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Abstract. We define the characteristic cycle of a constructible
sheaf on a smooth surface in the cotangent bundle. We prove that the
intersection number with the 0-section equals the Euler number and
that the total dimension of vanishing cycles at an isolated character-
istic point is also computed as an intersection number.

For a constructible sheaf on a smooth algebraic variety in positive char-

acteristic, an analogy between the wild ramification of an étale sheaf and

the irregularity of a D-module in characteristic 0 suggests that the charac-

teristic cycle is defined as a cycle of the cotangent bundle. Its intersection

product with the 0-section is expected to give the characteristic class [4]

and the Euler number for a proper variety consequently. At an isolated

characteristic point (see the last paragraph of Section 1 for the definition)

of a fibration to a curve, the intersection number with the section defined

by a non-vanishing differential form of the curve is expected to be equal to

the total dimension of nearby cycles.

In a tamely ramified case, the characteristic cycle has an elementary

definition in arbitrary dimension (1.4). For a sheaf on a curve, the charac-

teristic cycle is determined by the Swan conductor at the boundary (1.6).

For a sheaf on a surface, Deligne and Laumon define the characteristic cycle

implicitly in [20] (see also [16, Letter 3 (b)]) using the total dimension of

the nearby cycles and compute the Euler number, under the “non-feroce”

assumption.

To remove the assumption, Deligne further sketched a global method,

extending that in [6], in a letter [8] and in unpublished notes [9] with more
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detail. The method fits in an approach of Beilinson using the Radon trans-

form [5].

In this article, we define the characteristic cycle of a sheaf on a surface

in general in Definition 3.8, by combining the approach using the Radon

transform and the non-logarithmic version [25] of ramification theory devel-

oped in a joint work with Abbes, following the ideas in [8] and [9]. We prove

that the intersection number with the 0-section equals the Euler number in

general in Theorem 3.19 and that that with the section defined by a fibra-

tion to a curve computes the total number of nearby cycles at an isolated

characteristic point in Theorem 3.17, as suggested in [9]. We also show in

Proposition 3.20 that it is the same as that defined in [25, Definition 3.5]

as long as the latter is defined. The relation with the characteristic class

defined in [4] is still to be clarified.

The definition goes as follows. First, by studying the ramification of

the Radon transform using the ramification theory developed in [25], we

define the characteristic cycle that a priori may depend on the choice of a

projective embedding. Using a deformation argument [9] and the dimen-

sion formula for the nearby cycles by Deligne and Laumon [19], we show

that the characteristic cycle thus defined computes the total dimension of

nearby cycles at an isolated characteristic point. We deduce from this that

the characteristic cycle is in fact independent of the choice of a projective

embedding.

The deformation argument relies on the stability of nearby cycles under

small deformation of fibrations. This in turn follows from a generalization

of Hensel’s lemma due to Elkik [10] together with the vanishing of the

limit of nearby cycles for a certain sequence of blow-up and the stability of

the dimension of nearby cycles. The last fact is based on a generalization

by Kato [17], [14] of the formula [19] used above and the stability of the

ramification of restrictions to curves.

We prove that the Euler number equals the intersection number of

the characteristic cycle with the 0-section, applying the Grothendieck-Ogg-

Shafarevich formula computing the Euler number of a sheaf on a curve [13]

two times. The equality implies that the difference with the characteristic

cycle defined in [25] is controlled by a divisor numerically equivalent to zero.

By using a finite covering trivializing the ramification except at one irre-

ducible component of the ramification divisor, we conclude that this divisor
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is in fact zero and derive the coincidence of the two definitions.

We briefly describe the content of each section. After briefly recalling the

ramification theory developed in [25] in Section 1, we prove in Section 2.1

the stability of the ramification of the restrictions to curves in Propositions

2.1 and 2.4. We also show a continuity of the total dimension of nearby

cycles in Proposition 2.6. Using a generalization of Hensel’s lemma due to

Elkik [10] recalled in Section 2.2, we prove the stability Theorem 2.14 of

nearby cycles under small deformation of fibrations in Section 2.3.

After some preliminaries on the universal family of hyperplane sections

in Section 3.1, we study the ramification of the Radon transform and define

the characteristic cycle in Definition 3.8, depending on projective embedding

in Section 3.2. We prove in Proposition 3.13 and Theorem 3.17 a formula

computing the total dimension of nearby cycles as an intersection number

with the characteristic cycle and deduce that it is in fact independent of a

projective embedding. Finally in Section 3.3, we prove the equality for the

Euler number in Theorem 3.19 and the equality of the characteristic cycle

defined using the Radon transform with that defined in [25] in Proposition

3.20.
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1. Brief Summary of Ramification Theory

We briefly recall the ramification theory from [25]. Let K be a com-

plete discrete valuation field with not necessarily perfect residue field F of

characteristic p > 0. The filtration (Gr
K)r by (non-logarithmic) ramifica-

tion groups of the absolute Galois group GK = Gal(Ksep/K) is defined

as a decreasing filtration by closed normal subgroups indexed by rational

numbers r � 1 [2], [3]. For a rational number r � 1, define Gr+
K ⊂ Gr

K

to be the closure
⋃

s>rG
s
K . The subgroup IK = G1

K ⊂ GK is the inertia

subgroup and PK = G1+
K ⊂ G1

K is its p-Sylow subgroup called the wild

inertia subgroup. Assume that K is of characteristic p. Then, the graded

piece GrrGK = Gr
K/G

r+
K is known to be an abelian group annihilated by p

[25, Corollary 2.28.1] for r > 1.

Let Λ be a finite field of characteristic 
 �= p and M be a finite Λ-module

with continuousGK-action. Then, there exists a unique decompositionM =⊕
r� 1M

(r) called the slope decomposition characterized by the condition

that the Gr+
K -fixed part MGr+

K equals
⊕

s� rM
(s) for r � 1. We define the

total dimension of M by

dim totKM =
∑
r� 1

r · dimΛM
(r).(1.1)

In the classical case where the residue field F is perfect, it is equal to the sum

dimM + SwKM of the dimension and the Swan conductor [13, Section 4].

Further, if K is of characteristic p and if Λ contains a primitive p-th root of

unity, the r-th piece M (r) for r > 1 is decomposed as
⊕

χ : GrrGK→Λ× χ⊕n(χ)

by characters of the abelian group GrrGK annihilated by p, since the group

algebra Λ[G] is decomposed as
∏

χ : G→Λ× Λ for a finite abelian group G

annihilated by p.

We consider the case where X is a smooth scheme of dimension d over

a perfect field k of characteristic p > 0 and K = Frac(ÔX,ξ) is the local

field at the generic point ξ of a smooth irreducible divisor D. The residue

field F is the function field κ(ξ) of the divisor D and the residue field F̄
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of Ksep is an algebraic closure of F . For a rational number r, let I(r)

denote the fractional ideal {a ∈ Ksep | ordKa � −r} and define an F̄ -vector

space L(r) = I(r) ⊗OKsep F̄ of dimension 1. Then, the dual (GrrGK)∨ =

HomFp(GrrGK ,Fp) of the Fp-vector space GrrGK is canonically identified

as a subgroup of the F̄ -vector space Ω1
X/k,ξ ⊗OX,ξ

L(r) by the canonical

injection

char : (GrrGK)∨ → Ω1
X/k,ξ ⊗OX,ξ

L(r)(1.2)

defined in [25, Corollary 2.28.2]. For a non-trivial character χ ∈ (GrrGK)∨,

let F (χ) denote a finite extension of F where char(χ) regarded as an F̄ -linear

mapping L(−r) → Ω1
X/k,ξ ⊗OX,ξ

F̄ descends to an F (χ)-linear mapping.

Then, it defines a line L(χ) in the fiber T ∗X×X Spec F (χ) of the cotangent

bundle T ∗X = V(Ω1
X/k) at Spec F (χ) → ξ ∈ X.

Let U = X D denote the complement and j : U → X be the open

immersion. Let F be a locally constant constructible sheaf of Λ-modules

on U . We assume that Λ contains a primitive p-th root of unity, fix an

isomorphism Fp → µp(Λ) and identify (GrrGK)∨ = Hom(GrrGK ,Λ
×).

Then, the characteristic cycle Char j!F is defined on a neighborhood of the

generic point ξ of D as follows. Let η̄ be the geometric point of U defined by

the separable closure Ksep and let M = Fη̄ be the continuous representation

of GK defined by F . Then the slope decomposition M =
⊕

r� 1M
(r) and

the decomposition by characters M (r) =
⊕

χ∈(GrrGK)∨ χ
⊕n(χ) for r > 1

are defined. Let T ∗
XX ⊂ T ∗X denote the 0-section and T ∗

DX ⊂ T ∗X the

conormal bundle. We define the germ of the characteristic cycle Char j!F
at ξ to be

(−1)d

(
rank F · [T ∗

XX] + dimM (1) · [T ∗
DX](1.3)

+
∑
r>1

r ·
∑

χ∈(GrrGK)∨

n(χ)

[F (χ) : F ]
[L(χ)]

)

where d = dimX. Let (Char j!F)wild
D denote the sum of the last term in

the parantheses.

More generally, we consider the case where D is not necessarily an ir-

reducible and smooth divisor. After removing closed subset of codimension



392 Takeshi Saito

� 2 if necessary, we assume that D is a divisor with simple normal crossings.

Let F be a locally constant constructible sheaf of Λ-modules on U = X D.

Then, further after removing closed subset of codimension � 2 if necessary,

we may assume that the ramification of F along D is non-degenerate in the

sense of [25, Definition 3.1] which we will not recall here.

Assuming that the ramification of F along D is non-degenerate, the

characteristic cycle Char j!F is defined as follows. Let D1, . . . , Dm be the

irreducible components of D and for a subset I ⊂ {1, . . . ,m}, let DI denote

the intersection
⋂

i∈I Di and T ∗
DI
X ⊂ T ∗X be the conormal bundle. If F is

tamely ramified along D, the characteristic cycle Char j!F is defined by

Char j!F = (−1)d

 ∑
I⊂{1,... ,m}

rank F · [T ∗
DI
X]

 .(1.4)

Next, we consider the case where the ramification of F along D is non-

degenerate and totally wild; for every irreducible component Di of D, the

tame part F (1)
η̄i is 0. Then the germ of cycle (Char j!F)wild

Di
in (1.3) for

each irreducible component Di of D is defined as a cycle of T ∗X and the

characteristic cycle is defined by the equality

Char j!F = (−1)d

(
rank F · [T ∗

XX] +
∑
i

(Char j!F)wild
Di

)
.(1.5)

In general, the characteristic cycle Char j!F is characterized by (1.4) and

(1.5) together with the additivity for exact sequence on F and the compat-

ibility by étale pull-back. Define the singular support SS(j!F) ⊂ T ∗X to

be the union of the underlying set of the components of the characteristic

cycle Char j!F . If dimX = 1, we have

Char j!F = −
(
rank F · [T ∗

XX] +
∑
x∈D

(rank F + SwxF) · [T ∗
xX]

)
.(1.6)

Going back to the general dimension, the total dimension divisor is de-

fined by

DTj!F =
∑
i

dim totKiFη̄i ·Di(1.7)
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where the geometric point η̄i is defined by a separable closure of the local

field Ki at the generic point of an irreducible component Di of D. Note that

in the definition of the total dimension divisor we do not need to assume

that ramification is non-degenerate.

More generally, for a constructible complex K of Λ-module on X such

that the restriction of the cohomology sheaf HqK is locally constant on U

for every integer q, the Artin divisor a(K) is defined by

a(K) =
∑
q

(−1)q

(
DTj!j

∗Hq(K)−
∑
i

dimHq(K)ξ̄i ·Di

)
(1.8)

where ξ̄i is a geometric point dominating the generic point of an irreducible

component Di of D.

Let F be a locally constant constructible sheaf of Λ-modules on U =

X D with non-degenerate ramification along a divisor D with simple nor-

mal crossings. Let C be a smooth curve over k and C → X be an immersion

over k such that the intersection C ∩D is finite. We say that the immersion

C → X is non-characteristic at a closed point x ∈ C∩D with respect to j!F
if the tangent vector of C at x is not annihilated by any nonzero differential

form in the fiber of SS(j!F) at x. If C → X is non-characteristic at x, the

total dimension divisor is compatible with the pull-back [25, Proposition

3.8]:

(DTj!F , C)x = dim totxF|C .(1.9)

Let C be a smooth curve over k and f : X → C be a smooth morphism

over k. We say that f : X → C is non-characteristic with respect to j!F
if the section of T ∗X defined by the pull-back by f of a non-vanishing

differential form on C does not intersect with the singular support SS(j!F).

If dimX = 2, it is equivalent to that for every closed point c of C, the

immersion X ×C c → X is non-characteristic. We say that x ∈ X is a

characteristic point of f : X → C with respect to j!F if f : X → C is not

non-characteristic on a neighborhood of x. A morphism f : X → C non-

characteristic with respect to j!F is universally locally acyclic relatively to

j!F , if either F is tamely ramified along D or F is totally wildly ramified

along D and f |D : D → C is flat by [25, Proposition 3.15]. In particular,

the complex of vanishing cycles φ(j!F , f) on the geometric fiber Xc̄ is 0 for

every geometric closed point c̄ of C.
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We say that a closed point x is an isolated characteristic point of f : X →
C with respect to j!F if the restriction of f to a neighborhood of x is non-

characteristic with respect to j!F except possibly at x. This definition

makes sense also in the case where there exists an neighborhood V of x

such that V {x} is smooth over k and that (D ∩ V ) {x} is a divisor of

V {x} with simple normal crossings. The condition that x is an isolated

characteristic point of f : X → C with respect to j!F implies that there

exists an neighborhood V of x such that V {x} is smooth over C.

2. Stability of Nearby Cycles

2.1. Stability of ramification of the restrictions to curves

For morphisms f : X → S and T → S of schemes, let (X, f)×S T denote

the fibered product to indicate the morphism, if necessary. For morphisms

f : X → S and g : X → S of schemes and a closed subscheme Z of X defined

by an ideal sheaf IZ ⊂ OX , we say that f and g are congruent to each other

modulo IZ and write f ≡ g mod IZ if the restrictions f |Z : Z → S and

g|Z : Z → S are the same.

Proposition 2.1. Let X be a normal surface over a perfect field k of

characteristic p > 0 and let f : X → C be a flat morphism over k to a

smooth curve C over k. Let D ⊂ X be a closed subscheme quasi-finite over

C, let u be a closed point of D and let v = f(u) ∈ C.

1. There exists an integer N � 1 such that if a morphism g : X → C

over k satisfies g ≡ f mod mN
u , then g : X → C is flat at u, its restriction

g|D : D → C is quasi-finite at u. Further, if f |D : D → C is flat at u (resp.

and if f |D {u} : D {u} → C is étale), then g|D : D → C is flat at u

(resp. and g|D {u} : D {u} → C is étale on a neighborhood of u except

at u).

2. Let Λ be a finite field of characteristic 
 �= p and F be a locally

constant constructible sheaf of Λ-modules on the complement U = X D.

Assume that u is an isolated characteristic point of f : X → C with respect

to j!F . Then, there exists an integer N � 1 such that if a morphism g : X →
C over k satisfies g ≡ f mod mN

u , then u is an isolated characteristic point

of g : X → C with respect to j!F .

