, z) where x1, x2 are two points

of X, and z ⊂ X is a subscheme of length 2 whose associated cycle is x1+x2.

The fiber of p over (x1, x2, z) is clearly the set of b ∈ B such that σb|z = 0.

Thus Ỹ ×B Y is Zariski open in the variety

M := {(σ, (x1, x2, z)), σ|z = 0} ⊂ P(H0(X,L)) × X̃ ×X.

The very ampleness of L guarantees that M is a projective bundle over

X̃ ×X. �

We now assume that the main assumption of Theorem 0.6 holds, namely

that there exist for general b ∈ B a smooth projective variety Tb of dimension

n−1−2c and a correspondence with Q-coefficients Pb ∈ CHn−1−c(Tb×Yb)Q
of codimension n − 1 − c (a family of c-cycles in Yb parameterized by Tb)

such that

P ∗
b : Hn−1(Yb,Q)prim → Hn−2c−1(Tb,Q)

is compatible with cup-product up to a coefficient N �= 0. We then have

the following result in the same spirit as Proposition 2.7 in [13], which is

very simple but nevertheless a key point in the whole argument.

Lemm 1.4. Under the same assumptions, there exist a smooth quasi-

projective variety T → B projective over B, of relative dimension n−1−2c,

and a codimension n−1−c cycle P ∈ CHn−1−c(T ×BY)Q such that the map

P∗
b : Hn−1(Yb,Q)prim → Hn−2c−1(Tb,Q) is compatible with cup-product up

to a coefficient N ′ �= 0, for any b ∈ B such that the fiber Tb is smooth of

dimension n− 1 − 2c.

Here we denote by Pb ∈ CHn−1−c(Tb × Yb)Q the restriction to Tb × Yb
of the cycle P.
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Proof. The reason is very simple: Using our assumption and a Hilbert

schemes or Chow varieties argument, we can certainly construct data T ′, P ′

as above over a finite cover U ′, say of degree N0, of a Zariski open set U

of B. We then consider T ′ as a family over U which we denote by TU ,

and P ′ as a relative correspondence over U between TU and YU which we

denote by PU ∈ CHn−1−c(TU ×U YU )Q. For a general point u ∈ U , the

fiber of TU over u is the disjoint union of the fibers T ′
u′ , where u′ ∈ U ′

maps to u, and the correspondence Pu is the disjoint union of the corre-

spondences P ′
u′ ∈ CHn−1−c(T ′

u′ × Yu), where u′ ∈ U ′ maps to u. Hence

P∗
u : Hn−1(Yu,Q)prim → Hn−2c−1(Tu,Q) multiplies the intersection form

by NN0, which proves the lemma with N ′ = NN0 and B replaced by U .

If we want to have T and P defined over the whole of B, we simply take a

relative projective completion of TU , which we can assume to be smooth by

desingularization, and we extend PU by taking Zariski closures. �

Corollary 1.5. Under the same assumptions, there exist a closed al-

gebraic subset W ⊂ Y of codimension ≥ c and a cycle Z ∈ CHn−1(Y×BY)Q
which is supported on W×BW, such that for any b ∈ B, the restricted cycle

Zb − ∆Yb

is cohomologous in Yb × Yb to a cycle Γb coming from X ×X.

Proof. With notation as in Lemma 1.4, we first define W0 ⊂ Y as the

image of the support of P under the second projection. Then we define Z0

as 1
N ′ (P,P)∗(∆T /B), where (P,P) ∈ CH2n−2(T ×B T ×BY×BY)Q denotes

the relative correspondence pr∗13P ·pr∗24P between T ×B T and Y×BY, with

pr13, pr24 : T ×B T ×B Y ×B Y → T ×B Y

the two natural projections. If n − 1 is odd, the conclusion then follows

directly from Lemma 1.1, with Z = Z0, W = W0.

When n−1 is even, we argue as in the proof of Corollary 1.2, which says

that for any b ∈ B, there exist cycles Zi,b, Z
′
i,b, i ≥ 1, of dimension n−1

2 in

Yb, a cycle Γb in Yb × Yb which is the restriction of a cycle in X × X, and

rational numbers αi such that Z0,b−∆Yb
−Γb is cohomologous in Yb×Yb to∑

i αiZi,b×Z ′
i,b. The cycles Zi,b, Z

′
i,b, i ≥ 1, can be defined over a generically

finite cover B′ → B, giving families

Zi ⊂ Y ′, Z ′
i ⊂ Y ′
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with Y ′ := Y ×B B′. Then, over B′, we have the cycle Z ′
0 ∈ CHn−1(Y ′ ×B′

Y ′)Q defined as the pull-back of Z0, such that for any b ∈ B′,

[Z ′
0,b] − [∆Y ′

b
− Γb] =

∑
i≥1

αi[Zi,b ×B′ Z ′
i,b].