3. Further, there exists an integer N � 1 such that if a morphism

g : X → C over k satisfies g ≡ f mod mN
u , there exist an étale neighborhood
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V → C of v = f(u) such that the connected components (D, f |D)0V and

(D, g|D)0V of (D, f |D)×C V and (D, g|D)×C V containing u are finite over

V and that for every closed point y ∈ V {v}, we have∑
x∈(D,f |D)0V ,f(x)=y

dim totx(F|f−1(y))(2.1)

=
∑

x∈(D,g|D)0V ,g(x)=y

dim totx(F|g−1(y)).

In 3, an étale neighborhood V → C of v means an étale morphism

equipped with v → V lifting v → C.

Proof. Replacing X by a neighborhood of u, we may assume that

X {u} is smooth over k and that the reduced part of D {u} is a smooth

divisor of X {u}.
1. Let t ∈ OC,v be a uniformizer and N � 1 be an integer such that

f∗t /∈ mN
u . Then if g ≡ f mod mN

u , we have g∗t /∈ mN
u and g is flat at u.

Let N � 2 be an integer such that mN−1
u annihilates (D, f |D)×C v on a

neighborhood of u. If g ≡ f mod mN
u , the elementary lemma below implies

then (D, g|D)×C v is also annihilated by mN−1
u . Hence g|D : D → C is quasi-

finite at u. Assume f |D : D → C is flat at u. Then, the pull-back by f of a

uniformizer t ∈ OC,v forms a regular sequence of the local Cohen-Macaulay

ring OD,u of dimension 1 and so is the pull-back by g. Hence g|D : D → C

is also flat at u. Further if f |D : D → C is étale except at u, let N � 2

be an integer such that mN−1
u annihilates Ω1

D/C,u with respect to f |D. If

g ≡ f mod mN
u , then mN−1

u also annihilates Ω1
D/C,u with respect to f |D and

hence g|D : D → C is étale on a neighborhood of u except at u.

Lemma 2.2. Let A be a noetherian ring, I ⊂ A be an ideal, M be an

A-module of finite type and N � 1 be an integer. If the canonical surjection

M/INM →M/IN−1M is an isomorphism, then M is annihilated by IN−1

on a neighborhood of Spec A/I.

Proof. By the assumption, the A-module IN−1M satisfies I ·
IN−1M = IN−1M . Hence, it follows from Nakayama’s lemma. �
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2. Let π : X ′ → X be a resolution. Namely, X ′ is a smooth surface

over k, π is proper and X ′ π−1(u) → X {u} is an isomorphism. The

singular support SS(j!F) is defined as a closed subset of T ∗(X {u}). Let

SS(j!F)′ ⊂ T ∗X ′ denote the closure of SS(j!F) and regard it as a reduced

closed subscheme. Let E ⊂ X ′ denote the inverse image π−1(u) = X ′×X u.

Let t ∈ OC,v be a uniformizer and let df : X ′ → T ∗X ′ denote the section

defined by f∗dt on a neighborhood of E. By the assumption that u is an

isolated characteristic point of f : X → C with respect to j!F , the intersec-

tion (X ′, df)×T ∗X′ SS(j!F)′ of the image of the section df and the singular

support SS(j!F)′ is a subset of the inverse image T ∗X ′ ×X′ E. Let N � 2

be an integer such that (X ′, df)×T ∗X′ SS(j!F)′ is a closed subscheme anni-

hilated by IN−2
E . Since g ≡ f mod mN

u implies dg ≡ df mod mN−1
u Ω1

X/k, the

intersection (X ′, dg)×T ∗X′ SS(j!F)′ is also annihilated by IN−2
E on a neigh-

borhood of T ∗X ′ ×X′ E by Lemma 2.2 and u is an isolated characteristic

point of g : X → C with respect to j!F .

3. Shrinking X if necessary, we may assume that u is the unique point

in the fiber of f |D : D → C. Since a quasi-finite scheme over a henselian

discrete valuation ring is the disjoint union of a finite scheme and a flat

scheme, there exist an étale neighborhood of V → C of v = f(u) such that

the connected components (D, f |D)0V and (D, g|D)0V are finite. In the rest

of proof, we assume that they are finite and flat.

Let DT (j!F , f)0V denote the part of the pull-back of DT (j!F) to

(X, f)V = (X, f) ×C V supported on (D, f |D)0V and similarly for

DT (j!F , g)0V . Since u is an isolated characteristic point of f : X → C

with respect to j!F , the left hand side of (2.1) is equal to the degree of

DT (j!F , f)0V over V by (1.9). We will take an integer N � 1 satisfying

the conditions in 1. Then, for a morphism g : X → C over k satisfying

g ≡ f mod mN
u , the point u is an isolated characteristic point of g : X → C

with respect to j!F and the right hand side is also equal to the degree of

DT (j!F , g)0V over V .

Let N � 1 be an integer such that DT (j!F , f)0V ×V v is annihilated by

mN−1
u . If g ≡ f mod mN

u , then DT (j!F , g)0V ×V v is equal to DT (j!F , f)0V ×V

v and is also annihilated by mN−1
u by Lemma 2.2. Since the degree of

DT (j!F , f)0V over V is equal to the length of the scheme DT (j!F , f)0V ×V v,

it is equal to the degree of DT (j!F , g)0V and the assertion follows. �

The following example shows that in Proposition 2.1 and Theorem 2.14,
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one cannot drop the assumption of non-charactericity.

Example 2.3. Let X = A2 = Spec k[x, y] be the affine plane over an

algebraically closed field k of characteristic p > 2 and U = X D be the

complement of the y-axis D. Let u = (0, 0) denote the origin of X = A2.

Assume that Λ contains a primitive p-th root of unity and let F be the

locally constant constructible sheaf of Λ-modules of rank 1 on U defined

by the Artin-Schreier equation zp − z =
y

xp
. Then, the singular support

SS(j!F) is the union of the zero-section T ∗
XX and the sub line bundle over

D spanned by the section dy.

Let f : X → C = A1 = Spec k[t] be the smooth morphism defined

by t �→ y. It is characteristic with respect to j!F at every point of D.

The restriction f |D : D → C is an isomorphism. For c ∈ A1(k), the Swan

conductor Sw(0,c)(j!F|f−1(c)) of the restriction to the fiber is 0 for c = 0 and

1 for c �= 0. Hence by [19], we have dimφ1
u(j!F , f) = 1.

Let n � 2 be an integer and g : X → C = A1 = Spec k[t] be the

smooth morphism defined by t �→ y + xyn. We have g ≡ f mod mn+1
u . The

restriction g|D : D → C is also an isomorphism. For c ∈ A1(k), the Swan

conductor Sw(0,c)(j!F|g−1(c)) of the restriction to the fiber is 0 for c = 0 and

p− 1 > 1 for c �= 0. Hence by [19], we have dimφ1
u(j!F , f) = p− 1 > 1.

For closed subschemes C and C ′ and a closed subscheme Z of X defined

by the ideal sheaf IZ ⊂ OX , we say C ≡ C ′ mod IZ if C ×X Z = C ′ ×X Z.

If f : X → S and g : X → S satisfy f ≡ g mod IZ and T ⊂ S is closed

subscheme, we have (X, f)×S T ≡ (X, g)×S T mod IZ .

Let C be a reduced excellent noetherian scheme of dimension 1 and u

be a closed point of C with perfect residue field. Let C ′ → C be the nor-

malization. Let Λ be a finite field of characteristic 
 invertible at u and

F be a locally constant constructible sheaf of Λ-modules on U = C {u}.
Then, the total dimension dim totuF is defined as the sum∑

u′∈C′×Cu dim totu′F .

Proposition 2.4. Let X be a normal excellent noetherian scheme of

dimension 2 and u be a closed point of X such that OX,u is of dimension 2

and that the residue field is perfect. Let U ⊂ X be a dense open subscheme.

Let Λ be a finite field of characteristic 
 invertible on X and let F be a

locally constant constructible sheaf of Λ-modules on U .
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Let C be a reduced Cartier divisor of X containing u such that u is in

the closure of C ∩ U . Then, there exists an integer N � 1 such that for a

reduced Cartier divisor C1 of X satisfying C ≡ C1 mod mN
u , the point u is

in the closure of C1 ∩ U and we have

dim totu(F|C∩U ) = dim totu(F|C1∩U ).(2.2)

Proof. Let Z be a closed subscheme of X such that U = X Z and

let N � 2 be an integer such that OZ∩C,u is annihilated by mN−1
u . Then, for

a reduced Cartier divisor C1 ofX of dimension 1 satisfying C ≡ C1 mod mN
u ,

the ring OZ∩C1,u is also annihilated by mN−1
u by Lemma 2.2 and the point

u is contained in the closure of C1 ∩ U .

Let V → U be a G-torsor for a finite group G such that the pull-back

FV of F is constant and let f : Y → X be the normalization of X in V .

Let D̄ and D̄1 be the normalizations of D = C ×X Y and D1 = C1 ×X Y .

For σ ∈ G, �= 1 and a point v of D̄ above u, let Īσ,v denote the ideal of

OD̄,v defining the intersection ∆D̄ ∩ Γσ ⊂ ∆D̄ = D̄ of the diagonal and the

graph of σ in D̄ ×C D̄ and similarly Īσ,v1 for v1 of D̄1 above u. By the

definition of the Swan conductor, it suffices to show the existence of N � 1

such that the congruence C ≡ C1 mod mN
u implies a bijection D̄×C {u} and

D̄1 ×C {u} satisfying the equalities length OD̄,v/Īσ,v = length OD̄1,v1
/Īσ,v1

for the corresponding points and for σ ∈ G, �= 1.

First, we prove the case where X,C and D = C ×X Y are regular.

For σ ∈ G, �= 1, let Iσ denote the ideal of OY defining the intersection

Yσ = ∆Y ∩ Γσ ⊂ ∆Y = Y of the diagonal and the graph of σ in Y ×X Y .

We have Īσ,v = IσOD,v. Let N � 2 be an integer such that OD,v/IσOD,v

is annihilated by mN−1
u for every σ �= 1 and v ∈ f−1(u). Let C1 be an

integral closed subscheme of dimension 1 satisfying C ≡ C1 mod mN
u . Then,

since D1 = C1 ×X Y ≡ D mod m2
v, the scheme D1 is also regular at every

v ∈ f−1(u). Further, OD1,v/IσOD1,v is annihilated by mN−1
u by Lemma 2.2

and is isomorphic to OD,v/IσOD,v for every σ �= 1 and v ∈ f−1(u). Thus

the assertion is proved in this case.

We show the general case by reducing to the case proved above by using

the following embedded resolution.

Lemma 2.5 (cf. [22, Theorems 8.3.4, 9.2.26]). Let X be a normal ex-

cellent noetherian scheme of dimension 2 and C ⊂ X be a reduced closed
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subscheme of dimension 1. Let U ⊂ X be the complement of finitely many

closed points of codimension 2 of X contained in C such that U and C ∩U
are regular.

Then, there exist a regular excellent noetherian scheme X ′ of dimension

2 and a proper morphism g : X ′ → X such that g−1(U) → U is an isomor-

phism and that the reduced part of the inverse image g−1(C) is a divisor of

X ′ with simple normal crossings.

In particular, the closure C ′ ⊂ X ′ of g−1(C∩U) with the reduced scheme

structure is regular and meets transversely the reduced part E of the effective

Cartier divisor C ×X X ′ − C ′.

By shrinking X if necessary, we may assume that X {u} and C {u}
are regular. We apply Lemma 2.5 to X {u} to obtain g : X ′ → X and

further to the inverse imageD′ = C ′×X′Y ′ in the normalization f ′ : Y ′ → X ′

in V to obtain Y ′′ → Y ′. Further applying Lemma 2.5 and replacing X ′ by

a resolution of the quotient Y ′′/G, we may assume that D′ is regular.

We set C ×X X ′ = C ′ + F where C ′ is the normalization of C and F is

a divisor supported on the inverse image E of u. We regard E as a reduced

divisor of X ′ and let M � 1 denote an integer such that (M − 1)E � F .

For a reduced Cartier divisor C1 satisfying C ≡ C1 mod mM
u , there exists

a Cartier divisor C ′
1 of X ′ such that C1 ×X X ′ = C ′

1 + F by Lemma 2.2.

Since C×XX ′ ≡ C1×XX ′ mod IME , we have C ′×X′ E = C ′
1×X′ E and the

divisor C ′
1 is reduced and meets E transversely. Hence, it is a normalization

of C1.

As we have shown above, there exists an integer N ′ � 1 such that the

congruence C ′ ≡ C ′
2 mod mN ′

u′ for a reduced Cartier divisor C ′
2 of X ′ and

for each point u′ ∈ C ′ ∩E imply the equality (2.2) holds. Set N = M +N ′

and let C ′ be a closed reduced subscheme of X satisfying C ≡ C ′ mod mN
u .

Then, we have C ′ ≡ C ′
1 mod IN ′

E . Hence, we obtain the equality (2.2). �

We show a continuity of the total dimension of the space of vanishing

cycles.

Proposition 2.6. Let C be a smooth curve over an algebraically closed

field k of characteristic p and let g : Y → C be a smooth morphism of

schemes over k of relative dimension 1. Let f : X → Y be a proper mor-

phism of schemes over k. Let Λ be a finite field of characteristic 
 �= p and
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let F be a constructible sheaf of Λ-modules on X locally acyclic relatively

to X → C. Let Z ⊂ X be a closed subscheme such that the restriction of

F on X Z is universally locally acyclic relatively to X → Y . Let B be

a linear combination of divisors on Y flat over C supported on the closed

subset E = f(Z).

Let u be a closed point of Z and set v = f(u) ∈ E ⊂ Y and s = g(v) ∈ C.

Assume that u is the unique point of the inverse image Z×Y v, that v is an

isolated point of E ∩ Ys and that Z → C is quasi-finite outside s. Assume

also that, for every closed point t ∈ C, t �= s and for every point y ∈ Et, we

have ∑
z∈Z×Y y

dim tot φz(F|Xt , f |Xt) = (B, Yt)y.(2.3)

Then, the equality (2.3) holds also for t = s and y = v.

Proof. By the assumptions that v is an isolated point of E ∩ Ys and

that Z is quasi-finite over C outside s, the closed subset E ⊂ Y is quasi-

finite over C on a neighborhood of v. Hence, by replacing C by an étale

neighborhood of s and Y by an étale neighborhood of v, we may assume

that E is finite over C and that v is the unique point of E above s. Then,

Z is also finite over C and u is the unique point of Z above s. We define

functions a and b on C by

a(t) =
∑
z∈Zt

dim totzφ(F|Xt , f |Xt), b(t) = (B, Yt).

By the assumption, we have a = b on C {s}. By the assumption that B

is flat over C, the function b is constant on a neighborhood of s. Hence, it

suffices to show that the function a is also constant on a neighborhood of s.

Let t ∈ C be a closed point. The complex of nearby cycles φ(F|Xt , f |Xt)

is supported on Zt by the assumption that the restriction of F to X Z

is universally locally acyclic relatively to f : X → Y . For y ∈ Et, let η̄y
be a geometric generic point of the strict localization of Yt at y. Then, the

distinguished triangle of vanishing cycles gives us a distinguished triangle

→ (Rf∗F|Yt)y → (Rf∗F|Yt)η̄y →
⊕

z∈Z×Y y

φz(F|Xt , f |Xt) → .(2.4)
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Hence a(t) equals the sum of the Artin conductors
∑

y∈Et
ay(Rf∗F|Yt) de-

fined as (1.8).

We prove

a(s)− a(t) = −dimφv(Rf∗F , g) = 0.(2.5)

for t ∈ C {s} to complete the proof. The first equality is a consequence

of the lemma below. We show the vanishing φv(Rf∗F , g) = 0. Since F
is assumed locally acyclic relatively to X → C, the canonical morphism

Fs → ψ(F , g◦f) is an isomorphism on Xs. Since the formation of the nearby

cycle complex is compatible with proper push-forward, it implies that the

canonical morphism Rf∗Fs → ψ(Rf∗F , g) is an isomorphism. Thus, we

obtain the required vanishing φv(Rf∗F , g) = 0 and the equality (2.5) is

proved. �

Lemma 2.7. Let g : X → C be a smooth morphism over an alge-

braically closed field k of characteristic p from a smooth surface X to a

smooth curve C. Let D be a divisor of X finite flat over C and s be a closed

point of C such that the closed fiber Ds consists of a unique point x. Let Λ

be a finite field of characteristic 
 �= p and let K be a constructible complex

of Λ-modules on X such that the restriction HqK|U of the cohomology sheaf

on the complement U = X D is locally constant for every integer q.

Then, on a neighborhood of s in C, the sum of the Artin conductors∑
z∈Dt

az(K|Xt) is constant except possibly for s = t and satisfies

ax(K|Xs)−
∑
z∈Dt

az(K|Xt) = −dimφx(K, g).(2.6)

Proof. By devissage, it suffices to consider the case where K = j!F
for a locally constant constructible sheaf F on U and the open immersion

j : U → X and the case where K = i∗G for a constructible sheaf G on D

and the closed immersion i : D → X. The first case is [19, Théorème 5.1.1].

The second case follows from the exact sequence 0 → Gx →
⊕

z∈Dη̄
Gz →

φx(i∗G, g) → 0 where η̄ denotes a geometric generic point of the strict

localization S of C at s. �
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2.2. An application of Elkik’s theorem

To prove the stability of nearby cycles in the next subsection, we recall

the following generalization of Hensel’s lemma due to Elkik [10, Section 2],

with slight reformulation. Let S = Spec R be an affine noetherian scheme

and Y = Spec B be an affine scheme of finite type over S. By taking a finite

presentation B = R[T ]/(f) where T denotes a system of indeterminates and

f denotes a system of polynomials, a closed subscheme Z of Y is defined

by the ideal HB =
∑
K(α)∆(α) ⊂ R[T ] in the notation [10, 0.2]. As noted

there, the complement of the support of Z is the largest open subscheme of

Y smooth over S and the ideal can only get larger by base change. Although

Z depends on presentation, let ZY/S denote it by abuse of notation.

Lemma 2.8 ([10, Théorème 2]). Let S be an affine noetherian scheme,

X = Spec A be an affine noetherian scheme over S and let J ⊂ A be an

ideal such that the pair (A, J) is henselian ([23, Chapitre IX Définition 3]).

For an integer n � 1, set Xn = Spec A/Jn ⊂ X. Let h � 0 be an integer.

Then, there exist integers m � r � 0,m � h such that, for any affine

scheme Y over S of finite type and any morphism of schemes f̄ : Xn → Y

over S for n � m satisfying ZY/S ×Y Xn ⊂ Xh, there exists a morphism

f : X → Y over S that makes the diagram

X
f−−−→ Y

∪
� �f̄

Xn−r
⊂−−−→ Xn

(2.7)

commutative.

Proof. Since the ideal defining ZY/S only get larger by base change

as remarked in [10, 0.2], we may assume X = S by taking the base change

by X → S.

In the notation of [10, Théorème 2], the condition J(a0) ⊂ J n means

that a morphism Xn → Y is defined. Further, under this condition and

h � n, the condition HB(a0) ⊃ J h means a closed immersion Z ×Y Xn ⊂
Xh. Since the condition J(a0) = 0 means that a morphism X → Y is

defined and since the congruence a ≡ a0 mod J n−r means the commutative

diagram (2.7), the assertion follows by [10, Théorème 2]. �
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Proposition 2.9. Let f : X = Spec A → S be a morphism of finite

type of affine noetherian schemes and X1 be the closed subscheme defined

by an ideal I ⊂ A. Assume that X is normal and that the complement

U = X X1 is a dense open subscheme smooth over S. Let X̃ = Spec Ã be

a henselization ([23, Chapitre IX Définition 4]) of X along X1. Let V → U

be a G-torsor for a finite group G and let Y be the normalization of X in

V .

Then, there exist integers r � 0 and N � r+2 such that for a morphism

g : X → S satisfying g ≡ f mod IN , there exist isomorphisms p̃ : X̃ → X̃

and q̃ : Ỹ = Y ×X X̃ → Ỹ satisfying the following properties: The diagram

Ỹ
q̃ ��

��

Ỹ

��

X̃
p̃ ��

g̃ ���
��

��
��

X̃

f̃����
��

��
�

S

(2.8)

where f̃ and g̃ denote the composition with f and g is commutative and

compatible with the G-actions. They are congruent to the identity modulo

IN−rO
X̃

and IN−rO
Ỹ

respectively.

Proof. For a scheme T over X, let Tf denote T regarded as a scheme

over S with respect to the composition with f : X → S and similarly for

Tg for a morphism g : X → S. For an integer n � 1 and for a scheme T

over X, let Tn ⊂ T denote the closed subscheme T ×X Spec A/In. The

canonical morphism X̃ → X induces an isomorphism X̃n → Xn for n � 1.

If g : X → S satisfies g ≡ f mod IN and if n � N , we have Tn,g = Tn,f for

a scheme T over X and we will drop the subscripts f and g in this case.

Let Z be the closed subscheme ZXf/S of X. By the assumption that U

is smooth over S, the intersection Z ∩ U is empty. Hence, there exists an

integer h � 1 such that OZ is annihilated by Ih. Let m � r � 0,m � h be

integers as in Lemma 2.8 for the henselian pair (Ã, IÃ).

Let N be an integer satisfying N � m and N � 2+r. Let g : X → S be a

morphism of schemes satisfying g ≡ f mod IN . We apply Lemma 2.8 to the

canonical immersion X̃N = XN → Xf over S. For N � h, the assumption
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Z ⊂ Xh on h implies that the assumption Z ×Xf
XN ⊂ Xh of Lemma 2.8

is satisfied. Hence applying Lemma 2.8 we obtain a commutative diagram

X̃g
p−−−→ Xf

∪
� �

X̃N−r
⊂−−−→ X̃N

(2.9)

of schemes over S.

We show that the induced morphism p̃ : X̃g → X̃f on the henselizations

is an isomorphism. Let W be an étale neighborhood of X̃1 → Xg such

that the composition X̃g
p̃→ X̃f → Xf is induced by W → Xf . Since

p̃ : X̃g → X̃f induces the identity on X2 = X̃2 ⊂ X̃N−r, the endomorphisms

induced by W → Xf on the completions of the local rings of X̃g and X̃f at

all points of X̃1 are surjections and hence automorphisms. Thus the induced

endomorphisms on the henselizations of the local rings of X̃g and X̃f at all

points of X̃1 are also automorphisms and the morphism W → Xf is étale

on a neighborhood W ′ ⊂ X̃g of X̃1. Hence, by replacing W by W ′, we may

assume that W → X̃f itself is étale. Since (X̃, X̃1) is a henselian pair, the

morphism p̃ : X̃g → X̃f is an isomorphism.

The normalization Y in the étale covering V → U is finite over X. Let Z ′

be the closed subscheme ZY/X of Y . The intersection Z ′∩V is empty. Define

an integer h′ similarly as h above and let m′ � r′ � 0,m′ � h′ be integers

defined for Ỹf → X̃f in Lemma 2.8. Then, by a similar argument as above

for Yf → Xf , there exists an integer N ′ � N such that if g ≡ f mod IN
′
,

there exists an isomorphism q̃ : Ỹg → Ỹf such that the diagram (2.8) is

commutative.

We show that the morphism q̃ : Ỹg → Ỹf is compatible with the ac-

tion of G, after replacing N ′ by a larger integer if necessary. Since the set

Hom
X̃

(Ỹ , Ỹ ) is finite and since the canonical morphism from the henseliza-

tion to the completion is an injection, there exists an integer n � 1 such

that the restriction map Hom
X̃

(Ỹ , Ỹ ) → Hom
X̃

(Ỹn, Ỹ ) is injective. Then,
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if N � m,N � r + n, both compositions in the diagram

Ỹg
q̃−1

←−−− Ỹf

σ

� �σ

Ỹg
q̃−−−→ Ỹf

(2.10)

for σ ∈ G are the same after restricted to Ỹn ⊂ ỸN−r. Hence the diagram

(2.10) itself is commutative for σ ∈ G and q̃ : Ỹg → Ỹf is compatible with

the action of G. �

2.3. Stability of nearby cycles

The stability of nearby cycles at an isolated singularity is an immediate

consequence of Proposition 2.9.

Proposition 2.10. Let X be a scheme of finite type over a perfect field

k of characteristic p, C be a smooth curve over k, and let f : X → C be a

flat morphism over k. Let u be a closed point of X such that U = X {u}
is smooth over C and j : U → X be the open immersion. Let Λ be a finite

field of characteristic 
 �= p and F be a locally constant constructible sheaf

of Λ-modules on U .

Then, there exists an integer N � 1 such that, for a morphism g : X → C

satisfying g ≡ f mod mN
u , there exists an isomorphism

Rψu(j!F , f) → Rψu(j!F , g).(2.11)

Proof. Replacing X by the normalization, we may assume X is nor-

mal. Let X̃ be the henselization of X at u and F̃ be the pull-back of F
on Ũ = U ×X X̃. Then, by Proposition 2.9 applied to X → S and a finite

Galois covering V → U trivializing F , there exists an integer N � 1 such

that, for a morphism g : X → C satisfying g ≡ f mod mN
u , there exists an

isomorphism p̃ : X̃g → X̃f over C and an isomorphism p̃∗ : F̃ → F̃ . They

induce an isomorphism (2.11). �

To prove the main result in this section, we show the vanishing of a

certain limit of the spaces of vanishing cycles. We begin with the study of

the limit of the local rings with respect to a sequence of blow-up.
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Lemma 2.11 ([1, Proposition 1.9.4], [12, 5.4]). Let A be a local ring, p

be a prime ideal and let f ∈ A be a non-zero divisor. Assume that Ā = A/p

is a discrete valuation ring and that f̄ ∈ Ā is a uniformizer.

1. Let A′ denote the subring A[p/fn;n � 1] ⊂ A[1/f ]. Then, p′ =

pA[1/f ] is a prime ideal of A′ and the canonical morphism A/p → A′/p′ is

an isomorphism. We have fp′ = p′ and the ideal fA′ is a maximal ideal of

A′. The canonical morphism A[1/f ] → A′[1/f ] is an isomorphism.

2. Assume fp = p. Then the ring A[1/f ] equals the local ring Ap and

the canonical morphism p → pAp is an isomorphism.

3. Assume that A is henselian and that fp = p. Then, the local ring Ap

is also henselian.

We record a proof of 1. and 2. for the convenience of the reader.

Proof. 1. By the commutative diagram of exact sequences

0 −−−→ p −−−→ A −−−→ Ā −−−→ 0

∩
� �∩

�∩

0 −−−→ pA[1/f ] −−−→ A[1/f ] −−−→ Ā[1/f̄ ] −−−→ 0,

the subring A′ = A+pA[1/f ] ⊂ A[1/f ] is the inverse image of Ā ⊂ Ā[1/f̄ ] by

the surjection A[1/f ] → Ā[1/f̄ ]. Hence, we obtain an isomorphism A′/p′ →
Ā and p′ = pA[1/f ] is a prime ideal of A′. We have fp′ = fpA[1/f ] =

pA[1/f ] = p′. Since A′/fA′ = (A′/p′)/(f) = Ā/f̄Ā is the residue field of A,

the ideal fA′ is a maximal ideal of A′. The inclusions A → A′ → A[1/f ]

imply an isomorphism A[1/f ] → A′[1/f ].

2. We show that A[1/f ] is a local ring and that its maximal ideal is

pA[1/f ]. Let g ∈ A and n � 0 be such that g/fn ∈ A[1/f ] is not in

pA[1/f ] = Ker(A[1/f ] → Ā[1/f̄ ]). Since g is not contained in p and f̄ is a

uniformizer of Ā, it is of the form g = ufm+b for u ∈ A×,m � 0, b ∈ p = fp.

Writing b = fmc for c ∈ p, we obtain g = fm(u + c) and u + c ∈ A is

invertible. Hence A[1/f ] is a local ring and is equal to Ap.

Since fp = p and A[1/f ] = Ap, we have pAp = pA[1/f ] = p.

3. Let B̃ be the local ring of an étale algebra over Ap at a maximal ideal

above p such that the residue field is isomorphic to the residue field κ(p)

of the local ring Ap. We show that the canonical morphism Ap → B̃ is an

isomorphism.
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By Zariski’s main theorem, there exist a finite A-algebra B and an iso-

morphism Bq→ B̃ from the localization at a prime ideal q of B above p. By

replacing B by the quotient by the p-torsion part, we may assume that the

canonical morphism B → B ⊗A Ap is an injection. The finite κ(p)-algebra

B ⊗A κ(p) is decomposed as κ(q) × C. We identify the residue field κ(q)

with κ(p) by the canonical isomorphism.

The image of B in κ(q) = κ(p) equals A/p since B is finite over A and

A/p is normal. Let B̄1 be the image of B in C. Define a subring B′ ⊂
B⊗AAp containing B as a subring to be the inverse image by the canonical

surjection B⊗AAp→ B⊗Aκ(p) of B̄′ = A/p× B̄1 ⊂ κ(q)×C = B⊗Aκ(p).

Since the kernel of the surjection B ⊗A Ap → B ⊗A κ(p) is the image of

B ⊗A pAp and is contained in B by 2, the cokernel of the injection B → B′

is isomorphic to the cokernel of B/pB → B̄′ = A/p × B̄1 and is of finite

length as an A/p-module. Hence B′ is also finite over A and the canonical

morphism B ⊗A Ap→ B′ ⊗A Ap is an isomorphism.

Since A is henselian, the finite A-algebra B′ is the product of local rings.

Thus, replacing B by the factor of B′ whose spectrum contains q, we may

assume that κ(p) → B ⊗A κ(p) is an isomorphism. Then, the morphism

Ap→ Bq of finite étale Ap-algebras is an isomorphism. �

Proposition 2.12. Let S be the spectrum of a discrete valuation ring

and X be a scheme of finite type over S. Let D be a closed regular integral

subscheme of X finite and flat over S and let E be a Cartier divisor of X

meeting D transversely. Let x be a closed point of D ∩ E. For n � 1, let

Xn → X denote the blow-up at D ∩ nE, let xn be the closed point above x

of the proper transform of D and let x̄n be a geometric point of Xn above

xn.

Let Λ be a finite field of characteristic 
 invertible on S and F be a

constructible sheaf of Λ-modules on X. Then, for an integer q > 0, the

inductive limit lim−→ nR
qψx̄nF is zero.