Denote φ : Y ′ → Y, (φ, φ) : Y ′ ×B′ Y ′ → Y ×B Y the natural morphisms,

W := W0 ∪ φ(∪iSuppZi) ∪ φ(∪iSuppZ ′
i),

and

Z = Z0 −
1

deg φ
(φ, φ)∗(

∑
i

αiZi ×B′ Z ′
i).

Then W and Z satisfy the desired conclusion. �

Proof of Theorem 0.6. Recall the Zariski open inclusion

Ỹ ×B Y ⊂ M

of Lemma 1.3, where p : M → X̃ ×X is a projective bundle over X̃ ×X.

In both cases, the “˜” means that we blow-up along the diagonal.

By Corollary 1.5, our assumptions give a subvariety W ⊂ Y of codimen-

sion ≥ c and a cycle Z ∈ CHn−1(Y×BY)Q which is supported on W×BW,

such that for any b ∈ B, the cycle

Zb − ∆Yb

is cohomologous in Yb×Yb to a cycle Γb coming from X ×X. Note that we

can clearly assume that Γb is the restriction to Yb×Yb of a cycle Γ′ of X×X,

which is independent of b, since we are interested only in its cohomology

class:

[Γb] = [Γ′
|Yb×Yb

] in H2n−2(Yb × Yb,Q).

In other words, the cycle

Z − ∆Y/B − p∗0(Γ
′) ∈ CHn−1(Y ×B Y)Q,

where p0 : Y ×B Y → X×X is the natural map, is cohomologous to 0 along

the fibers of Y ×B Y → B.
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We now blow-up the relative diagonal, pull-back these cycles to Ỹ ×B Y
and extend them to M (see Lemma 1.3). This provides us with a cycle

R := Z̃ − ∆̃Y/B − p∗(Γ′) ∈ CHn−1(M)Q,(7)

which has the property that its restriction to Ỹb × Yb ⊂ M is cohomologous

to 0, for any b ∈ B. We prove now:

Proposition 1.6. There exists a cycle γ ∈ CHn−1(X × X)Q such

that for any b ∈ B, R − p∗γ maps to 0 in CHn−1(Yb × Yb)Q via the map

τb∗ ◦ i∗b , where τb : Ỹb × Yb → Yb × Yb is the blow-up of the diagonal and

ib : Ỹb × Yb → M is the inclusion map.

Admitting the proposition temporarily, the proof of Theorem 0.6 con-

cludes as follows: For any b ∈ B, the image τb∗ ◦ i∗b(R− p∗γ) ∈ CHn−1(Yb×
Yb)Q is by construction the cycle

Zb − ∆Yb
− Γ′

|Yb×Yb
− γ|Yb×Yb

∈ CHn−1(Yb × Yb)Q.(8)

Proposition 1.6 says that the cycle (8) vanishes in CHn−1(Yb×Yb)Q, which

can be rewritten as:

∆Yb
= Zb + γ′

|Yb×Yb
in CHn−1(Yb × Yb)Q,(9)

for a cycle γ′ ∈ CHn−1(X × X)Q. Recalling that for general b ∈ B, Zb is

supported on Wb ×Wb with Wb ⊂ Yb closed algebraic of codimension ≥ c,

this implies by Lemma 0.9 that the cycle class map is injective on CHi(Yb)Q
for general b ∈ B and i ≤ c− 1.

To conclude that this holds also for any b ∈ B, we can observe that (9)

holds for any b ∈ B and it is still true for any b ∈ B that Zb is rationally

equivalent to a cycle supported on W ′
b ×W ′

b with W ′
b ⊂ Yb closed algebraic

of codimension ≥ c, even if Wb itself is not of codimension ≥ c. �

Proof of Proposition 1.6. Let δ ∈ CH1(M) be the class of the

pull-back to M of the exceptional divisor of X̃ ×X and let h = c1(OM (1)) ∈
CH1(M), where OM (1) refers to the projective bundle structure of M over

X̃ ×X. Note that M ⊂ |L| × X̃ ×X, where the first projection restricts
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on Y ×B Y to the natural map to B. Thus h is the inverse image of a

line bundle on |L| by the first projection M → |L| and it restricts to 0 in

CH1(Ỹb × Yb). The class δ restricts to the class δb of the exceptional divisor

of Ỹb × Yb. Finally, note that

τb∗(δ
k
b ) = 0 in CH(Yb × Yb)Q for 0 < k < n− 1,

τb∗(δ
n−1
b ) = (−1)n−2∆Yb

in CHn−1(Yb × Yb)Q.