Proof. Replacing S by a strict localization, we may assume S is

strictly local. Let A denote the local ring OX,x, p ⊂ A be the prime ideal

defined by D and f ∈ A be a function defining the divisor E on a neigh-

borhood of x. Then, lim←− nXn,x̄n is Spec A′h of the strict localization A′h of

A′ = A[p/fn;n � 1] at the maximal ideal fA′ in the notation of Lemma

2.11.1. By Lemma 2.11.1, the ideal p′h = pA′h satisfies fp′h = p′h.
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Let η and η̄ denote the generic point of S and the point defined by a sep-

arable closure. By Lemma 2.11.1 and 2., the complement X̃ ×X (X E) =

Spec A′h[1/f ] ⊂ X̃ = Spec A′h of the inverse image of E equals the spec-

trum Spec A′h
p′h of the localization of A′h at the prime ideal p′h and hence

is contained in the generic fiber X̃ ×S η. Further, since the underlying set

of the inverse image X̃ ×X E consists of the unique closed point and is con-

tained in the closed fiber, the generic fiber X̃ ×S η equals Spec A′h
p′h and is

henselian by Lemma 2.11.3. The residue field of p′h is a finite extension of

the function field of S. Hence X̃ ×S η̄ is a finite disjoint union of strictly

local schemes and lim−→ nR
qψx̄nF = Hq(X̃ ×S η̄,F) is zero for q > 0. �

Lemma 2.13. Let S be the spectrum of an excellent discrete valuation

ring, X be a normal flat scheme of finite type over S of relative dimension

1. Let D ⊂ X be a reduced closed subscheme of X finite and flat over S

and let j : U = X D → X denote the open immersion.

Let X ′ → X be a proper birational morphism as in Lemma 2.5 such that

the proper transform D′ ⊂ X ′ of D is regular and meets the reduced part E

of the closed fiber X ′
s transversely.

For n � 1, let Xn → X ′ be the blow-up at nE ∩ D′ and let Dn ⊂ Xn

denote the proper transform of D′. Then for a geometric point x̄ of Ds̄ and

for a locally constant sheaf F of Λ-modules on UK , the canonical mapping

H1
c ((Xn Dn)×X x̄, Rψj!F) → R1ψx̄j!F(2.12)

is injective. Further, there exists an integer m � 1 such that, for every

n � m, the canonical mapping (2.12) is an isomorphism.

Proof. The canonical morphism H1(Xn×X x̄, Rψj!F) → R1ψx̄j!F is

an isomorphism by the proper base change theorem. Hence, the injectivity

follows from the exact sequence⊕
x̄′∈Dn×X x̄

R0ψx̄′j!F → H1
c ((Xn Dn)×X x̄, Rψj!F)(2.13)

→ R1ψx̄j!F →
⊕

x̄′∈Dn×X x̄

R1ψx̄′j!F

and R0ψx̄′j!F = 0 for x̄′ ∈ Dn ×X x̄. By Proposition 2.12, the inductive

limit lim−→ n of the last term in (2.13) is zero. Since R1ψx̄j!F is of finite
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dimension, there exists an integer m � 1 such that the last map in (2.13) is

the zero-map for n � m. Hence, for n � m, the second arrow in the exact

sequence (2.13) is an isomorphism. �

We prove the following stability of nearby cycles for a fibration from a

surface to a curve. A similar stability is proved by Laumon in [21, Théorème

6.1.4] in arbitrary dimension, under the assumption that the normalization

of a covering trivializing the sheaf has an isolated singularity.

Theorem 2.14. Let X be a normal surface and C be a smooth curve

over a perfect field k of characteristic p, and let f : X → C be a flat mor-

phism over k. Let D be a closed subscheme of X and j : U = X D → X

be the open immersion. Let Λ be a finite field of characteristic 
 �= p and F
be a locally constant constructible sheaf of Λ-modules on U .

Let u be a closed point of X such that u is an isolated characteristic

point of f : X → C with respect to j!F and that D {u} is étale over C.

1. There exists an integer N � 1 such that, for a morphism g : X → C

satisfying g ≡ f mod mN
u , we have an equality

dimR1ψu(j!F , f) = dimR1ψu(j!F , g).(2.14)

2. There exists an integer N � 1 such that, for a morphism g : X → C

satisfying g ≡ f mod mN
u , there exists an isomorphism

R1ψu(j!F , f) → R1ψu(j!F , g).(2.15)

Proof. By Proposition 2.10, it suffices to prove the case where u is in

the closure of D {u}. By shrinking X, we may assume D is flat over C

and u is the unique point of the fiber of D → C.

1. First, we deduce the case where F = ΛU from Proposition 2.10. Let

i : D → X denote the closed immersion. By the exact sequence 0 → j!ΛU →
ΛX → i∗ΛD → 0 and Rqψu(j!ΛU , f) = 0 for q �= 1, we have an equality

−dimR1ψu(j!ΛU , f) = dimRψu(ΛX , f)− dimRψu(ΛD, f |D).(2.16)

By the assumption, X {u} → C is smooth and D {u} → C is étale.

Hence, by Proposition 2.10, there exists an integer N � 1 such that, for
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a morphism g : X → C satisfying g ≡ f mod mN
u , we have isomorphisms

Rψu(ΛX , f) → Rψu(ΛX , g) and Rψu(ΛD, f |D) → Rψu(ΛD, g|D). Further,

we have an equality (2.16) with f replaced by g by Proposition 2.1 and by

the same argument as above. Hence the equality (2.14) holds for F = ΛU .

We prove the general case. Let F0 = F − rank F ·ΛU denote the virtual

difference. Let S denote the strict localization of C at a geometric point

s̄ above f(u) and let η̄ be a geometric point of S defined by an algebraic

closure of the fraction field. Then, we have

dimR1ψu(j!F , f)− rank F · dimR1ψu(j!ΛU , f)(2.17)

=
∑

x∈(D,f)×S η̄

dim totx(j!F0|(U,f)×S η̄)− dim totu(j!F0|(U,f)×S s̄)

and similarly for dimR1ψu(j!F , g) by [19, Théorème 5.1.1], [17, Theorem

(6.7)], [14, Theorem 11.9].

Let N � 1 be an integer satisfying the conditions in Propositions 2.1

and 2.4 and in the first part of this proof and let g be a morphism satisfying

g ≡ f mod mN
u . Then, since u is an isolated characteristic point of g, the

fiber of g containing u is a reduced Cartier divisor on a neighborhood of u.

Hence by Propositions 2.1 and 2.4 and by what we have proved above, we

have ∑
x∈(D,f)×S η̄

dim totx(j!F|(U,f)×S η̄)(2.18)

=
∑

x∈(D,g)×S η̄

dim totx(j!F|(U,g)×S η̄),

dim totu(j!F|(U,f)×S s̄) = dim totu(j!F|(U,g)×S s̄)(2.19)

respectively and the equality (2.14) for F = ΛU . By (2.17), they imply the

equality (2.14).

2. By Lemma 2.13, there exists an integer n � 0 such that the morphism

H1
c ((Xn Dn)×X ū, Rψ(j!F , f)) → R1ψu(j!F , f)(2.20)

is an isomorphism in the notation loc. cit. Recall that X ′ is regular and

an elementary computation show that the blow-up Xn is normal. Changing

the notation, let X ′ and D′ denote Xn and Dn. Further by Lemma 2.13,
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the canonical morphism

H1
c ((X ′ D′)×X ū, Rψ(j!F , g)) → R1ψu(j!F , g)(2.21)

is an injection. Thus, by 1., it suffices to show that there exists an integer

N � 1 such that for a morphism g : X → C satisfying g ≡ f mod mN
u , there

exists an isomorphism

H1
c ((X ′ D′)×X ū, Rψ(j!F , f))(2.22)

→ H1
c ((X ′ D′)×X ū, Rψ(j!F , g)).

Since X ′ D′ may not be affine, we cannot immediately apply Propo-

sition 2.9. By shrinking C and X, we may assume that C and X are affine.

To apply Proposition 2.9, we use a contraction X ′ → X ′′ → X satisfying

the following property, constructed in the proof of [11, Lemme A]: The mor-

phism ϕ : X ′′ → X is proper, its restriction X ′′ ϕ−1(u) → X {u} is an

isomorphism and the morphism X ′ → X ′′ contracts exactly those compo-

nents of π−1(u) not meeting D′. Referring to loc. cit. for the detail of the

construction, we briefly sketch it here. Let π : X ′ → X be the canonical

morphism. Take an integer m � 1 such that π∗π∗OX′(mD′) → OX′(mD′)
is surjective. Then X ′ → X ′′ is defined as the Stein factorization of X ′ →
ProjX

⊕
m� 0 π∗OX′(mD′). Since X ′ is normal, its contraction X ′′ is also

normal.

Since X ′ → X ′′ is an isomorphism on a neighborhood of D′, we identify

D′ as a divisor of X ′′. Then, by the proper base change theorem, the

canonical morphism H1
c ((X ′′ D′)×X ū, Rψ(j!F , f)) → H1

c ((X ′ D′)×X

ū, Rψ(j!F , f)) is an isomorphism and the same for g. Thus to define an

isomorphism (2.22), we may replace X ′ by X ′′.
By the assumption that f : X {u} → C is smooth, the restriction of f

to U is smooth. Hence, the restriction of f to the complement (X ′′ D′)
ϕ−1(u) is also smooth. The divisor D′ is ϕ-ample and the complement

X ′′ D′ is a scheme affine over X and hence is an affine scheme. Let

V → U be a G-torsor for a finite group G such that the pull-back of F on

V is constant.

We apply Proposition 2.9 to the composition X ′′ D′ → X → C of

morphisms of affine schemes and to the pull-back of the G-torsor V → U .

Let X̃ ′′ be the henselization of X ′′ D′ along the inverse image ϕ−1(u),

let j̃ : U ×X X̃ ′′ → X̃ ′′ be the open immersion and let F̃ be the pull-back
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of F . Let X̃ ′′
f and X̃ ′′

g denote the scheme X̃ ′′ regarded as schemes over C

with respect to the compositions of X̃ ′′ → X with f : X → C and g : X →
C respectively, as in the proof of Proposition 2.9. Then, we obtain an

isomorphism h : X̃ ′′
g → X̃ ′′

f over C together with an isomorphism h∗(j̃!F̃) →
j̃!F̃ on X̃ ′′

g .

Since the henselization X̃ ′′ → X ′′ D′ is defined as the limit of étale

neighborhoods of ϕ−1(u), the restriction to ϕ−1(u) of the nearby cycle com-

plex of j̃!F̃ with respect to the morphism X̃ ′′ → C equals the restriction

of the nearby cycle complex of j!F with respect to X ′′ D′ → C. Hence

the isomorphisms h : X̃ ′′
g → X̃ ′′

f over C and h∗(j̃!F̃) → j̃!F̃ on X̃ ′′
g induce an

isomorphism (2.22) with X ′ replaced by X ′′ as required. �

3. Radon Transform and the Characteristic Cycle

3.1. Preliminaries on the universal family of hyperplane sections

For the formalism of dual variety, we refer to [18]. Let X be a normal

projective irreducible scheme over an algebraically closed field k of charac-

teristic p > 0 and let L be a very ample invertible OX -module. Let

X → P = P(E∨) = ProjkS
•E

be the closed immersion defined by L to the projective space

associated to the dual E∨ of the k-vector space E = Γ(X,L). We use an

anti-Grothendieck notation to denote a projective space P(E)(k) =

(E {0})/k×.

Let P∨ = P(E) be the dual of P. The universal hyperplane H =

{(x,H) | x ∈ H} ⊂ P × P∨ is defined by the identity id ∈ End(E) re-

garded as a section F ∈ Γ(P × P∨,O(1, 1)) = E ⊗ E∨. By the canon-

ical injection Ω1
P/k(1) → E ⊗ OP, the universal hyperplane H is identi-

fied with the covariant projective space bundle P(T ∗P) associated to the

cotangent bundle T ∗P. Further, the identity of H is the same as the map

H = P(T ∗
H(P × P∨)) → H = P(T ∗P) induced by the locally splitting

injection NH/P×P∨ → pr∗1Ω
1
P/k.

The fibered product X×PH → P∨ is the intersection of X×P∨ with H

in P×P∨ and is the universal family of hyperplane sections. We consider

the universal family of hyperplane sections p : X ×P H → P∨.



Characteristic Cycle 413

Assume that X is smooth of dimension d and X � P. We say that

a reduced closed subscheme T ⊂ T ∗X is a conic subscheme if it is stable

under the multiplication by scalars. For a reduced closed conic subscheme

T ⊂ T ∗X, we define a reduced subscheme

P (T ) ⊂ X ×P H = P(X ×P T ∗P)(3.1)

as follows. First, we consider the inverse image T̃ by the canonical sur-

jection X ×P T ∗P → T ∗X and its restriction to the complement X ×P

(T ∗P T ∗
PP) ⊂ X×PT

∗P of the 0-section. Then, P (T ) is defined to be the

unique reduced closed subscheme of X ×P H = P(X ×P T
∗P) such that its

pull-back by the canonical projection X×P (T ∗P T ∗
PP) → P(X×P T

∗P)

is equal to the restriction to the complement of the 0-section. Alternatively,

the conic closed subscheme T̃ ⊂ X ×P T ∗P is defined by a graded ideal of

the graded OX -algebra OX×PT ∗P and P (T ) ⊂ P(X ×P T ∗P) is defined as

Proj of the quotient graded algebra.

Assume that a reduced closed conic subscheme T of T ∗X is of codimen-

sion d = dimX. Then, since X ×P T ∗P → T ∗X is a surjection of vector

bundles, the projectivization P (T ) ⊂ X ×P H of the inverse image is also

of codimension d. Since p : X ×P H → P∨ is of relative dimension d − 1,

the image p(P (T )) ⊂ P∨ is of codimension at least 1.

Lemma 3.1. Let X be a projective smooth scheme of dimension d over

k and let L be an ample invertible OX-module.

1. Assume that L is very ample and satisfies the following condition:

(L) For every pair of distinct closed points u �= v of X, the canonical

mapping

E = Γ(X,L) → Lu/m
2
uLu ⊕ Lv/m

2
vLv(3.2)

is a surjection.

Then, for an irreducible closed conic subscheme T ⊂ T ∗X of codimension

d = dimX, either the morphism P (T ) → p(P (T )) induced by p : X×PH →
P∨ is generically radicial or p(P (T )) ⊂ P∨ is of codimension � 2. For

another irreducible closed conic subscheme T ′ ⊂ T ∗X of codimension d

different from T , the intersection p(P (T ))∩p(P (T ′)) ⊂ P∨ is of codimension

� 2.
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2. There exists an integer m such that L⊗n is very ample and satisfies

the condition (L) for every n � m.

Proof. 1. Let I∆ ⊂ OX×X denote the ideal sheaf defining the diago-

nal immersion ∆: X → X ×X. Let Z ⊂ X ×X be the closed subscheme

defined by I2
∆ and p1, p2 : Z → X be the restriction of the projections. De-

fine a vector bundle V over X and a line bundle L associated to a locally

free OX -module L̃ = p1∗p∗2L of rank d + 1 and the invertible OX -module

L respectively. The canonical isomorphism L ⊗ Ω1
X → L ⊗ (I∆/I2

∆) ⊂ L̃
induces an injection

T ∗X ⊗ L→ V(3.3)

of vector bundles. The cokernel of (3.3) is the line bundle L.

The linear morphism

E × (X ×X)◦ → V ×X (X ×X)◦ ×X V(3.4)

of vector bundles on (X × X)◦ = X × X ∆X defined by Γ(X,L) ⊗
O(X×X)◦ → pr∗1L̃⊕pr∗2L̃ sends a closed point (l, u, v) to (l mod m2

uLu, l mod

m2
vLv) in the fiber of (u, v). The condition (L) means that (3.4) is a surjec-

tion.

The images of twists by L of T, T ′ ⊂ T ∗X by (3.3) define closed sub-

schemes T ⊗ L and T ′ ⊗ L of V . Then, the intersection of the pull-backs

of T ⊗ L and T ′ ⊗ L by the projections defines a closed subscheme of

V ×X (X ×X)◦ ×X V . Pulling it back by (3.4) and applying the construc-

tion similar to the definition of P (T ) in (3.1), we define a closed subscheme

R(T, T ′) of P∨ × (X ×X)◦. It consists of triples (H,u, v) of a hyperplane

containing points u �= v such that (u,H), (v,H) ∈ H are contained in

P (T ) and P (T ′) respectively. Since T, T ′ ⊂ T ∗X are of codimension d and

T ∗X ⊗ L ⊂ V is of codimension 1, the intersection of their pull-backs in

V ×X (X ×X)◦×X V is of codimension 2(d+1). Hence the codimension of

R(T, T ′) ⊂ P∨×(X×X)◦ is 2(d+1). Hence, the codimension of the closure

of its image S(T, T ′) ⊂ P∨ by the projection is at least 2(d+ 1)− 2d = 2.

Assume T = T ′ and let H ∈ P∨ be a hyperplane not contained in

S(T, T ). Then, there exists no two distinct points u �= v in X such that

both (u,H) and (v,H) are contained in P (T ). In other words, the restriction

P (T ) → P∨ of p : X ×P H → P∨ is radicial outside S(T, T ).
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Assume T �= T ′ and let H ∈ P∨ be a hyperplane not contained in

S(T, T ′). Then, there exists no two distinct points u �= v such that (u,H) is

in P (T ) and (v,H) is in P (T ′). In other words, the intersection p(P (T )) ∩
p(P (T ′)) ⊂ P∨ is contained in the union of S(T, T ′) and the image p(P (T )∩
P (T ′)). By the assumption that T and T ′ have no common irreducible

components, the intersection P (T ) ∩ P (T ′) ⊂ X ×P H is of codimension

� d + 1. Since X ×P H → P∨ is smooth of relative dimension d − 1, the

image p(P (T ) ∩ P (T ′)) ⊂ P∨ is of codimension � (d + 1) − (d − 1) = 2.

Hence the assertion follows.

2. Define Z ⊂ X × X as in the proof of 1 and let S = X × X ∆X

be the complement of the diagonal. Then, it suffices to apply the following

Lemma to the proper flat scheme X×S over S and to the closed subscheme

pr∗12Z�pr∗13Z ⊂ X×S where pr1j : X×S → X×X denote the restrictions

of the projections pr1j : X ×X ×X → X ×X. �

Lemma 3.2. Let S be a noetherian scheme, f : X → S be a proper flat

scheme over S and L be an f-ample invertible OX-module. For a closed

subscheme Z of X flat over S, there exists an integer m such that for every

n � m and for every point s ∈ S, the restriction

Γ(Xs,L⊗n ⊗OXs) → Γ(Zs,L⊗n ⊗OZs)(3.5)

is a surjection.

Proof. Let IZ ⊂ OX be the ideal sheaf defining Z. Since L is f -

ample, there exists an integer m such that for every n � m and for every

q > 0, we have Rqf∗IZ ⊗ L⊗n = 0. For n � m, the spectral sequence

Ep,q
2 = TorOX

−p (Rqf∗IZ ⊗L⊗n, k(s)) ⇒ Hp+q(Xs, IZs ⊗L⊗n ⊗OXs) implies

the vanishing H1(Xs, IZs ⊗ L⊗n ⊗OXs) = 0 and (3.5) is a surjection. �

The following lemma will be used to show the existence of a pencil

defining a fibration close to f .

Lemma 3.3. Let X be a projective normal scheme of dimension d over

k and L be an ample invertible OX-module. Let u be a closed point of X

such that X◦ = X {u} is smooth and let N � 1 be an integer.

1. Assume that L is very ample and satisfies the condition:
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(N) For every closed point x ∈ X, �= u, the canonical morphism

E = Γ(X,L) → Lu/m
N
u Lu ⊕ Lx/m

2
xLx(3.6)

is a surjection.

Let l∞ ∈ E = Γ(X,L) be a non-zero section such that the hyperplane section

X∞ defined by l∞ does not contain u. Let T1, . . . , Tm be a finite family of

closed conic irreducible subschemes of T ∗X◦ of codimension d.

Then, for f ∈ mu/m
N
u , there exists a non-zero section l ∈ E = Γ(X,L)

such that l �= l∞,

l/l∞ ≡ f mod m
N
u(3.7)

and that the hyperplane section X0 of X defined by l = 0 satisfies the follow-

ing condition: The complement X◦
0 = X0 {u} ⊂ X◦ is smooth and, for

every i = 1, . . . ,m, the intersection T ∗
X◦

0
X◦ ∩ Ti with the conormal bundle

is contained in the 0-section.

2. There exists an integer m � 0 such that L⊗n is very ample and

satisfies the condition (N) for every n � m.

Proof. 1. We regard the k-vector space W = OX,u/m
N
u as an affine

space over k and let Ef ⊂ E = Γ(X,L) denote the inverse image of f mod

mN
u by the surjection E = Γ(X,L) →W = OX,u/m

N
u sending l to l/l∞ mod

mN
u .

We define a closed subscheme Z ⊂ X◦ ×X◦, a vector bundle V of rank

d + 1 over X◦ and an injection T ∗X◦ ⊗ L → V (3.3) of vector bundles of

codimension 1 on X◦ similarly as in the proof of Lemma 3.1.1. We consider

the pull-back E ⊗ OZ → p∗2L of the canonical morphism E ⊗ OX◦ → L.

Since E ⊗OZ = p∗1(E ⊗OX◦), it induces E ⊗OX◦ → p1∗p∗2L by adjunction

and hence E ×X◦ → V . We define a linear morphism

E ×X◦ → V ×W(3.8)

of vector bundles on X◦ to be its product with the canonical morphism

E → W . It maps a closed point (l, x) to (l mod m2
xLx, l mod mN

u Lu) in

the fiber of x. The condition (N) means that (3.8) is a surjection. For a

closed point (l, x) ∈ E ×X◦ and l �= 0, its image in V ×W is contained in
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(T ∗X◦ ⊗ L) ×W if and only if x is a point of the hyperplane section X◦
0

defined by l = 0.

We put T0 = T ∗
X◦X◦ and for each Ti, let Ti ⊗ L ⊂ V denote the image

of the twist of Ti by L by (3.3) and define

Ef,i ⊂ Ef ×X◦

to be the inverse image of (Ti⊗L)×{f} by (3.8). For (l, x) ∈ Ef ×X◦ such

that l �= 0, the condition (l, x) ∈ Ef,0 is equivalent to l ≡ 0 mod m2
xLx, that

means that x �= u is a singular point of the hyperplane section X◦
0 defined

by l = 0. Further, for (l, x) ∈ Ef ×X◦ not contained in Ef,0 and for i �= 0,

the condition (l, x) ∈ Ef,i is equivalent to that x �= u is a smooth point of

the hyperplane section X◦
0 and the fiber of the conormal bundle T ∗

X◦
0
X◦ at

x, that is spanned by the twist of l, is contained in Ti.

Consequently, l ∈ Ef , �= 0 is not in the image of Ef,0 by the projection

Ef × X◦ → Ef if and only if X◦
0 is smooth. Further, for such l, it is not

in the image of Ef,i if and only if the intersection T ∗
X◦

0
X◦ ∩ Ti is contained

in the 0-section. Thus, the hyperplane section X0 satisfies the condition if

and only if l ∈ Ef , �= 0 is not in the union of the images of Ef,0, · · · , Ef,m

by the projection Ef ×X◦ → Ef .

The conic subscheme T0 = T ∗
X◦X◦ ⊂ T ∗X◦ is of codimension d = dimX

and Ti ⊂ T ∗X◦ for i = 1, . . . ,m are assumed to be of codimension d. Since

the morphism (3.8) is surjective and the injection (3.3) is of codimension 1,

the subvariety Ef,i ⊂ Ef ×X◦ is of codimension d+ 1. The images of Ef,i

by the projection Ef × X◦ → Ef are of codimension at least 1 in Ef and

the assertion is proved.

2. Let P ⊂ X×X be the closed subscheme defined by I2
X and let T ⊂ X

be the closed subscheme defined by mN
u . Then, it suffices to apply Lemma

3.2 to S = X {u} and the closed subscheme Z = (T ×S)� (P ∩ (X ×S))

of X × S. �

Combining Lemmas 3.1 and 3.3, we obtain the following.

Proposition 3.4. Let X be a projective irreducible smooth scheme of

dimension d over an algebraically closed field k and L be an ample invertible

OX-module. Let T be a conic irreducible closed subscheme of T ∗X of codi-

mension d. Then, there exists an integer m � 0 such that for every n � m,
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the invertible OX-module L⊗n is very ample and satisfies the condition (L)

in Lemma 3.1 and the morphism P (T ) → p(P (T )) is generically radicial.

Proof. For a hyperplane H0 ∈ P∨, the inverse image of p : X×PH →
P∨ is identified with the hyperplane section X ∩H0. Hence, it is contained

in the open set, a priori can be empty, of p(P (T )) where P (T ) → p(P (T ))

is radicial if and only if the intersection of X ∩H0, regarded as a subset of

X ×P H, with P (T ) consists of a unique point. Since the condition (L) has

been already studied in Lemma 3.1.2, it suffices to show the existence of an

integer m such that for n � m, there exists a hyperplane H0 ∈ P∨ such that

the intersection of X ∩H0 with P (T ) for L⊗n consists of a unique point.

Let u be a closed point of X in the image of T by the canonical map

T ∗X → X. Take a function f defined on a neighborhood of u such that

f(u) = 0 and that T and the section df of T ∗X meet on the fiber of T ∗X
above u.

By Lemma 3.3.2, there exists an integer m such that for n � m, the

invertible OX -module L⊗n satisfies the condition (N) in Lemma 3.3 for u

and N = 2. Then by Lemma 3.3.1, for an integer n � m, there exist non-

zero sections l∞, l ∈ Γ(X,L⊗n), l∞ �= l such that the hyperplane section

X∞ defined by l∞ does not contain u and l/l∞ ≡ f mod m2
u, that the

hyperplane section X0 of X defined by l = 0 is smooth outside u and that

the intersection T ∗
X◦

0
X◦ ∩ T with the conormal bundle of X◦

0 = X0 {u} ⊂
X◦ = X {u} is contained in the 0-section.

Let H0 be the hyperplane defined by l = 0 and g be the function l/l∞
defined on X X∞. Then the congruence l/l∞ ≡ f mod m2

u implies that

dg(u) = df(u) in T ∗
uX. Hence, the pair (u,H0) ∈ X ×P H is a point of

P (T ). Further, the conditions that X◦
0 is smooth and that T ∗

X◦
0
X◦ ∩ T is

contained in the 0-section imply that the intersection of the fiber X0×{H0}
of p : X ×P H → P∨ at H0 with P (T ) is a subset of {u}. Thus, u is the

unique point of the fiber P (T ) → p(P (T )). �

Let G = Gr(1,P∨) be the Grassmannian variety parametrizing lines in

P∨. The universal line D ⊂ G × P∨ is canonically identified with the flag

variety parametrizing pairs (L,H) of points H of P∨ and lines L passing

through H. We also identify D with the projective space bundle P(TP∨)

associated to the tangent bundle of P∨. We define XG by the cartesian
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diagram

XG −−−→ X ×P H� �p

D −−−→ P∨�
G.

(3.9)

The Grassmannian variety G is also regarded as Gr(2, E) parametrizing

subspace of E of dimension 2. If V ⊂ E×G denotes the universal sub vector

bundle of rank 2, the universal axis A ⊂ P × G → G is the projective

space bundle P(V⊥) associated to the annihilators V⊥ ⊂ E∨ × G. The

intersection X ×P A = A ∩ (X ×G) is identified with the Grassmannian

bundle Gr(2, X ×P T ∗P) parametrizing sub vector bundles of rank 2 of

X×PT
∗P. Hence X×PA is proper smooth over X and the immersion X×P

A = Gr(2, X ×P T ∗P) → X ×G = Gr(2, X ×E) is a regular immersion of

codimension 2. The intersection of the twist of the pull-back of the universal

sub bundle V ⊂ E×G to X ×G with the pull-back of X ×P T
∗P defines a

sub line bundle on the complement X×G X×P A and hence morphisms

to X×P H and to D. They define a morphism (X×G) (X×P A) → XG

to the fiber product and further induce an isomorphism from the blow-up

of X ×G at X ×P A to XG.

For a line L ⊂ P∨, we define XL by the cartesian diagram

XL −−−→ X ×P H

pL

� �p

L −−−→ P∨.

(3.10)

It is equal to {(x,H) ∈ X × L | x ∈ X ∩ H}. If the axis AL =
⋂

H∈LH
of L meets X transversely, then XL is the blow up of X at the intersection

X ∩AL and is smooth over k.

Let T ⊂ T ∗X be a conic reduced closed subscheme of codimension d and

u be a closed point of X. Let f be a morphism to a smooth curve C over k

defined on a neighborhood of u and assume that the intersection of T with

the image of df : X ×C T
∗C → T ∗X is contained in the union of the fiber of

u and the 0-section on a neighborhood of u. Then, for a basis ω of X×CT
∗C
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on a neighborhood of u, the intersection number (T, [ω])T ∗X,u with the image

[ω] of the section of T ∗X defined on a neighborhood of u is defined. It is

independent of the choice of ω since T is assumed conic. More intrinsically,

it is the intersection multiplicity of the twist Hom(X ×C T ∗C, T ) with the

image of the section df of the twisted vector bundle Hom(X×C T
∗C, T ∗X)

at the inverse image of u and we will write it as

(T, [df ])T ∗X,u(3.11)

by abuse of notation.

Lemma 3.5. Let T ⊂ T ∗X be a conic closed subscheme of dimension

d = dimX and L be a line in P∨. Assume that the axis AL meets X

transversely and that T is contained in the 0-section T ∗
XX on a neighborhood

of X ∩AL.

Let u be a closed point of X not in X ∩AL and set v = pL(u). Assume

that, on a neighborhood of T ∗X ×X (p−1
L (v) (X ∩ AL)), the intersection

of T with the image of (X (X ∩ AL)) ×L T
∗L → T ∗(X (X ∩ AL)) is

contained in the fiber T ∗
uX of u.

Then, v is an isolated point of the intersection p∗(P (T )) ∩ L ⊂ P∨ if v

is contained in it and we have

(p∗(P (T )), L)P∨,v = (T, [dpL])T ∗X,u.(3.12)

Proof. We claim that the intersection of p−1
L (v) ⊂ XL ⊂ X ×P H =

P(X×P T
∗P) with P (T ) is contained in the fiber of u. On the complement

of X∩AL, the immersion X (X∩AL) → XL → X×PH = P(X×PT
∗P)

corresponds to the restriction on X (X ∩ AL) of the injection T ∗L ×L

(P AL) → T ∗P ×P (P AL) induced by the morphism P AL → L.