The projective bundle formula tells us that CH(M) is generated by the

powers of h as a module over the ring CH(X̃ ×X). Next, as the diagonal

restriction map CH(X × X) → CH(X) is surjective, the blow-up formula

tells us that CH(X̃ ×X) is generated over the ring CH(X × X) by the

powers of δ.

It follows that codimension n−1 cycles on M can be written in the form

z =
∑
r,s

hrδsp∗(γr,s),

where r+s ≤ n−1 and γr,s ∈ CHn−1−r−s(X×X). By the above arguments,

we get

τb∗ ◦ i∗b(z) = γ0,n−1(−1)n−2∆Yb
+ γ0,0|Yb×Yb

in CHn−1(Yb × Yb)Q,

where γ0,n−1 ∈ CH0(X ×X) = Z is just a number.

We apply this analysis to the cycle R of (7), whose image in

CHn−1(Yb × Yb)Q is by construction cohomologous to 0. Writing as above

R =
∑

r,s h
rδsp∗(γr,s), this gives us an equality

τb∗ ◦ i∗b(R) = γ0,n−1(−1)n−2∆Yb
+ γ0,0|Yb×Yb

in CHn−1(Yb × Yb)Q(10)

and in particular an equality of cycle classes:

γ0,n−1(−1)n−2[∆Yb
] + [γ0,0|Yb×Yb

] = 0 in H2n−2(Yb × Yb,Q).(11)

Using our hypothesis that the primitive cohomology of Yb is nonzero, (11)

implies that γ0,n−1 = 0. Thus (10) gives us that the image of R in

CHn−1(Yb × Yb)Q is equal to γ0,0|Yb×Yb
. This proves the proposition, with

γ = γ0,0. �
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2. An Application

Let us give one new application: In [3], Debarre and the author stud-

ied smooth members Y of |L|, where L is the Plücker polarization on the

Grassmannian G(3, 10). More precisely, let V10 be a 10-dimensional com-

plex vector space. To a smooth hypersurface Y ⊂ G(3, V10) defined by an

element σ of
∧3 V ∗

10 = H0(G(3, V10),L), we associated the subvariety F (Y )

of the Grassmannian G(6, V10) of 6-dimensional vector subspaces of V10,

defined by

F (Y ) := {[W ] ∈ G(6, V10), W ⊂ V10, σ|W = 0}.

We proved in [3] that for general σ, F (Y ) is a smooth hyper-Kähler 4-fold.

There is a natural correspondence P ⊂ F (Y ) × Y defined by

P = {([W ], [W ′]) ∈ F (Y ) × Y, W ′ ⊂ W}.

By the first projection P → F (Y ), P is a bundle over F (Y ) into Grassman-

nians G(3, 6).

The following result is proved in [3]:

Theorem 2.1. The map P ∗ : H20(Y,Q)prim → H2(F (Y ),Q) is injec-

tive with image equal to H2(F (Y ),Q)prim, (where “prim” refers now to the

Plücker polarization). Furthermore, h11,9(Y ) �= 0, the number of moduli of

F (Y ) is 20, and this is equal to h1,1(F (Y )) − 1.

The variety Y itself has primitive Hodge numbers hp,qprim = 0 for p > 11

or q > 11, and

h11,9(Y )prim = h9,11(Y )prim = 1, h10,10(Y )prim = 20.

We have the following consequence (this illustrates Remark 0.5):

Lemma 2.2. There exists a number µ �= 0 such that for the general

hypersurface Y as above (so that F (Y ) is smooth of dimension 4), we have

< α, β >Y = µ < P ∗α, l2P ∗β >F (Y ), for α, β ∈ H20(Y,Q)prim(12)

where l = c1(L|F (Y )) ∈ H2(F (Y ),Q).
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Proof. Since the morphism P ∗ : H20(Y,Q)prim → H2(F (Y ),Q) is

locally constant when Y deforms in the family, it suffices to prove the state-

ment for a single very general Y . Since F (Y ) is a projective hyper-Kähler

fourfold with 20 moduli and h1,1(F (Y )) = 21, for very general Y , the Hodge

structure on H2(F (Y ),Q)prim is simple, and admits a unique polarization

up to a coefficient. Hence the same is true for the Hodge structure on

H20(Y,Q)prim. Thus the polarizations on both sides of (12) must coincide

via P ∗ up to a nonzero coefficient. �

Corollary 2.3. The varieties Y as above have their cohomology pa-

rameterized by cycles of dimension 9.

Proof. Indeed, let T ⊂ F (Y ) be the intersection of two general

members of L|F (Y ). Then (12) says that the restricted correspondence

PT := P|T×Y satisfies

< α, β >Y = µ < P ∗
Tα, P

∗
Tβ >T . �

We now get the following conclusion:

Theorem 2.4. The smooth hyperplane sections Y of G(3, 10) satisfy

CHi(Y )Q,hom = 0 for i < 9.

Proof. This follows indeed from Corollary 2.3 and Theorem 0.6, since

we know that H20(Y,Q)prim is nonzero by the condition h11,9(Y ) �= 0. �

3. Comments on the “Very Ampleness” Assumption

The very ampleness assumption made previously is too restrictive since

there are many more applications obtained by considering varieties X with

the action of a finite group G preserving the line bundle L, and by studying

G-invariant hypersurfaces Y ∈ |L|, and more precisely the submotive of Y

determined by a projector π ∈ Q[G]. It often happens that the coniveau of

such a submotive is greater than the coniveau of the whole cohomology of

Y .

Typically, the quintic Godeaux surfaces S studied in [15] are smooth

quintic surfaces, so they have h2,0(S) �= 0. However they are invariant



On the Grothendieck-Hodge and Bloch Conjectures for Complete Intersections 507

under the Godeaux action of G = Z/5Z and the G-invariant part of H2,0

is 0. If π = 1
5

∑
g∈G g is the projector onto the G-invariant part, we thus

have H2,0(S)π = 0 so the Hodge coniveau of H2(S,Q)π is 1. The Lefschetz

theorem on (1, 1)-classes then says that the cohomology H2(S,Q)π consists

of classes of 1-cycles and it easily implies that it is parameterized by 1-

cycles in the sense of Definition 0.3. Similarly, the case of cubic fourfolds

invariant under a finite group acting trivially on H3,1(X) is studied in [6].

In this case, the projector to be considered is 1− πG, where πG is again the

projector onto the G-invariant part. As 1 − πG acts as 0 on H3,1(X), the

Hodge structure on H4(X,Q)1−πGprim is trivial of type (2, 2). As the Hodge

conjecture is satisfied by cubic fourfolds (see [2], [20], or [17] for the integral

coefficients version), one gets that the cohomology H4(X,Q)1−πGprim consists of

classes of 2-cycles, and it implies as above that it is parameterized by 2-cycles

in the sense of Definition 0.3, while for the whole cohomology H4(X,Q), it

is only parameterized by 1-cycles.

On the other hand, the linear system of G-invariant hypersurfaces is

clearly not very ample, so Theorem 0.6 a priori does not apply. Let us

explain the variants of Theorem 0.6 which will apply to the situations above.

First of all we have the following:

Proposition 3.1. Let X be smooth projective of dimension n with

trivial Chow groups, and L be an ample line bundle on X. Assume that

i) The cohomology Hn−1(Yt,Q)prim, t ∈ B, is nonzero and is parame-

terized by algebraic cycles of dimension c.

Then the conclusion of Theorem 0.6 still holds, namely CHi(Yt)hom,Q =

0 for i ≤ c− 1 if instead of assuming L very ample, we only assume

ii) The line bundle L is generated by global sections and the locus of

points (x, y) ∈ X ×X such that there exists (x, y, z) ∈ X̃ ×X∆, where z is

a length 2 subscheme of X with associated cycle x + y imposing only one

condition to H0(X,L), has codimension > n in X ×X.

Remark 3.2. Note that L being ample, the morphism φL : X → PN

given by sections of L is finite, so a priori the locus appearing in ii) has

codimension ≥ n in X×X. We want that, away from the diagonal, this locus

has codimension > n, which is equivalent to saying that φL is generically

1-to-1 on its image. Our condition along the diagonal is automatic since it

says that φL is generically an immersion.
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Proof of Proposition 3.1. Indeed, going through the proof of The-

orem 0.6, we see that we used the condition that L is very ample to say that

Y ×B Y has a smooth projective completion

M = {((x, y, z), f), (x, y, z) ∈ X̃ ×X∆, f ∈ |L|, f|z = 0}(13)

which is a projective bundle over X̃ ×X∆. If L is not very ample, then

M defined in (13) is not anymore a projective bundle over X̃ ×X∆ via the

first projection but we can as in [6] overcome this problem by simply blow-

up X̃ ×X∆ along the sublocus where the length 2 subscheme z of X does

not impose independent conditions to |L|, until we get a smooth projective

variety X ′ → X̃ ×X∆ together with a projective bundle M ′ → X ′, where

M ′ maps birationally to M and a Zariski open set M ′
0 of M ′ admits a

dominating proper map

φ0 : M ′
0 → Y ×B Y.