Hence on a neighborhood of p−1
L (v) (X ∩AL), the claim follows from the

assumption on the intersection of T with the image of X ×L T
∗L → T ∗X.

Since X meets AL transversely, pL : XL → L is smooth on a neighborhood

of p−1
L (v) ∩ (X ∩AL). Hence, on a neighborhood of p−1

L (v) ∩ (X ∩AL), the

claim follows from the assumption that T is contained in the 0-section T ∗
XX

on a neighborhood of X ∩ AL. Applying the projection formula to (3.10),

we have (p∗(P (T )), L)P∨,v = (P (T ), XL)X×PH,u.
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Let T̃ be the inverse image of T by the surjection X ×P T ∗P → T ∗X
appeared in the definition (3.1) of P (T ). For a basis ω of X ×L T

∗L on a

neighborhood of u, we have (P (T ), XL)X×PH,u = (T̃ , [ω])X×PT ∗P,u by the

definition of P (T ). Further, the right hand side is equal to (T, [ω])T ∗X,u. �

3.2. Radon transform and vanishing cycles

Let X be a smooth projective connected surface over an algebraically

closed field k of characteristic p > 0. Let D � X be a reduced closed

subscheme of X and j : U = X D → X be the open immersion of the

complement. Let Λ be a finite field of characteristic 
 �= p and F be a

locally constant constructible sheaf of Λ-modules on U = X D.

Let L be a very ample invertible OX -module. We set E = Γ(X,L) and

let X → P = P(E∨) be the closed immersion as in the previous section.

The Radon transform RLj!F is defined to be Rp∗q∗j!F using the universal

family of hyperplane sections

X
q←−−− X ×P H

p−−−→ P∨ = P(E).(3.13)

We study the ramification of the cohomology sheaves Rs
Lj!F =

Rsp∗q∗j!F in Lemma 3.7 below. We define several closed subsets of P∨.

Let Di, i ∈ I be the irreducible components of dimension 1 of D. For each

i ∈ I, let D◦
i ⊂ Di be a dense open smooth subscheme not meeting Di′ for

i′ �= i along which the ramification of F is non-degenerate. We define a

finite set Σ of closed points of D by

Σ = D
⋃
i∈I

D◦
i(3.14)

and let j◦ : U → X Σ denote the open immersion. For an irreducible

component Di, i ∈ I of codimension 1, let T ◦
ij , j ∈ Ji be the irreducible

components of the singular support SS(j◦! F) ⊂ T ∗(X Σ) dominating D◦
i

and Tij ⊂ T ∗X be the closure. They are irreducible conic closed subschemes

of T ∗X of dimension 2. We set

J =
∐
i∈I

Ji,(3.15)

let ij ∈ J denote j ∈ Ji ⊂ J and

SS(j!F) = T ∗
XX ∪

⋃
ij∈J

Tij ∪
⋃
x∈Σ

T ∗
xX.(3.16)
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Applying the construction of P (T ) (3.1) for conic closed subscheme T ⊂
T ∗X, we define closed subvarieties P (T ∗

XX), P (Tij) for ij ∈ J and P (T ∗
xX)

for x ∈ Σ of X ×P H = P(X ×P T ∗P). They are irreducible subschemes

of X ×P H = P(X ×P T ∗P) of codimension 2. We define a closed subset

P (j!F) ⊂ X ×P H to be the union

P (j!F) = P (T ∗
XX) ∪

⋃
ij∈J

P (Tij) ∪
⋃
x∈Σ

P (T ∗
xX).(3.17)

The image of P (T ∗
XX) by the projection p : X ×P H → P∨ is the dual

variety X∨. Let T∨
ij ⊂ P∨ denote the image p(P (Tij)) for ij ∈ J . The image

Hx = p(P (T ∗
xX)) ⊂ P∨ is the dual hyperplane P(T ∗

xP) = {H | x ∈ H}
for x ∈ Σ. Since P (T ∗

XX), P (Tij), P (T ∗
xX) ⊂ X ×P H are of codimension 2

and dimX ×P H = dimP− 1 + 2 = dimP∨ + 1, their images in P∨ are of

codimension � 1. For x ∈ Σ, the canonical morphism P (T ∗
xX) → Hx is an

isomorphism.

Lemma 3.6. Let L be an ample invertible OX-module.

1. Assume that L is very ample and satisfies the condition (L) in Lemma

3.1 and the following condition:

(R) The closed subset X∨ and T∨
ij ⊂ P∨ for ij ∈ J are of codimension 1.

Then, X∨, T∨
ij for ij ∈ J and Hx for x ∈ Σ are distinct to each other and

the morphisms P (T ∗
XX) → X∨ and P (Tij) → T∨

ij for ij ∈ J are generically

radicial.

2. There exists an integer m such that for every n � m, the invertible

OX-module L⊗n satisfies the condition (L) in Lemma 3.1 and the condition

(R).

Proof. 1. It follows from Lemma 3.1.1.

2. It follows from Lemma 3.1.2 and Proposition 3.4. �

We define a closed subset D(RLj!F) ⊂ P∨ to be the union

D(RLj!F) = X∨ ∪
⋃
ij∈J

T∨
ij ∪

⋃
x∈Σ

Hx.(3.18)

Under the condition (R), the closed subset D(RLj!F) ⊂ P∨ is the under-

lying subset of a Cartier divisor. For an irreducible component Di of D
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of dimension 1, the ODi-module Li = L ⊗OX
ODi is very ample and the

linear subspace P∨
i = P(Ei) ⊂ P∨ = P(E) associated to Ei = Ker(E →

Γ(Di,Li)) is of codimension � 2. The product Di×P∨
i is a subset of X×PH

for i ∈ I and x×Hx is also a subset of X ×P H for x ∈ Σ.

Lemma 3.7. 1. The morphism X×PH → P∨ is flat of relative dimen-

sion 1. It is smooth outside P (T ∗
XX). Outside the union

⋃
i∈I(Di ×P∨

i ) ∪⋃
x∈Σ(x × Hx), the closed subscheme D ×P H ⊂ X ×P H is a divisor flat

over P∨.

2. Outside the union P (j!F) ∪
⋃

i∈I(Di × P∨
i ), the morphism p : X ×P

H → P∨ is universally locally acyclic relatively to the pull-back q∗j!F .

3. The cohomology sheaf Rs
Lj!F = Rsp∗q∗j!F is 0 except for s = 0, 1, 2.

The restrictions of Rs
Lj!F on the complement V = P∨ (D(RLj!F) ∪⋃

i∈I P∨
i ) is locally constant for every s.

Proof. 1. Since a hyperplane H ⊂ P is defined by a non-zero section

l ∈ Γ(X,L), the intersection X ∩ H is a Cartier divisor of X. Further

X ×P H is a smooth divisor of a scheme X ×P∨ flat of relative dimension

2 over P∨. Hence the morphism X ×P H → P∨ is flat of relative dimension

1. The smoothness outside P (T ∗
XX) follows from P (T ∗

XX) = P(T ∗
XP) ⊂

P(X ×P T ∗P) = X ×P H.

Outside Σ, D Σ is a smooth divisor of X Σ. If H /∈ P∨
i , we have

Di ∩ H � Di. The condition H /∈ Hx means x /∈ H. Hence if (u,H) ∈
D ×P H is not a point of the union

⋃
i∈I(Di × P∨

i ) ∪
⋃

x∈Σ(x × Hx), the

intersection D∩H is a Cartier divisor of X∩H at x. Thus, outside the union⋃
i∈I(Di ×P∨

i ) ∪
⋃

x∈Σ(x×Hx), the closed subscheme D ×P H ⊂ X ×P H

is a divisor flat over P∨.

2. We apply [19, Théorème 2.1.1 (ii)] to the flat morphism p : X×PH →
P∨. Let (x,H) ∈ X ×P H be a point outside the union P (j!F)∪

⋃
i∈I(Di×

P∨
i ). Then, by 1., p : X ×P H → P∨ is smooth at (x,H). Further, if

x is a point of D, D ×P H is a Cartier divisor of X ×P H flat over P∨

at (x,H). By the condition that (x,H) is not in P (j!F), the immersion

X ∩ H → X is non-characteristic with respect to j!F . Hence the total

dimension of the restriction of j!F to X ∩H is computed as the intersection

number (X ∩H,DT (j!F)) by (1.9).

In other words, it is the intersection number of the fiber of X×PH → P∨

at the point [H] with the pull-back of DT (j!F) flat over P∨. Hence the
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assumption on the function ϕ in [19, Théorème 2.1.1 (ii)] is satisfied and

the assertion follows by [19, Théorème 2.1.1 (ii)].

3. By 1., we have Rsp∗q∗j!F = 0 except for s = 0, 1, 2. By 2. and [15,

2.4], Rsp∗q∗j!F is locally constant on V for every s. �

We define the characteristic cycle of j!F as a cycle in the cotangent

bundle T ∗X using the ramification of the Radon transform.

Definition 3.8. Let L be a very ample invertible OX -module satisfy-

ing the conditions (L) in Lemma 3.1 and (R) in Lemma 3.6 and let

a(RLj!F) = aLX(j!F) ·X∨ +
∑
ij∈J

aLij(j!F) · T∨
ij +

∑
x∈Σ

aLx (j!F) ·Hx(3.19)

denote the Artin divisor (1.8) of the Radon transform RLj!F . We define

the characteristic cycle of j!F relative to L by

CharL(j!F) = −
( aLX(j!F)

[P (T ∗
XX) : X∨]

· [T ∗
XX](3.20)

+
∑
ij∈J

aLij(j!F)

[P (Tij) : T∨
ij ]
· [Tij ] +

∑
x∈Σ

aLx (j!F) · [T ∗
xX]

)
as a cycle of dimension 2 in the cotangent bundle T ∗X.

We have

p∗P (CharL(j!F)) = −a(RLj!F)(3.21)

by the definition. We study the coefficients in more detail in Proposition

3.11.

We prove an analogue Theorem 3.17 of the Milnor formula [6] in several

steps. In the following, we assume that L is a very ample invertible OX -

module satisfying the conditions (L) in Lemma 3.1 and (R) in Lemma 3.6.

The following immediate consequence of Lemma 3.7 is fundamental in the

study of the morphism defined by a pencil.

Lemma 3.9. Let L be a line in P∨ such that the axis AL meets X

transversely and does not meet D. We identify the blow-up XL of X at
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X ∩AL as a closed subscheme of X ×P H by the cartesian diagram (3.10).

Then, outside the intersection XL∩
(
P (j!F)∪

⋃
i∈I(Di×P∨

i )
)
, the morphism

pL : XL → L is locally acyclic relatively to the pull-back of j!F and is non-

characteristic with respect to the pull-back of j!F . Further, outside the same

locus, the restriction D ×X XL → L of pL is flat.

Proof. The local acyclicity and the flatness of D×X XL → L is clear

from Lemma 3.7. The non-characteristicity is clear from the definition of

P (j!F). �

Let X∨◦ be a smooth dense open subscheme of X∨ satisfying the follow-

ing conditions: The intersections with other components ofD(RLj!F) (3.18)

and with P∨
i for i ∈ I are empty. The inverse image of P (T ∗

XX) → X∨

consists of one point for every point of X∨◦. The ramification of (Rs
Lj!F)|V

along X∨◦ is non-degenerate. The restriction (Rs
Lj!F)|X∨◦ is locally con-

stant for s = 0, 1, 2.

Similarly, we define smooth dense open subschemes T∨◦
ij ⊂ T∨

ij for ij ∈ J

and H∨◦
x ⊂ Hx for x ∈ Σ. Let D(RLj!F)◦ denote the disjoint union

D(RLj!F)◦ = X∨◦ ∪
⋃
ij∈J

T∨◦
ij ∪

⋃
x∈Σ

H∨◦
x(3.22)

as in (3.18). It is a dense open subscheme of D(RLj!F) and is smooth of

codimension 1 in P∨.

Lemma 3.10. Let L be a line in P∨ such that the axis AL meets X

transversely and does not meet D. Let y be a closed point of L corresponding

to a hyperplane H ⊂ P and suppose that L meets D(RLj!F) at y properly.

1. Let z ∈ X be a closed point not contained in AL satisfying y = pL(z).

Assume that pL : XL → L is non-characteristic with respect to (the pull-back

of) j!F on a neighborhood of p−1
L (y) except at z. Then, we have

−(a(RLj!F), L)y = (CharL(j!F), [dpL])z.(3.23)

2. Assume that L meets D(RLj!F)◦ transversely at y and that the im-

mersion L → P∨ is non-characteristic with respect to (Rs
Lj!F)|V at y for

s = 0, 1, 2. Then, the intersection ((X ∩ H) × {y}) ∩ P (j!F) ⊂ X ×P H

consists of one point z and we have

dim totφz(j!F , pL) = (a(RLj!F), L)y.(3.24)
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Proof. 1. We verify that the assumptions of Lemma 3.5 is satisfied.

By the assumption X ∩ AL ⊂ U , the singular support is contained in

the 0-section on a neighborhood of X ∩ AL. By the assumption of non-

characteristicity, the intersection of T with the image of X ×L T
∗L→ T ∗X

is satisfied. By p∗P (CharL(j!F)) = −a(RLj!F) (3.21) and Lemma 3.5, we

obtain (3.23)

2. Let η̄y denote a geometric generic point of the strict localization of L

at y. By the definition of D(RLj!F)◦, the point y ∈ L is not contained in P∨
i

for i ∈ I and z is the unique point of p−1
L (y) contained in P (j!F) ⊂ X×PH.

Hence, by Lemma 3.9, the morphism pL : XL → L is locally acyclic relatively

to the pull-back of j!F on p−1
L (y) except at z. Hence the distinguished

triangle of vanishing cycles gives a distinguished triangle

→ (RLj!F)y → (RLj!F)η̄y → φz(j!F , pL) → .(3.25)

This implies dim totφz(j!F , pL) = ay
(
(RLj!F)|L

)
.

By the assumption that the immersion L→ P∨ is non-characteristic at

y and by (1.9), the total dimension of the restriction dim totη̄y(RLj!F)|L
equals the intersection number (DT (RLj!F), L)y. By the definition of

D(RLj!F)◦, the dimension dim(RLj!F)y is the rank of the restriction of

RLj!F on the component of D(RLj!F)◦ containing y. Hence we have

ay
(
(RLj!F)|L

)
= (a(RLj!F), L)y. �

Proposition 3.11 (cf. [9, p.7 Question]). The coefficients of [T ∗
XX] in

CharL(j!F) is the rank of F . The coefficient of [Tij ] for ij ∈ J is a rational

number at least 0 and its denominator is a power of p. The coefficient of

[T ∗
xX] for x ∈ Σ is an integer at least 0, if x is not an isolated point of D.

If x ∈ Σ is an isolated point of D, it is −rank F .