Namely letting π : M ′ → |L| be the composition of the map τ ′ : M ′ → M

and the second projection M → |L|, we can define M ′
0 as π−1(B) and φ0 is

simply the restriction to M ′
0 of the composition φ of τ ′ : M ′ → M and of

the natural map ((x, y, z), f) �→ ((x, y), f) from M to Y ×|L| Y, where Y is

the universal hypersurface over |L|.
Under assumption i), we conclude as in the proof of Theorem 0.6 that

there is a cycle

R := Z̃ − ∆̃Y/B − p∗(Γ) ∈ CHn−1(M ′)Q,(14)

where Γ ∈ CHn−1(X ×X)Q, and Z is a codimension n− 1 cycle in Y ×B Y
which is supported on W ×B W, codimW ≥ c, such that the image τ ′′b∗ ◦
i∗b(R) ∈ CHn−1(Yb ×Yb)Q is cohomologous to 0, for any b ∈ B. Here the ·̃
means that we take the pull-back of the considered cycles via φ∗

0 and the ·
means that we extend the cycles from M ′

0 to M ′. The map ib is the inclusion

of the fiber Ỹb × Yb of π in M ′ and the map τ ′′b : Ỹb × Yb → Yb × Yb is the

restriction of φ0 to Ỹb × Yb.
Recall now that M ′ is a projective bundle over X ′ which itself is ob-

tained by blowing up X̃ ×X∆ along subloci whose images in X × X are

of codimension > n, hence of dimension < n and thus intersect the general
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Yb × Yb along a closed algebraic subset of dimension < n − 1, since |L| is

base-point free. In particular, we have a morphism p′ : M ′ → X × X,

giving an inclusion CH(X × X)Q → CH(M ′)Q. It is immediate that the

morphism τ ′′b∗ ◦ i∗b is a morphism of CH(X ×X)Q-modules. By the general

facts concerning the Chow groups of a projective bundle and a blow-up, we

can write any element of CHn−1(M ′)Q as a polynomial with coefficients in

the ring CH(X ×X)Q in the following generators:

1. the class h = c1(OM ′(1)), where the line bundle OM ′(1) is the pull-

back of O|L|(1) to M ′ so that h|Ỹb×Yb
is 0 and thus i∗b(h

k) = 0 for all

k > 0;

2. the class δ, which is the bull-back to M ′ of the exceptional divisor of

X̃ ×X∆ over the diagonal. The divisor δ restricts to the exceptional

divisor of Ỹb × Yb and the only power δk, 0 < k ≤ n − 1 mapping to

a nonzero element of CHn−1(Yb × Yb)Q via τ ′′b∗ ◦ i∗b is δn−1, since the

other terms δk, with k < n − 1 will be contracted to the diagonal of

Yb via the blow-down map Ỹb × Yb → Yb × Yb.

3. Cycles of codimension ≤ n − 1 supported on the other exceptional

divisors of the blow-up map X ′ → X̃ ×X∆. Any such cycle will be

sent to 0 in CHn−1(Yb×Yb)Q by the map τ ′′b∗ ◦ i∗b since its intersection

with Ỹb × Yb is supported over a sublocus of Yb × Yb of dimension

< n− 1.

Writing the cycle R in (14) using these generators, it follows from this

enumeration that the analogue of Proposition 1.6 still holds in our situa-

tion, since the extra cycles in CHn−1(M ′) appearing in 3 above vanish in

CHn−1(Yb × Yb)Q, so that we can simply, by modifying R if necessary, as-

sume they do not appear. The classes of the form δkp∗Z, for 0 < k < n− 1,

can be ignored for the same reason and we conclude that

τ ′′b∗ ◦ i∗b(R) = µ∆Yb
+ Γ|Yb×Yb

in CHn−1(Yb × Yb)Q
for some cycle Γ ∈ CHn−1(X×X)Q. On the other hand, our assumption is

that τ ′′b∗ ◦ i∗b(R) is cohomologous to 0. The assumption made in i) that the

cohomology Hn−1(Yt,Q)prim, t ∈ B, is nonzero shows that the diagonal of

Yb is not cohomologous to the restriction of a cycle in X×X, and it follows

that µ = 0.
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As τ ′′b∗ ◦ i∗b(R) = Zb−∆Yb
modulo a cycle restricted from X×X, we thus

conclude as in the proof of Theorem 0.6 that there is a codimension n − 1

cycle γ in X × X such that γ|Yb×Yb
= ∆Yb

− Zb in CHn−1(Yb × Yb)Q and

the end of the proof of Proposition 3.1 then works exactly as in the proof

of Theorem 0.6. �

Proposition 3.1 does not apply to the above mentioned situation where

we replace |L| by some G-invariant linear subsystem |L|G (or (χ,G)-in-

variant for some character χ), where G is a finite group acting on X, since

then the (proper transforms of the) graphs of elements of g ∈ G in X̃ ×X∆

provide codimension n subvarieties of X̃ ×X∆ along which the subscheme

z imposes at most one condition to |L|G. The best we can assume in this

situation is the following:

(*) The linear system |L|G := P(H0(X,L)G) has no base-points and the

codimension ≤ n components of the locus of points in X̃ ×X∆ parame-

terizing triples (x, y, z) such that the length 2 subscheme z with support

x + y imposes only one condition to H0(X,L)G is the union of the (proper

transforms of the) graphs of elements of e �= g ∈ G (and this equality is a

scheme theoretic equality generically along each of these graphs).

Then we have the following variant of Theorem 0.6. Let X be smooth

projective with trivial Chow groups, endowed with an ample line bundle L

and an action of the finite group G such that L is G-linearized and satisfies

(*). Let π =
∑

g agg ∈ Q[G] be a projector of G. For a general hypersurface

Y ∈ |L|G, Y is smooth and we assume that π∗ acts on Hn−1(Y,Q)prim as

the orthogonal projector Hn−1(Y,Q) → Hn−1(Y,Q)π.

Theorem 3.3. Assume the following:

(i) For the general hypersurface Y ∈ |L|G the cohomology

Hn−1(Y,Q)πprim is parameterized by cycles of dimension c.

(ii) The primitive components g∗ ∈ EndQ (Hn−1(Y,Q)prim) of the coho-

mology classes of the graphs of elements of g are linearly independent over

Q.

Then the groups CHi(Y )πQ,hom are trivial for i ≤ c− 1.

Proof. The proof is a generalization of the proofs of Theorem 0.6

and Proposition 3.1. Let B ⊂ |L|G be the open set parameterizing smooth
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invariant hypersurfaces and let ∆π,b =
∑

g agΓg ⊂ Yb × Yb, where Γg is

the graph of g acting on Yb; let ∆π,b,prim be the primitive part of ∆π,b,

obtained by correcting ∆π,b by the restriction to Yb × Yb of a Q-cycle of

X×X, in such a way that [∆π,b,prim]∗ acts as the orthogonal projector onto

Hn−1(Yb,Q)πprim.

Our assumption that Hn−1(Yb,Q)πprim is parameterized by algebraic cy-

cles of codimension c implies that there exist a codimension c closed alge-

braic subset Wb ⊂ Yb and a n − 1-cycle Zb ⊂ Wb × Wb such that Zb is

cohomologous to ∆π,b,prim in Yb × Yb.

We then spread these data over B and get a codimension c subvariety

W ⊂ Y, where f : Y → B is the universal family, and a cycle Z supported

on W ×B W such that

Z − ∆π,Y/B,prim

has its restriction cohomologous to 0 on the fibers Yb × Yb of the map

(f, f) : Y ×B Y → B.

We now have to prove the analogue of Proposition 1.6. As in the proof

of Proposition 3.1, the difficulty comes from the fact that the variety

M := {((x, y, z), σ) ∈ X̃ ×X∆ × |L|G, σ|z = 0}

is no longer a projective bundle over X̃ ×X∆ due to the lack of very am-

pleness of the G-invariant linear system |L|G. In the case of Proposition

3.1, we had a smooth projective model X ′ of X̃ ×X∆ obtained by blowing-

up X̃ ×X∆ along subloci of codimension > n, on which we analyzed the

conveniently defined extension R of the cycle Z−∆π,Y/B,prim (first by pull-

back under blow-up to Ỹ ×B Y∆, and then by extension to the projective

completion M ′). In our new situation, the only new feature lies in the fact

that in order to get the projective bundle M ′ → X ′, we have to blow-up

in X̃ ×X∆ the graphs of g ∈ G which are of codimension n and intersect

Yb×Yb along a codimension n−1 locus, namely the graph Γg of g acting on

Yb. As in the proof of Proposition 3.1, further blow-ups may be needed in

order to construct the model T ′, but they are over closed algebraic subsets

of X ×X of codimension > n.