Proof. Let L be a line as in Lemma 3.10.2 and y be a point of inter-

section L ∩ D(RLj!F)◦. By Lemma 3.10.2, we have dim totφz(j!F , pL) =

(a(RLj!F), L)y. If z is not an isolated point of D, we have φqz(j!F , pL) = 0

except for q �= 1 and the coefficient of the component containg y in a(RLj!F)

are integers at most 0. Hence, the coefficients in CharL(j!F) are rational

numbers at least 0 except for the coefficients of [T ∗
xX] for an isolated point

x ∈ Σ of D. If z is an isolated point of D, we have φ0
z(j!F , pL) = (j∗F)z

and φqz(j!F , pL) = 0 except for q �= 0. Hence, the coefficient of [T ∗
zX] is

−rank F .
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Assume that y is in X∨◦. Since F is locally constant on a neighborhood

of z, by the Milnor formula [6], we have −dim totφz(j!F , pL) = −rank F ·
dim totφz(j!ΛU , pL) = rank F · (T ∗

XX, [dpL])T ∗X,z. Hence the coefficient of

[T ∗
XX] is rank F by Lemma 3.10.2.

Since P (Tij) → T∨
ij is generically purely inseparable by Lemma 3.6, the

degree [P (Tij) : T∨
ij ] is a power of p. �

We show the existence of a good pencil for an invertible sheaf satisfying

the conditions (L) and (R).

Lemma 3.12. Let L be a very ample invertible OX-module satisfying

the conditions (L) and (R). Then, the open subscheme of the Grassmannian

variety G consisting of lines L ⊂ P∨ satisfying the following conditions

(P1)–(P3) is non-empty:

(P1) The axis AL meets X transversely and does not meet D. The mor-

phism pL|D : D → L is generically étale.

(P2) The intersection L ∩ D(RLj!F) is finite and is contained in

D(RLj!F)◦. Further L meets D(RLj!F)◦ transversely. The inter-

section L ∩
⋃

i∈I P∨
i is empty.

(P3) The immersion L → P∨ is non-characteristic with respect to

jV !(Rs
Lj!F)V for s = 0, 1, 2 for the open immersion jV : V → P∨

for V in Lemma 3.7.

The condition (P2) implies that the inverse image of the intersection

X ∩ AL in XL does not meet the intersection ZL = P (j!F) ∩ XL. The

condition (P2) further implies that the intersection ZL consists of finitely

many closed points and that the restriction pL|ZL
: ZL → L is an injection.

Proof. Since each condition is an open condition on G, it suffices to

show that there exists a line L ⊂ P∨ satisfying each condition (P1)–(P3),

separately.

By Bertini’s theorem, there exists a hyperplane H ∈ P∨ meeting X

transversely and another hyperplane H ′ ∈ P∨ meeting X ∩H transversely.

Then, for the line L ⊂ P∨ spanned by H and H ′, the axis AL = H∩H ′ ⊂ P

meets X transversely. Similarly, there exists a hyperplane H ∈ P∨ meeting
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D transversely and another hyperplane H ′ ∈ P∨ not meeting D ∩H. For

the line L ⊂ P∨ spanned by H and H ′, the intersection AL ∩D is empty.

A line L satisfying these conditions satisfies (P1).

Since D(RLj!F)◦ is a dense open subscheme of a divisor D(RLj!F) of

P∨, there exists a line L ⊂ P∨ such that the intersection with D(RLj!F)

D(RLj!F)◦ is empty. Since D(RLj!F)◦ is smooth, there exists a line L

meeting D(RLj!F)◦ transversely. Since P∨
i is of codimension � 2 for every

i ∈ I, there exists a line L ⊂ P∨ such that the intersection L∩P∨
i is empty

for every i ∈ I. A line L satisfying these conditions satisfies (P2).

For ij ∈ J , let Σ◦
ij ⊂ D×P∨ T∨◦

ij be the subset consisting of pairs (L,H)

of a hyperplane H ∈ T∨◦
ij ⊂ P∨ and a line L ⊂ P∨ passing through it such

that the immersion L→ P∨ is not non-characteristic at H. Since the closure

Σij ⊂ D of Σ◦
ij is of codimension 2 and since D is a P1-bundle over G, its

image Qij ⊂ G is of codimension � 1. We define ΣX ⊂ D and Σx ⊂ D for

x ∈ Σ similarly. By the same argument, their images QX ⊂ G and Qx ⊂ G

for x ∈ Σ are of codimension at least 1. A line L ∈ G not contained in the

union of QX , Qij and Qx ⊂ G for x ∈ Σ satisfies (P3). �

Proposition 3.13. Let L be a very ample invertible OX-module satis-

fying the conditions (L) and (R). Let L ⊂ P∨ be a line such that the axis AL

meets X transversely and does not meet D and set ZL = XL∩P (j!F) ⊂ XL.

Let u be a closed point of X (X∩AL) satisfying the following condition:

(u) v = pL(u) is an isolated point of pL(ZL) and that u is the unique point

in the intersection ZL ∩ p−1
L (v). Further, for i ∈ I, if the restriction

pL|Di : Di → L is not flat, v is not in the image pL(Di).

Then, we have

−dim totφu(j!F , pL) = (CharL(j!F), [dpL])T ∗X,u.(3.26)

Proof. By Lemma 3.12, the open subscheme V ⊂ G consisting of

lines satisfying the conditions (P1)–(P3) is non-empty. We take a line C in

G passing the point s ∈ G defined by L and meeting V . By replacing C by

a neighborhood C of s, we may assume that for every point t ∈ C {s},
the corresponding line Lt satisfies the conditions (P1)–(P3).
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We apply Proposition 2.6 to the cartesian diagram

XL −−−→ XC −−−→ XG −−−→ X ×P H

pL

� � � �
L −−−→ LC −−−→ D −−−→ P∨� � �
s −−−→ C −−−→ G

and to the pull-back B of the Artin divisor a(RLj!F) to Y = LC . We

show that the pull-back of j!F to XC is locally acyclic relatively to XC →
C. By the assumption (P1), the axis ALC

meets X × C transversely and

does not meet D × C. Hence the pull-back of j!F is locally constant on

a smooth scheme XC (D × C) over C and is locally acyclic relatively to

XC (D × C) → C by the local acyclicity of smooth morphism. Further,

on a neighborhood of D × C, it is the pull-back by the projection and is

also locally acyclic relatively to XC → C by [7, Théorème 2.13]. Hence the

pull-back of j!F to XC is locally acyclic relatively to XC → C.

The pull-back of j!F is universally locally acyclic relatively to XC → LC

outside the inverse image Z ′ of the union of P (j!F) ∪
⋃

i∈I(Di × P∨
i ) by

Lemma 3.7. By condition (P2), the morphism Z ′ → C is quasi-finite on

C {s}. By the assumption (u), v is not contained in L ∩
⋃

i∈I P∨
i and

is an isolated point of pL(ZL) = pL(Z ′ ∩ XL). Further, u is the unique

point of ZL ∩ p−1
L (v) = Z ′ ∩ p−1

L (v) and the assumptions of Proposition

2.6 are satisfied. Hence by Lemma 3.10.2 and Proposition 2.6, we obtain

dim totφu(j!F , pL) = (a(RLj!F), L)v. Hence (3.26) follows from (3.23). �

Proposition 3.14. Let

C
f←−−− X ′ ϕ−−−→ X

be an étale morphism ϕ : X ′ → X of smooth surfaces over k and a flat

morphism f : X ′ → C to a smooth curve C over k. Assume that X is pro-

jective and let F be a locally constant constructible sheaf on the complement

U = X D of a reduced closed subscheme D � X. Let j′ : U ′ → X ′ be the

pull-back of j : U → X and F ′ be the pull-back of F on U ′. Let u be a closed

point of X ′ such that u is an isolated characteristic point of f : X ′ → C with
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respect to j′!F ′ and assume that the restriction f |D′ : D′ = D×X X ′ → C is

étale on a neighborhood of u except at u.

Then, for an ample invertible OX-module L, there exists an integer m

such that for every integer n � m, the invertible OX-module L⊗n is very

ample and satisfies the conditions (L) and (R) and we have

−dim totφu(j
′
!F ′, f) = ((T ∗ϕ)∗CharL⊗n(j!F), [df ])T ∗X′,u.(3.27)

Proof. We prove Proposition by reducing it to Proposition 3.13 using

the stability of nearby cycles Theorem 2.14. By taking an étale morphism

C → P1 on a neighborhood of v = f(c), we may assume C = P1 and

v = 0. By Theorem 2.14, there exists an integer N � 1 such that for a

morphism g : X ′ → C congruent to f mod mN
u , we have an isomorphism

φu(j
′
!F ′, f) ! φu(j

′
!F ′, g).

Similarly as Proposition 2.1, there exists an integer N � 1 such that

for a morphism g : X ′ → C congruent to f mod mN
u , we have an equality

(T, [df ])T ∗X′,u = (T, [dg])T ∗X′,u for every irreducible component T of the

singular support SS(j!F).

By Lemmas 3.1.2 and 3.3.2, there exists an integer m � 1 such that

for every integer n � m, the invertible OX -module L⊗n is very ample and

satisfies the conditions (L) and (N) for the integer N � 1 above. We show

the equality (3.27) for n � m above. By changing the notation, we write

L for L⊗n. We show the existence of a pencil L such that pL satisfies

the conditions in Proposition 3.13 and that the composition g = pL ◦ ϕ is

congruent to f mod mN
u .

Take a hyperplane H∞ ∈ P∨ not contained in D(RLj!F)∪
⋃

i∈I P∨
i and

a section l∞ ∈ E = Γ(X,L) defining H∞. Then, the hyperplane section

X∞ = X ∩ H∞ is smooth and does not contain x ∈ Σ. Further, we may

assume that u is not contained in H∞ and that D∞ = D ∩ H∞ is étale.

We apply Lemma 3.3 to the family of subschemes T ∗
XX,Tij for ij ∈ J ,

T ∗
xX for x ∈ Σ ∪D∞ and T ∗

X∞X. Then, there exists l ∈ Ef satisfying the

conditions loc. cit. for this family. By the rational function l/l∞, we also

identify L = P1.

The complement X◦
0 = X0 {u} is a smooth divisor of X {u}. The

condition that the intersection T ∗
X◦

0
X ∩ T ∗

X∞X is contained in the 0-section

means that X∞ and X◦
0 meet transversely and hence the axis AL of the
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pencil L spanned by l and l∞ meets X transversely. The condition that the

intersection T ∗
X◦

0
X ∩ T ∗

xX is contained in the 0-section for x ∈ D∞ means

that the axis AL does not meet D.

Let pL : XL → L be the morphism defined by the pencil L. By the

assumption that D∞ = D ∩ H∞ is étale, the restrictions pL|Di : Di → L

are flat and L ∩ P∨
i = ∅ for i ∈ I. Let ZL ⊂ XL be the intersection

with P (j!F) ⊂ X ×P H. By the conditions that H∞ is not contained in

L∩D(RLj!F) = pL(ZL) and that X ∩AL is contained in U , the morphism

pL : XL → L is smooth outside the finite set pL(ZL). Further, pL : XL → L

is locally acyclic relatively to the pull-back of j!F and is non-characteristic

with respect to the pull-back of j!F outside ZL by Lemma 3.9.

The condition that the intersection T ∗
X◦

0
X ∩ T ∗

XX is contained in the

0-section means that the morphism pL : XL → L is smooth on a neighbor-

hood of p−1
L (v) {u}. The condition that the intersection of T ∗

X◦
0
X with

T ∗
XX,Tij for ij ∈ J , T ∗

xX for x ∈ Σ is contained in the 0-section means

that the intersection X◦
0 ∩ ZL is empty. Thus, the condition (u) in Propo-

sition 3.13 is satisfied and we have an equality −dim totφϕ(u)(j!F , pL) =

(CharL(j!F), [dpL])T ∗X,ϕ(u).

The congruence l/l∞ ≡ f mod mN
u means that the composition pL ◦

ϕ : X → L is congruent to f : X → C mod mN
u . Thus, by Theorem 2.14,

we have an isomorphism φu(ϕ
∗j!F , f) → φϕ(u)(j!F , pL). Since we also have

((T ∗ϕ)∗CharL(j!F), [df ])T ∗X′,u = (CharL(j!F), [dpL])T ∗X,ϕ(u), the assertion

follows. �

Corollary 3.15. Let f : X ′ → X be an étale morphism of smooth

surfaces over k. Let X ⊃ X and X
′ ⊃ X ′ be projective smooth surfaces

containing X and X ′ as dense open subschemes and let L and L′ be a very

ample invertible OX̄-module and OX̄′-module satisfying the conditions (L)

and (R).

Let U be a dense open subscheme of X and F be a locally constant

constructible sheaf of Λ-modules on U . Let j̄ : U → X̄ and j̄′ : U ′ = U ×X

X ′ → X̄ ′ be the open immersions and let F ′ be the pull-back of F on U ′.
Then, we have

(T ∗f)∗(CharL(j̄!F)|X) = CharL′(j̄′!F ′)|X′ .(3.28)
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Proof. It is sufficient to show that the coefficient of an irreducible

component T0 of SS(j!F) ⊂ T ∗X in CharL(j̄!F)|X =
∑

i ai[Ti] equals that

of an irreducible component T ′
0 of the pull-back of T0 in CharL′(j̄′!F ′)|X′ =∑

i′ a
′
i′ [T

′
i′ ]. Let T̄0 ⊂ T ∗X̄ be the closure. By Lemma 3.6.1, the restriction

P (T̄0) → T̄∨
0 of the morphism X̄ ×P H → P∨ is generically radicial. By

Lemma 3.12, we may take a pencil L ⊂ P∨ satisfying the conditions (P1)–

(P3) there. Let v be a point L ∩ T̄∨
0 and u ∈ P (T̄0) be the unique point

of the inverse image p−1
L (v) ⊂ XL. By the condition (P2), u ∈ X ×P H

is not contained in P (T̄i) for i �= 0. Similarly, we take a pencil L′ ⊂ P′∨

satisfying the conditions (P1)–(P3) and a unique point u′ ∈ P (T̄ ′
0) of the

inverse image p−1
L′ (pL′(u′)) ⊂ X ′

L′ . Let j : U → X and j′ : U ′ → X ′ be the

open immersions. Then, by Proposition 3.13, we have

−dim totuφ(j!F , pL) = (CharL(j̄!F), [dpL])T ∗X,u = a0 · (T0, [dpL])T ∗X,u,

−dim totu′φ(j′!F ′, pL′) = (CharL′(j̄′!F ′), [dpL′ ])T ∗X′,u′

= a′0 · (T ′
0, [dpL′ ])T ∗X′,u′ .

By Proposition 3.14, there exists an integer n such that the invertible OX̄ -

module M = L⊗n is very ample, satisfying the condition (L) and (R) and

−dim totuφ(j!F , pL) = (CharM(j̄!F), [dpL])T ∗X,u,

−dim totu′φ(j′!F ′, pL′) = ((T ∗f)∗CharM(j̄!F), [dpL′ ])T ∗X′,u′ .

Thus, if we set CharM(j̄!F) =
∑

i bi[Ti], we obtain

a0 · (T0, [dpL])T ∗X,u = b0 · (T0, [dpL])T ∗X,u

a′0 · (T ′
0, [dpL′ ])T ∗X′,u′ = b0 · (T ′

0, [dpL′ ])T ∗X′,u′ .

Since (T0, [dpL])T ∗X,u > 0 and (T ′
0, [dpL′ ])T ∗X′,u′ > 0, we obtain a0 = b0 =

a′0. Thus the equality (3.28) is proved. �

Corollary 3.15 means that the characteristic cycle CharL(j!F) is inde-

pendent of the choice of a very ample OX -module L satisfying (L) and (R)

and that the construction of CharL(j!F) is étale local. Thus, we can make

the following definition.