For any codimension n−1 cycle of M ′ supported in an exceptional divisor

of the map X ′ → X ×X over graph (g), its image in CHn−1(Yb×Yb)Q is a

multiple of Γg.
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With the same notations as in the proof of Proposition 3.1, we write our

cycle T ∈ CHn−1(M ′)Q as a sum

T = P (h, δg) + A,

where P is a polynomial in the variables h, δg, g ∈ G, whose coefficients are

pull-backs of cycles on X×X, and A is a cycle supported on an exceptional

divisor of X ′ → X over a closed algebraic subset of X ×X of codimension

> n. Here h = c1(OM ′(1)), where the line bundle OM ′(1) comes from

O|L|G(1) and thus restricts to 0 on the fibers of M ′ → |L|G, which are

birationally equivalent to Yb×Yb. The divisors δb are the exceptional divisors

over the generic points of the graphs graph g.

We now recall that the cycle R maps, via the natural correspondence

τb∗ ◦ i∗b between M ′ and Yb × Yb, to Zb − ∆π,b,prim ∈ CHn−1(Yb × Yb)Q,

where Zb is supported on Wb ×Wb, with codimWb ⊂ Yb ≥ c.

In our polynomial P (h, δg), only the terms of degree 0 in h can be

mapped by τb∗ ◦ i∗b to a nonzero element in CHn−1(Yb×Yb) and concerning

the powers of δg, only the terms of degree n − 1 in δg can be mapped to

a nonzero element in CHn−1(Yb × Yb)Q (and they are then mapped to the

class of Γg in CHn−1(Yb×Yb)Q). The monomials of degree ≤ n−1 involving

at least two of the δg will also be annihilated by τb∗ ◦ i∗b since their images

will be supported on Γg ∩ Γg′ which has dimension < n− 1. Hence we can

assume that

R = R0 +
∑
g

λgδ
n−1
g ,

where R0 is the pull-back to M ′ of a cycle on X ×X, without changing the

image τb∗ ◦ i∗b(R) ∈ CHn−1(Yb × Yb)Q. We thus have

τb∗ ◦ i∗b(R) = R0|Yb×Yb
+ (−1)n

∑
g

λgΓ
n−1
g in CHn−1(Yb × Yb)Q(15)

We know that τb∗ ◦ i∗b(R) is cohomologous to 0 in Yb × Yb. As we made

the assumption that the endomorphisms Γg,b∗ : Hn−1(Yb,Q)prim →
Hn−1(Yb,Q)prim are linearly independent, we conclude from (15) that all

λg vanish, so that R = R0. As we have

τb∗ ◦ i∗b(R) = Zb − ∆π,b,prim in CHn−1(Yb × Yb)Q,
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we conclude that

Zb − ∆π,b,prim −R0|Yb×Yb = 0 ∈ CHn−1(Yb × Yb)Q,

where we recall that Zb is supported on Wb × Wb with codimWb ≥ c.

The argument explained in the introduction then allows to conclude that

CHi(Yb)πhom,Q = 0 for i < c. �

We refer to [13] for further potential applications of the general strat-

egy developed in Theorems 0.6, 3.3. Let us just mention one challenging

example. In [15], the case of quintic hypersurfaces in P4 invariant under the

involution acting by (−1,−1,+1,+1,+1) on homogeneous coordinates is

studied. The involution acts as the identity on H3,0(X) and it is proved that

the antiinvariant part of H3(X,Q) is parameterized by 1-cycles. Theorem

3.3 above (applied to the blow-up of P4 along the line {X2 = X3 = X4 = 0}
to avoid base-points) then implies that CH0(X)− is equal to 0, a result

which was already obtained in [15]. The next case to study would be that

of a sextic hypersurface in P5 defined by an equation invariant under the

involution i acting on homogeneous coordinates by

i∗(X0, . . . , X5) = (−X0,−X1,−X2, X3, X4, X5).(16)

This involution acts by −Id on H4,0(X) and thus the cohomology

H4(X,Q)+ invariant under the involution has Hodge coniveau 1, so is ex-

pected to be parameterized by 1-cycles. Assuming this is true, then The-

orem 3.3 would imply that the invariant part CH0(X)+0 of the group of

0-cycles of degree 0 on X is 0. Indeed, Remark 0.5 applies to the very gen-

eral invariant hypersurface in this case, by standard infinitesimal variations

of Hodge structure arguments. This shows that if for the general invariant

hypersurface X as above, H4(X,Q)+ is of geometric coniveau 1, then it is

parameterized by 1-cycles in the sense of Definition 0.3.

This example is particularly interesting because it relates to the following

question asked and studied in [16, Section 3]: For any variety Y , we have

the map

µY : CH0(Y )hom ⊗ CH0(Y )hom → CH0(Y × Y )

z ⊗ z′ �→ p∗1z · p∗2z′,
and the map

µ−
Y : CH0(Y )hom ⊗ CH0(Y )hom → CH0(Y × Y ),
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z ⊗ z′ �→ p∗1z · p∗2z′ − p∗1z
′ · p∗2z.

Let now S be a smooth projective K3 surface.

Question 3.4. Is it true that the map µ−
S is 0?

This is implied by the generalized Bloch conjecture since the space

H4,0(S × S)− of holomorphic 4-forms on S × S antiinvariant under the

involution exchanging the factors is 0. (Note that there are nonzero antiin-

variant holomorphic 2-forms on S × S, but they are of the form p∗1ω − p∗2ω,

where ω ∈ H2,0(S), while the 0-cycles in the image of µ−
S are annihilated

by p1∗ and p2∗.)
The precise relation between Question 3.4 and i-invariant CH0 groups

of sextic hypersurfaces invariant under an involution i of the type (16) is

the following : the Shioda construction (see [11]) shows that if C ⊂ P2 is

a plane curve of degree 6 defined by a polynomial equation f(X0, X1, X2),

the sextic fourfold X defined by the equation f(X0, X1, X2) − f(Y0, Y1, Y2)

is rationally dominated by the product Σ×Σ, where Σ is the sextic surface

in P3 with equation U6 = f(X0, X1, X2). The rational map Φ : Σ×Σ ��� X

is explicitly given by

Φ((x, u), (y, v)) = (vx, uy).

It makes X birationally equivalent to the quotient of Σ × Σ by G = Z/6Z,

where we choose an isomorphism g �→ ζ between G and the group of 6th

roots of unity and the actions of g ∈ G on Σ and Σ × Σ are given by

g(x, u) = (x, ζu),

g((x, u), (y, v)) = (g(x, u), g(y, v)).

Note now that the K3 surface S, which is defined as the double cover of P2

ramified along C, is also the quotient of Σ by the action of Z/3Z ⊂ Z/6Z.

Let p : Σ → S be the quotient map. We now have

Lemma 3.5. Via the map Φ∗ ◦ (p, p)∗, the group

Im (µS : CH0(S)0 ⊗ CH0(S)0 → CH0(S × S))
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embeds into CH0(X)0, and the image Imµ−
S embeds into the invariant part

of CH0(X)0 under the involution i (which is of the type (16)) acting on

coordinates by

i(X0, X1, X2, Y0, Y1, Y2) =
√
−1(Y0, Y1, Y2,−X0,−X1,−X2),

which leaves the equation of X invariant.

Proof. The Shioda rational map Φ is the quotient map by the group

G = Z/6Z. So for a 0-cycle z ∈ CH0(Σ × Σ), we have

Φ∗(Φ∗(z)) =
∑
g∈G

g∗z.

Let now z =
∑

i pr
∗
1zi · pr∗2z′i, deg zi = deg z′i = 0, be an element of Imµ.

Then denoting by j the involution of S over P2, we have j∗zi = −zi, j
∗z′i =

−z′i, so that (j, j)∗(z) = z. It immediately follows that (p, p)∗z is invariant

under G, so that
∑

g∈G g∗((p, p)∗z) = 6(p, p)∗z, which proves the injectivity

since (p, p)∗ is injective.

Let us now check that the cycles in Φ∗(Imµ−) are invariant under i.

Indeed, elements of (p, p)∗(Imµ−) are antiinvariant under the involution τ

acting on Σ × Σ exchanging factors. On the other hand, elements of Imµ−

are also antiinvariant under the involution (Id, j) acting on S×S. It follows

that for z ∈ Imµ−, one has τ∗((p, p)∗((Id, j)∗(z))) = z. Applying Φ∗, we

get that Φ∗((p, p)∗z) is invariant under i. �

In conclusion, if we were able to prove that for the sextic fourfolds X

invariant under the involution i of the type (16), the i-invariant part of

H4(X,Q) is parameterized by 1-cycles, then by Theorem 3.3, we would get

that CH0(X)+0 = 0 and by Lemma 3.5, we would conclude that the map µ−
S

is 0, thus solving Question 3.4 for K3 surfaces which are ramified double

covers of P2.

Thanks. I thank Lie Fu for his careful reading.
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