Definition 3.16. Let X be a smooth surface over k and U be the

complement of a Cartier divisor. Let F be a locally constant constructible
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sheaf of Λ-modules on U . Then, we define CharR(j!F) to be the restriction

to T ∗X of CharL(j̄!F) for a smooth compactification X → X̄, the compo-

sition j̄ : U → X̄ and a very ample invertible OX̄ -module L satisfying (L)

and (R).

The construction of CharR(j!F) is additive in the sense that we have

CharR(j!F) = CharR(j!F ′) + CharR(j!F ′′)

for an exact sequence 0 → F ′ → F → F ′′ → 0 of locally constant con-

structible sheaves on U = X D. We record the equality (3.26) for the

convenience of the reference.

Theorem 3.17 (cf. [9, p.7 Principe]). Let X be a smooth surface over

k and let F be a locally constant constructible sheaf of Λ-modules on a dense

open subscheme U . Let f : X → C be a flat morphism to a smooth curve

and u be a closed point of X. Assume that u is an isolated characteristic

point of f with respect to j!F and that D is étale over C on a neighborhood

of u except at u. Then, we have

−dim totφu(j!F , f) = (CharR(j!F), [df ])T ∗X,u.(3.29)

Proof. Clear from Proposition 3.14. �

We prove a variant of Theorem 3.17 for a normal surface later at Propo-

sition 3.22.

3.3. Euler characteristic and the characteristic cycle

We compute the Euler characteristic. Let X be a smooth connected

surface over a perfect field k, let D � X be a reduced closed subscheme

and F be a locally constant constructible sheaf of Λ-modules on U =

X D. Let Y → X be a closed immersion of a smooth curve such that

the immersion Y → X is non-characteristic with respect to j!F . Then let

CharR(j!F|Y ) denote −1-times the cycle of T ∗Y defined as the image of the

fiber CharR(j!F)×X Y by the surjection T ∗X ×X Y → T ∗Y .

Lemma 3.18. Let X be a projective smooth connected surface, D ⊂ X

be a reduced closed subscheme and C be a proper smooth connected curve of
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genus g over an algebraically closed field k. Let f : X → C be a proper flat

morphism over k such that the restriction f |D : D → C is finite. Let F be

a locally constant constructible sheaf of Λ-modules on U = X D.

Assume that f : X → C is non-characteristic with respect to j!F on the

complement of a finite set Z of closed points of X. Let c ∈ C be a closed

point such that on a neighborhood V ⊂ C of c, the morphism X ×C V → V

is smooth and non-characteristic with respect to j!F and set Y = X ×C c.

1. We have

χc(U,F) = (2− 2g) · χc(U ∩ Y,F|U∩Y )−
∑
x∈Z

dim totφx(j!F , f).(3.30)

2. We have

(CharR(j!F), T ∗
XX)T ∗X = (2− 2g) · (CharR(j!F|Y ), T ∗

Y Y )T ∗Y(3.31)

+
∑
x∈Z

(CharR(j!F), [df ])T ∗X,x.

Proof. 1. By the assumption that X ×C V → V is non-characteristic

with respect to j!F , the cohomology sheaves of Rf∗j!F are locally constant

on V similarly as in the proof of Lemma 3.7 and we have rank (Rf∗j!F)V =

χc(U ∩ Y,F|U∩Y ). Hence it suffices to apply the Grothendieck-Ogg-

Shafarevich formula [13, Théorème 7.1] to compute χc(U,F) =

χ(C,Rf∗j!F).

2. By the cartesian diagram

X −−−→ T ∗C ×C X −−−→ T ∗X

f

� �p

C −−−→ T ∗C,

we have

(CharR(j!F), T ∗
XX)T ∗X = (p∗A, T

∗
CC)T ∗C

where A = (CharR(j!F), T ∗C ×C X)T ∗X denotes the pull-back by the top

right arrow.

Since X×C V → V is assumed non-characteristic, the push-forward p∗A
is supported in the union of the 0-section and the inverse image of C V .



Characteristic Cycle 435

Hence, it is the sum A1+A2 of a multiple A1 of the zero-section and a linear

combination A2 of fibers. We have

(A1, T
∗
CC)T ∗C = (p∗A, T

∗
c C)T ∗C · (T ∗

CC, T
∗
CC)T ∗C

= (CharR(j!F), T ∗C ×C Y )T ∗X · (2g − 2).

By the exact sequence 0 → T ∗C ×C Y → T ∗X ×X Y → T ∗Y → 0 and

the definition of CharR(j!F|Y ), we have (CharR(j!F), T ∗C ×C Y )T ∗X =

−(CharR(j!F|Y ), T ∗
Y Y )T ∗Y and (A1, T

∗
CC)T ∗C equals the first term in the

right hand side of (3.31). Since (A2, T
∗
CC)T ∗C is equal to the second term,

the equality (3.31) is proved. �

Theorem 3.19 (cf. [9, p.13 Corollaire]). Let X be a projective smooth

surface over an algebraically closed field k of characteristic p > 0, U be a

dense open subscheme and j : U → X be the open immersion. Let Λ be a

finite field of characteristic 
 �= p and F be a locally constant constructible

sheaf of Λ-modules on U . Then, we have an equality

χc(U,F) = (CharR(j!F), T ∗
XX)T ∗X .(3.32)

Theorem 3.19 is proved in [20, Théorème 1.2.1] under the following “non-

feroce” assumption on F : There exists a finite Galois covering V of U

trivializing F such that for every point ξ ∈ X of codimension 1, the pull-

back V ×U Spec Kξ to the local field Kξ = Frac(ÔX,ξ) at ξ is isomorphic to

� Spec Li for finite extensions Li of local fields such that the residue fields

are separable over that of Kξ.

Proof. Let L be a very ample invertible OX -module satisfying the

conditions (L) and (R). By Lemma 3.12, there exists a line L ⊂ P∨ satisfying

the conditions (P1)–(P3). Let H be the hyperplane corresponding to a

closed point of L not contained in D(RLj!F) and Y = X ∩ H be the

hyperplane section. We compare (3.30) and (3.31) for the blow-up XL and

the pull-back FL of F to UL = U ×X XL. Then, since the axis AL meets X

transversely and does not meet D, we have

χc(UL,F) = χc(U,F) + rank F · deg(X ∩AL)
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and

(CharR(j!FL), T ∗
XL
XL)T ∗XL

= (CharR(j!F), T ∗
XX)T ∗X

+ rank F · deg(X ∩AL).

By the Grothendieck-Ogg-Shafarevich formula, we have

χc(U ∩ Y, j!F|U∩Y ) = (Char(j!F|Y ), T ∗
Y Y )T ∗Y .(3.33)

Hence, by (3.30), (3.31) and Theorem 3.17, we have

χc(U,F)− (CharR(j!F), T ∗
XX)T ∗X(3.34)

= 2(Char(j!F|Y )− CharR(j!F|Y ), T ∗
Y Y )T ∗Y .

For ij ∈ J , let D◦
ij be a finite scheme over D◦

i such that Tij ×Di

D◦
i is a line bundle over D◦

ij . We put CharR(j!F) = rank F · [T ∗
XX] +∑

ij∈J s
R
ij (j!F)[Tij ]+

∑
x∈Σ s

R
x (j!F)[T ∗

xX] and define an effective Cartier di-

visor DTR(j!F) supported on D by

DTR(j!F) =
∑
ij∈J

sRij (j!F) · [D◦
ij : D◦

i ] ·Di.(3.35)

Since the coefficients of the 0-section T ∗
Y Y in Char(j!F|Y ) and CharR(j!F|Y )

are both −rank F and the other coefficients are defined by the intersection

number −(DT (j!F), Y )X and −(DTR(j!F), Y )X , for the right hand side of

(3.34) we have

χc(U,F)− (CharR(j!F), T ∗
XX)T ∗X(3.36)

= −2(DT (j!F)−DTR(j!F), c1(L))X .

The left hand side of (3.36) is independent of the choice of an ample

invertible OX -module L satisfying the conditions (L) and (R). Since the

Néron-Severi group is generated by the classes of ample invertible sheaves,

the difference DT (j!F) − DTR(j!F) is a divisor numerically equivalent to

0 by Lemma 3.1.2. Hence the right hand side of (3.36) is 0 and we obtain

(3.32). �

Proposition 3.20. The restriction of CharR(j!F) to the non-degen-

erate locus is equal to Char(j!F) whose definition is recalled in Section 1.
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Proof. It suffices to show that the coefficients of T ∗
XX,Tij for ij ∈ J

and T ∗
xX for x ∈ Σ in CharR(j!F) are equal to the corresponding ones

in Char(j!F) as long as the latter is defined. By Proposition 3.11, the

coefficient of T ∗
XX in CharR(j!F) is rank F and the assertion follows in this

case.

We deduce the assertion on the coefficients of Tij for ij ∈ J from that

DT (j!F)−DTR(j!F) is numerically equivalent to 0 proved at the end of the

proof of Theorem 3.19. Let D1 be an irreducible component of dimension

1 of D. The assertion is étale local by Corollary 3.15. By the additivity

of the characteristic cycles, we may assume that J1 consists of one element

1. Let s11(j!F) and sR11(j!F) be the coefficients of T11 in Char(j!F) and in

CharR(j!F).

By approximation, there exists a finite Galois extension L of the function

field K of Galois group G of X such that the local field K1 splits completely

and that the inertia group at Ki for i ∈ I, i �= 1 acts trivially on the stalk of

F . Let Y → X be the normalization in L and let X ′ → Y be a resolution

of singularities.

Let H be the class of an ample line bundle on Y and let D1,Y be the

inverse image of D1 in Y . Then, since the divisor DT (f∗j!F)−DTR(f∗j!F)

of X ′ is numerically equivalent to 0, we have (DT (f∗j!F) −
DTR(f∗j!F), H)Y = 0. Since the right hand side is (s11(j!F) − sR11(j!F)) ·
[D◦

11 : D◦
1]× (D1,Y , H)Y and (D1,Y , H)Y > 0, we have s11(j!F) = sR11(j!F).

Thus the assertion for the coefficient of Tij for ij ∈ J is proved.

Assume that D has simple normal crossing and that F is non-degenerate

along D and let u be a closed point of D. We show that the coefficients

of T ∗
uX in Char(j!F) and CharR(j!F) are equal. Since we assume that

Char(j!F) is defined, it suffices to consider the cases where F is tame ram-

ified along D and is totally wild ramified separately.

In the tamely ramified case, we deduce the assertion from the following

Lemma.

Lemma 3.21. Let X be a smooth surface over an algebraically closed

field k and f : X → C be a smooth morphism to a smooth curve. Let D be

a divisor with simple normal crossing and u be a closed point of D. Let F
be a locally constant constructible sheaf U = X D tamely ramified along

D.

1. If the restriction D → C of f is étale at u, we have φu(j!F , f) = 0.
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2. Assume that u is in the intersection of two components D1 and D2

of D and that the restriction f |D1 : D1 → C and f |D2 : D2 → C are étale.

Then, we have ψq
u(j!F , f) = 0 for q �= 1 and we have dimψ1

u(j!F , f) =

rank F . Further the action of the Galois group of the local field Kv at

v = f(u) ∈ C on ψ1
u(j!F , f) is tamely ramified.

Proof. 1. By [15], f : X → C is locally acyclic relatively to j!F in

this case.

2. We have ψq
u(j!F , f) = 0 for q �= 1 and dimψ1

u(j!F , f) = rank F by

[19]. We show that the action of the Galois group of the local field Kv

at v = f(u) ∈ C on ψ1
u(j!F , f) is tamely ramified. Since the local tame

monodromy is abelian, we may assume that F is of rank 1. Let π : X ′ → X

be the blow-up at u and set v = f(u). Let E be the exceptional divisor and

let w1, w2, w3 ∈ E be the intersection with the proper transforms of D1, D2

and of the fiber f−1(f(u)) respectively and set E◦ = E {w1, w2, w3}.
An elementary computation as in [24] shows the following:

ψ0(π∗j!F , f)|E◦ is a locally constant constructible sheaf of rank 1 tamely

ramified at w1, w2, w3 with a tame Galois action of the local field Kv of

C at v and ψq(π∗j!F , f)|E◦ = 0 for q �= 0. We have ψw1(π
∗j!F , f) =

ψw2(π
∗j!F , f) = 0. We have ψq

w3(π
∗j!F , f) = 0 except for q = 0, 1 and

ψq
w3(π

∗j!F , f) for q = 0, 1 have the same dimension with a tame Galois ac-

tion of the local field Kv. Thus, the Galois action of the local field Kv on

ψ(j!F , f) = RΓ(E,ψ(π∗j!F , f)|E) is tamely ramified. �

In the case 1 (resp. 2) of Lemma 3.21, by Theorem 3.17 and Lemma 3.21,

we have (CharR(j!F), [df ]) = 0 (resp. = rank F) and hence the coefficient

of T ∗
uX in CharR(j!F) is zero (resp. rank F). Thus the assertion follows in

the tamely ramified case.

Assume that F is totally wildly ramified along D. Let f : X → C

be a morphism to a smooth curve defined on a neighborhood of u that is

non-characteristic with respect to j!F . Then, f : X → C is locally acyclic

relatively to j!F and we have ψu(j!F , f) = 0 by [25, Proposition 3.15].

Hence the assertion follows as above. �

Proposition 3.22. Let X be a normal surface over k and let F be a

locally constant constructible sheaf of Λ-modules on a dense open subscheme

U = X D. Let f : X → C be a flat morphism to a smooth curve and u be
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a closed point of X. Assume that u is an isolated characteristic point of f

with respect to j!F and that D {u} is étale over C on a neighborhood of

u. Let π : X ′ → X be a resolution, F ′ be the pull-back of F and E = π−1(u)

be the inverse image. Then, we have

−dim totφu(j!F , f) = (CharR(j!F ′), [df ])T ∗X′,E .(3.37)

Proof. By resolution, we may assume that X is projective and

X {u} is smooth over k. Let N � 1 be an integer such that and g ≡
f mod mN

u implies an isomorphism φu(j!F , f) ! φu(j!F , g) by Theorem

2.14. We take an ample invertible OX -module L satisfying the condi-

tions (L) and (R) on the complement of u and take a pencil L such that

pL : XL → L satisfies the condition in Proposition 3.13 and f ≡ pL mod mN
u .

Let U ′ ⊂ X ′ be the inverse image of U ⊂ X. Similarly as Lemma 3.18,

we obtain equalities

χc(U
′,F) + rank F · deg(X ∩AL)

= 2χc(U
′ ×X Y,F|U ′×XY )− dim totφu(j!F , pL)(3.38)

−
∑
x∈X

dim totφx(j!F , pL).

and

(CharR(j!F), T ∗
X′X ′)T ∗X′ + rank F · deg(X ∩AL)(3.39)

= 2(CharR(j!F|Y ), T ∗
Y Y )T ∗Y + (CharR(j!F), [df ])T ∗X′,E

+
∑
x∈X

(CharR(j!F), [dpL])T ∗X,x.

The corresponding terms in (3.38) and (3.39) are equal to each other except

for the second terms in the right hand, by Theorems 3.19 and 3.17 and the

Grothendieck-Ogg-Shafarevich formula. Hence we have an equality also for

the second terms and the assertion follows. �
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